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Biochar and heavy metals 

Luke Beesley, Beatriz Cerqueira Cancelo, Michael Hardman,  
Manhattan Lebrun, Kerry Mitchell, and Lukas Trakal   

Introduction: Heavy metals in the environment 

Definitions 
Heavy metals in soils are derived from both 
geogenic and anthropogenic sources. In the 
case of the latter, this may be due to point or 
diffuse sources as diverse as mining, smelting, 
industrial processing, waste disposal, fertilizer, 
and herbicide and pesticide usage (Ross, 1994). 
In excessive concentration, those heavy metals 
regarded as the most toxic and environmentally 
deleterious are cadmium (Cd), chromium (Cr), 
copper (Cu), mercury (Hg), nickel (Ni), lead 
(Pb) and zinc (Zn), although several of these, 
especially those that are transition metals, are 
nonetheless essential for plant metabolism (e.g., 
Cu, Ni, Zn). By definition, heavy metals are a 
group of elements with specific gravities of 
>5 g cm−3 (Ross, 1994) which are both 
industrially and biologically relevant (Alloway, 
1995). Although not heavy metals by chemical 
definition, the metalloids arsenic (As) and anti-
mony (Sb) are given the status of “risk ele-
ments” or “potentially toxic elements” due to 
their impacts on humans and toxicity to plants 

after excessive exposure (Moreno-Jiménez et al, 
2012). In that case, those heavy metal(loid)s 
that cause a toxic response to biota or humans 
resulting in an unacceptable level of environ-
mental risk (Adriano, 2001; Abrahams, 2002;  
Vangronsveld et al, 2009) may be classed as 
pollutants. At the ecosystem level, the chemical 
behavior of heavy metal(loid)s in soils resulting 
in their mobility and toxicity are complex and, 
since this book is concerned with “environ-
mental management” we will focus on interac-
tions between biochar and heavy metal(loid)s 
through an environment lens. This chapter 
covers the main or “master” mechanisms by 
which biochars impact metal(loid)s in soils and 
discusses these via applied examples. Biochar’s 
impacts on metal(loid)s in water is covered 
elsewhere in this book (Chapter 27). 

Exposure and risk 
Heavy metal(loid)s in soils and sediments are 
partitioned into a number of binding phases 
either (i) incorporated in the solid phase; 
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(ii) bound to the surface of the solid phase; 
(iii) bound to ligands in solution; or (iv) as 
free ions in solution. Only the free ions in 
solution (i.e., phase (iv)) can be taken up by 
organisms and, therefore, only the free ions 
are bioavailable (Di Toro et al, 2001; Thakali 
et al, 2006). In soils, there is often dis-
equilibrium between these four phases due 
to contrasting geochemical conditions, 
though the tendency is strongly to equilibrate 
in the most rapid time. If the concentration 
of metal ions dissolved in solution decreases 
(for example, due to plant uptake), then 
equilibration will again occur by which 
more metals desorb to increase the amount 
of metal ions in solution. 

To cause a toxic effect, heavy metals 
must dissolve into a solution, be taken up by 
an organism, and be transported to cells 
where a toxic effect can occur. This com-
plex interaction between organisms and 
contaminants can be described by a simple 
model known as the source-pathway- 
receptor model (Hodson, 2010). The 
source of the pollution is a heavy metal 
(e.g., Pb), the receptor is a biological 
organism (e.g., an earthworm), and the 
pathway is the process that leads to the 
contaminant being taken up by the orga-
nism (e.g., desorption of Pb from the soil 
surface into the soil solution and diffusion 
across the gut wall of the earthworm). 

Therefore, remediation of heavy metal con-
taminated sites can be performed by (i) 
removing all or part of the source; (ii) 
eliminating the pathway; or (iii) modifying 
the exposure of the receptor (Nathanail and 
Bardos, 2004). Thus, remediation is 
achieved in heavy metal-polluted environ-
ments by reducing the bioavailability of the 
metals to the receptor organisms. Since 
heavy metals cannot be degraded or broken 
down (i.e., the source cannot be depleted in 
situ), and receptors often cannot be fully or 
even partially isolated in complex media, 
such as soils; the only viable option to break 
the source-pathway-receptor linkage is to 
disrupt the pathway between the contami-
nant and the receptor. Manipulation of 
bioavailability increasingly forms the basis 
of risk assessment and classification of 
polluted areas, rather than absolute concen-
trations in soils (Bolan et al, 2008; Durães 
et al, 2018). Importantly, in the legislative 
context of most nations, it is this potential 
to cause harm to humans or ecosystems (the 
effect) that defines polluted sites and not 
the presence (concentration) of the contam-
inant per se. Therefore, if biochars are to be 
deployed to heavy metal(loid) contaminated 
systems then it is their ability to break the 
pathway from source to receptor that 
becomes a focal point of their deployment 
(Park et al, 2011) (Figure 21.1). Fig 21:1

Figure 21.1 Schematic representation of biochar disrupting the pathway of heavy metal(loid)s (M) 
from their source to receptor organisms    
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Biochar as a remedial 
amendment 
Biochars, in common with other organic 
amendments, can reduce heavy metal(loid) 
mobility and bioavailability by various physi-
cochemical means (Bolan and Duraisamy, 
2003). The application of organic amend-
ments to soils, from a remedial point of view, 
has typically been justified by their relatively 
low cost, compared to "hard" engineering 
solutions (such as removal and disposal of 
soils elsewhere) as well as their prevalence as a 
waste, ordinarily requiring other forms of 
disposal (burial in landfill, incineration, etc.). 
The pyrolysis of organic materials to produce 
biochar increases the surface area and effec-
tive cation exchange capacity (CEC) com-
pared to the unpyrolyzed source, and has a 
lower mineralization rate than unpyrolyzed 
materials (Chapter 11), theoretically requiring 
less frequent additions to maintain efficacy 
than other, more easily mineralizable organic 
materials, such as composts, manures, etc. 

Therefore, the justification for the addition of 
biochar to metal(loid) contaminated soil is 
that it can work as a sorbent for metals in 
solution by establishing a new equilibrium 
between the concentrations of metals 
sorbed to surfaces and that in solution. 
Before this chapter embarks on the detail 
of the mechanistic, advantageous, and dis-
advantageous functions of biochar, an 
important premise should be noted: the 
same features of biochar that render it 
suitable for remediation of heavy metal 
contaminated substrates may at once deem 
it unsuitable for application, specifically 
where the desired effect is to increase the 
bioavailability of metals. The obvious ex-
ample is Zn, an essential plant nutrient and 
important element to fortify food and feed 
but, in excess, a toxin. Rather than consid-
ering absolute increases or decreases in 
heavy metal concentrations in substrates 
receiving biochars, the emphasis should be 
placed on bioavailability, mobility, and spe-
cific requirements related to land use. 

Heavy metal-biochar interactions at the  
soil-water interface 

Direct mechanisms 
Direct mechanisms of heavy metal 
immobilization by biochar include, but are 
not limited to, fundamental chemical “at-soil 
surface” processes, such as adsorption and 
complexation. It is widely acknowledged and 
discussed that biochars may both mobilize 
and immobilize heavy metals and As by 
direct means such as ion exchange, chemical 
and physical adsorption, precipitation, etc. 
(Abdelhadi et al, 2017; Soria et al, 2020). 
These mechanisms are discussed in the 
following section. 

Chemical sorption 
During exposure to the atmosphere, such as 
environmental weathering of freshly pro-
duced biochars applied to soils, the oxygen-
ation of biochars’ myriad surfaces occurs 
(Cheng et al, 2006) forming oxygen (O) 
containing functional groups (e.g., carboxyl, 
hydroxyl, phenol, and carbonyl groups;  
Uchimiya et al, 2010, 2011; He et al, 2019). 
These functional groups induce a negative 
charge and a high CEC (Sorrenti et al, 
2016). CEC first increases, and then decreases, 
with increasing pyrolysis temperatures 
(Harvey et al, 2011; Mukherjee et al, 2011;  
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Wu et al, 2016; Tomczyk et al, 2020); a peak 
CEC of up to 450 mmolc kg−1 has been shown 
to occur between 250 and 350°C, depending 
on the source material. The lower oxygen to 
carbon (O/C) ratio and reduced abundance of 
oxygenated (acid) functional groups lowers 
CEC after higher temperature pyrolysis 
(Uchimiya et al, 2011; Harvey et al, 2011;  
Shen et al, 2012). The capacity for metal 
immobilization demonstrated by lower tem-
perature (<500°C), and faster pyrolysis bio-
chars (Beesley et al, 2010; Beesley and 
Marmiroli 2011) is therefore, in part, a result 
of the high CEC of these biochars; biochars 
with a similar CEC to the soil they are applied 
to will not immobilize heavy metals as effec-
tively as biochars with greater CEC than the 
receiving soil (Gomez-Eyles et al, 2011, 2013). 
Highly weathered acidic tropical soils, low in 
organic C, whose mineralogy is dominated by 
kaolinite and iron (Fe)- or aluminum (Al)- 
oxyhydroxides, yield a low CEC (Schaefer 
et al, 2008). These soils are more readily 
phytotoxic than soils from temperate regions 
due to their inherent inability to retain heavy 
metals (Melo et al, 2011). In such soils, it is 
more likely that adding biochars will increase 
CEC and be more effective in immobilizing 
heavy metals. 

Surface sorption of metals corresponds 
directly with the release of H+ ions from 
biochars, but also of the release of Na, Ca, 
S, K, and Mg into the solution, which indi-
cates retention of metals on protonated 
(acidic) functional groups but also metal 
exchange with other cations (Uchimiya et al, 
2010, 2011; Park et al, 2019). Phosphorus- 
and sulfur (S)-containing ligands influence 
the sorption of metal ions such as Pb that have 
a stronger affinity for phosphates and sulfates 
(Cao et al, 2009). Biochar surface oxygenated 
functional groups may impact the oxidation of 
redox-sensitive metals whilst biochar applica-
tion to soils also changes soil porosity and 
modifies soil physical structure, which may 

influence microscale redox condition. In these 
cases, redox-sensitive elements will change 
their speciation and geochemistry; for 
instance, As(III) is found in anoxic environ-
ments (<100 mV) and is more mobile in soils 
and toxic than As(V); Cr can be oxidized in 
aerobic environments (>300–400 mV) and 
Cr(VI) is more toxic than Cr(III), whilst Cu 
(I) can also be found under anoxic conditions. 

Physical sorption 
Aside from a pure ion exchange between 
biochar surfaces and metals, a non- 
stoichiometric release of protons and other 
cations from the surface of biochars can occur; 
more metals are adsorbed than protons or 
cations are released and sorption can occur at 
pH below the point of zero net charge 
(Sánchez-Polo and Rivera-Utrilla, 2002). 
The immobilization of metals by biochar 
cannot, in these instances, be purely attributed 
to ion exchange alone. Metal sorption to 
biochars is an endothermic physical process 
(Liu and Zhang, 2009; Harvey et al, 2011) and 
an electrostatic interaction between the posi-
tively charged metal cations and π-electrons 
associated with either C=O ligands or C=C of 
a shared electron ‘cloud’ on aromatic struc-
tures of biochars occurs (Cao et al, 2009;  
Uchimiya et al, 2010; Harvey et al, 2011). 

An increase in the pyrolysis temperature 
of biochars increases their aromaticity whilst 
the abundance of oxygenated functional 
groups decreases (Jung et al, 2016). Thus, 
increasing pyrolysis temperature increases the 
proportion of cations sorbed due to ‘weak’ 
electrostatic bonding (i.e., cation-π interac-
tions) and decreases the proportion due to 
stronger chemisorption (i.e., by cation ex-
change). Therefore, lower temperature pyrol-
ysis should result in effective short-term metal 
immobilization due to the formation of inner 
and outer sphere complexes with oxygenated 
(acid) functional groups, but with time these 
may diminish in the soil environment. 
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Thereafter there may be a release of metals 
back into solution. Higher pyrolysis tempera-
tures result in a negative surface charge that 
should remain stable for longer, but metals will 
be weakly (physically) adsorbed to biochar 
surfaces and immobilization may be more 
easily reversed (summary in Table 21.1).Table 21:1

Precipitation 
Biochar source materials are unlikely to be 
100% organic in nature and contain minerals 
that remain entrained in the biochar matrix 
after pyrolysis, resulting in a non-organic (or 
ash) fraction in biochar. Source material 
mineral contents can range from <1% for 
woody biomass, up to ~25% for manure or 
crop residues. Following high-temperature 
pyrolysis, the ash content of biochars can 
be up to 50% for manure-derived or 85% for 
bonemeal-derived biochars. Thus, mineral 
salts of Na, K, Ca, Mg, P, S, Si, and C are 
found in abundance in the ash fraction, 
usually in an oxidized form, their concentra-
tions of which increase with pyrolysis tem-
perature. Uchimiya et al (2010) found Pb 
phosphate precipitates effective in immobi-
lizing Pb in a broiler litter-derived biochar 
whilst precipitation of Pb with phosphates 
contributed to as much as 87% of total Pb 
sorption to a dairy manure-derived biochar 
(Cao et al, 2009). Lead-phosphate minerals 
contributing to sorption in biochars include 
hydrocerussite and hydroxylpyromorphite 
(Cao et al, 2011), Pb phosphate, and Pb 
hydroxyapatite (Chen et al, 2006). Lead- 
phosphate minerals have a very low solubility 
so their formation could result in the 
increased capability of biochars to adsorb 
higher concentrations of Pb, compared to 
other divalent cations (Uchimiya et al, 2010;  
Namgay et al, 2010; Trakal et al, 2011). 
Precipitation may also occur with other 
metals such as Cu, Cd, or Zn which precipi-
tate as insoluble phosphate and carbonate 
salts, mainly at high pH (Lindsay, 2001). 

Indirect mechanisms 
Indirect mechanisms can also be defined as the 
effects that biochars have on soil characteris-
tics (physical, biological, and chemical) that 
then impact heavy metal retention or release. 
The addition of biochar to soils can, amongst 
myriad other effects, increase soil pH, micro-
bial biomass, organic C, and water holding 
capacity which may in turn impact heavy metal 
retention and release. This section is mainly 
concerned with, and summarizes the results of, 
studies examining pH changes induced by 
biochar additions to soils. Other impacts of 
biochar addition are briefly covered. 

pH changes 
It is widely reported that the addition of 
alkaline biochars to soils resulted in pH 
increases (Ippolito et al, 2017; Lebrun et al, 
2020); metal solubility changes according to 
pH, generally being lower at higher pH. For 
metalloids, the geochemistry is somewhat 
opposing, with higher pH conditions reducing 
retention (Adriano, 2001). Arsenic solubility 
and availability increase when pH in soils rises, 
in most cases, since As binds to positively 
charged surfaces such as Fe and Mn oxides 
in soils and anion exchange capacity (AEC) is 
inversely related to pH (Moreno-Jiménez et al, 
2012). Cationic metals (e.g., Cu, Zn, Pb), 
which are bound to the negatively charged 
surfaces of soils such as clay minerals and 
organic matter, increase in solubility as pH 
decreases because CEC is positively related to 
pH. When the soil pH increases, metals are 
increasingly bound to negatively charged sur-
faces. Contrary to cationic metals, As is 
released from positively charged soil surfaces 
when the soil pH is increased; an increase of 
soil pH has thus been reported to increase As 
mobility and uptake by organisms (Fitz and 
Wenzel, 2002). 

Studies have reported that soil pore 
water pH increases after biochar application 
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Table 21.1 Selected examples of the influence of pyrolysis temperature on heavy metal sorption 
capacity, assessed by batch sorption experiments      

Experiment Biochar preparation Findings Reference  

Batch aqueous 
sorption of Pb, 
solution added at 0.02 
g biochar for 20 mL 
solution 

Biochars produced by pyrolysis 
of sawdust of white spruce, 
canola straw, wheat straw, and 
manure pellet at 300°C, 500°C 
and 700°C 

Maximum Pb(II) adsorption increased 
with increasing pyrolysis temperature. 
Sorption occurred through multilayer 
adsorption on the heterogeneous 
surface, with a finite number of sites. 

( Kwak et al, 
2019) 

Batch aqueous 
sorption of Cu, 
solution (20 mL) 
added to 10 mg 
biochar 

Biochar produced from the 
pyrolysis of Jerusalem artichoke 
stalks at 300°C, 500°C and 
700°C 

Highest maximum adsorption potential 
(Qm) measured for the low- 
temperature biochar (300°C, 
17 mg g−1). For low-temperature 
biochar (300°C), sorption took place 
on a homogeneous surface, while for 
high-temperature biochar (500°C, 
700°C), sorption occurred on a 
heterogeneous surface. Sorption 
mainly occurred through the reduction 
of Cu(II) to Cu(I) (for biochars 
produced at 300°C and 700°C), 
surface complexation (importance 
declines with the increase in pyrolysis 
temperature), Cu cation-π bonding and 
precipitation with PO4

3− (for high- 
temperature biochars). 

( Wei et al, 
2019) 

Batch aqueous 
sorption of Cd, 
solution (25 mL) 
added to 0.05 g 
biochar 

Biochars produced from the 
pyrolysis of pine cones, pine 
needles, and pine bark at 
300°C to 600°C 

Cd sorption increased with the 
increase in pyrolysis temperature. 
Sorption mechanisms were identified 
to be the release of phosphate, the 
removal of cations, and interaction with 
functional groups (C=C and COO). 

( Park et al, 
2019) 

Batch sorption of Pb, 
solution (60 mL) 
added to 0.03 g 
biochar 

Biochars from cotton straw 
pyrolyzed at five different 
temperatures, from 300°C to 
700°C 

Highest removal efficiency with the 
biochar produced at 600°C (51 mg g−1). 
Adsorption mechanism was identified 
to be ion exchange with Na+, K+, Ca2+, 

and Mg2+, cation-π interactions, and 
precipitation on the biochar surface, as 
hydroxypyromorphite and 
hydrocerussite. 
Difference of mechanism dominance 
with pyrolysis temperature: 
complexation at low temperature, 
precipitation at high temperature. 

( Wang et al, 
2021)  
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Table 21.1 continued     

Experiment Biochar preparation Findings Reference  

Batch sorption of Fe, 
Ni, Cu, Cr and Pb 

Biochars produced from the 
pyrolysis of bamboo, 
sugarcane, or neem at 450°C 
and 550°C 

Higher removal efficiency with the 
high-temperature biochars. 
Mechanism of sorption was identified 
to be chemisorption, with exchange of 
valence electron. 

( Singh et al, 
2021) 

Batch sorption of Pb, 
solution (20 mL) 
added to 40 mg 
biochar 

Biochars produced from 
cotton stalks pyrolyzed 
between 250°C and 650°C 

Pb removal efficiency increased with 
increasing pyrolysis temperature. 
Chemisorption identified as the 
dominant adsorption mechanism: 
formation of lead precipitates on the 
biochar surface (principally cerussite), 
cation exchange with K and Ca, 
complexation with oxygen functional 
groups, and cation π interactions with 
other functional groups (C=C, -CH), 
and electrostatic interaction. 

( Gao et al, 
2021) 

Batch sorption of Cd, 
Pb, and Zn, solution 
(100 mL) added to 10 
g biochar 

Biochars produced from the 
pyrolysis of poultry manure at 
425°C, 575°C and 725°C 

Lowest sorption capacity of the 
biochar produced at 425°C, highest Zn 
and Pb sorption capacity for the 
biochar produced at 575°C, and 
highest Cd sorption capacity for the 
biochar produced at 727°C. 
Sorption mechanisms are identified as 
cation exchange, surface complexing, 
precipitation, and electrostatic 
interaction. 

( Sobik- 
Szołtysek et 
al, 2021) 

Batch sorption of Cu, 
solution (20 mL) 
added to 25 mg 
biochar 

Biochars produced from cow 
manure pyrolyzed at 
temperatures from 399°C to 
700°C 

Highest sorption capacity with the 
biochar produced at 700°C. 
Primary mechanisms of Cu sorption 
identified to be co-precipitation (with 
formation of copper phosphate and 
copper carbonate) and cation 
exchange (with K+, Ca2+ and Mg2+), 
accounting for 93 to 97% of the 
adsorption. Secondary mechanisms 
identified as complexation with oxygen 
functional groups and cation π 
interactions. 

( Zhang et al, 
2021) 

Batch sorption of Cr, 
solution (20 mL) 

Biochars prepared from 
pineapple peels, pyrolyzed at 

Removal efficiency of Cr decreased 
with increasing pyrolyzing temperature. 
Mechanisms if sorption identified as 

( Shakya and 
Agarwal, 
2019)  
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to circumneutral and acidic contaminated 
substrates, explaining changes in metal and 
As mobility in pore water (Table 21.2). 
Various other studies report a soil liming 
effect of biochars, often resulting from 
alkaline biochars added to very acidic mine 
soils. Sizmur et al (2011), for example, 
highlight an extreme example of an increase 
in soil pH of more than 4 units when nettle- 
derived biochar was added to a mine soil 
(pH 2.7). Other authors note more mod-
erate pH increases of 1–2 units (Jones et al, 
2012; Li et al, 2018), whilst column 
leaching studies have shown the pH effect 
to be reduced over time as much as ⁓3 units 
(Beesley et al, 2022).Table 21:2

Dissolved organic carbon (DOC) and trace 
elements in biochars 
Fluctuations in dissolved organic carbon 
(DOC) concentrations have been measured 
as a consequence of biochar application to 
soils, and several studies have previously 
measured the potential co-mobilization of 
metals in complexes with leached organic 
materials. In a study utilizing a recirculating 
column approach, any co-mobilization of Zn 

induced by DOC from biochar was miti-
gated by the strong surface binding of this 
metal with biochar (Beesley et al, 2022). 
This is likely to be the case for the majority 
of soil biochar applications, the exception 
being where some amorphous organic matter 
is occluded in biochar pores after pyrolysis. 
The mechanisms for the co-mobilization of 
As and soluble organic matter are less clear 
than for metals in the context of biochars. 
Ternary complex formation between arse-
nate and ferric iron complexes of ‘humic 
substance’ extracts could be responsible for 
the increasing As mobility with increasing 
DOC (Mikutta and Kretzschmar, 2011). 
Alternatively, DOC may compete with As 
directly for retention sites on soil surfaces 
(Fitz and Wenzel, 2002), resulting in an 
increase in soluble As with increasing con-
centrations of DOC (Hartley et al, 2009). 

Biochars can be sources of (Chapter 8), 
or enhance the bioavailability of P (Chapter 
16). As phosphate is chemically analogous to 
As (V), increases in P availability result in the 
release of As from soil surfaces, into solution 
and uptake into plants via phosphate ion 
channels (Meharg and Macnair, 1992). 

Table 21.1 continued     

Experiment Biochar preparation Findings Reference  

added to 100 mg 
biochar 

temperatures between 350°C 
and 650°C 

precipitation, complexation with 
oxygen containing functional groups, 
electrostatic attraction 

Batch sorption of Pb 
and Cd, solution (30 
mL) added to 0.05 g 
biochar 

Biochars made from tobacco 
stems pyrolyzed at 400°C, 
500°C, 600°C and 700°C 

Adsorption of Pb and Cd increased 
with increasing pyrolysis temperature; 
highest sorption with biochar at 700°C 
(Pb: 22 mg g−1, Cd: 19 mg g−1). 
Mechanisms of sorption hypothesized 
to be precipitation with inorganic salts. 

( Wang et al, 
2020) 

Batch sorption of Fe, 
Ni, Cu and Zn; 
solution (50 mL) 
added to 0.1 g biochar 

Biochars made from date palm 
wastes (fronds and leaves) 
pyrolyzed 400°C to 600°C 

No influence of pyrolysis on the 
sorption of Cu, Fe, Ni and Zn. 

( Sizirici et al, 
2021)     
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Although arsenate is desorbed from soil 
surfaces by phosphate (Cao et al, 2003), it 
is not always available for plant uptake since 
P and As will compete again for the same 
root transporter. Therefore, As (V) uptake 
into plants can be avoided by high concen-
trations of soluble P (Moreno-Jiménez et al, 
2012), but if the soluble fraction of As is not 
taken up by plants, there is a risk it may leach 
to surface and groundwaters (Fitz and 
Wenzel, 2002). On the contrary, phosphate 
is known to precipitate and sorb Pb (Zeng 

et al, 2017). Phosphate-rich compounds 
applied to Pb-contaminated soils have also 
been found to reduce Pb bioavailability 
(Miretzky and Fernandez-Cirelli, 2008). 

Biochars have heavy metals inherent 
within their structure, derived from their 
source material, which may be accumulated 
and concentrated in ash fractions during 
pyrolysis. Some biochars exceed European 
topsoil concentrations, suggesting that they 
may contribute heavy metal loadings if 
applied to soils (Table 21.3). Table 21:3

Table 21.2 Selected examples detailing pH effects of biochars on heavy metal solubility in pore water, 
assessed by pot tests       

Experiment Soils and biochars Extraction 
procedure 

Findings Reported in 
reference  

Pot trial to determine if 
biochar is efficient in 
stabilizing As and Pb 

Former mine technosol, 
very acidic and polluted 
with As and Pb 
Hardwood biochar 
(500°C) applied at 5% 

Soil pore water 
extraction 
CaCl2 and 
NH4NO3 

extraction 

Soil pore water pH 
increased by 3 units 
CaCl2 extractable As 
and Pb reduced, by 40% 
and 42%, respectively 
NH4NO3 extractable Pb 
reduced by 76% 
Soil pore water Pb 
concentration decreased 
by 96% 
Biochar effective to 
stabilize Pb. 

( Lebrun et 
al, 2019) 

Pot trial to determine the 
capacity of biochar to 
stabilize As and Pb 

Former mine technosol, 
very acidic and polluted 
with As and Pb 
Hardwood biochar 
(500°C) applied at 5% 

Soil pore water 
extraction 

Soil pore water pH 
increased by 2.4 units. 
Soil pore water Pb 
concentration decreased 
by 86% 
Biochar effective in 
stabilizing Pb 

( Lebrun et 
al, 2021a) 

Pot culture experiment to 
evaluate the potential 
impacts of biochar on the 
bioavailability of multiple 
metals (Cd, Pb, Cu, and Zn) 

Farmland soil (fluvo- 
aquic soil), with basic 
pH and contaminated 
by Pb and Zn 
Rice huck biochar 
applied at 0% (control), 
1%, 2%, and 3% 

DTPA- 
extractable 
metals 

Biochar application 
decreased the DTPA- 
extractable Cd, Pb, Cu, 
and Zn contents.  
Biochar effective in 
stabilizing Pb and Zn 

( Wang et 
al, 2021)     
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Toxicity to plants (phytotoxicity) 

The impacts of biochars on soil properties 
and resultant phytotoxicity are subject to 
many factors (Chapter 13), such as soil type 
and local climate conditions (Gao et al, 2020). 
In a wide-ranging meta-analysis, soil organic 
matter, pH, and texture were found to be 

among the key factors to consider when 
evaluating the effect of biochars on soil 
parameters that influence plant growth 
(Arabi et al, 2021). For example, the same 
biochar was very efficient in immobilizing Pb, 
promoting vegetation growth, and reducing 

Table 21.3 Summary of range of selected heavy metal(loid) concentrations of biochars extracted by 
acid (aqua-regia)      

Heavy 
metal (loid) 

Background European 
topsoil concentrations 
(mg kg−1) a 

Range of concentrations 
measured in biochars 
(mg kg−1) 

Source publications  

As 6 0.01–9 ( Hossain et al, 2010;  Bird et al, 2012;  Freddo 
et al, 2012) 

Cd 0.2 <0.01–8 ( Hossain et al, 2010;  He et al, 2010;  Knowles 
et al, 2011;  Bird et al, 2012;  Gascó et al, 2012;   
Freddo et al, 2012;  Van Poucke et al, 2018,   
2020) 

Cr 22 0.02–230 ( Hossain et al, 2010;  Bird et al, 2012;  Freddo 
et al, 2012;  Van Poucke et al, 2018;  Van 
Poucke et al, 2020;  Lebrun et al, 2021a) 

Cu 14 <0.01–2100 ( Graber et al, 2010;  He et al, 2010;   
Mankasingh et al, 2011;  Knowles et al, 2011;   
Bird et al, 2012;  Gascó et al, 2012;  Méndez et 
al, 2012;  Freddo et al, 2012;  Van Poucke et al, 
2018;  Van Poucke et al, 2020;  Lebrun et al, 
2021a) 

Pb 16 0.1–196 ( Hossain et al, 2010;  He et al, 2010;  Knowles 
et al, 2011;  Bird et al, 2012;  Gascó et al, 2012;   
Méndez et al, 2012;  Freddo et al, 2012;  Van 
Poucke et al, 2018;  Van Poucke et al, 2020) 

Zn 52 0.7–3300 ( Graber et al, 2010;  He et al, 2010;   
Mankasingh et al, 2011;  Knowles et al, 2011;   
Bird et al, 2012;  Gascó et al, 2012;  Méndez et 
al, 2012;  Freddo et al, 2012;  Van Poucke et al, 
2018;  Van Poucke et al, 2020;  Lebrun et al, 
2021a)   

Notes 
a Source:  Lado et al (2008) based on 1588 samples across 26 EU member states; data reported are median values.  
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plant metal uptake in an acidic former mine 
technosol (Lebrun et al, 2017), while it had no 
effect at an alkaline former industrial site 
(Lebrun et al, 2018c). Similarly, biochar 
application reduced the mobility of Cd, Pb, 
and Zn when applied on acidic soil but not to 

basic soil (Álvarez-Rogel et al, 2018). The 
content of clay and the presence of co-existing 
ions in the soil were among the factors 
influencing the effect of biochar on metals 
and plants (Guo et al, 2020; summarized in  
Table 21.4). Table 21:4

Table 21.4 Selected examples of pot trials where biomass and heavy metal uptake has been measured 
after soil amendment with biochars alone, or in combination with other organic amendments       

Experiment Soil Biochar Findings Reported in 
reference  

To determine whether 
biochar can reduce As 
and Pb toxicity to allow 
plant establishment 

Former mine soil, 
acidic and highly 
contaminated with 
As and Pb 

Pinewood biochar 
added at 2% and 
5% (w/w) 

Increased Salix viminalis, 
Salix alba, and Salix 
purpurea dry weight with 
2% and 5% biochar. 
Decreased As stem 
concentration (88%) in 
Salix alba and increased in 
leaf (41-fold); increased As 
concentration in the stem 
of Salix viminalis. Increase in 
leaf Pb concentration of 
Salix alba and decreased in 
roots; decreased in Pb leaf 
and root concentrations of 
Salix viminalis; increased leaf 
Pb concentration of Salix 
purpurea. Biochar effective 
at improving soil fertility 
and plant growth, while 
stabilizing As and Pb in the 
root zone 

( Lebrun et al, 
2017) 

To determine the effect 
of biochar feedstock for 
the stabilization of As 
and Pb 

Former mine soil, 
acidic and highly 
contaminated with 
As and Pb 

Softwood and 
Pinewood biochars 
added at 2% and 
5% (w/w) 

Increase in soil organic 
matter content and pH. 
Immobilization of Pb. 
Increase in Salix viminalis 
and Populus euramericana 
dry weight. Increase in Pb 
aerial concentrations with 
biochar. Decrease in As 
concentration in Salix 
viminalis with pinewood 
biochar and increase with 

( Lebrun et al, 
2018b)  
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Table 21.4 continued      

Experiment Soil Biochar Findings Reported in 
reference  

lightwood biochar. Biochar 
efficient for the assisted 
phytostabilization of As and 
Pb in association with 
poplar or willow. Biochar 
feedstock important 
parameter for As and Pb 
stabilization 

To determine the effect 
of biochar particle size 
on the stabilization of 
As and Pb 

Former mine soil, 
acidic and highly 
contaminated with 
As and Pb 

Hardwood 
biochars, with four 
particle sizes, added 
at 2% and 5% 
(w/w) 

Increase in soil pH and 
immobilization of Pb. 
Increase in Salix viminalis 
dry weight. Fine biochars 
decreased As stem 
concentrations, while 
coarse biochars decreased 
As leaf concentration. All 
biochars increased Pb leaf 
and stem concentration. 
Biochar improved soil 
growing conditions and is 
efficient for As and Pb 
stabilization when 
associated with Salix 
viminalis. Fine biochars 
induce effects more rapidly 
than coarse biochars 

( Lebrun et al, 
2018a) 

To determine whether 
biochar, associated with 
compost, can stabilize 
As and Pb 

Former mine soil, 
acidic and highly 
contaminated with 
As and Pb 

Hardwood biochar 
added at 5% 
Compost added 
at 5% 

Increased soil organic 
matter (biochar + compost 
> biochar > compost). 
Decreased As availability 
(biochar = biochar 
+compost) and Pb 
availability (biochar > 
compost = biochar 
+compost). Increased soil 
pH and immobilization of 
Pb. Increased Salix viminalis 
dry weight (biochar = 
compost = biochar 
+compost). Decreased As 
and Pb root 
concentrations. Biochar, 

( Lebrun et al, 
2019)  
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Table 21.4 continued      

Experiment Soil Biochar Findings Reported in 
reference  

with or without compost, 
improved soil conditions 
and plant growth, and is 
efficient for As and Pb 
stabilization 

To determine if the 
association of biochar 
with red mud (bauxite 
mining residue) is 
efficient for the 
remediation of As 
and Pb 

Former mine soil, 
acidic and highly 
contaminated with 
As and Pb 

Hardwood biochar 
added at 2% 
Red mud added 
at 1% 

Increased soil pH, Pb 
immobilization, and 
increased Salix dasyclados 
growth. Decreased root Pb 
concentration and 
increased leaf and stem Pb 
concentrations. The 
association of biochar with 
red mud is effective for the 
assisted phytostabilization 
of As and Pb 

( Lebrun et al, 
2021d) 

To determine if 
biochar, compost and 
iron sulfate can stabilize 
As and Pb 

Former mine soil, 
acidic and highly 
contaminated with 
As and Pb 

Hardwood biochar 
added at 5% 
Compost added at 
5% 
Iron sulfate added 
at 0.15% 

Increased soil C, pH, P and 
K. Immobilization of Pb. 
Improved Agrostis capillaris 
growth. The association of 
the three amendments, 
with Agrostis, is a good 
option for the remediation 
of As and Pb 

( Nandillon et 
al, 2021) 

To test whether 
biochar assist the 
revegetation of mine 
spoil 

Exposed mine spoil 
materials from five 
disused/abandoned 
mine 

Rice husk biochar 
or wheat straw 
biochar, added at 
5% and 10% (w/w) 

More than 99% Zn and 
97% Pb adsorbed by the 
biochars. Increased 
ryegrass mass and reduced 
Cd assimilation (2–4 fold), 
As and Sb concentrations. 
Decreased Al, Cd, Pb, and 
Zn mobility. Biochar 
addition can successfully 
establish a vegetation cover 
on mine soil and stabilize 
metals 

( Alhar et al, 
2021) 

To determine if biochar 
can reduce pollutant 
uptake to tomato 

Metal contaminated 
site 

Maize stalks biochar 
added at 5 and 10 
t ha−1 

Increased N, P, and K 
availability and decreased 
pollutant availability. 
Increased concentration of 
photosynthetic pigments, 

( Almaroai 
and Eissa, 
2020)  
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Table 21.4 continued      

Experiment Soil Biochar Findings Reported in 
reference  

tomato yield, and fruit 
quality. Decreased Zn, Cu, 
and Pb concentration in 
shoots and roots of 
tomatoes. High doses of 
biochar decreased Zn, Pb, 
Cd, and Ni and increased 
N and K contents in fruits. 
Biochar application 
recommended to a metal 
contaminated soils to 
improve tomato quality 
and productivity 

To determine if biochar 
can restore 
contaminated soil 

Mine waste Biochar from the 
distilled waste of 
lemongrass, added 
at 1%, 2%, and 4% 

Increased soil pH, water 
holding capacity, organic 
carbon, microbial biomass 
C, and nutrient availability. 
Enhanced palmarosa 
biomass yield and reduced 
production of oxidative 
enzyme (in a dose- 
dependent manner). The 
plantation of palmarosa 
with biochar can restore 
the soil 

( Jain et al, 
2020) 

To determine the 
biochar dose allowing 
soil remediation 

Paddy field polluted 
by wastewater 
discharged from 
chemical plant of 
ZnSO4 

Biochar from 
bamboo powder, 
added at 1%, 3%, 
5%, 7% 

Decreased hydrolyzable N 
and available P. increased 
soil organic matter, 
available K, and the activity 
of urease and polyphenol 
oxidase. Decreased soil 
metal concentration. Little 
effect on Salix psammophila 
growth, except 7% 
(reduction of growth). The 
dose of 3% biochar is the 
best option 

( Li et al, 
2021) 

To evaluate the effect 
of biochar particle size 
and application dose 

Metal polluted soil Biochars from oil 
palm empty fruit 
bunch, of different 

Decreased Pb and Cd 
solubility. Increased 
Brassica juncea height. 
Decreased root and shoot 

( Samsuri et 
al, 2020)  
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Remediation of contaminated sites: lessons from case 
examples 

Principles of soil remediation 
We have discussed the main mechanisms by 
which biochars interact with metal(loid)s in 
soils, and how these may be directly and 
indirectly related to biochars’ addition to soils. 
Now we will discuss these factors regarding 
principles of contaminated land remediation. 
Contaminated, industrially impacted, mining 
and urban lands are often characterized by 
young, poorly developed soils and a scarcity 
or absence of vegetation cover (Mench et al, 
2003). Re-vegetation of contaminated soils is 
key to their stabilization and remediation 
(Arienzo et al, 2004; Ruttens et al, 2006), as 

the presence of a vegetative cover over bare soil 
reduces the potential for migration of contami-
nants to proximal waters or inhalation by 
receptor organisms (Tordoff et al, 2000), as 
well as the restoration of the natural cycling 
of organic matter and nutrients. Barriers to 
re-vegetation include phytotoxic concentra-
tions of heavy metals. In this context, those 
which plants may not be able to immobilize at 
the root level (Pulford and Watson, 2003), and 
poor functionality (organic matter [cycling], 
nutrient status, structure of soils, water-holding 
capacity). To overcome these limitations is the 
general aim of soil remediation using organic 
amendments (Fangueiro et al, 2018). 

Table 21.4 continued      

Experiment Soil Biochar Findings Reported in 
reference  

particle sizes, added 
at 0.5% and 1% 

Cd and Pb concentrations. 
The application of a fine 
particle size biochar at 1% 
is the best option to 
reduce metal transfer in 
plants 

To determine the 
influence of different 
biochars on plant 
growth and metal 
uptake 

Basic metal 
contaminated soil. 
Acidic metal 
contaminated soil 

Biochars from 
sewage sludge and 
pruning trees, 
added at 6% 

No influence of biochar on 
soil pore water pH 
No durable and significant 
effect of biochars on metal 
mobility. 
No effectiveness of biochar 
when applied to basic soil 
Biochar increased soil pore 
water pH and decreased 
metal concentration in soil 
pore water 
Biochar is a useful option to 
reduce metal mobility in 
acidic soil 

( Álvarez- 
Rogel et al, 
2018)     
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Biochars have several well-documented 
effects on soil health, which should promote 
functionality and the recovery of degraded 
land either directly or by indirect mechanisms; 
liming effects, increased water holding 
capacity, and improved soil structure, for 
example (Chapters 13, 16, 20). Many of the 
documented benefits of biochar addition in 
this context are only seen when organic or 
inorganic fertilizers are added together with 
the biochar amendment, suggesting that bio-
char alone is often unsuitable as a soil amend-
ment to stimulate re-vegetation (Ye et al, 
2020). In fact, some studies report a decrease 
in plant growth after the amendment of soils 
with biochar (Beesley et al, 2011, 2013; Li 
et al, 2021), although others report agronomic 
benefits when biochar is exclusively added to 
soils (Shahbaz et al, 2018; Rehman et al, 
2019; Almaroai and Eissa, 2020). 

Connectivity between (i) biochar effi-
ciency for adjusting the equilibrium between 
mobile/bioavailable and stable/complexed 
heavy metals (toxicity); and (ii) soil function-
ality is the final aspect to consider in biochar 
application to contaminated sites. This allows 
an idealized system to be proposed, summa-
rized below (Figure 21.2), where biochar 
addition to contaminated soils gives multiple 
benefits to soil quality which, in turn, are 
beneficial socially and economically. Fig 21:2

Case examples from acid 
mines and smelter-impacted 
soils 
Skeletal or weakly structured soils supple-
mented by waste tailings are common at 
former mine sites (Wong, 2003) where the 
original soil horizon sequences may be buried 

Figure 21.2 Schematic summary of a remediation system where biochar is deployed to immobilize 
heavy metals, reduce phytotoxicity, and improve biomass yield. Biomass may be pyrolyzed and  
re-applied to soils, maintaining a closed system    
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deeply below waste. Point and diffuse pollu-
tion of soils are also features of areas previously 
dominated by industrial processes such as 
smelting and tanning. As such, limitations 
exist to revegetation of such soils due to 
unusual stoichiometry of nutrients to pollu-
tants. In a phytotoxicity test using Phaseolus 
vulgaris, Lomaglio et al (2017) demonstrated 
the ability of wood biochar to increase soil pH 
and reduce Cd, Pb, and Zn mobility when 
applied at 2 and 5% to soil in the vicinity of a 
former smelter site. In addition, they observed 
an increase in leaf dry weight at the same 
application rate, while leaf Cd, stem Pb, and 
leaf Zn concentrations decreased at 2% and 
5% application rate. This demonstrated 
the potential of such biochar to reduce the 
toxicity of contaminated soil and thus allow 
revegetation. Similarly increasing doses of 
wood biochars were applied to soil impacted 
by industrial waste disposal. In general, only 
the higher application rates used here (1% and 
2%) had beneficial effects on soil pH, pollutant 
bioavailability, and wheat growth (Ali et al, 
2019). Root and shoot metal uptake decreased 
following biochar amendment, except for the 
increase in shoot Cu concentration at 0.5% 
and 1% biochar doses. 

Often, to create functional soils at mine 
sites, some sort of technical soil (technosol) is 
created by blending mine spoil with other 
materials. This was the case in several studies 
on an As and Pb-rich mine spoil in France. 
Hardwood biochars, added at 2% and 5% to a 
mine-impacted soil increased Populus eura-
mericana dry weight, raised Pb accumulation 
in aerial tissues, and lowered leaf As concen-
tration (Lebrun et al, 2021a). In a phyto-
toxicity experiment, biochar (hardwood, 2% 
w/w) was mixed with iron sulfate, which 
increased bean dry weight, without affecting 
metal(loid) plant accumulation, while biochar 
alone had no effect (Lebrun et al, 2021b); this 
example illustrates the intelligent application 
of iron-based materials with biochars for As 

contaminated soils. Red mud was also com-
bined with biochar (bamboo, or bark sap oak 
wood), which increased Salix triandra dry 
weight by 3-fold (leaf), 7-fold (stem), and 
15-fold (roots). Lastly, in a study applying 
biochar, manure, and ocher, in single and 
combined applications, only the treatments 
containing manure improved Agrostis growth 
and reduced As and Pb aerial concentrations 
(Lebrun et al, 2021c). These studies demon-
strate the added value of combining biochar 
(s) with other amendments that can (i) pro-
vide specific metal(loid) sorption capacity 
(e.g., Fe-rich materials for As); and (ii) supply 
plant-available nutrients to assist revegetation 
(e.g., manures). 

A similar strategy was employed to 
revegetate Cu-rich mine soil in Spain 
(Forján et al, 2018a). Mesocosms containing 
biochar/compost and biochar/technosol ratios 
applied to soil was 4:11 in both cases, to 
reflect as closely as possible its application in 
the field. Furthermore, the treatments were 
applied on the first 0.15–0.2 m of soil as this 
would be the way they would be applied. 
Additionally, seeds of Brassica juncea L. (phy-
toremediator species) were planted and pore 
water samples were collected at three different 
depths of the cylinders. The Cu concentra-
tions decreased in pore water samples col-
lected for 11 months, demonstrating Cu 
stabilization in the settling pond soil with the 
addition of biochar compost. The main fac-
tors favoring the decrease of available Cu 
concentrations were the increase in pH, the 
increase of organic carbon content, and the 
correction of cation exchange capacity 
(Forján et al, 2018a). In addition, specific 
surface area and functional groups of the 
biochar could have a positive effect in 
reducing the available Cu concentrations 
(Forján et al, 2018a). On the other hand, 
both treatments besides increasing carbon 
content also contributed to a rise in total soil 
nitrogen, improved nutrient retention, and 

BIOCHAR AND HEAVY METALS 549 



contributed to soil restructuring. Thus, the 
treatments improved the physicochemical 
properties of the soil and favored the estab-
lishment of vegetation (Forján et al, 2018b). 
The biochar-compost treatment therefore im-
proved both immobilization of Cu and plant 
growth (Forján et al, 2018c). Brassica juncea 
L. had a clear phytostabilizing activity over 
the Cu, despite not having phytoextraction 
capacity according to the obtained trans-
location factor (TF) and transfer coefficient 
(TC). At low TF values, Cu was not translo-
cated from the root to the shoot, while it was 
fixed in the roots. This phytostabilization 
technique proved most appropriate to 
immobilize metals in mining sites, resulting 
in less exposure to this toxic element by 
livestock, wildlife, and human health (Forján 
et al, 2018b). 

The particular issue of 
calcareous soils 
Studies detailing the deployment of biochars 
into calcareous soils are scarcer than into 
acidic soils. It is important to remember that 
association with the exchangeable or car-
bonate fraction may reduce mobility under 
specific conditions of alkalinity. However, a 
reduction in pH, though slight, may cause the 
release of metals, and as such, metals in these 
associations are considered potentially mobile. 

In a study carried out in a mining region 
in central Mexico, sediments presented geo-
chemical characteristics generally conducive 
with limiting metal mobility, including neu-
tral pH, high organic matter content, and 
very calcareous conditions (Mitchell et al, 
2016). While the impact that each of these 
characteristics has on metal mobility depends 
principally on pH, a general prevalence of 
metals associated with the carbonate fraction 
can be expected in soils with neutral to 
alkaline pH, which was confirmed through 
sequential extraction. These associations 

with the carbonate fractions are considered 
temporary as changes in physicochemical 
characteristics, especially pH, can easily re-
mobilize associated metals. 

To evaluate the effect of the amendment, 
biochar produced from sewage sludge and the 
non-pyrolyzed source material were applied 
to the affected sediments. Each week, for 
28 days, metals were leached with CaCl2 

0.01 M at pH 5.5, simulating typical condi-
tions, and pH 3.5, simulating more extreme 
conditions (Houben et al, 2013). Notably, 
non-pyrolyzed sewage sludge was more effec-
tive at reducing metal(loid) mobility at pH 5.5, 
while biochar was more effective at pH 3.5. 
Sequential extraction confirmed an increase in 
the association of Pb and Cd to stable Fe, Mn, 
and organic matter fractions and a decrease in 
association with the mobile carbonate fraction 
(Mitchell et al, 2020). Zinc mobility demon-
strates different sorption characteristics when 
found in complex metal matrices and, in the 
highlighted study, there were no significant 
differences in Zn mobility when leached at pH 
3.5 or pH 5.5. It is reasonable to assume that 
the extraction at a more acidic pH, results in a 
predominance of metal-organic matter asso-
ciations instead of precipitation, which may 
occur at higher pH. Sequential extraction 
showed a reduction of Zn associated with 
the potentially mobile exchangeable and 
carbonate-bound fractions. There was an 
increase in Zn association with more stable 
fractions in both cases, though association 
with the organic matter fraction was predomi-
nant in sediments amended with unpyrolyzed 
sludge, likely due to the high affinity of Zn for 
the major complexing agents found in 
unmodified organic matter including oxygen-
ated carboxylic and amino groups. On the 
other hand, associations with the Fe and Mn 
oxide increased when amended with biochar, 
likely due to the decreased presence of these 
functional groups but a proportionate increase 
of stable Mn oxide sites. Thus, even in 
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calcareous soils and sediments with an inher-
ently elevated buffer capacity, amendment 
with biochar could reduce metal leachability 
in the long term. 

Specific enhancements of 
biochars 
In the context of the remediation of soils 
(Chapter 27), improvements or amendments 
to biochar formulations, such as by co- 
composting with other organic materials 
(Chapter 26) have been shown to favorably 
adjust soil physical-chemical characteristics 
in metal-contaminated soils (Teodoro et al, 
2020). Iron oxides (FeOx) and other metal 
oxides (Al, Mn, etc.) are effective binding 
surfaces for metals and metalloids such as 
As, Hg, Se, Cr, Pb, etc., and are used in the 
remediation of heavy metal contaminated 
substrates (Warren et al, 2003; Waychunas 
et al, 2005). Arsenic is widely known to be 
immobilized by Fe-rich materials as they 
provide anion exchange sites (Masscheleyn 
et al, 1991), so optimizing biochar for metal 
and As retention may be possible by mod-
ifying its characteristics during production or 
pre-application (Dixit and Hering, 2003) 
and Fe oxide impregnated sorbents have 
been widely applied to contaminated waters 
(Reed et al, 2000; Vaughan and Reed, 
2005). Soaking the source material with Fe 
chloride solution before pyrolysis entrains 
the Fe oxide into the biochar structure 
(Chen et al, 2011). Alternatively, the biochar 

may be soaked in a Fe solution after pyrolysis 
(Muñiz et al, 2009; Lebrun et al, 2018a). 
The cost of producing these biochars will be 
greater than unmodified biochar, so they 
may only be suitable for specific small-scale 
applications. 

Biochar applications to urban 
agriculture sites 
The application of biochars on an experi-
mental basis to urban agriculture sites has 
been limited, with previous studies high-
lighting mixed results (Barrow, 2012;  
Werner et al, 2019). The potential role of 
biochar within urban farming practices 
highlights a smaller scale, and very targeted 
application of biochars (Song et al, 2020); 
many urban agriculture sites consist of 
small pockets of land, and diverse history 
and pollution legacy (Dennis et al, 2020). 
Here, biochar presents an opportunity to 
produce a soil amendment in situ and at the 
point of usage. With land often at a premium 
in cities, approaches such as retrofitting urban 
rooftop farming have gained traction in recent 
years (Hardman and Larkham, 2014). An 
obvious and prohibitive barrier to this has 
been the mass-to-volume ratio of traditional 
(soil-based) substrates (Orsini et al, 2017), 
especially when saturated or semi-saturated. 
The use of biochar on rooftops may be 
driven by a need for lighter substrates and 
improved plant-available water (Cao et al, 
2014). 

Conclusions and recommendations for  
biochar deployment 

Biochars can offer several advantages alone 
or in combination with other amendments 
during heavy metal remediation of soils 
because:  

• Biochars have a greater surface area than 
soils to which they are added and some 
have higher CEC meaning they are 
capable of sorbing high concentrations 
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of heavy metals, such as Cd and Zn from 
the soils they amend. This is especially 
the case in soils low in organic matter 
with intrinsically low CEC.  

• Biochars are more persistent in soils for 
longer periods than other commonly 
applied soil amendments, such as com-
posts and sludges, and may not induce 
as great deal of co-mobilization effect 
between easily mineralizable organic 
fractions and heavy metals. Biochars 
can also raise the pH of soils, making 
some nutrients more available to plants, 
immobilizing some heavy metals, and 
liming acid soils.  

• Biochars can assist in the re-vegetation 
of some contaminated soils by reducing 
phytotoxicity and improving the germi-
nation of seeds. 

• Biochars may be effective at immobi-
lizing metal(loid)s in acidic and calcar-
eous soils, though studies on the latter 
are scarce. 

Remediation strategies for industrial, mine, or 
urban soils could include biochars for 
reducing the leaching of heavy metals, 
decreasing the phytotoxicity of substrates, 
and assisting revegetation. In the case of As- 
contaminated sites, and especially where there 
is a potential that food crops may be cultivated 
(for example urban allotment sites), a greater 
degree of caution should be exercised not only 

in whether or not to apply biochar, but also in 
what method of application and how much 
should be applied. Some biochars also contain 
elevated concentrations of heavy metals due 
to their source material. It must also be 
remembered that most biochars appear sub- 
optimal as fertilizers if applied alone, so there 
may be a need to combine them with materials 
containing available nutrients; co-composting 
with other organic materials is one such 
option. At very heavily contaminated and 
denuded sites, such as former mine areas, 
particularly where there are surface leachates 
of heavy metals and unconsolidated soils and 
wastes, biochars may be useful to restrict the 
wider impact of contamination beyond site 
boundaries. By the same principle, after a 
surface pollution incident, biochars may also 
be used to reduce the spread of contaminants 
to groundwater. Combination with other 
organic materials is likely to be required for 
effective phytostabilization and remediation. 
At old industrial sites, there may be sufficient 
native soil remaining, and remaining nutrients 
so that biochars can be applied alone to 
contamination hotspots to restart natural 
plant successions. In all cases, an intelligent 
approach should be taken to biochar applica-
tion to land after some data has been gathered 
about the specific soil characteristics, and 
heavy metals present in elevated concentra-
tions, preferably their bioavailability and their 
wider dispersal. 
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