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Abstract 

The ureter typically experiences a frequency of one to five peristaltic contractions per minute. However, 

it is important to note that these contractions can be disrupted by various physical and mechanical 

irritants. Ionic contents in the urine make it electrically conducting and responsive to electromagnetic 

body forces. MHD can be deployed in biomagnetic therapy to control or mitigate symptoms associated 

with peristaltic pumping in the urinary system.  This article therefore focuses on hydromagnetic effects 

on flow patterns of urine with debris (monoliths). The mechanism of urine flow is largely coordinated 

by the kidneys. The flow inside the ureter is interrupted by microliths which is generated by the 

sedimentation of excretory products. To simulate this, a two-phase formulation is adopted comprising 

the electromagnetic urological viscous fluid phase and particulate phase for solid grains. The peristaltic 

propulsion of two-phase liquid in the ureter is simulated as a sinusoidal wave propagation of 

incompressible non-Newtonian fluid. The Williamson viscoelastic model is deployed for the rheology. 

Heat transfer is also included with Soret thermo-diffusion and viscous heating effects. Long wave and 

low Reynolds number approximations are employed based on lubrication theory. The mass, momentum, 

energy and concentration conservation equations with associated boundary conditions are rendered non-

dimensional via appropriate scaling transformations. A numerical solution is achieved via BVP4C 

MATLAB quadrature.  Graphical visualizations of the velocity, temperature and concentration (solid 

grains) are given for the influence of suspension parameter (), Hartmann number (M), Prandtl Number 

(Pr), Weissenburg number (We), particle volume fraction (C), Eckert number (Ec), Soret number (Sr), 

Schmidt number (Sc). The novelty of the present work is therefore the simultaneous consideration of a 

generalized two-phase model, wall slip, non-Newtonian characteristics, cross diffusion, viscous 

dissipation, mass diffusion, magnetic body force and curvature effects in peristaltic urological 

transport, which has not been undertaken previously. The detailed simulations reveal that the flow 

velocity is reduced due to the presence of solid particles and the channel curvature, in comparison to 

the flow in an unobstructed channel devoid of solid particles. Enhancing the hydrodynamic slip 

parameter speeds up the movement of particles and fluid near the channel walls, boosts wall skin 

friction, raises pressure difference in the pumping area, and amplifies bolus magnitudes.The rise in 

peristaltic pumping results in a reduction in solid particle concentration, which is significant 

phenomena.This theoretical approach may aid in treating conditions such as Urinary Tract Infections 

(UTIs).The computations effectively demonstrate that significant manipulation in urological pumping 

characteristics can be achieved with electromagnetic field. Some new features of two-phase ureteral 

dynamics are highlighted of relevance to magnetic therapy techniques which will be beneficial to 

clinicians.  
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Culminations 

❖ A detailed new formulation is given for magnetohydrodynamic (MHD) two-phase 

Williamson non-Newtonian ureteral transport with mass diffusion, Soret cross 

diffusion, viscous heating and peristaltic wave propulsion. 

❖ We compute numerically the pressure gradient, skin friction, Nusselt number, and wall 

shear stress in a planar channel with flexible walls, which serves as a model for the 

ureter under a transverse magnetic field. 

❖ We also investigate the impact of Hartmann number and Weissenberg non-Newtonian 

number on fluid and particle phase velocities. 

❖ The present work reveals some interesting insights into electromagnetic ureteral 

peristaltic multi-phase non-Newtonian thermo-solutal transport phenomena via 

extensive visualization.  

❖ There is a strong suppression in the ureteral fluid phase velocity for greater magnetic 

field confirming the excellent flow control abilities of Magnetic Ureteral Therapy 

(MUT). 

1.Introduction 

Two-phase flows arise in numerous applications in medicine and technology. These flows are 

characterized by particles suspended in a viscous medium. Examples of applications include 

ventricular assist devices (VADs) also called blood pumps [1], magnetic pharmacology [2], 

lymphedema and transport in the swollen lymphatic nodes [3], bio microfluidic separation 

devices [4], orthopaedic biofluid dynamics [5], tissue transdermal transport [6], capillary 

filtration [7], dialysis treatments [8], interstitial flows [9], nanoparticle transport in asthmatic 

therapy [10], hazardous biowaste conveyance [11], interfacial hydrodynamics in blood flows 

[12] and synovial hydrodynamic lubrication [13]. As noted, two-phase flow applications are 

growing in 21st century microfluidics, which is the study of fluid flow in small channels and 

devices, wherein it may be deployed for manipulating and analysing cells and particles. During 

MRI the injection of a contrast agent into the blood stream also creates a two-phase system. 

Another complex and significant application of two-phase flows in medical fluid dynamics is 

the propulsion of urine in the ureter i.e. urodynamic transport. When contaminants and 

pathogen infect the ureter, sedimentation of particles in urological fluids can precipitate serious 
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disorders including alluviation calculi in the ureter [14]. While in the majority of patients with 

a normal urinary tract and kidney function, and no predisposing co-morbidities, urinary tract 

infections (UTIs) can often be self-limiting or readily cleared with a short course of antibiotics. 

However approximately 25% [15, 16] of UTI patients, however, experience persistent or 

recurrent infection and/or treatment failure, and complicated UTIs carry an increased 

likelihood of such outcomes. These complications have motivated scientists and engineers to 

utilize simulation models to investigate the mechanics of ureteral infection and how to combat 

the associated negative effects. The essential mechanism underlying urological transport is 

peristalsis. This is a complex rhythmic motion produced by successive waves of contraction in 

elastic, tubular structures which push their fluid or fluid-like contents forward. Peristalsis 

achieves exceptional efficiency in the urinary system there creates an involuntary sinusoidal 

muscular shrinkage of the uterine wall which push the urine from the kidneys to the urinary 

bladder via synergized wavy wall motions of the ureter controlled by electrical impulses. This 

mechanism is one of the most effective in nature for internal propulsion featuring also in 

embryonic heart development, pulmonary circulation, swallowing, digestive mixing, lymphatic 

dynamics etc. It also features prominently in external locomotion in snakes, eels, earthworms 

etc. Although many extensive investigations of peristalsis have been conducted by biologists 

for over a century, it was only in the late 1960s that engineers began to develop mathematical 

hydrodynamic models and experimental simulations of peristaltic propulsion.  The seminal 

contributions of Fung and co-workers at UC San Diego [17] and Shapiro and co-workers at 

MIT [18], introduced the lubrication approximation for formulating peristaltic flow problems. 

This approach transforms the transient fixed frame scenario to a laboratory (moving) frame and 

assumes very low Reynolds numbers and high wave lengths for the peristaltic motion. It 

therefore dramatically simplifies the Naver-Stokes 3-D viscous flow model to axisymmetric 

flow in an infinitely long distensible tube. These studies produced comprehensive solutions for 

ranges of peristaltic motion depending on pressure difference and plotted streamlines, velocity 

distributions and also bolus characteristics. This approach was adopted subsequently by 

Lykoudis [19] to analyse the ureteral pumping. Boyarsky and Weinberg [20] extended the work 

in [19] examining in detail the hydrodynamics of the ureteropelvic junction and conus 

(specialized components of the ureter) and observing that in peristaltic pumping, the bolus at 

this point does not influence the pressures, flows or volume above it significantly. Most of the 

subsequent work in this area followed a similar methodology until the 21st century when CFD 

(computational fluid dynamics) emerged as a feasible tool. Lozano [21] explored both 

numerically and experimentally the dynamics of ureteral peristaltic motion. He assumed 
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however a Newtonian model and using small wavenumbers, described regular perturbation 

expansions and identified local and global bifurcations in streamline patterns. He also 

computed particle paths and addressed local bifurcations and their topological modifications 

with dynamical system techniques. This study identified a triplet of unique hydrodynamic 

phenomena- backward (reflux) pumping, trapping and augmented flow and furthermore noted 

the presence of a number of stagnation points. Kiil [22] studied the response of dilatation in 

the ureteral wall during catheter insertion. Vahidi et al. [23] deployed ADINA FSI finite 

element software to compute the two-way fluid-structure interaction between the compliant 

ureteral wall and the surrounding urological Newtonian fluid. The wall stimulation was 

accommodated as a nonlinear contact mechanics problem, and time-dependent alterations in 

the ureteral wall intraluminal shear stress during peristalsis were computed. They gave 

comprehensive visualization of key characteristics including ureteral wall compliance 

influence on contraction wave velocity, quantity of contraction waves on the ureteral outlet 

flow, pressure difference between the ureteral inlet and outlet and also the peak amplitude of 

the contraction wave. Thy observed that much greater shear stress arises in the proximal part 

of the ureter relative to the distal or central locations.  middle and distal parts. Furthermore, 

they demonstrated that greater hydromechanical efficiency is achieved for larger amplitudes of 

the contraction wave and that sub-optimal performance of the ureteropelvic junction 

precipitates significant urological reflux even when there is a very gradual initiation stage for 

the peristaltic contraction wave. Gómez-Blanco et al. [24] used a fluid-structure interaction 

simulation to study the optimal design of stents for ureteral peristaltic pumping. They 

scrutinized closely the interaction between urine flow and a double-J stented ureter and 

deployed a variety of nonlinear viscoelastic models for the quasi-incompressible and isotropic 

ureteral wall deformation. They noted that wall compliance has a key effect on the peak 

amplitude of the contraction wave and also the tensile stress in the ureteric wall.  

The above simulations were confined to single-phase Newtonian peristaltic pumping. 

However, the presence of contaminants in urological fluids can produce multi-phase flows. 

Two-phase phenomena are common since sedimentary deposits in the form of particles may 

flow with the viscous urological base liquid.  The resulting hydrodynamic problem therefore 

requires an appropriate fluid-particle suspension model. A very popular methodology was 

introduced by Caltech applied mathematician, Saffman [25] in the early 1960s which he termed 

a “dusty fluid”. In this approach, suspended particles are studied as spherical rigid bodes and 

interfacial momentum transfer is possible. Marble [26] generalized the Saffman model to 

consider thermal effects and also other forms of slip. These models have been deployed 
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extensively in biological fluid dynamics in addition to other areas of complex industrial 

suspension rheology. Srivastava et al. [27] studied peristaltic two-phase flow with the fluid-

particle suspension model. They evaluated the results of velocity using momentum equations 

in both phases and made comparison between them. Their computations showed that there is a 

reduction of fluid velocity in axial direction when there is increment in the solute concentration.  

Kamal et al. [28] studied the hydrodynamic wall slip effect on fluid-particle suspension 

peristaltic pumping in a distensible two-dimensional channel under sinusoidal waves. They 

showed that the critical value of pressure gradient is comparatively lower when particles are 

present relative to purely single-phase viscous Newtonian fluid. Many other studies have been 

communicated in peristaltic two-phase fluid dynamics addressing a variety of multi-physics 

effects including coupled thermal solutal transport [29], wall damping [30], viscoplastic 

fluidity [31], nanofluids and tapered conduit geometries [32], curved tubes [33], couple stress 

and thermal slip effects [34] and mass diffusion [35]. All these studies have revealed the 

significant influence of particle suspensions on peristaltic flow characteristics.  

In recent times, a new therapy for ureteral infections has emerged. This exploits the 

electrically-conducting nature of urological liquids which due to the presence of ions and other 

chemicals respond to external electrical and magnetic fields. Magnetohydrodynamic ureteral 

therapy (MUT) has been shown to very effective in the treatment of monolith obstructions in 

both ureteral and gynaecological performance [36]. Impulse magnetic field (IMF) control can 

strategically be deployed to activate impulse activity of ureteral smooth muscles in over 60% 

of patients and thereby optimally manage ureterolith fragments. More recently pioneering work 

in biomagnetic therapy at Stanford university [37] has led to the creation of a new medical 

device, MagSToNE (Magnetic System for Total Nephrolith Extraction), which utilizes 

magnetization to remove kidney stones during ureteroscopy to maximize the stone-free rate 

and minimize operating time. This technique has proven to be far superior to existing 

approaches such as ureteroscopy, in which a ureteroscope is passed endoscopically up to the 

stone and a laser fiber is used to fragment/and or dust the stone. MagStoNE has achieved 

comparable success rates but with much shorter operating time as fragments. It is much less 

intrusive and portable and exploits a different approach to urological hydrodynamics, namely 

magnetohydrodynamics (MHD) technology. The invention consists of two components, a 

small-diameter flexible magnetic wire (MagWIRE) and superparamagnetic particles with 

surface chemistries that bind to kidney stones. After a kidney stone is fragmented, a 

superparamagnetic particle solution is instilled through the ureteral access sheath and coats the 

fragments, rendering them magnetizable. The MagWIRE has been tested rigorously and can 
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enter through the ureteroscope or the access sheath and uses a unique magnetic configuration 

to generate a strong magnetic field to optimize the capture of stone fragment along the entire 

length of the wire. Furthermore, this device can be deployed multiple times in succession to 

extract all fragments of monoliths not retrievable with conventional therapies. It is compatible 

with existing ureteroscopy setups and is set to revolutionize urological disorder treatments 

around the world.  

Motivated by the afore-said magnetohydrodynamic ureteral therapy devices, in the 

present study we generalize previous investigations to consider peristaltic pumping in ureteral 

two-phase (fluid-particle suspension) with non-Newtonian and magnetohydrodynamic body 

force effects [38]. Lorentz body force is included to simulate magnetohydrodynamic drag. The 

Saffman fluid-particle suspension model is adopted, and heat transfer is also considered as are 

Soret thermal diffusion and viscous dissipation effects [39]. The robust Williamson rheological 

model [40,41,60] is utilized to accommodate for shear- thinning (pseudoplastic) and shear 

thickening (dilatant) behaviour of the electrically conducting urological fluid-particle 

suspension. It is important to note that a number of other non-Newtonian studies have been 

reported in peristaltic pumping of relevance to ureteral dynamics with other rheological 

models. Ajithkumar et al. [62] explored the flexibility of walls by peristaltic pumping a bi-

viscous Bingham nanofluid through a porous medium under convective boundary conditions 

by employing R-K based shooting technique. Ajithkumar et al. [63,64] addressed the 

movement of a magnetohydrodynamic Ree–Eyring nanofluid through a porous conduit along 

with considering activation energy and thermal radiation. Vajravelu and Ajithkumar et al., 

[65,66] examined the peristaltic pumping of different nanofluids through lubrication approach.  

Jagadesh [67] studied convective peristaltic pumping of a Casson viscoplastic yield stress fluid 

across an inclined porous wavy channel by employing a regular perturbation technique. 

Ajithkumar et al. [68,69] studied the bioconvective peristaltic transport of a non-Newtonian 

nanofluid similar to sutterby and Jeffrey across a porous symmetric channel with compliant 

walls. Hina and Kayani et al. [70,71] analyzed the peristaltic motion of a non-Newtonian 

nanofluid following the Carreau–Yasuda (CY) model in a compliant walled channel using 

Buongiorno's model without assuming constant diffusion coefficients. Yasin et al. [72] 

primarily address the peristaltic flow of a hybrid nanofluid including copper (Cu) and silver 

(Ag) nanoparticles with blood as the carrier fluid in a symmetrical channel. Yasin et al. [73] 

scrutinised a viscous-elastic (Maxwell) fluid with slip condition to analyse hemodynamic in 

arteries and capillaries, taking into account Hall current features. Long wave and low Reynolds 

number approximations are employed based on lubrication theory. The mass, momentum, 
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energy and concentration conservation equations with associated boundary conditions are 

rendered non-dimensional via appropriate scaling transformations. A numerical solution is 

achieved via BVP4C MATLAB quadrature. Graphical visualizations of the velocity, 

temperature and concentration (solid grains) are given for the influence of suspension 

parameter (), Hartmann number (M), Prandtl Number (Pr), Weissenburg number (We), particle 

volume fraction (C), Eckert number (Ec), Soret number (Sr), Schmidt number (Sc). The 

simulations demonstrate that significant manipulation in urological pumping characteristics 

can be achieved with electromagnetic field. Some new features of two-phase ureteral dynamics 

are highlighted of relevance to magnetic therapy techniques which may be beneficial to 

clinicians.  

2.Mathematical model for magnetized ureteral two-phase rheological flow  

The physical model to be investigated is depicted in Figure 1.a, with a rendition of the feed 

mechanism via the kidneys to the ureter depicted in Figure 1.b. Two-dimensional viscous fluid-

particle suspension hydromagnetic peristaltic pumping with rheological, thermal and viscous 

heating effects is considered in a planar channel with distensible walls, as a model of the ureter 

under a transverse magnetic field. The following assumptions are considered in the formulation: 

➢ Two-dimensional  

➢ Incompressible laminar flow  

➢ Cartesian co-ordinate system (X, Y)  

➢ Non-Newtonian fluid (Williamson model) 

➢ Sinusoidal wave along tapered channel with particles 

 

 

Figure 1.a. Schematic diagram of peristaltic ureteral MHD two-phase flow 
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Figure 1.b. The internal picture of kidney with ureteral stones 

A sinusoidal wave of amplitude 𝑎̃, 𝐾̃ represents the channel length-dependent constant, 

wavelength λ, channel’s half-width at the inlet is denoted by 𝑏̃ and constant velocity 𝑐̃ 

propagates along the channel wall with height 𝐻̃(𝑋̃, 𝑡̃) defined as: 

( ) ( )
2

, sinH X t a X ct b KX




 
= − + + 

 

      (1) 

Magnetic induction, thermal dispersion, Dufour (diffuso-thermal) and thermal stratification 

effects are neglected. The magnetic field is sufficiently weak also to negate hall current effects.  

The governing conservation equations, i.e. fluid phase and particulate phase momentum, 

temperature, and concentration equations in an (𝑋̃, 𝑌̃, 𝑡̃) coordinate system, amalgamating the 

models in [32, 33] and extending to include hydromagnetic effects can be shown to take the 

form:  
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In the aforementioned equations [40], 
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Where the subscripts f and p denote fluid phase and solid (particulate granules) phase, 

respectively. In Eqns. (2)-(9) the following notation applies: C is the partial volume fraction 

parameter, (𝑋̃, 𝑌̃, 𝑡̃)  are axial and transverse coordinates and time, 𝜌𝑓 is Williamson urological 
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fluid density, 𝑈̃𝑓 , 𝑉̃𝑓 are axial and transverse fluid phase velocity components, 𝑃̃ is pressure, 

𝜏̃𝑋̃𝑋̃ and 𝜏̃𝑌̃𝑌̃ are the shear stress tensor components, 𝑈̃𝑝, 𝑉̃𝑝  are axial and transverse particle 

phase velocity components, S is Stokes number,  is electrical conductivity of the Williamson 

urological fluid and 𝐵0 is transverse magnetic field intensity, (𝜌𝑐𝑝)𝑓 is specific heat capacity 

of the Williamson urological fluid, 𝑇̃𝑓 is fluid phase temperature, K is thermal conductivity of 

the Williamson fluid (isotropic),  𝜌𝑝 is particulate density, 𝜔𝑇̃ is particle phase Saffman wall 

slip coefficient,  𝑇̃𝑝 is particle phase temperature, 𝐾̃𝑓 is particulate concentration, 𝐷𝑚 is 

molecular diffusivity of the particles in urological Williamson fluid. The following dimensional 

boundary conditions [39] are prescribed at the channel walls ( 0Y = :Y H= ) 
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The nonlinear boundary value problem defined by Eqns. (10)- (11) in primitive form is 

formiadable to solve even with modern numerical methods. Also this requires explicit data for 

each fluid and particle property. To faciliate a solution, scaling transformations are therefore 

introduced. These dramatically simplify the problem at hand and simultaneously enable scaling 

of different thermal, magentic and hydrodynamic effects via appropriate dimensionless 

numbers, a very powerful tool in fluid dynamics. Proceeding with the analysis, the following 

non-dimensional variables are invoked [32, 33, 34,40]: 
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These parameters denote respectively the dimensionless (𝑋̃, 𝑌̃)  axial and transverse 

coordinates, non-dimensional axial fluid phase velocity, non-dimensional axial particulate 

phase velocity, dimensionless transverse particle phase velocity, dimensionless pressure, 

Reynolds number (based on wave amplitude and peristaltic wave speed), dimensionless fluid 

phase temperature function, dimensionless particulate phase temperature function, 

dimensionless height of channel (ureteral conduit), fluid concentration parameter, particulate 

concentration parameter, dimensionless time, amplitude to wave length ratio, non-dimensional 

shear stress components, Weissenberg number, shear rate, momentum Stokes number, 

Hartmann magnetic number, Eckert (viscous heating) number, Prandtl number, Soret number 

and Schmidt number. Saffman suspension parameter is denoted 𝜉. Implementing the 

transformations (12) in Eqns. (1)-(11), the transformed non-dimensional boundary value 

problem emerges as: 

Dimensionless Fluid phase: 
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X Y Y C

   
= + + − −  

   −  
                              (13) 

0
P

Y


=


                                                                                                                  (14) 

22

2

Pr 1
0

1

f C Ec dP

Y C dX





   
+ =     −   

                                                                          (15) 

2 2

2 2
0

f f
SrSc

Y Y

     
+ =          

                                                                                    (16) 

 

Dimensionless Particle phase: 

( )p f

P
U U

X



= − −


                                                                                                  (17) 

f p =                                                                                                                     (18) 

f p =                                                                                                                    (19) 
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Dimensionless Boundary conditions  

0, 0, 0, 0, 0, 0
f f f p p pU U

Y Y Y Y Y Y

        
= = = = = =

     
   at 0Y =                         (20) 

0, 1, 1f f fU  = = =        at Y h=                                                                            (21) 

Here the transformed wall equation is mentioned as, 

                    1 sin 2h d X t = + + −  

Where          , 1
KX b

d
a a

 = =   

The skin-friction coefficient, also known as the wall shear stress, is determined by applying 

equation (22). Similarly, the thermal flux, which represents the rate of thermal exchange, is 

determined by applying equation (23). 

The skin friction parameter ( )fC   on the wall is precisely described as 

f

U
C

Y


 
= −  

 
     at Y = h                                                                                                         (22) 

The local Nusselt number parameter ( Nu )is precisely defined as 

Nu
Y

 
= − 

 
     at Y = h                                                                                                            (23) 

The equation governing the rate of mass transfer through the wall is expressed as Sherwood 

number (Sh) 

Sh
Y

 
= − 

 
     at  Y = h                                                                                                             (24) 

3. MATLAB Numerical Solutions and Methodology 

The above mentioned Linear ordinary differential equations (13 - 19) were solved numerically 

utilising MATLAB's bvp4c function, together with Equations (20) and (21) was associated 

with the boundary conditions.  

To aid in the achievement of this resolution, the following procedures were implemented: 
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✓ System Reduction: The introduction of new variables led to the transformation of a 

complex set of higher-order partial differential equations into a simpler set of first-order 

ordinary differential equations. 

✓ Generation of Boundary Conditions: To ensure adherence to the problem's constraints, 

boundary conditions were established for the variables that were recently incorporated. 

✓ The suitable initial approximations for these newly introduced variables were 

ascertained, thereby providing a basis for the numerical resolution. 

✓ By meticulously adhering to these procedures, the intended solution was achieved 

utilizing the bvp4c function, thereby successfully resolving the resulting system. 

The second-order governing equations including both fluid and particle phases were 

transformed into a set of first-order ordinary differential equations through the inclusion of new 

variables. The variables 𝑈 and 𝑈′ were defined as f1 and f2, respectively. 𝜃 and  𝜃′ were defined 

as f3 and f4, while 𝛼 and  𝛼′ were defined as f5 and f6, respectively. The procedure described 

the transformation of the original set of linked higher-order differential equations and their 

corresponding boundary conditions into a system of five first-order differential equations. The 

boundary conditions were adjusted to match the converted equations. The system of first-order 

linear ordinary differential equations generated is as follows: 

' 2U f=          (25) 

 
( )

21 1
" 2 ' 1

1 2 ( 2) 1
U f Ha f P

We f C

  
= = +   

+ −  
    (26) 

' 4f =          (27) 

2Pr 1
'' 4 '

1

C Ec
f P

C



= = −

−
       (28) 

' 6f =          (29) 

'' 6 ' ( 4 ')f SrSc f = = −        (30) 

The associated boundary conditions are 

(2) 0, (4) 0, (6) 0,a a af f f= = =       (31) 

(1) 0, (3) 1, (5) 1b b bf f f= = =        (32) 

 

 A numerical solution is achieved via BVP4C MATLAB quadrature.  This technique has been 

applied to many multi-physical fluid dynamics problems e. g. triple diffusive convection duct 

flows [45], robotic smart lubrication films [46], bio magnetic hypodermic coating flows [47], 
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carbon wall nanotube bio-coatings [48], ternary hybrid nanofluid magnetic functional coatings 

[49] and electromagnetic squeezing tribological applications [50, 51]. It can accommodate any 

order of derivatives. In MATLAB this quadrature is used to obtain solutions for the fluid and 

particulate velocity functions, temperature functions and concentration function. BVP4C uses 

stepping formulae which are summarized in [47]. Further details are given in Kattan [52]. The 

algorithm relies on an iteration structure. BVP4C is a numerical platform that implements the 

Lobato IIIa three-stage formula. This is a collocation formula which is formed by a polynomial 

collocation. It provides a C1-continuous solution that is fourth-order accurate uniformly in 

 ,x a b .  

The fourth-order formulae are given below: 

( )1 ,n nk L f x y=
                  (33)

 

1

2 ,
2 2

n n

kL
k L f x y

 
= + + 

                    (34)

 

2

3 ,
2 2

n n

kL
k L f x y

 
= + + 

                     (35)

 

( )4 3,n nk L f x L y k= + +
                   (36)

 

( )531 2 4

1
6 3 3 6

n n

kk k k
y y O L+ = + + + + +                                                                                   (37) 

where ( )1i iL x x+= −  represents the size of each subinterval. The crucial part in utilizing 

bvp4c is the variation step and early guessing of the mesh point. Besides, the efficiency will 

eventually depend on the programmer ability in providing the algorithm with an initial guess 

for the solution. Two folders can be created, for example, namely, “code a” and “code b”, for 

the trial-and-error initial guess and continuous iterations that approximate closely to the initial 

guess, respectively. The above-described computing approach cannot be used without 

transforming the higher-order differential equations to differential equations of order one. 

Some commands in handling the function such as “@odeBVP” and “@odeBC” are from the 

syntax of the solver “sol = bvp4c” (@OdeBVP, @OdeBC, solinit, options). The iterative 

process is carried out until an accuracy of 610−  is achieved which is obtained for the values of 

the boundary conditions and step size. The numerical results obtained from the solver are then 

plotted as graphs.  
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4. MATLAB results and discussion  

Extensive computations have been conducted in MATLAB to determine the influence 

of all key control parameters on the peristaltic multi-physical transport problem.  Specifically 

these parameters are Saffman suspension parameter (), Hartmann number (M), Prandtl 

Number (Pr), Weissenburg number (We), particle volume fraction (C), Eckert number (Ec), 

Soret number (Sr) and Schmidt number (Sc). The effects of these parameters on fluid/particle 

velocity functions, fluid/particulate temperature function and particlulate concentration 

function are depicted in Figures. 2- 13. All data utilized is extracted from clinically viable 

sources [53-55] and earlier studies [42]. Velocity, temperature and concentration are considered 

in turn.  

4.1. Velocity Characteristics                                          

Figure 2 shows that a significant decrement in both fluid and particle phase velocity is 

induced with elevation in Hartmann magnetic number (M). The major reason for the reduction 

in fluid phase velocity is due to the action of Lorentz force on the electrically conducting non-

Newtonian urological liquid. This arises in the linear retarding body force term in Eqn. (13), 

−(𝐻𝑎)2𝑈𝑓. The influence of magnetic field generates a strong resistance to the axial flow 

which induces deceleration. The urological volumetric flow rate which is proportional to 

velocity will also be suppressed. Higher Hartmann number therefore achieves excellent flow 

control via a non-intrusive means which has been shown to be beneficial in urological disorders 

[37, 38]. By virtue of the definition of Ha = √
𝜎

𝜇
𝐵0, expresses the relative influence of the 

Lorentzian magnetic force to the viscous force in the regime. When Ha = 1 both forces 

contribute equally, and Hartmann-Stokes boundary layers may arise at the interior of the 

ureteral duct. When Ha = 0 magnetic effects vanish, and the urological liquid is electrically 

non-conducting. When Ha > 1 the magnetic force dominates the viscous force, and this 

effectively stifles momentum development in the duct. The range of magnetic field intensities 

studied here is representative of the actual magnitudes explored in [35]. In all the profiles peak 

velocity magnitude is computed at the duct centreline (Y = 0) since only the upper duct half 

space region is plotted due to symmetry (the actual duct depth extremities extend over the 

range, -1< Y < 1). The opposing force augmented the non-Newtonian potency of the reactive 

Williamson fluid and diminished the heat generation within the system. Consequently, the 
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viscosity of the fluid is enhanced as the molecular bond is stimulated throughout the flow 

regime. It is discovered that a greater transverse magnetic field, represented by an increasing 

Hartmann number, similar retardation may be found for both fluid and particle.  

Figure 3 reveals the response in velocity with an alteration in Saffman suspension parameter, 

𝜁. This parameter features in the momentum Stokes number, 𝑆 =
𝜇𝜁

𝑎̃2, and arises in the fluid 

phase-particulate phase coupling term,  +
ζC

1−C
(Up − Uf) in the fluid phase momentum eqn. 

(13).  Contrary to the Lorentzian drag term, the coupling term is an assistive body force and 

accentuation in the parameter, 𝜁 implies greater slip between the fluid and particles leading to 

an acceleration in the fluid phase. The suspension of granules accelerates with enhancement of 

average velocity of particles. A significant decrease in axial particle phase velocity is observed. 

Both phases are presented here with opposite results. 

Figure 4 Illustrates the evolution in fluid and particle phase velocity with increasing 

Weissenberg number (We). This parameter arises uniquely in the modified shear term, 

+2𝑊𝑒 (
𝜕𝑈𝑓

𝜕𝑌
) (

𝜕2𝑈𝑓

𝜕𝑌2 ) in Eqn. (13) which is a mixed derivative term. The Weissenberg 

number (We) embodies the relative contribution of the elastic forces to the viscous forces in 

the rheological urinary fluid. It also expresses the ratio of stress relaxation time of the fluid to 

the specific process time. It is most deployed for simple shear flows where it also describes the 

product of the shear rate and the relaxation time. When We = 0 non-Newtonian effects vanish 

since elastic effects swamp out viscous effects.  Since all rheological liquids including magnetic 

urological fluids are elastico-viscous, they combine elastic and viscous properties. For 

situations wherein the relaxation time of a flow is much less than the timescale of an elastic-

viscous fluid, then viscous effects dominate. Conversely when relaxation time of the flow 

exceeds the timescale, elastic effects will be amplified over viscous effects. The Weissenberg 

number can also be regarded as the inverse Deborah number (ratio of the time scale of the flow 

and the stress relaxation time).  



17 
 

 
Figure 2. Impact of Hartmann number (M) on fluid and particle phase velocity ( ),f pU  

 

Figure 3 Impact of Saffman supension parameter on fluid and particle phase velocity ( ),f pU  
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Figure 4 Impact of Weissenberg number (We) on fluid and particle phase velocity ( ),f pU   

It is evident that as Weissenberg number increases the viscous forces increases relative to the 

elastic forces which induces strong deceleration in urological fluid (tensile stresses related to 

the first normal stress difference are reduced which contributes significantly to this process). It 

also slows down the movement of particles. The Weissenberg number in rheology also 

computes the degree of anisotropy or orientation generated by the fluid deformation and is 

relevant for constant stretch history flows as studied here. In cases where non-constant stretch 

history arises e.g. complex polymers in bionics, it is more appropriate to deploy the Deborah 

number which better expresses physically the rate at which elastic energy is stored or released 

in the fluid. 

4.2. Temperature Characteristics                                      

Figure 5 visualizes the impact of Prandtl number (Pr) on fluid phase temperature. 

Prandtl number expresses the relation between momentum diffusivity and thermal diffusivity. 

It is also an inverse function of thermal conductivity of the urological fluid. A strong decrement 

is induced in temperature in the fluid phase. Higher Prandtl number fluids diffuse thermal 

energy (heat) much less efficiently than lower Prandtl number fluids. The values for rheological 

urological fluid are closer to water (Pr ~7 at room temperature). Prandtl number also can be 

used to quantify the relative thickness of the momentum and thermal boundary layers 
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developing at the ureteral tube internal walls. When Prandtl number equals unity the 

momentum and energy diffusion rates are equivalent in the peristaltic regime.   However, for 

Prandtl number in excess of unity the momentum diffusion rate greatly exceeds the thermal 

diffusion rate. This certainly applies in the present case of ureteral hydrodynamics [53-55]. The 

influence of particle volume fraction (C) on fluid phase temperature is depicted in Figure 6. 

Peak temperature always arises at the ureteral tube centre line. It vanishes at the upper wall (Y 

= 1). As the percentage of monolith particles increases, the thermal convection process is 

inhibited. The parameter C features in both the fluid phase momentum eqn. (13) 

as+
𝜁𝐶

1−𝐶
(𝑈𝑝 − 𝑈𝑓) and also in the fluid phase temperature eqn. (15) as the term, 

+
𝐶 𝑃𝑟 𝐸𝑐

1−𝐶

1

𝜁
(

𝑑𝑃

𝑑𝑋
)

2

. It clearly has a detrimental effect on temperature as it appears in the 

denominator (1-C) and therefore elevation in C reduces the thermal diffusion in the fluid phase 

and manifests in a depletion in temperatures across the upper half space of the duct. Even a 

minor enhancement in volume fraction from 10% (C = 0.1) to 12% (C = 0.12) has a dramatic 

effect on thermal distributions in the urological fluid. The volumetric heat capacity of the 

monolith granule particles is enhanced with volume fraction which boosts thermal conduction 

in the suspended particles but counteracts heat diffusion in the urological base fluid [53]. 

Figure 7 illustrates the influence of Eckert number (Ec) on temperature parameter. Eckert 

number characterizes the viscous heating in the urological fluid which is attributable to internal 

friction at the molecular level. The friction induced generates thermal energy which energizes 

the urological fluid and boosts temperatures. Internal friction alters the viscosity of the 

urological fluid which also contributes to a temperature change since via the Prandtl number 

there will be a modification in momentum diffusion rate relative to thermal diffusion rate due 

to viscous heating. The rate of change of temperature with height of the duct is also elevated 

as Eckert number increases (i.e. a steeper gradient is produced). Figure 8 visualizes the impact 

of the Saffman suspension parameter () on temperature evolution in the ureteral duct. There 

is a clear accentuation in fluid phase temperature as the suspension parameter is elevated. The 

slip effect between particles and the base urological fluid is encouraged with higher values of 

this parameter. This intensifies the micro-convection round the suspended particles which 

contributes to enhanced thermal diffusion in the base fluid and the resulting enhancement in 

temperature. Monotonic decays are computed consistently from the duct centreline to the upper 

wall, and no cross-over in profiles is witnessed. 
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Figure 5. Impact of Prandtl number (Pr) on fluid and particle phase velocity temperature (𝜃)f, p 

 

Figure 6. Impact of particle volume fraction (C) on fluid and particle phase temperature (𝜃)f, p 
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Figure 7. Impact of Eckert number (Ec) on fluid and particle phase temperature (𝜃)f, p 

 

 

Figure 8. Impact of Saffman suspension parameter ( ) on fluid and particle phase 

temperature (𝜃)f, p 

4.3. Suspended particle concentration characteristics and Pressure gradient                                   

In this final section of the discussion, we address the impact of selected control 

parameters on the particulate concentration. This is distinct from the volume fraction (C) which 

relates to the percentage volume of suspended particles in the urological fluid. The 
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interconnection between suspension parameter () and concentration in peristaltic flow exhibits 

a high degree of complexity and is subject to the influence of multiple factors which is depicted 

in Figure 9. The dimensions and morphology of suspended particles exert a significant 

influence. Particles that are larger in size or have irregular shapes may exhibit distinct 

interactions with the fluid and the ureteral tube walls in comparison to smaller, spherical 

particles, resulting in differences in the flow and mass transfer characteristics. The findings 

indicate that there is an inverse relationship between the distribution of suspension parameter 

and concentration i.e. larger values of the Saffman suspension parameter () produce a 

depletion in concentration magnitudes. Figure 10 visualizes the influence of Schmidt number 

(Sc) on the concentration of the particles suspended in the urological fluid.  The Schmidt 

number represents the relative rates of mass diffusion and momentum diffusion inside the 

peristaltic regime.  A high Schmidt number signifies that the rate of momentum diffusion is 

greater than that of mass diffusion. Hence, the concentration is suppressed with increment in 

Schmidt number. The sub-unity values of Sc in Figure 10 are representative of actual urological 

contamination with monoliths [see for example, 55, 56]. A similar effect on the concentration 

profile (Figure 11) is noticed with variation in the thermo-diffusive parameter i.e. Soret number 

Sr. This parameter also features in the same term as the Schmidt number, viz, +𝑆𝑟𝑆𝑐 (
𝜕2𝜃𝑓

𝜕𝑌2 )  in 

the fluid phase temperature eqn. (16). When the Soret number increases from zero, this 

indicates that thermal diffusion is the dominant mechanism. Concentration magnitudes clearly 

diminish with magnifying the values of Soret number (Sr). The term “concentration” in the 

context of peristaltic flow often pertains to the existence of solutes or particles inside the fluid. 

The distribution of concentration within the tube may exhibit variations due to the influence of 

other mixing and transport phenomena. This effect is observed in Figure 12 as a decrease in 

the fluid concentration profile is computed with increasing values of viscous dissipation 

parameter, Eckert number (Ec). This parameter features, as noted earlier, in the fluid phase 

temperature eqn. (15), specifically the term, +
𝐶 𝑃𝑟 𝐸𝑐

1−𝐶

1

𝜁
(

𝑑𝑃

𝑑𝑋
)

2

. The correlation between particle 

concentration and particle volume fraction is contingent upon the characteristics of both the 

particles and the fluid in which they are immersed. Figure 13 shows that with all other variables 

being constant, the increase in the number of particles in the urological fluid i.e. volume 

fraction, C, substantially enhances the concentration in the fluid. Figure 14 gives various 

values of the Weissenberg number (We) with a = 0.5, b = 0.5, d = 1, and C = 0.6. The study 

reveals that the rate of change of pressure with respect to distance ( )dP dX  falls as the 
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Weissenberg number (We) increases. The pressure gradient is significantly reduced in Figure 

15 and significantly increased in Figure 16. In these figures, positive values of ( )dP dX  are 

maintained for all x values, indicating the absence of a reverse pressure gradient. This is a key 

feature of peristaltic pumping and is highly beneficial for enhancing the efficiency of MHD 

ureteral therapy in biomedical engineering. The magnetic field boosts the peristaltic flow, 

leading to significant changes in pressure distributions due to the inverse relationship between 

velocity and pressure. 

 

Figure 9. Impact of Saffman suspension parameter ( ) on concentration ()f, p  

 

Figure 10. Impact of Schmidt number (Sc) on concentration ()f, p 
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Figure 11. Impact of Soret number (Sr) on concentration  ()f, p  

 

Figure 12. Impact of Eckert number (Ec) on concentration ()f, p 
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Figure 13. Impact of particle volume fraction (C) on concentration ()f, p  

 

 

Figure 14. Impact of Weissenberg (We) on pressure gradient ( )dP dX  
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Figure 15. Impact of Suspension parameter ( ) on pressure gradient ( )dP dX  

 

Figure 16. Impact of Hartmann number (M) on pressure gradient ( )dP dX  

4.4. Local skin friction, local nusselt number and local sherwood number: 

Tables 1-2 display the physical meaning of local skin friction, local Nusselt number, 

and local Sherwood number in both the x and y axes. The Table 1 displays the local axial and 

transverse skin frictions caused by the parameters  , Ha, C, and We. The Williamson 
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parameter has an inverse relationship with the yield stress, resulting in increased viscosity at 

the surface and heightened axial skin friction. After examining Table 1, it is clear that the skin-

friction coefficient shows a positive link with the increasing values of  , C, Ha, and We. 

Table 2 exposed to view the local Nusselt number for various combinations of C and Pr. The 

table includes four alternative values of the Prandtl number, specifically Pr=2, 5, 6, and 7. 

Increasing the Prandtl number or thermal radiation leads to an increase in the rate of heat 

transfer, hence enhancing the local Nusselt number. Similar observations are made across the 

entire table for varying values of the remaining parameter. The Williamson parameters 

primarily affect the velocity profile, but have minimal impact on the local Nusselt number. An 

opposite phenomenon is observed for the Schmidt and Soret number in Table 2, which 

decrease the local Sherwood number. The velocity slip plays a crucial role in determining the 

local Sherwood number, and it experiences a substantial drop. 

Table 1. The fluctuation of local skin friction number for specific values  ,Ha, C and We. 

Local Skin friction 

  Ha C We Skin friction 

0.01 2.23 0.4 0.2 0.045 

0.02    0.057 

0.03    0.0675 

0.04    0.0944 

0.02 1 0.4 0.2 0.055 

 2   0.0892 

 3   0.0939 

 4   0.1024 

0.02 1 0 0.3 0.0357 

  0.1  0.0578 

  0.2  0.0827 

  0.3  0.1265 

0.02 1 0.3 1 0.0364 

   3 0.693 

   5 0.0875 

   7 0.112 
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Table 2. The fluctuations of local Nusselt and Sherwood numbers for specific values 

C, Pr, Sc and Sr. 

Local Nusselt Number and Sherwood number 

C Pr Sc Sr Nusselt Number Sherwood number 

0.1 0.2   0.0768  

0.2    0.096  

0.3    0.1152  

0.3 2   0.0461  

 5   0.0691  

 7   0.1613  

  0.1   0.7199 

  0.2   0.6746 

  0.3   0.5178 

   0.4  0.6126 

   0.45  0.6092 

   0.5  0.5264 

 

5. Verification of Findings: 
 

The acquired results are compared with the literature of Maraj et al [32] as a limiting case of 

the reported issue, and are found to be in excellent agreement, as shown in Table 3. 

i). This investigation may become a single-phase problem when volume fraction C equals 

zero. 

ii). The values almost coincide with existing literature. 

Table 3: The acquired results are compared with the available literature [32], which serves as 

a limiting case for the topic being studied on velocity profile. 

We C 𝜻 M Maraj et al. [32] Present Study 

0 0.3 0.2 0 0.1376 0.1399 

0 0.4 0.2 0 0.1365 0.1388 

0 0.5 0.2 0 0.1328 0.1331 

0 0.5 0.3 0 0.1386 0.1429 

0 0.5 0.6 0 0.1374 0.1418 

0 0.5 0.9 0 0.1339 0.1385 
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The velocity by varying magnetic field is plotted in Figure 17 and validated with previous 

results. Ongoing problem implies the flow of Williamson fluid in presence of magnetic field. 

Maraj et al. [32] solved and experienced with different non-Newtonian fluid in the absence of 

magnetic field. Based on this comparison, it is evident that the findings of this inquiry are 

accurate and provide robust and accurate simultaneous results.  

 

Figure 17. Validation of velocity parameters with Maraj et al. [32]. 

6. Conclusions 

Motivated by emerging applications in electromagnetic ureteral flow therapy for 

combatting monoliths [57], a novel mathematical model in two phase flow [60] has been 

developed for simulating the two-dimensional, two-phase magnetohydrodynamic (MHD) [61] 

urological incompressible non-Newtonian peristaltic propulsion in the ureter under sinusoidal 

waves along the boundaries. Saffman’s fluid-particle suspension model has been utilized. The 

Williamson viscoelastic model has been deployed for the rheology and heat transfer has also 

been incorporated in the model with Soret thermo-diffusion and viscous heating effects. Using 

long wave and low Reynolds number approximations (lubrication theory), the mass, 

momentum, energy, and concentration conservation equations with associated boundary 

conditions have been transformed to a non-dimensional boundary value problem. A numerical 

solution has been obtained via BVP4C MATLAB quadrature. Graphical visualizations of the 

velocity, temperature, and concentration (solid grains) have been presented for the influence of 

Saffman suspension parameter (), Hartmann number (M), Prandtl Number (Pr), Weissenburg 

number (We), particle volume fraction (C), Eckert number (Ec), Soret number (Sr), Schmidt 

number (Sc). The simulations have shown that: 

0
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i). With greater magnetic field intensity i.e. greater Hartmann number, there is a 

strong suppression in the ureteral fluid phase velocity confirming the excellent 

flow control abilities of Magnetic Ureteral Therapy (MUT). 

ii). With elevation in Saffman suspension parameter,  𝜁  greater slip between the 

fluid and particles is produced which elevates fluid phase velocity magnitudes.  

iii). With increasing Weissenberg number (We) i.e., stronger elastic force relative to 

viscous force in the rheological urodynamic fluid, a strong deceleration in the 

flow is computed. 

iv). A strong depletion in temperature in the fluid phase accompanies an increase in 

Prandtl number.  

v). Increasing particle volume fraction (C) significantly reduces the fluid phase 

temperature whereas an increase in Eckert number and the Saffman suspension 

parameter () both generates temperature elevation in the peristaltic regime.  

vi). Increasing values of Saffman suspension parameter (), Schmidt number (Sc), 

Soret number (Sr) and Eckert number (Ec) all consistently induce a reduction 

in concentration magnitudes.  

The present work has revealed some interesting insights into electromagnetic ureteral 

peristaltic multi-phase non-Newtonian thermo-solutal transport phenomena. Future studies 

may also consider visualization of the bolus dynamics and the deployment of electrical fields. 

Efforts in these directions are currently underway and will be reported imminently. It is also 

noteworthy that the renal pelvis plays a reservoir function role in urodynamics, and improved 

simulations of electromagnetic therapy may require computational fluid dynamics (CFD) 

software to capture all the complex characteristics including 3-D fluid-structure interaction 

with the viscoelastic ureteral wall, mural tension and mixing of contents as controlled by 

neurological functions. Excellent commercial software such as FREEFEM++ [58] and ANSYS 

FLUENT [59] are available for achieving this level of sophistication and are also currently 

being explored. 
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