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Abstract— Text spotting in natural scenes is of increasing 

interest and significance due to its critical role in several 

applications, such as visual question answering, named entity 

recognition and event rumor detection on social media. One of the 

newly emerging challenging problems is Tattoo Text Spotting 

(TTS) in images for assisting forensic teams and for person 

identification. Unlike the generally simpler scene text addressed 

by current state-of-the-art methods, tattoo text is typically 

characterized by the presence of decorative backgrounds, 

calligraphic handwriting and several distortions due to the 

deformable nature of the skin. This paper describes the first 

approach to address TTS in a real-world application context by 

designing an end-to-end text spotting method employing a Hilbert 

transform-based Generative Adversarial Network (GAN). To 

reduce the complexity of the TTS task, the proposed approach 

first detects fine details in the image using the Hilbert transform 

and the Optimum Phase Congruency (OPC). To overcome the 

challenges of only having a relatively small number of training 

samples, a GAN is then used for generating suitable text samples 

and descriptors for text spotting (i.e. both detection and 

recognition). The superior performance of the proposed TTS 

approach, for both tattoo and general scene text, over the state-of-

the-art methods is demonstrated on a new TTS-specific dataset 

(publicly available1) as well as on the existing benchmark natural 

scene text datasets: Total-Text, CTW1500 and ICDAR 2015. 

 
Index Terms— Hilbert transform, Text detection, Text spotting, 

Generative adversarial networks, Calligraphic text, Tattoo text 

spotting.   

I. INTRODUCTION 

ext spotting  in natural scene images is receiving special 

attention because it can serve several real-time 

applications, such as visual question answering [1], named 

entity recognition [2], and event rumor detection [3] on social 

media platforms. This has resulted in models [1, 4] aiming to 

overcome challenges such as arbitrarily oriented text, 

irregularly shaped text, text in multiple scripts, and dense text. 

Increasingly more challenging applications have also been 

appearing that involve text spotting for person identification 

and tracking e.g., in marathons and other sports [5, 6]. Those 

methods [5, 6] attempt to detect and recognize single characters 

or digits, text on clothes deformed by movement, and partially 

occluded text.   

Ultimately the goal is to create a generalizable method 

widely applicable to real-world problems (simple and complex 

text situations). This trend has motivated the authors to create 

a new text spotting approach that solves a particularly 

challenging problem while also demonstrating excellent 

performance in general situations.  

The challenge addressed in this work is the very recently 

emerging problem of tattoo text spotting (TTS). General tattoo 

image detection and recognition is not a new problem for the 

computer vision and image processing community [7]. A key 

objective of such methods is to assist forensic teams in 

identifying a person, a crime or a gang.  

The underlying reason is that since each tattoo symbol or 

drawing is bespoke, varying uniquely according to an 

individual’s creativity and expression, an automated method 

can assist a forensic team in obtaining clues about a crime, a 

gang, or a person. In particular, a broad observation is that 

drawing tattoo text on human body parts nowadays is 

fashionable, especially among celebrities [7].  

 
Similarly, the main intention of having text tattooed on 

human body parts is to express individuality, one’s views, 

convey a message etc. This is very important in several real-

world applications such as person identification, personality 

assessment and psychological evaluation. For instance, tattoo 

text in images uploaded on social media can help to gain further 

insights on the corresponding people. Therefore, the proposed 

approach focuses on tattoo text spotting rather than drawings or 

symbols. After all, the text provides richer semantic 

information than drawings. To the best of the authors’ 

knowledge, this is the first work on Tattoo Text Spotting (TTS) 
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Fig. 1. Text spotting by the state-of-the-art and the proposed approaches 

in full images (top: tattoo text, bottom: scene text). 
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addressing the challenges of real-world applications. 

The main challenges of TTS compared to other text spotting 

applications are the presence of significant variations due to the 

freestyle handwriting, dense calligraphic text, and complex 

backgrounds due to decorative features and the nature of skin 

itself.  State-of-the-art methods on text spotting [1, 4] have not 

been designed with such complexities in mind and, therefore, 

are not effective in those situations. It is evident from Fig. 1, 

that the state-of-the-art methods [1, 4], which employ a kernel-

based network and a transformer, respectively, for text spotting 

in scene images, do not perform well for the representative 

tattoo text image example (top row) nor for the similarly 

complex text in a scene image (bottom row). As mentioned 

earlier, this is due to the limitations and relatively narrow scope 

of the existing methods. On the other hand, the method 

proposed in this paper performs well for both the tattoo and the 

scene text in the example images.  

While it is evident from the above that TTS is an open 

challenge on its own, this paper proposes a novel end-to-end 

approach for text spotting in both tattoo and natural scene 

images. To detect fine details (edges) in images of either type, 

especially given the need to overcome the varying quality and 

complex nature of tattoo text, the proposed method first 

employs the Hilbert transform (HT) and Optimum Phase 

Congruency (OPC) [8]. Next, the strong discriminative power 

of the Generative Adversarial Network (GAN) and its 

capabilities for synthesizing images using different features [9, 

10] are employed in a novel combination to detect and 

recognize (i.e. spot) both scene and tattoo text effectively, 

completing the end-to-end approach. 

The following are the key contributions. (i) The use of the 

Hilbert Transform for detecting the fine details (edges) which 

represent text information irrespective of whether it is a tattoo 

or a scene image. Since this step reduces background 

complexity, the performance of text spotting improves for 

tattoo text as well as natural scene text. (ii) The exploitation of 

a GAN architecture within the system to generate possible 

synthetic text variants based on a few original samples in order 

to reduce dependency on a large number of labelled samples. 

This is necessary especially for tattoo text images (difficult to 

acquire large datasets) and in turn it improves the proposed 

method’s generalization ability. (iii) The proposed method 

successfully integrates the HT and GAN in an end-to-end 

system in a novel way for achieving superior results for both 

tattoo and scene text images without requiring large training 

datasets (for the case of TTS, where data is scarce)  and without 

additional computational overhead compared to the state-of-

the-art. (iv) A newly created Tattoo Text Spotting Dataset 

(TTSD) to support this newly introduced tattoo text spotting 

challenge for forensic and security applications.  

The rest of the paper is organized as follows. Section II 

presents a review of existing text detection, recognition and 

spotting methods. The proposed approach and its use of the 

Hilbert transform to detect fine details in the input image and 

the GAN for Tattoo Text Spotting are detailed in Section III. 

Experimental analysis and results on both a new tattoo text 

dataset as well as on standard benchmark natural scene text 

datasets are reported and discussed in Section IV. The main 

findings are summarized, and future work is proposed in 

Section V. 

II. BACKGROUND AND LITERATURE REVIEW  

Since the proposed approach is a text spotting (i.e. detection 

and recognition) system for both tattoo and scene text, the 

closest state-of-the-art methods reviewed below are for text 

detection, recognition, and end-to-end spotting methods for 

natural scenes. 

A. Approaches for Text Detection or Text Recognition in 

Natural Scenes 

Deng et al. [11] proposed an efficient scene text detection 

method based on a recurrent feature refinement network. Raisi 

et al. [12] developed a model for text detection in the wild using 

a transformer-based network. Chowdhury et al. [5] introduced 

an episodic learning network for text detection in sports scene 

images. It does not, however, consider the detection of tattoo 

text images for detection. Similarly, several deep learning-

based models have been developed to address the challenges of 

text detection in natural scene images [13-25]. However, the 

scope of those methods is limited to regular scene text 

recognition and does not include tattoo text images. Recently, 

Nandanwar et al. [26] proposed a model for text detection in 

3D video based on the combination of a wavefront and a deep 

learning approach. This approach does not work well for tattoo 

text images because of the use of elaborately decorated 

characters and backgrounds. Overall, none of the above 

approaches considers tattoo images, and the scene text they 

address does not include calligraphic text like that in tattoos.  

The same conclusions can be drawn for the state-of-the-art 

methods for text recognition in natural scene images. There are 

several methods [27-40] addressing different challenges posed 

by text in natural scene images. However, none of those state-

of-the-art methods considers the complexity of tattoo text and 

hence, the scope of those methods is limited to regular scene 

text recognition.  

B. End-to-end Approaches for Text Spotting in Natural 

Scenes 

Liao et al. [41] developed an effective text spotting model in 

natural scene images based on a Segmentation Proposal 

Network.  Wang et al. [42] proposed a model for addressing the 

challenges of text spotting in natural scene images. The 

approach effectively detects boundary points to identify and fit 

bounding boxes for text lines in any orientation. Qiao et al. [43] 

proposed a “text perceptron” end-to-end approach for 

arbitrarily shaped text spotting. Liao et al. [44] described a 

model for arbitrarily shaped text spotting in natural scene 

images. Liu et al. [45] explored an adaptive Bezier curve 

network for real-time end-to-end text spotting in natural scenes. 

Wang et al. [46] used a method based on kernel representation 

for accurate end-to-end text spotting in natural scene text 

images. Huang et al. [4] introduced the SwinTextSpotter 

framework, based on a transformer that unifies the text 

detection and recognition tasks for spotting. Zhang et al. [47] 



 3 

introduced the Text Spotting Transformers (TESTR) 

framework. It employs a single encoder and dual decoders for 

text box control point regression and character recognition. 

Kittenplon et al. [48] proposed the TextTransSpotter, a text 

spotting approach based on a multi-task transformer employing 

weakly-supervised learning for text spotting. Ye et al. [49] also 

proposed end-to-end text spotting in natural scene images. 

Their approach uses a single decoder with explicit ordered 

points for text detection and recognition. The encoded points 

comprise text semantics and locations.  

Although the above approaches employed transformers for 

text spotting in scene images, the methods are not effective for 

tattoo text spotting because of the challenges posed by the 

calligraphic style of tattoo text. In addition, the scope of the 

methods is confined to scene images and not tattoo images.   

Furthermore, it is noted from the literature that GANs have 

been used successfully for image synthesis and for 

transforming text to image and vice versa, but not for tattoo text 

spotting [50-54]. Similarly, the Hilbert transform (HT) has 

been used for image recognition, fault detection, defect 

detection, and cognitive task understanding [8, 55-57]. Wang 

et al. [8] explored the HT for extracting general features (edges) 

in images but did not specifically focus on the problems of 

(tattoo or scene) text images. It is unclear for which specific 

applications those general image features may be most useful. 

The literature on the Hilbert transform shows that it has not 

been used for tattoo and scene text recognition yet.  

In summary, it can be concluded that none of the state-of-

the-art text spotting methods considers tattoo text images for 

spotting. Moreover, while Chowdhury et al. [58] very recently 

proposed a deformable convolutional and inception-based 

neural network (DCINN) for tattoo text detection, the scope of 

that work is confined to detection and does not extend to 

spotting. In addition, according to the literature the 

combination of Hilbert Transform and GAN has not been 

explored for either text spotting or tattoo text spotting. 

III. PROPOSED TATTOO TEXT SPOTTING  

The authors’ objective has been to develop an end-to-end 

approach for text spotting in tattoos and scene images. The 

rationale is that an end-to-end spotting approach can produce 

accurate and reliable results by minimizing the adverse impact 

of errors in the intermediate steps of cropping, feature re-

calculation, word separation, character grouping, and character 

segmentation [46]. 

The key challenges of tattoo text spotting are background 

complexity and the calligraphic style of the text. Moreover, the 

background design and the tattoo text may share the same color 

and texture properties. To deal with the challenges of 

identifying the fine details in the complex input images, the 

proposed approach first performs a Hilbert transform (HT), 

which enables the enhancement and retention of only the fine 

details in the images through the Optimum Phase Congruency 

(OPC) [9]. The rationale for proposing the use of the HT with 

OPC is as follows. The HT involves a fast Fourier transform, 

which is a well-known high-pass filter and hence the HT helps 

in enhancing the fine details in an image and suppressing the 

rest of the image. In the case of text, the phase information 

obtained by the HT results in high energy for edge pixels 

compared to the background, because high energy is 

represented by high frequency and amplitude. Therefore, the 

phase congruency exploits the high energy information to 

enhance and retain edge pixels by suppressing background 

pixels. This results in the fine details (edges) representing text 

information, irrespective of whether it is tattoo text or general 

scene text. In addition, the resulting edge detection in effect 

reduces the background complexity, regardless of the input 

image type (tattoo or general scene images).  

Since the complexity of text spotting is reduced, the need for 

a large number of samples to train the model may also be 

reduced. This motivated the authors to introduce a GAN for text 

spotting in this work to further minimize the method’s 

dependency on a large number of training samples. The GAN 

enables the generation of the necessary training text samples 

with fewer original samples (and not many are available in the 

case of tattoo text). In addition, the GAN can capture the 

geometrical structure and shape of characters in complex 

situations [9, 10]. In summary, the HT reduces background 

complexity, while the GAN simplifies dealing with the widely 

varying foreground complexity (calligraphic text style of tattoo 

text). Hence the proposed combination of HT and GAN 

achieves a generalization ability that results in higher 

performance in difficult situations. The generator of the GAN 

is primarily utilized for text detection and localization by 

generating synthetic images with various text patterns, styles, 

and deformations. These images aid in training the model to 

effectively identify and locate text regions within an image. 

The discriminator, on the other hand, is used for text 

recognition, ensuring that the generated images are 

appropriately recognized and transcribed into text (see Fig.2).  

 

 

A. Hilbert Transform for Detection of Fine Details 

As discussed in the previous section, background complexity 

is one of the key challenges for both tattoo and scene text 

spotting, and especially for arbitrary oriented and shaped text 

spotting. Motivated by the ability of the HT to suppress low 

frequency coefficient values (representing non-text pixels) and 

to retain high frequency coefficient values (representing text) 

irrespective of tattoo or natural scene images, the HT has been 

Fig. 2. Proposed text spotting framework for tattoo and natural 

scene images.  
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used for detecting fine details (edges) in the images. It is the 

authors’ view that this approach is better than learning-based 

methods because the HT performs high pass filtering in an 

unsupervised way and hence it is a generalized approach for 

detecting the fine details in images of any type. The output of 

the HT also enables the subsequent steps of text detection and 

recognition (spotting) to perform well in both tattoo and natural 

scene images.  

To achieve the above goal, the 2D Discrete Fourier Hilbert 

Transform (2D-DFHT) is computed to obtain the OPC for the 

input images. 

 To implement the 2D-DFHT in this work, the Riesz [59] 

transform is combined with the Discrete Fourier Transform 

(DFT). The objective functions of the Riesz and the DFT are 

defined in Eq.(1) and Eq.(2) respectively. 

||𝑅𝜇||
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Here, 𝛽(𝑝𝑥 , 𝑟) is the infimum taken over all neighboring n 

pixels whereas, 𝛽2,𝜇(𝑝𝑥, 𝑟)  denotes its conjugate with mean 

distribution μ. Similarly, the DFT is defined as in Eq.(2): 

𝐵𝑗 = ∑ 𝑒−𝑖
2𝜋𝑗𝑢

𝑈 𝑏𝑢
𝑈−1
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where, 𝑏𝑢 depicts the cross-correlation between pixels with a 

complex sinusoidal function 𝑒−𝑖
2𝜋𝑗𝑢

𝑈 over the pixel set U. Based 

on the above discussion, the pixel matrix (𝑁 × 𝑁) is analyzed 

in the spatial (odd pixel (𝑝𝑜(𝑖, 𝑗))) and in the frequency domain 

(even pixel (𝑝𝑒(𝑖, 𝑗))). Combining these two results in the 2D-

DFHT as defined in Eq.(3).   
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where, dsf refers to the 2D finite discrete signum function and 

the 𝑎𝑏𝑑𝑦 refers to the adjacent boundary pixel value defined in 

Eq.(4) and Eq.(5), respectively.  
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 With these two pieces of information, the frequency 

spectrum is defined as  

𝐹(𝑖, 𝑗) = [𝑑𝑠𝑓(𝑖, 𝑗)  + 𝑎𝑏𝑑𝑦(𝑖, 𝑗)] ∙ [𝑝𝑜(𝑖, 𝑗) + 𝑝𝑒(𝑖, 𝑗)]            (6) 

The spatial domain information is retrieved using Eq.(7): 

𝑆(𝑖, 𝑗) =  [𝑝𝑜(𝑖, 𝑗) + 𝑝𝑒(𝑖, 𝑗)] ∙ cot (
𝜋

𝑁
) 𝑝𝑜(𝑖, 𝑗) + tan (

𝜋

𝑁
)𝑝𝑒(𝑖, 𝑗) (7) 

With the above derivations, the input image of (𝑁 × 𝑁) is 

expanded as defined in Eq.(8): 

𝑃(𝑖, 𝑗) =
1

𝑁2
∑ ∑ |𝐹(𝑢, 𝑣)|𝑁−1

𝑣=0
𝑁−1
𝑢=0 ∙ sin (𝜑𝑢,𝑣(𝑖, 𝑗))          (8) 

where 𝑃(𝑖, 𝑗) = 𝑝𝑜(𝑖, 𝑗) + 𝑝𝑒(𝑖, 𝑗)  and F(u, v) is the frequency 

spectrum distribution, and  sin (𝜑𝑢,𝑣(𝑖, 𝑗))  is the sinusoidal 

phase congruency between the ith and jth pixels. The local region 

of interest can be defined as in Eq.(9): 

𝑅𝑂𝐼(𝑖, 𝑗) = √𝑃(𝑖, 𝑗)2 + (
1

𝑁2
∑ ∑ |𝑆(𝑢, 𝑣)|𝑁−1

𝑣=0
𝑁−1
𝑢=0 ∙ cos (𝜑𝑢,𝑣(𝑖, 𝑗)))

2

          (9) 

Finally, the phase congruency information is extracted 

using Eq. (10): 

𝜗(𝑖, 𝑗) =
𝑅𝑂𝐼(𝑖,𝑗)

1

𝑁2
∑ ∑ |𝐹(𝑢,𝑣)|𝑁−1

𝑣=0
𝑁−1
𝑢=0 ∙|𝑆(𝑢,𝑣)|

sin (𝜑𝑢,𝑣(𝑖, 𝑗)) ∙ cos(𝜑𝑢,𝑣(𝑖, 𝑗))      (10) 

This phase information is convolved with the Mf and Mh [8] 

operators to produce the 0th-pixel phase information (f0(x,y)) 

and the 1st-pixel phase information (f1(x,y)) matrix, 

respectively. These are squared and summed up to obtain the 

local information energy. This information is divided by the 

obtained 𝑅𝑂𝐼(𝑖, 𝑗) to get the current candidate region. 

 
The steps to obtain the OPC using the 2D-DFHT are 

illustrated in Fig. 3, where one can see (a) the input image and 

(b) the corresponding grayscale image. The effect of phase 

congruency can be seen in Fig. 3(c) and fine details in the 

frequency and the spatial domains can be seen in Fig. 3(d) and 

Fig. 3(e), respectively. Fig. 3(f) shows the skin region 

information in binary form. The final effect of the OPC can be 

seen in Fig. 3(g) as the fine details (edges).  

The benefits of the Hilbert Transform step of the proposed 

method are evident from the histogram distribution of the OPC 

shown in Fig. 3(h), where the left and the right peaks represent 

the skin region boundary (edge) pixels while the highest peak 

represents edges of text. This example indicates the potential 

ability of the OPC to distinguish text from non-text 

information. The above observation is another justification for 

the use of HT and OPC for improving the performance of text 

spotting in tattoo and scene images.  

When the HT is employed on the input image containing 

text, it generates a frequency coefficient matrix, where high and 

low frequency coefficient values can be seen. Since the HT 

behaves like a high pass filter, it discards low frequency 

coefficients which usually represent non-text information and 

retains high frequency coefficients which represent edge 

information as shown in Fig. 3(h). With this observation, the 

proposed method chooses high frequency coefficients which 

contribute to highest peaks in the histogram in the continuous 

domain, and the same coefficients are used to perform an 

inverse HT to detect the fine details (edges) in the spatial 

domain. Since the inverse transform chooses the coefficients 

which contribute to the majority for finding edge pixels, the gap 

between the continuous domain and the discrete domain does 

not affect edge detection. In this way, the proposed method 

facilitates domain transfer from the continuous frequency  

domain to the discrete spatial domain. 

 

(a) Input image   (b) Gray image             (c) 
𝑝𝑜(𝑖,𝑗)

𝑝𝑒(𝑖,𝑗)
        (d) Frequency  

Fig. 3. Illustrating 2D-DFHT for obtaining candidate region. 

(e) Spatial             (f) Skin Region    (g) Fine details      (h) Histogram  
Fig. 3. Illustrating 2D-DFHT for obtaining candidate region. 
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There are several well-known edge detectors in the literature, 

such as the Hough transform and Canny, which also provide 

fine details in the images. However, these are not suitable for 

tattoo images because of the unpredictable background and 

calligraphic style of tattoo text.  It can be seen from the 

illustration shown in Fig. 4 for the input image, where Hough 

transform introduces noise, while Canny lost edge connectivity. 

The Hilbert transform (HT) enhances edges without 

introducing noise and loss of connectivity. The reason that the 

HT performs well is that very small and/or low contrast edges 

can be noticed in the frequency domain, in contrast to the 

spatial domain. Therefore, the HT is more suitable for the 

proposed work compared to the other techniques mentioned.  

It is noted from Fig. 1 that the text in tattoo images can be 

difficult to distinguish from the background. In addition, since 

the tattoo text is similar to handwritten text – see also Fig. 5(a) 

– and the background is unpredictable, the overall challenge 

becomes greater. Moreover, the presence of tattoo text on 

different skin colors, different parts of the human body with 

different artistic backgrounds makes text spotting in tattoo 

images more complex compared to spotting regular text in 

natural scenes. 

The effectiveness of the proposed HT for text spotting is 

illustrated in Fig. 5(a)-(f), where one can see for complex 

images of tattoo and scene text, the HT enables the reduction 

of background information by extracting the fine details which 

contain text information, as shown in Fig. 5(b). Similarly, the 

effectiveness of the fine detail extraction and background 

reduction achieved can be seen in Fig. 5(c) and Fig. 5(d), where 

the proposed method detects and recognizes all the tattoo text 

and the scene text accurately. In contrast, Fig. 5(e) and Fig. 5(f) 

show that the proposed method without the HT step does not 

detect and recognize the tattoo and scene text accurately. In the 

case of tattoo text, since bounding boxes are not identified 

accurately, the model fails to recognize all the text correctly. 

For the scene text, although bounding boxes are fitted 

adequately to the text, the model fails to recognize the word 

“KELUAR”, recognizing it as “KELUNR” instead. Therefore, 

the above strongly indicates that the HT step is beneficial in 

addressing the challenges of both tattoo and scene text.   

B. Tattoo Text Spotting  

In this paper, the problem of text spotting is posed as an 

image-to-text translation task. The model needs to learn the 

mapping of the text boxes in the generator, given an input 

image. The discriminator uses those text boxes to recognize the 

text. The GAN architecture used in this work is shown in Fig. 2.  

 
The model used here is inspired from the pix2pix model for 

paired image-to-image translation [60]. The pix2pix model is 

based on cGAN [61]. Theoretically, as mentioned in that paper, 

translation is stated to be between two domains of images if 

they maintain a similar structure. The same concept has been 

explored in the method proposed here to perform image-to-text 

translation. The L1 loss along with the normal GAN losses are 

used in the pix2pix model.  

Input image           Hough transform             Canny               Hilbert transform  
Fig. 4. Comparing the proposed edge detection by Hilbert transform with 

other well-known edge detection methods.  

(d) Text recognition with HT  

(c) Text detection  

(b) Candidate region detection  

(a) Input images 

    Tattoo text image                                           Scene text image  

(f) Text recognition without HT 

Fig. 5. Illustrating the effectiveness of the HT for text spotting. 

Recognition results are shown in the yellow blocks.  

(e) Text detection without HT  
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The L1 loss prevents the GAN from producing completely new 

results, as the output textboxes must be tightly coupled, while 

the GAN loss accounts for accurate, non-blurry image-to-text 

spotting of the image. Since this work focuses on text spotting, 

in the proposed GAN architecture the image features are 

encoded and then decoded into another domain (text domain). 

To tackle different structures of cross-modalities, we introduce 

cGAN loss to ensure that the text aligns with the image (or vice 

versa). This can include alignment loss (to ensure image-text 

pairs match correctly), content loss (to ensure semantic content 

is consistent across modalities), and traditional adversarial loss 

[62]. More details for text spotting are presented below.  

 For each candidate region produced by the HT step, the 

generator of the GAN is used for detecting and localizing text, 

while the discriminator of the GAN is used for recognizing 

text. The target of the adversarial learning is to generate an 

accurate segmentation map, which is required for the 

subsequent stages: bounding box generation and cropping of 

the bounding box content. One of the novelties in this detection 

and recognition step is training the GAN by backpropagating a 

detection loss. In addition, the generator includes a double 

stacked hourglass network (SHG) [63] which generates a 

segmentation map, a center key point heatmap, and performs 

bounding box regression for accurate text detection, as shown 

in Fig. 6. Similarly, the discriminator includes a dynamic head 

attention network to recognize the text aided by ground truth 

information. 

In Fig. 6, the SHGs are GAN-like subnets. Three subnet pairs 

are used: the first pair processes temporal and spatial 

information of the image, the second pair is used to process the 

output of the Hilbert Transform, contributing to the Image-to-

Text domain adaptation. Last but not least, the third pair is used 

to combine all the features in order to generate bounding boxes. 

 

a. Overview of the Training Schema 

The proposed method trains a mapping from the domain 

input image (I) to the OPC information (𝜗 ). As mentioned 

earlier, to achieve this, the GAN-based architecture is 

employed as it can minimize the loss in bounding box 

generation and reconstruction in generators with multi-task 

learning [64] and a self-attention mechanism [65]. Since a pair 

of images are considered as the input, this mapping can be 

implemented in a fully supervised manner, with a 

reconstruction loss (𝜁𝑟) as defined in Eq.(11): 

𝜁𝑟 = ∑ ∑ ||𝐼(𝑖, 𝑗) −𝑁
𝑗=1

𝑁
𝑖=1 𝜗(𝑖, 𝑗)||            (11) 

Furthermore, to prevent the generator from predicting 

overlapping bounding boxes, a perceptual loss (𝜁𝑝) is adopted 

as defined in Eq.(12):  

𝜁𝑝 =
1

𝑁2
||φ(𝐼(𝑖, 𝑗)) ×  φ(𝜗(𝑖, 𝑗))||               (12) 

where φ( ∙ ) evaluates the similarity between pixel values 

(resulting in 1 if similar, 0 if not). The similarity matrix of the 

input image is multiplied by the similarity matrix of the OPC 

information; hence, non-text pixels are assigned low values 

compared to text pixels. Non-text pixels can then be eliminated.  

Additionally, an adversarial loss (𝜁𝐴) [66] is utilized for fine-

grained bounding box fitting improvement and ensures proper 

domain transfer from detection to recognition. It is worth 

mentioning here that the adopted discriminator function is 

based on both a local and a global discriminator. The global 

discriminator promotes better translation of the target domain 

(i.e., text recognition), while the local discriminator works on 

small fragments to ensure data retention (i.e., character 

recognition). To train the discriminator, the character-wise loss 

(𝜁𝐷) is optimized, as defined in Eq.(13): 

𝜁𝐷 = ∑ ln𝑃(𝑦𝑡|𝐼𝑡)𝑡                             (13) 

where, 𝑦𝑡  and 𝐼𝑡 represent the ground truth and the input of the 

tth character, respectively. The loss function used in this work is 

discussed in detail in Section III.C. 

b. Generator (G) 

The illustration in Fig. 7(a) presents an overview of the 

generator architecture and its working principles. The input 

image and phase information (from the HT step) are fed into 

two parallel SHG networks for feature reconstruction. The 

output of these networks is supplied to the third SHG to 

perform the supervised mapping. The features are also passed 

through an up-sampling block consisting of three convolution 

layers with a kernel size of 3×3. The up-sampling layers are 

basically convolution layers with increasing numbers of kernels 

(i.e. 256, 512, 1024, and so on). It should be noted that for this 

overview, only the basic blocks are mentioned by which the up-

sampling representation is made, referred to as a convolutional 

blocks. The outcome is the segmentation map for the input 

image. The results are then down-sampled and concatenated 

with the output of the third SHG to obtain the heatmap and 

regressive bounding boxes. Finally, these pieces of information 

are merged for detecting/localizing the text. 

The down-sampling and the up-sampling have a number of 

advantages and some disadvantages, as discussed below. In 

case of down-sampling-Advantages: Down-sampling reduces 

the spatial resolution of feature maps but increases the receptive 

field of each neuron. This allows the network to capture larger 

contextual information, which can be beneficial for recognizing 

global patterns and objects. As the spatial dimensions decrease, 

the number of parameters and computations in subsequent 

layers also decreases. This reduction in complexity can lead to 

faster training and inference times. Down-sampling is often 

used in a hierarchical manner, where lower layers capture fine-

grained details, and higher layers capture more abstract and 

global information as shown in Fig. 7(b). This hierarchical 

feature learning can be advantageous for object detection. 

Disadvantages: Down-sampling discards fine-grained spatial 

information, which can be crucial for tasks that require precise 

localization of objects. In object detection, this loss of 

Fig. 6. Text detection from the candidate region with TTS. 
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information may affect the accuracy of bounding box 

predictions.  

In the case of up-sampling–Advantages: Up-sampling helps 

in recovering the spatial information lost during down-

sampling. This is crucial for tasks like object detection where 

precise localization is essential. Up-sampling allows the 

network to generate high-resolution feature maps, improving 

the precision of object localization. This is particularly 

important for detecting small objects. Disadvantages: Up-

sampling often involves introducing more parameters and 

computations, leading to increased computational complexity. 

This can result in longer training and inference times. The 

introduction of more parameters during up-sampling may 

increase the risk of overfitting, especially if the dataset is 

limited.  

 

Baseline Architecture: This approach trains the SHG [63] 

to identify the key points of characters, such as intersection and 

junction points, by aligning (by minimizing the loss – distance 

between the center points) the center of the regressive bounding 

box to the center of the heatmap obtained from the phase 

congruency. The height and width of the bounding box are 

regressed as well as the offset between the boxes. The result is, 

therefore, the maximum area heatmap for each possible label, 

the region size for each point, and the offset for each point, as 

shown in Fig. 7. 

Multi-Task Learning (MTL): The network is trained to 

create the segmentation of a text region while discovering its 

bounding box, thus it is important to make shared parameters 

more comprehensive and to prevent overfitting. To do this, a 

two-phase partition (encoder stack/decoder stack) has been 

inserted into the network. This architecture can be likened to a 

sequence-to-sequence model commonly used in natural 

language processing tasks such as text generation. The encoder 

and decoder stacks are trained using a semi-supervised learning 

approach where generated text tokens are used as labels during 

training [67]. The model aims to generate text or translations 

that align with the provided tokens, incorporating these 

descriptors into the generated output. The additional 

subdivision head considers the inclusion of a feature map that 

has been reduced by a quadruple spatial location process 

(splitting the information into four equal pixel matrices) 

compared to the input. It has 3 × 3  convolutions, with high 

layers in the middle. The channel size is reduced to 1 in the 

final agreement, thus leading to a split map with the same width 

and height as input, per channel. Here, the adversarial loss (𝜁𝐴) 

is used, as defined in Eq. (14): 

𝜁𝐴 =
1

𝑁
∑ 𝛽𝑖(pi log(𝑝) + 𝑝𝑖

∗ log(1 − 𝑝))𝑁
𝑖=1            (14) 

where 𝛽𝑖 =
𝑁

𝐺(𝑝𝑖)
𝛾 ,   𝑝𝑖  is the pixel value, G is the generative 

function, and 𝛾 is the normalized mean pixel value. 

Self-Attention Technique (SAT): It receives as input the 

segmentation map, down-sampled by the generator by a rate of 

4 to reduce it to the location limits of the first element map. To 

minimize feedback on areas that may contain useful 

information, this technique replicates the entire feature map 

channel with the obtained split map, thus reducing the 

likelihood of false detections in unrelated locations. 

     

Semi-Supervised Annotations (SSA): To make the 

generator more robust for automated text detection and to 

ensure the accuracy of bounding boxes, the results of the 2D-

DHFT are intersected with the obtained segmentation map to 

achieve noise reduction as well as pixel-wise heatmap 

annotation. This enables the generation of tight-fitting 

arbitrarily shaped bounding boxes.  

The activation map results from the three SHGs used in the 

generator are illustrated in Fig. 8. It can be seen that incomplete 

segmentation annotations not only are good enough to train 

useful attention maps, but they also allow the regressive head 

to produce an accurate bounding box compared to the state-of-

the-art (e.g., see Fig. 1). 

It should be noted that in the first SHG (where the input 

(a) The generator architecture. 

(b) The down-sampling block. 

Fig. 7. Illustration of the generator architecture. 

Input Image

DHFT

Stacked Hourglass 
Backbone

Stacked Hourglass 
Backbone

Stacked Hourglass 
Backbone

256

512

1024

Segmentation map

Down-sampling

Center Keypoint 
Heatmap

Regressive 
Bounding Box

Conv 3 x 3

Trans. Conv 3 x 3

Channel-wise 
reduction

(a) Stacked Hourglass 1    Stacked Hourglass 2        Stacked Hourglass 3 

Fig. 8. Activation map of the SHGs. (a) Encoder and (b) Decoder.  

(b) Stacked Hourglass 1     Stacked Hourglass 2       Stacked Hourglass 3 
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images are fed), neither encoder nor decoder activates the ROI, 

while the decoder of the second SHG (where the phase 

information has been fed) attempts to generate an ROI, albeit 

not accurate. Subsequently, when these two pieces of 

information are passed to the third SHG, the results of the 

encoder as well as of the decoder accurately generate the ROI. 

This is the key to the effectiveness of the combination of multi-

task learning, self-attention, and self-supervised annotation in 

the generator. 

c. Discriminator (D) 

The output feature tensor from the generator is considered 

along with the ground truth information in order to validate it. 

The detailed architecture of the discriminator network can be 

seen in Fig. 9. In this discriminator, the input tensor (𝜏 ∈

 Ɽ𝑅×𝐺×𝐵) is extracted from the detected text region to obtain the 

objective function of the discriminator (D), as defined in Eq. 

(15): 

𝐷(𝜏 ) = 𝛿(𝜏) ∙  𝜏         (15) 

where 𝛿(𝜏)  is the cumulative attention function. This 

circumvents the use of fully connected layers, which also helps 

to reduce the time complexity. To achieve this, 𝛿(𝜏)  is 

expanded as defined in Eq. (16): 

𝛿(𝜏) = 𝛿𝑇(𝛿𝑆𝑃(𝛿𝑆𝐶(𝜏) ∙ 𝜏) ∙ 𝜏)        (16) 

where 𝛿𝑇 , 𝛿𝑆𝑃 , and 𝛿𝑆𝐶  denote task-aware, spatial-aware, and 

scale-aware attention, respectively as discussed in detail below. 

Scale-aware Attention (ScAT): This attention function 

measures dynamic elements in different proportions according 

to their semantic significance as detailed in Eq. (17): 

𝛿𝑆𝐶(𝜏) = 𝜎(𝐿(
1

𝑁
∑ 𝜏 ∗ (1 − 𝜏)𝑁
𝑖=1 ))             (17) 

where 𝐿(∙) is the linear activation function incorporated with a 

1 × 1  convolutional layer and 𝜎(𝑦) = max (0,min (1,
𝑦+1

2
)) 

provides a measurement of feature similarity to follow the text 

curvature. 

 

Spatial-aware Attention (SpAT): To strengthen the 

features for recognition, an alternative location-focused module 

has been introduced which is based on integrating the identified 

characters into words/strings by concentrating the text region 

fragments (characters) between naturally delimiting regions 

(space). By assessing the maximum size of the feature tensor 

after scaling, this module decomposes the feature tensor (output 

by the generator) into smaller components of spatial 

information into two steps: first makes attention accessible 

through a deformable convolution and then integrates features 

at all levels into the same spatial tensor, as depicted in Eq.(18): 

𝛿𝑆𝑃(𝜏) =
1

𝑙𝑒𝑛
∑ ∑ 𝑤𝑖,𝑗 ∙ ((𝑝𝑆𝑆𝐿 + ∆𝑝𝑆𝑆𝐿))

𝑖𝑆𝑆𝐿
𝑗=1

𝑙𝑒𝑛
𝑖=1 ∙ (∇𝑚𝑆𝑆𝐿)

𝑗      (18) 

where 𝑙𝑒𝑛  represents the length of the feature vector after 

scaling, SSL denotes sparse sampling locations,  𝑝𝑆𝑆𝐿 + ∆𝑝𝑆𝑆𝐿 

represents the deviation from the recognized region rectified by 

the self-learned spatial offset, and ∇𝑚𝑆𝑆𝐿  represents the loss of 

self-learning in feature recognition. After that, an ROI 

integration layer has been implemented to extract intermediate 

representations from the previous layers and maintain them in 

the spatial tensor.  

Task-aware Attention (TAT): To be able to learn 

collaboratively and practice a common representation, this 

attention function has been utilized to recognize text in the end. 

It drastically changes the recognized characters’ features to 

allow grouping functions for word formulation into a single 

line. The objective function of the task-aware attention is given 

in Eq. (19): 

𝛿𝑇(𝜏) = max(𝛼𝛿𝑆𝑃(𝜏) + 𝛽
2𝛿𝑆𝑃(𝜏), 𝛼

2𝛿𝑆𝑃(𝜏) + 𝛽𝛿𝑆𝑃(𝜏))    (19) 

where, 𝛼, 𝛽 are hyperparameters, initially starting with (-1,-1), 

chosen according to the best experimental scenario as 𝛿𝑆𝑃(𝜏) is 

implemented with self-learning. To implement the function, a 

global average pooling combination of size 𝑙𝑒𝑛 × 𝑆𝑆𝐿 is first 

performed to reduce the size of the tensor. Then the resulting 

tensor is passed through two fully connected layers followed by 

a batch normalization and ultimately activates the modified 

sigmoid function – the hyperbolic tangent (tanh) function used 

to normalize the results within (-1, 1). An overview of how this 

three-attention network works simultaneously is shown in 

Fig. 10.  

 

 
The recognition network takes the region features of the 

cropped images as input. The bounding boxes obtained by the 

generator are cropped through adversarial mapping. Now the 

loss function of the discriminator is the character error rate 

(CER). If the CER increases, then 𝜁𝐷, defined in Eq. (13), also 

Fig. 9. The architecture of the discriminator block. 

Fig. 10. Working principle of the 𝛿𝑇, 𝛿𝑆𝑃, and 𝛿𝑆𝐶  combination. 

Fig. 11. Step-by-step character recognition by the proposed model. 
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increases. Similarly, the adversarial loss (𝜁𝐺𝐴𝑁) also increases. 

In the network, this adversarial loss works as a gradient and 

flows to the generator to change the weights of the generator. 

As 𝜁𝐺𝐴𝑁 is the single loss function of the overall network, the 

cropping is bypassed and the training is end-to-end. 

The step-by-step text recognition process is illustrated in 

Fig. 11, where the input is a text region with a bounding box, 

and recognition is performed character by character. It should 

be noted that a significant advantage of the proposed model is 

that characters are accurately recognized even when there is no 

space between them. 

C. cGAN Generator Loss  

To better address the challenges of tattoo and scene text, a new 

loss function is proposed here, namely the cGAN generator 

loss. The objective function is defined similarly to cGAN 

which can be expressed as in Eq. (20), where G tries to 

minimize the objective against an adversarial D that tries to 

maximize it. 

𝐿𝑐𝐺𝐴𝑁(𝐺, 𝐷)  =  𝐸𝑥,𝑦[log 𝐷(𝑥, 𝑦)]  + 𝐸𝑥,𝑧[log (1 −  𝐷(𝑥, 𝐺(𝑥, 𝑧))]  (20) 

where 𝐺∗  =  𝑎𝑟𝑔min
𝐺
max
𝐷
 𝐿𝑐𝐺𝐴𝑁(𝐺, 𝐷). 

It is stated in the literature that it is beneficial if the GAN 

losses are combined with some traditional losses, such as the 

L1 loss [60]. In this work therefore, the L1 loss and the L2 loss 

are used as two additional losses apart from the cGAN losses. 

The L1-norm is also known as least absolute deviations (LAD) 

or least absolute errors (LAE). The L1-norm minimizes the sum 

of the absolute differences between the target values and the 

estimated values. The L2-norm is known as least squares, and 

it minimizes the sum of the squares of the differences between 

the target values and the estimated values. The task of the 

discriminator remains the same, whereas the task of the 

generator is not only to outwit the discriminator but also to stay 

near the ground truth in terms of L1 and L2. The mathematical 

representations for the L1 and L2 losses are shown in Eq. (21) 

and Eq. (22) respectively. The final objective function of G can 

be represented as shown in Eq. (23). 

𝐿𝐿1(𝐺)  =  𝐸𝑥,𝑦,𝑧[||𝑦 −  𝐺(𝑥, 𝑧)||1]          (21) 

𝐿𝐿2(𝐺)  =  𝐸𝑥,𝑦,𝑧[||𝑦 −  𝐺(𝑥, 𝑧)||2]     (22) 

𝐺 ∗ = 𝑎𝑟𝑔min
𝐺
max
𝐷
[𝑔𝑎𝑛𝑤𝑒𝑖𝑔ℎ𝑡 ∗ 𝐿𝑐𝐺𝐴𝑁(𝐺, 𝐷) + 𝑙𝑤𝑒𝑖𝑔ℎ𝑡 ∗  (𝐿𝐿1(𝐺) + 𝐿𝐿2(𝐺))]     (23) 

where, 𝑔𝑎𝑛𝑤𝑒𝑖𝑔ℎ𝑡  and 𝑙𝑤𝑒𝑖𝑔ℎ𝑡  are the corresponding ratios in 

which the GAN losses and the normalization losses are 

considered. The performance improvement achieved by using 

this new loss is demonstrated and discussed in the experimental 

results section (Section IV).   

D. End-to-End Training 

It is true that text detection performance improves with the help 

of recognition (eliminating false positives) and, at the same 

time, text recognition performance improves with the help of 

text detection (tight-fitting bounding boxes for the text lines). 

To achieve this, the model should be trained with text detection 

and recognition samples. Therefore, the proposed model shares 

the training samples to achieve end-to-end performance. More 

specifically, this is realized as follows. 

End-to-end training refers to a complex learning paradigm, 

treating the whole as a single neural network (criterion 1) 

bypassing the intermediate layers (criterion 2). In the proposed 

model, the discriminator network loss function helps to 

improve the text detection (i.e., the loss will increase if the 

generator fails to generate accurate and tight bounding boxes); 

similarly, the generator network loss function helps to improve 

the recognition performance of the discriminator (i.e., if the 

bounding box is not accurate, it leads to the output of garbage 

characters as text recognition results). In the training phase of 

the proposed method, the discriminator and generator networks 

are trained sequentially to improve the performance of both the 

discriminator and the generator. Here both depend on each 

other to improve their performance through a single adversarial 

loss function that meets criterion 1 (single neural network 

paradigm), bypassing the cropping of the bounding boxes 

through the adversarial mapping, which meets criterion 2. It can 

therefore be seen that the training achieved is end-to-end.  

IV. EXPERIMENTAL RESULTS   

To validate the proposed method in the case of tattoo text 

spotting, a new dataset has been created due to the lack of 

suitable standard datasets available in the literature for the 

specific challenges of tattoo text. This dataset has been made 

publicly available (details below). To validate the proposed 

method in the case of scene text spotting, the most prominent 

existing scene text benchmark datasets were used. 

A. Datasets and Evaluation 

Tattoo Text Spotting Dataset (TTSD): This newly created 

dataset comprises 500 RGB images for experimentation. 

Images are collected from different internet resources, such as 

social media as well as captured by the authors. This dataset 

includes representative images with several challenging 

characteristics as compared to natural scene images, such as 

freestyle writing, unusual character shapes (e.g., calligraphic 

characters), dense text lines with decorative letters, symbols, 

and decorative designs in the background. All the tattoo text is 

written in English, numbering 3524 text instances in total 

(having a mean of 5 text instances per image) with word-level 

annotation. The new dataset can be freely downloaded1.  

Scene Text Datasets: To demonstrate the effectiveness of 

the proposed model for detecting and spotting text in natural 

scene images in the presence of different challenges, such as 

arbitrarily oriented and shaped text, the text of multiple scripts, 

and curved text, the following benchmark datasets were used in 

experiments: CTW1500 [68], Total-Text [69], and ICDAR 

2015 dataset [70]. The reason for choosing these datasets is that 

these are popular standard datasets for text spotting in 

literature. Furthermore, these datasets provide ground truth for 

both detection and recognition.  

To evaluate text detection, the standard measures were used, 

Recall (R), Precision (P), and F-measure (F), and the same 

evaluation scheme was followed for calculating the metrics. In 

order to evaluate the end-to-end text spotting, the end-to-end 

(E2E) accuracy has been calculated. For TTSD, Total-Text and 

CTW1500, the E2E accuracy has been calculated in two 

1https://drive.google.com/drive/folders/1o4WYa0gXuFWx6hlEGnpaZV-sEz8zElB4?usp=sharing  
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categories: None and Full. Here, None refers to recognizing the 

text without lexicon information, while Full refers to the 

lexicon which contains all the words in the test set. For ICDAR 

2015, the E2E accuracy has been calculated in 3 categories 

regarding the lexicon: Strong (S), Weak (W) and Generic (G). 

To show the effectiveness of the proposed method, we 

consider the state-of-the-art methods of text spotting in natural 

scene images for comparative study [1, 4, 14, 15, 45, 47, 48, 

49]. The motivation to choose the above methods for 

comparative study with the proposed method is that the 

objective of text spotting in natural scenes is the same as the 

proposed method.   

Training/Evaluation Details: The proposed method is 

developed with the ADAM optimizer and is trained and tested 

with several different training and testing samples of the 

respective datasets. Initially, data augmentation was performed 

during training by random resizing. Here, the shorter edges are 

kept in the range of 512 to 1024, while the most extended edges 

are kept in the range of 1024 to 2048. Besides that, instance-

aware random cropping has also been performed, which 

ensures the cropped size is larger than half of the original size 

and no text regions being cut. However, the maximum image 

size is always fixed during testing at 1024. 

With this configuration, the model was trained on the TTSD 

and Total-Text datasets for 100k epochs with a consistent 

learning rate of 10−5 and was decayed at the 40k-th iteration 

by a factor of 0.01. Not only that, but the learning rates were 

also scaled by a factor of 0.01 for the non-linear projections 

used to predict reference points as well as sampling offsets of 

the task-aware attention. The proposed end-to-end model has 

been optimized with the Adam optimizer as mentioned, with a 

weight decay of 10−3. The training process takes about 3 days 

on 4 TITAN A40 GPUs with an image batch size of 64. The 

code is freely available2. 

For validation, 25% of the total dataset was used with a 

learning level and pre-configuration process for better 

performance. In addition, as the proposed network has a 

generator module that can increase the resolution in each 

epoch, the input resolution does not affect the end-to-end 

performance.  

The same experimental setup was adapted for all state-of-

the-art methods implemented for comparative study in this 

work. It should be noted those methods were trained from 

scratch and no pretrained model has been used for the 

experiments. However, we pretrained the proposed method on 

the TTSD dataset and fine-tuned on respective individual 

datasets for 20k epochs.  

To demonstrate that the proposed model is generic, and that 

its performance does not depend on a large number of samples, 

the proposed model uses the samples from TTSD and Total-

Text as well as the samples generated by different 

augmentation techniques for training. The key reason for not 

requiring many samples is that the HT step of detecting fine 

details helps in reducing the complexity of the problem and the 

proposed GAN helps in generating text samples (possible 

variants of tattoo text images) automatically.  

All the state-of-the-art methods listed in Table 5 are fine-

tuned with the samples of TTSD dataset before calculating the 

evaluation measures. Even though the same experimental set 

up is followed for both the proposed and the state-of-the-art 

methods for all the experiments, the state-of-the-art methods 

perform worse for TTSD compared to the proposed method. 

This may also be due to the small number of samples in the 

TTSD dataset affecting training. On the other hand, since the 

proposed method is effective for small and large numbers of 

samples, it achieves the best results for both the TTSD and 

other datasets. 

B. Ablation Study  

In this work, the stacked hourglass (SHG) networks are used to 

encode the image features in such a way which enables text 

spotting via image to text translation. As discussed earlier, three 

sets of SHG encoder-decoder pairs were used to encode the 

temporal and spatial information (via the first SHG pair), to 

perform image-to-text domain adaptation through the second 

SHG pair, and to reconstruct an image which contains more 

information than the raw input one (a super annotated image 

[71]) using the third SHG pair which combines all the features. 

This enables the avoidance of pre-training using very large 

datasets such as SynthText, without compromising accuracy. 

To demonstrate that the SHG architecture is effective and 

contributes to the proposed method’s improved performance in 

text detection and spotting, experiments were conducted using 

different backbone architectures, comparing them with the 

proposed SHG+GAN on the TTSD dataset. The results are 

reported in Table 1, where it can be seen that the proposed 

SHG+GAN achieves the best text detection results (P, R and F) 

and the best spotting results (Full) compared to other backbone 

architectures. The other combinations do not provide 

satisfactory results because they do not have the positional 

embedding power of the proposed method. 

Table 1:  Experiments on different backbone architectures and the 

proposed SGH + GAN using TTSD. 

Methods P R F None Full 

ResNet-50 + GAN 84.8 82.0 83.3 75.1 72.6 

ResNet-101+ GAN 86.0 81.1 83.4 86.3 83.0 

VGG-16+ GAN 85.9 80.1 83.2 69.2 74.4 

DenseNet + GAN 85.9 83.4 84.6 78.2 81.0 

SHG + GAN 93.3 93.1 93.1 85.7 89.4 

As mentioned earlier, the proposed model uses a new loss 

function, the cGAN generator loss, which is a combination of 

the L1, the L2 and the GAN loss. To demonstrate that the 

proposed loss is better than L1, L2 and their combination, 

experiments were conducted on the TTSD dataset and the 

performance of the model using different losses is presented in 

Fig. 12. It is observed from Fig. 12 that the combination of 

cGAN + L1 + L2 results in the best performance compared to 

other individual losses and combinations. This shows that the 

proposed cGAN generator loss is effective. Using the other 

losses results in poorer performance because sometimes using 

2https://drive.google.com/drive/folders/18WqBrhcEiIBAEMYNZiiWMs6FZOBhDBwJ?usp=sharing 

 

https://drive.google.com/drive/folders/18WqBrhcEiIBAEMYNZiiWMs6FZOBhDBwJ?usp=sharing
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L1 ignores important features while the L2 loss magnifies the 

error if the model makes a single poor prediction. To overcome 

these drawbacks of the single regressive loss, the cGAN 

generator loss combination is used in this work. 

 
The results of different ablation experiments, (i) to (xi), on 

the TTSD dataset and on a standard scene dataset (Total-Text) 

are reported in Table 2. Since the Total-Text dataset contains 

several images (1,555) with diverse text instances, it covers a 

wide range of text variations including different languages, 

orientations, shapes, sizes and backgrounds. Therefore, this 

dataset is well-suited for training and evaluating models in 

handling challenging text layouts and deformations often 

encountered in natural scenes. 

It Is observed from the experiments (i) to (ix) in Table 2 that 

the results of text detection and text spotting performance 

improve gradually when the individual steps of the proposed 

method are added one by one, compared to the results of the 

baseline architecture – just the GAN in (i). This shows that all 

the proposed components make valid and effective 

contributions in improving the performance of the proposed 

method in both text detection and spotting.  

Comparing (viii) and (xi), it can be observed that using the 

HT step produces better results than using the Fourier transform 

(FFT), for both text detection and spotting. This shows that the 

HT step is more effective for detecting the fine details than the 

FFT. Similarly, when the results of experiments (ix) and (x), 

where the proposed method skips Optimum Phase Congruency 

(OPC) step and uses RGB images instead of grayscale images, 

respectively are compared with the results of the proposed 

method (xi) for text detection and spotting, the proposed 

method achieves better results. Therefore, using the OPC and 

grayscale images are important considerations and effective for 

tackling the challenges of tattoo and scene text spotting. The 

reason for the poor results in the case of using RGB images 

compared to grayscale is that this introduces unnecessary 

complexity when in fact text does not usually exhibit large 

variations in color. For instance, the whole text line will have 

very similar color and texture. However, the orientation, scale 

and aspect ratio of each character varies.  

Table 2: Ablation study of the proposed method using the TTSD and the 

Total-Text dataset. 

Exp. 

 
Key Steps 

TTSD Total-Text dataset 

Text Detection 
Text Spotting 

(End-to-End) 
Text Detection 

Text Spotting 

(End-to-End) 

P R F None Full P R F None Full 

(i) Base line: GAN 84.3 90.2 87.8 65.3 77.4 62.1 45.5 52.5 52.9 71.8 

(ii) GAN+𝛿𝑆𝐶  84.4 90.1 87.1 70.4 78.1 69.0 55.0 61.3 55.8 79.2 

(iii) GAN+𝛿𝑆𝐶+𝛿𝑆𝑃 84.7 90.4 87.7 71.2 78.4 72.5 83.4 77.6 57.5 77.2 

(iv) GAN+𝛿𝑆𝐶+𝛿𝑆𝑃+𝛿𝑇 85.1 91.2 88.2 73.5 80.7 72.1 84.6 77.9 58.4 79.0 

(v) 
GAN+𝛿𝑆𝐶+𝛿𝑆𝑃+𝛿𝑇

+MTL 
87.4 91.8 89.6 74.9 83.6 85.6 75.7 80.3 65.0 76.1 

(vi) 
GAN+𝛿𝑆𝐶+𝛿𝑆𝑃+𝛿𝑇

+MTL+SAT 
89.7 91.9 90.5 76.3 83.9 88.8 81.8 85.2 69.7 78.3 

(vii) 
GAN+𝛿𝑆𝐶+𝛿𝑆𝑃+𝛿𝑇
+MTL+SAT+SSA 

91.2 92.7 91.9 77.6 86.2 88.9 85.0 87.0 72.9 83.6 

(viii) 
(Proposed without 

HT) + FFT 
91.4 92.6 91.4 80.3 87.1 92.8 83.7 88.0 73.3 83.9 

(ix) Proposed w/o OPC 91.0 89.7 90.3 83.9 87.2 92.9 84.7 88.6 77.1 84.6 

(x) Proposed-RGB 86.9 89.1 87.9 81.2 84.3 92.1 80.2 85.7 76.7 81.2 

(xi) Proposed  93.3 93.1 93.1 85.7 89.4 93.4 85.2 89.1 77.3 86.1 

To validate the general advantages of the proposed HT step 

itself, experiments were conducted by feeding the output of the 

HT step to DeepSolo [49], a very recent state-of-the-art method 

for text spotting in natural scene images. Evaluation measures 

were calculated on the TTSD and the Total-Text dataset. The 

results are reported in Table 3, where it is noted that the 

performance of DeepSolo with HT is better than the 

performance of DeepSolo without HT. Thus, we can conclude 

that the proposed HT for the detection of fine details is 

important for achieving higher performance and it is generic.  

In addition, to show that the proposed model does not depend 

on a large number of training samples, especially on the 

SynthText dataset, experiments were conducted by training on 

SynthText first and then fine-tuning on respective datasets. The 

results reported in Table 4 show that the performance of the 

proposed method is better when not using SythText and Fine-

tuning on all the four datasets. To probe further, the proposed 

method is also compared with the SADA-SSC state-of-the-art 

method in [13], which proposes multi-scale context aware 

feature aggregation for curved scene text detection and does not 

use SynthText either. The results in Table 4 indicate that the 

performance of the proposed method is superior either with or 

without SynthText and fine-tuning training. Therefore, one can 

assert that the proposed method is capable of achieving superior 

results for text spotting in tattoo and scene images without the 

use of a large number of samples.  

Table. 3. Experiments using DeepSolo [49] with and without the proposed HT 

step on different datasets. 

Dataset 

DeepSolo with HT DeepSolo without HT  

Text 

Detection 

Text Spotting Text Detection Text Spotting 

P R F None Full P R F None Full 

TTSD 86.7 78.2 82.2 49.1 76.4 85.6 75.7 80.3 48.8 74.8 

Total-Text 93.1 87.6 90.2 83.9 89.8 92.9 87.4 90.0 83.6 89.6 

 Table. 4.  Experiments on different training strategies for text detection. 
Training Strategy TTSD Total-Text CTW1500 ICDAR15 

 P R F P R F P R F P R F 

Proposed with 

SynthText + Fine-

tuning 

84.6 89.2 86.8 91.1 86.2 88.5 86.4 81.2 83.7 88.6 87.5 88.1 

SADA-SSC [13] 81.7 78.2 79.9 86.7 82.6 84.6 87.2 81.7 84.4 88.8 82.6 85.6 

Proposed 93.3 93.1 93.1 93.4 85.2 89.1 92.2 84.4 88.6 89.7 91.4 90.5 

C. End-to-End Experiments for Text Spotting  

Qualitative results of the proposed and state-of-the-art 

methods for text spotting on the TTSD and the different 

benchmark natural scene datasets are shown in Fig. 13 and Fig. 

14, respectively. It can be observed that the proposed method 

spots both tattoo and scene text accurately, indicating that it is 

independent of image type. On the other hand, although state-

of-the-art methods detect tattoo and scene text well, they fail to 

Fig. 12. The effectiveness of the proposed cGAN generator loss plotted 
against the individual losses and combinations.  
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accurately spot the text in both types of images. This shows that 

the state-of-the-art methods are limited – confined to scene text 

spotting and sensitive to low contrast and small font size.  

 

 
Quantitative results of the proposed and the state-of-the-art 

methods on the TTSD and the three scene text benchmark 

datasets (Total-Text, CTW1500 and ICDAR 2015) are reported 

in Tables 5 to 8, respectively. For the TTSD, the proposed 

method performs best in both detection and spotting (End-to-

End) compared to the state-of-the-art. The main reason for the 

poorer results of the state-of-the-art methods is that the scope 

of those methods is limited to regular text in natural scenes. 

While the state-of-the-art methods are effective for complex 

text and backgrounds and achieve reasonably good accuracy, it 

is not sufficient to beat the accuracy of the proposed method. 

In the case of the proposed system, the HT step for detecting 

candidate regions and the use of the GAN to achieve an end-to-

end model prove to be an advantage.  

When the performance of the proposed method is considered 

against the state-of-the-art on text detection and spotting in 

natural scene images, as reported in Tables 6 to 8, the proposed 

method does not always outperform but it is among the best 

overall. More specifically, for text detection, the proposed 

method achieves the best Precision on the Total-Text dataset, 

the best precision and F-measure on the CTW1500 dataset and 

the highest Recall and F-measure on the ICDAR 2015 dataset. 

In the case of text spotting in natural scenes, the proposed 

method is the second highest in terms of both None and Full on 

the Total-Text dataset, second highest in terms of None and 

third highest in terms of Full on the CTW1500 dataset, and the 

second highest in all cases (Strong, Weak and Generic) on the 

ICDAR 2015 dataset, compared to the state-of-the-art. 

Since the primary focus of the proposed method is to achieve 

the best results in the new application area of tattoo text 

spotting, the slightly lower than the state-of-the-art 

performance on text detection and spotting in natural scene 

images is considered understandable and acceptable. 

Moreover, as the state-of-the-art methods are inferior to the 

proposed method for tattoo text detection and spotting and 

considering the overall performance of the proposed system on 

both tattoo text and natural scene text, one can reasonably 

conclude that the proposed system is generally superior.  

Table 5: Comparative study on TTSD dataset for detection and spotting. 

Methods 
Text Detection 

Text Spotting 

(End-to-End) 
Response 

Time 
P R F None Full 

ABCNetv2 [45] 73.7 74.3 74.0 62.7 65.4 1.7 

Huang et al. [4] 66.8 88.5 76.1 68.6 78.6 1.5 

Zhang et al. [47] 92.9 77.8 84.7 67.5 73.3 1.8 

Kittenplon et al. 
[48] 

83.9 87.3 85.6 70.2 77.1 2.1 

PAN++[1] 82.6 72.9 77.4 69.8 77.4 - 

DBnet [22] 85.2 85.5 85.1 - - - 

BRN-BCTS [14] 78.9 72.1 75.3 - - - 

RCLM [15] 82.1 83.2 82.6 - - - 

MaskTextSpotter 

v3 [41] 

86.1 86.4 86.2 83.8 86.5 - 

East [23] 32.9 33.3 33.1 - - - 

SegLink [24] 83.8 84.2 84.0 - - - 

MOST [25] 81.7 80.2 81.2 - - - 

DeepSolo [49]  85.6 75.7 80.3 48.8 74.8 4.9 

Proposed 93.3 93.1 93.1 85.7 93.3 1.3 

Table 6: Comparative study on Total-Text dataset for detection and spotting 

Methods 
Text Detection 

Text Spotting 

(End-to-End) 
Response 

Time 
P R F None Full 

ABCNetv2 [45] 84.1 90.2 87.0 73.5 80.7 1.5 

Huang et al. [4] 87.5 88.5 88.0 74.3 84.1 3.8 

Zhang et al. [47] 92.0 82.6 87.1 73.3 83.9 2.2 

Kittenplon et al. 

[48] 

88.4 82.8 85.5 75.6 84.4 1.8 

PAN++[1] 89.9 81.0 85.3 68.6 78.6 - 

DBnet [22] 88.9 83.2 86.0 - - - 

BRN-BCTS [14] 78.8 70.6 74.5 - - - 

RCLM [15] 88.5 82.0 85.2 - - - 

MaskTextSpotte

r v3 [41] 

- - - 71.2 78.4 - 

ABCNetv2 Huang et al. [4] 

Zhang et al. [45] Kittenplon et al. [46] 

Proposed 

Fig. 13. Text spotting on TTSD dataset. Recognition errors shown in red. 

ABCNetv2 [45] 

Huang et al. [4] 

Zhang et al. [47] 

Kittenplon et al. [48] 

Proposed 

Total-Text CTW-1500     ICDAR2015 

Fig. 14. Text spotting on benchmark scene text datasets. Recognition 

errors shown in red. 
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East [23] 43.2 27.1 33.3 - - - 

SegLink [24] 86.2 70.2 77.1 - - - 

MOST [25] 90.4 82.7 86.4 - - - 

DeepSolo [49]  92.9 87.4 90.0 83.6 89.6 2.2 

Proposed 93.4 85.2 89.1 77.3 86.1 1.1 

Table 7: Comparative study on CTW1500 dataset for detection and spotting 

Methods 
Text Detection 

Text Spotting 

(End-to-End) 
Response 

Time 
P R F None Full 

ABCNetv2 [45] 83.8 85.6 84.7 58.4 79.0 2.6 

Huang et al. [4] 86.8 89.2 88.0 51.8 77.0 1.6 

Zhang et al. [47] 92.0 82.6 87.1 56.0 81.5 2.7 

Kittenplon et al. [48] 91.4 85.1 88.1 55.4 71.9 2.2 

PAN++[1] 87.1 81.1 84.0 54.9 75.7 2.6 

DBnet [22] 87.9 82.8 85.3 - - - 

BRN-BCTS [14] 72.3 69.4 70.8 - - - 

RCLM [15] 86.1 81.2 83.7 - - - 

East [23] 0.25 0.25 0.25 - - - 

SegLink [24] 87.7 83.0 85.3 - - - 

MOST [25] 81.2 74.8 77.9 - - - 

DeepSolo [49]  86.9 84.5 85.7 64.2 81.4 3.8 

Proposed 92.2 84.4 88.6 59.3 79.1 1.7 

Table 8: Comparative study on ICDAR2015 dataset for detection and spotting 

Methods 
Text Detection 

Text Spotting 
(End-to-End) 

Respons

e 

Time P R F S W G 

ABCNetv2 

[45] 
86.0 90.4 88.1 83.0 80.7 75.0 1.9 

Huang et al. 

[4] 
82.1 85.2 83.6 83.9 77.3 70.5 1.8 

Zhang et al. 

[47] 
90.3 89.7 90.0 85.2 79.4 73.6 1.6 

Kittenplon et 

al. [48] 
92.3 82.5 87.1 82.5 77.4 73.5 2.2 

PAN++[1] 91.4 83.9 87.5 82.7 78.2 69.2 - 

DBnet [22] 90.9 83.9 87.2 - - - - 

BRN-BCTS 
[14] 

86.2 82.7 84.4 - - - - 

RCLM [15] 84.0 66.1 74.0 - - - - 

MaskTextSpo

tter v3 [41] 
85.9 77.9 82.1 83.3 78.1 74.2 - 

East [23] 34.4 34.7 34.5 - - - - 

SegLink [24] 73.1 76.8 75.0 - - - - 

MOST [25] 89.1 87.3 88.2 - - - - 

DeepSolo 

[49] 
92.4 87.9 90.1 88.1 83.9 79.5 1.8 

Proposed 89.7 91.4 90.5 83.9 81.1 75.5 1.7 

The response times (seconds per batch of 16 images) of the 

proposed and the state-of-the-art methods are also given in 

Tables 5 to 8. One may have thought that by introducing the 

Hilbert transform, the proposed method would be slower. 

However, considering the response times for the two most 

complex datasets, the TTSD (Table 5) and the Total-Text 

dataset (Table 6), it is evident that the proposed method is more 

efficient than the state-of-the-art. The key reason for achieving 

such efficiency is due to the single network (GAN) designed 

for an end-to-end text spotting system. In addition, the 

proposed method does not depend much on the number of 

training samples available because the Hilbert transform step 

reduces the complexity of the problem, in contrast to the 

existing methods. However, for the CTW1500 and 

ICDAR2015 datasets, the proposed method is not the fastest, 

although it comes closely in second place, compared to the 

fastest state-of-the-art method. This indicates that for these two 

less complex datasets, the best state-of-the-art method is more 

efficient than the proposed one. Overall, however, the 

difference is very small and the proposed method is more 

efficient than most of the state-of-the art methods.  

 

D. Limitations of the Proposed Method 

Naturally, there are some particularly challenging cases, such 

as those shown in Fig. 15, where the proposed approach fails to 

spot the tattoo text correctly. As discussed earlier, tattoo text 

detection and spotting are very challenging due to calligraphic 

writing, loss of character shapes, occlusion, overlap with the 

background design and skin deformation. When the shape and 

structure of characters is lost, the proposed method does not 

perform spotting well, as shown in the example failure cases in 

Fig. 15. The main reason is that individual character shapes and 

text structure are virtually absent. Furthermore, there is also 

scope for addressing other challenges of tattoo text spotting, 

such as the difficulty of identifying character shapes due to 

occlusion and calligraphic text. A promising solution may 

involve the combination of the proposed spotting model with a 

prediction model, such as a language model. Furthermore, there 

is always scope for extending the proposed method to further 

improve its performance on scene text spotting. One possibility 

is a language vision model integrated with a transformer.      

V. CONCLUDING REMARKS   

This paper has introduced a new end-to-end approach for 

spotting text in tattoo and natural scene images. The proposed 

approach benefits from a reduction in background complexity 

due to its use of the Hilbert transform resulting in more efficient 

candidate region detection. Accordingly, the performance of 

text detection and spotting increases. The generator and 

discriminator components of a GAN are subsequently used for 

text detection and recognition in an end-to-end fashion 

(spotting). Experimental results on a new tattoo text dataset 

(TTSD) and on existing benchmark scene text datasets show 

that the proposed approach outperforms the state-of-the-art 

methods in terms of detection and spotting of both tattoo and 

scene text. Future work will involve the exploration of 

language models as well as contextual knowledge from other 

text in the images to address the remaining challenges for 

spotting when tattoo text is not readable (i.e. the structure of the 

text is lost). 
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(a) Detection of challenging tattoo text by the proposed approach.  

(b) Recognition results: “A flythe ….!@$(#&@,“ (left image), 

“XYLO&@#” (middle) and “ @$(%@#($@@” (right image). 

Fig. 15.  Examples of correct detection but erroneous recognition results 
obtained by the proposed approach for complex tattoo text images. 
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