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ABSTRACT 

A theoretical and numerical study is conducted on nonlinear, steady-state thermal 

convection boundary layer flow of a magnetized incompressible Tangent Hyperbolic non-

Newtonian fluid from a rotating cone to a non-Darcy porous medium. Power-law variation in 

temperature on the cone surface is considered and thermal radiation heat transfer is also present.  

The Brinkman-Darcy-Forchheimer model is deployed for the porous medium. The study is 

motivated by rotational (spin) coating with new emerging magnetic rheological polymers, a 

process which often utilizes filtration media and high temperatures. The transformed non-

dimensional conservation equations are solved numerically subject to physically appropriate 

boundary conditions using a second-order accurate implicit finite-difference Keller Box technique. 

The numerical code is validated with previous studies. Extensive visualization of axial, tangential 

velocity components and temperature distributions with variation in key parameters including 

Rosseland radiative number, Darcy number, Forchheimer number (non-Darcy inertial parameter), 

magnetic interaction parameter, tangent-hyperbolic non-Newtonian power-law index and 

Weissenberg (non-Newtonian) number is included. Additionally, axial and tangential 

(circumferential) skin friction and Nusselt number values are tabulated for variation in key control 

parameters. With increasing Weissenberg number, axial velocity is depleted near the cone surface, 

tangential velocity is suppressed throughout the boundary layer regime and temperature is strongly 

enhanced. Axial flow is strongly decelerated further from the cone surface with increasing tangent-

hyperbolic power-law index and there is also a significant depletion in tangential (swirl) velocity. 

Temperature is however boosted throughout the boundary layer transverse to the cone surface with 
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a rise in tangent-hyperbolic power-law index. Both tangential and axial velocity are suppressed 

with increment in magnetic interaction parameter whereas temperature and thermal boundary layer 

thickness are enhanced. With larger Darcy number (i.e. greater permeability), axial velocity is 

strongly increased near the cone surface with no tangible modification further from the cone; 

However tangential velocity is consistently elevated throughout the boundary layer with greater 

Darcy number whereas temperature is depleted. An increase in Forchheimer number substantially 

damps both axial and tangential velocity whereas it elevates temperature. Increasing radiative flux 

strongly energizes the magnetic polymer and elevates temperature but suppresses the axial and 

tangential velocities. With elevation in non-isothermal wall exponent, axial skin friction is 

suppressed whereas Nusselt number are elevated at the cone vertex. Further along the cone surface 

a similar response is observed but there is also a reduction in magnitudes of tangential skin friction.  

 

KEYWORDS: Non-Newtonian Tangent Hyperbolic fluid; Weissenberg number; Magnetic field; Electro-

conductive polymers (ECPs); Darcy number; Forchheimer number; coating fluid mechanics. 

 

NOMENCLATURE 

B0  Constant transverse (radial) magnetic field 

Cf  Skin friction coefficient 

cp  Specific heat 

Da  Darcy number 

f  Non-dimensional steam function 

Fs  Forchheimer number (second order inertial porous drag parameter) 

Grx   Local Grashof number 

g  Acceleration due to gravity 

k  Thermal conductivity of the fluid 

K  Thermal diffusivity 

k*  The mean absorption coefficient 

M  Magnetic interaction parameter 

n  Tangent hyperbolic non-Newtonian power law index  

m  Wall non-isothermal surface temperature exponent (power law index) 

Nu  Local Nusselt number (cone surface heat transfer rate) 

Pr  Prandtl number 

qr  Radiative heat flux 

R  Radiation-conduction parameter 
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Re  Local Reynolds number 

Ra  Local Rayleigh number 

r  Local radius of the cone 

T  Temperature of the fluid 

u, v, w   Non-dimensional velocity components along the x, y, z directions, respectively 

V  Velocity vector 

We  Weissenberg number (non-Newtonian parameter) 

x  Stream wise coordinate 

y  Transverse coordinate 

Greek 

   Semi-vertex angle of the cone 

  Thermal diffusivity 

  The coefficient of thermal expansion 

  The dimensionless radial coordinate 

  Dynamic viscosity of magnetic polymer 

  Kinematic viscosity of magnetic polymer 

  Non-dimensional temperature 

  Density of magnetic polymer 

  Dimensionless tangential coordinate 

  Dimensionless stream function 

   Time-dependent material constant in tangent hyperbolic model 

  Second invariant strain tensor 

  Angular velocity of cone 

  Inertial drag coefficient in non-Darcy drag force model 

*  Stefan-Boltzmann constant 

 

Subscripts 

w  Conditions at the wall (cone surface) 

  Free stream conditions 

 

 

1. INTRODUCTION 



4 

 

Transport in porous media constitutes a rich area of modern engineering sciences. It 

involves the percolation of viscous fluids in complex permeable materials and arises in for example 

filtration design in ventilation systems [1], hybrid coatings for offshore platform structures [2], 

polymer manufacture [3] and metallic foam synthesis for aerospace systems [4] among many other 

technologies. Mathematical models of fluid dynamics in porous media have continued to evolve 

over the past century. Many different approaches have been developed including volume 

averaging, hierarchical porous media, reconstructed porous media, Serpenski carpets and even 

fractal approaches. The random heterogenous nature of porous media makes them complex to 

simulate precisely. Other approaches aim to build an approximate estimate of the net effect of solid 

fibers on transport of percolating fluids. Popular in this type of model is the drag force formulation. 

The most widely established such model is the Darcy model [5] which is generally valid for low 

Reynolds numbers or viscous-dominated flows. This model assumes that the pressure drop across 

the porous medium follows a linear relationship with the velocity of the fluid. However other 

models have emerged which generalize this approach to include nonlinear effects. These include 

the Darcy-Forchheimer model which incorporates a second order inertial drag force term to capture 

impedance effects at higher Reynolds numbers and the Darcy-Brinkman model which builds on a 

modification of the Navier-Stokes equations and includes the effects of vorticity diffusion. An 

interesting appraisal of such models has been given in Baǧci [6]. Complex geometric effects in 

porous media may include tortuosity [7], anisotropic permeability, channelling, variable porosity 

and non-saturated zones in which all the pores are not occupied by the percolating fluids [8]. The 

drag force models however generally ignore these effects and have been deployed successfully in 

many isotropic, non-tortuous porous media hydrodynamics studies including biochar-based 

bipolar electrochemical flows in porous media [9], chemical filters [10], geological materials [11] 

and abiotic wall-cooled porous medium bioreactors [12]. Many studies have considered thermal 

convection and also mass diffusion in non-Darcy porous media. Mohanty et al. [13] deployed a 

Darcy-Forchheimer formulation to compute the free convection hybrid nanofluid flow past a 

stretching rotation disk with the Galerkin finite element numerical approach considering the effects 

of thermal radiation, exponential heat generation, viscous dissipation and activation energy. 

Mohanty et al. [14] used MATHLAB bvp4c method to study the entropy generation of Darcy-

Forchheimer Hybrid nanofluid flow past infinite porous disk. They investigated the thermal 

Marangoni convection flow of nanomaterials MWCNT and MoS2 embedded in base fluid water 

with conjugate effect of interfacial nanolayers. Venkatadri et al. [15] deployed a D2Q9-based 

Lattice Boltzmann Method to compute the natural convection hydromagnetic flow in differentially 

heated square enclosure containing a homogenous non-Darcian porous medium saturated with 
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hybrid nanofluid (TiO2/Cu–water). They showed that higher Forchheimer number and Hartmann 

magnetic number strongly damps circulation but intensifies heat transfer to the boundary. They 

also noted that larger Darcy number and Rayleigh number Hartmann magnetic number leads to 

stronger flow circulation and a reduction in heat transfer (lower Nusselt numbers at the hot wall). 

Overall, using a response surface methodology (RSM) approach they found that high Darcy 

number, low nanoparticle volumetric fraction, and low Hartmann number optimize heat transfer 

rates. Mohanty et al.  [16] utilized a finite element method to compute the Cattaneo-Christov 

thermosolutal flux effects on nanofluid-saturated Darcy-Forchheimer porous media boundary 

layer flow along a moving needle considering the thermal radiation, Joule heating and viscous 

dissipation. Further studies of non-Darcy convection include Mohanty et al. [17] considered the 

irreversibility analysis of 3D Darcy-Forchheimer Casson hybrid nanofluid flow past a rotating disk 

using the Runge-Kuttal-Fehlberg based shooting technique. Bég et al. [18] used a variational finite 

element method to compute the thermal convection boundary layer flow of a third grade Reiner-

Rivlin viscoelastic fluid from an isothermal wall to a non-Darcian permeable medium. They noted 

that strong flow acceleration is achieved with larger Darcy numbers (greater permeability) whereas 

significant flow deceleration (thicker momentum boundary layers) are computed with elevation in 

Forchheimer (second order inertial drag) number. 

The above studies did not consider rotational effects. In polymer spin coating processes in 

chemical engineering, an external coating can be deposited precisely on a revolving geometry. The 

centrifugal forces generated by the rotation of the body being coated may be tuned to produce 

improved quality of the surface finishing. The spreading coating exhibits an external boundary 

layer nature, and the boundary layer grows radially outwards. This process has been increasingly 

adopted in recent years for synthesizing thin polymeric coatings. Often spin coating is 

accompanied with thermal convection heat transfer. Porous media can be deployed external to the 

rotating body (substrate) to achieve further manipulation of the coating characteristics. Several 

investigators have therefore examined the boundary layer convection from rotating bodies to non-

Darcian porous media. Kumar et al. [19] used a Runge-Kutta method to simulate the impact of 

activation energy on viscoplastic (Casson) fluid from a rotating disk which moves 

upwards/downwards to a Darcy–Forchheimer porous medium saturated with a Graphene 

oxide/Titanium dioxide-Ethylene glycol nanofluid. They noted that the upward and downward 

motion of the disk exerts similar effects to that of the injection/suction through the wall and that 

in both cases Forchheimer drag decelerates the radial flow but enhances tangential flow whereas 

increasing Darcy number exerts the opposite effect. Saleh et al. [20] used the Marker and Cell 

(MAC) method to compute the free convection heat transfer in a rotating, differentially heated 
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enclosure containing a Forchheimer–Brinkman-extended Darcian porous medium. They examined 

the impact of porosity, Darcy number and Taylor number (ratio of Centrifugal "forces" due to 

rotation relative to viscous forces), for the scenario where centrifugal force is of lower magnitude 

than Coriolis force. They noted that the circulation is strongly damped with greater Forchheimer 

effect, Nusselt number is boosted with greater porosity and Darcy number whereas it is depleted 

with greater Taylor number, and that larger porosities generate weaker vortex strengths when 

thermal buoyancy force exceeds the Coriolis force. Umavathi and Bég [21] used MATLAB 

software to compute the von Karman swirling slip flow of a nanofluid from a rotating disk adjacent 

to a non-Darcy porous medium with the Darcy–Forchheimer–Brinkman and Buongirono two-

component nanoscale models. They noted that radial, axial and tangential flow deceleration is 

produced with increasing Forchheimer inertial drag and velocity wall slip, whereas acceleration is 

generated with increasing permeability (decreasing inverse Darcy parameter). They also observed 

that temperatures and nanoparticle concentrations are suppressed with increasing Forchheimer 

inertial parameter, Schmidt number and Prandtl number whereas they are elevated with 

thermophoresis and Brownian motion parameters. Further investigations of transport from rotating 

bodies to porous media include Bég et al. [22] who consider anisotropic permeability effects from 

a revolving cone using MAPLE quadrature.   

In high temperature coating operations, radiative heat transfer can arise. This mode of heat 

transfer is much more complex than thermal conduction and thermal convection. It is influenced 

by many factors including optical density of the coating and many mathematical models are 

available for simulating radiative flux effects. These include the Schuster-Schwartzchild two flux 

model, Traugott differential flux model, Chandrasekhar discrete ordinates model (DOM) etc [23]. 

Many different technologies have used radiative high temperature processing including thermal 

barrier coatings for gas turbine blades [24], microalgae photobioreactors [25], textile façade 

systems [26], pulverized coal combustors [27] and thermochromic de/anti-icing coating systems 

[28]. While computational fluid dynamics (CFD) tools have been deployed with for example 

Chandrasekhar discrete ordinates model (DOM) in these applications, they require very highly 

intensive hardware and long compilation times due to the complexity of the integro-differential 

radiative heat transfer equation. A much more pragmatic approach popular in engineering sciences 

is the use of an algebraic flux model of which the Rosseland diffusion approximation is probably 

the most widely deployed. This model is particularly suitable for boundary layer flows as it 

involves inclusion of an augmented term for radiative flux in the energy equation rather than a 

separate radiative heat transfer equation. While limited to optically thick fluids, Rosseland’s model 

has been implemented extensively in recent years in both purely fluid regimes and also porous 
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media transport problems. Venkatadri et al. [29] used a finite difference method, Hooman’s 

method of energy flux vectors (EFVs) and the Rosseland flux model to simulate and visualize the 

steady laminar free convection-radiation heat transfer in a triangular enclosure containing a Darcy-

Brinkman variable porosity medium. They observed that increasing Darcy number (permeability) 

boosts the convective heat transfer and intensifies EFV patterns, larger Rayleigh number 

intensifies circulation and greater radiative flux increases isotherm magnitudes whereas an 

increment in porosity suppresses average Nusselt number. Mohanty et al. [30] used a Galerkin 

finite element method to simulate Cattaneo-Christov heat flux on the interfacial nanolayer 

thickness with MWCNT and Au-embedded water- based hybrid nanofluid from  a spinning sphere. 

Further studies include Sarangi et al. [31] investigated the impacts of second order slip on the 

Bodewadt flow and heat transfer flows of radiative and dissipative ternary composite nanofluid 

from a stretching rotating disk, in addition to entropy analysis to scrutinize the thermal efficiency. 

Debashis et al., [32] used a homotopy method to analyze the flow and thermal behavior of a cross-

ternary SWCNT, MWCNT, and GO nanoparticles composite water-based ternary hybrid nanofluid 

past a stretched cylinder. They included Joule heating and non-linear thermal radiation with  wall 

boundary convective conditions.   

The above investigations have generally neglected electrical conductivity properties of 

coating fluids. In recent years, however, many new complex functional magnetic polymers have 

been developed for a range of technological applications. These are known as electro-conductive 

polymers (ECPs) and they feature both magnetohydrodynamic (MHD) and rheological 

characteristics. These smart materials can be finetuned to achieve improved performance which is 

generated via embedding metallic conducting particles in the coating melt which incur electro-

active phases of the material under the action of an external magnetic field. To simulate accurately 

the fluid dynamics of such polymers, both viscous magnetofluid dynamics [33, 34] and rheological 

modelling [35] are required. Magnetic polymers have found extensive applications in thin film 

deposition in nuclear reactor ducts [36], MHD generators [37], biomedical components [38] and 

chemical engineering self-healing surface protection using orderly distributed microcapsules 

(ODM), linseed oil (LO) and magnetic benzotriazole (BTA) which enhance defect sealing 

and corrosion inhibition. Many complex materials have therefore been developed including cobalt 

based thin magnetic films [39], nickel/aluminium electroconductive foam coatings [40] and iron 

oxide magnetic nano-coatings [41]. A number of studies of MHD coating flows have also appeared 

in parallel to the extensive experimental studies reported. These investigations have also featured 

radiative heat transfer (important in high temperature surface deposition) and porous medium 

physics (deployed for filtration and purification purposes). Bég et al. [42] used a variational finite 

https://www.sciencedirect.com/topics/chemical-engineering/nanoparticle
https://www.sciencedirect.com/topics/chemical-engineering/joule-heating
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element method code (MAGNETO-FEM) and also a network simulation method code (MAG-

PSPICE) to simulate the effects of thermal radiation and transverse magnetic field on reactive 

coating boundary layer flow on a substrate with Soret and Dufour diffusion and viscous heating 

effects. They showed that strong elevation in velocity is observed with increasing thermal radiative 

flux and Soret number whereas the flow is retarded (thicker momentum boundary layers) with 

greater wall suction, magnetic field and Prandtl number. They also noted that thermal boundary 

layer thickness is enhanced with magnetic field, radiative flux, Dufour number and Eckert number 

whereas species concentration is boosted with Soret number and generative chemical reaction. 

Thumma et al. [43] employed a finite element method to study the hydromagnetic nano-polymer 

coating flow deposition on an oscillating tilted substrate with radiative flux using the Rosseland 

model. They considered copper/alumina-aqueous coatings and noted that higher radiative heat 

transfer strongly energizes the coating flow and increases thermal boundary layer thickness. 

Further studies include Prasad et al. [44] (who considered non-Darcian effects). Rotating MHD 

coating flows have also received some attention. These investigations combine the use of an 

external transverse magnetic field (static or oscillating) and centrifugal body forces to produce 

enhanced control and consistency of the functional coating. Important studies in this regard include 

Carreri et al. [47] who considered deposition on a revolving cylindrical cathode and Moreira et al., 

[48] who utilized strong magnetic fields for fabrication of thin-film coatings over large spinning areas 

with smooth and homogeneous surfaces. Kumari and Nath [49] described numerical simulations 

of the magnetohydrodynamic unsteady boundary layer flow on a revolving spherical substrate. 

They used both asymptotic and numerical methods to consider the coating fluid and the sphere are 

impulsively rotated with dissimilar spin velocities either in the same direction or in opposite 

directions. Further investigations include Zohra et al. [50] (who considered bioconvection 

magnetic slip nanofluid flow from a spinning cone) and Shah et al. [51] (on radiative heat flux 

effects on magnetic Carbon nanotubes coatings on a rotating stretching sheet). These studies 

showed that optimal coating and heat transfer rates can be achieved with careful combinations of 

radiative flux and centrifugal force. 

The focus of the present study is to investigate the effects of thermal radiative flux on 

steady laminar convection boundary layer flow and heat transfer in magnetized tangent hyperbolic 

non-Newtonian coating flow external to a spinning cone in a Darcy-Brinkman-Forchheimer porous 

medium with power-law variation in wall (cone surface) temperature. The novelty of the present 

study is therefore the simultaneous consideration of tangent hyperbolic rheology, non-isothermal 

wall behaviour, thermal radiation, magnetohydrodynamics and non-Darcy porous effects. These 

effects have to the authors’ knowledge not been considered thus far in the scientific literature. The 



9 

 

Brinkman-Darcy-Forchheimer model is deployed for the porous medium which is assumed to be 

isotopic and homogenous. Rosseland’s diffusion flux approximation [52, 53] is employed for the 

radiative heat transfer. The transformed non-dimensional conservation equations are solved 

numerically subject to physically appropriate boundary conditions using a second-order accurate 

implicit finite-difference Keller Box technique [54]. The numerical code is validated with previous 

studies. Comprehensive graphs are presented for the impact of key thermophysical, hydrodynamic 

and non-Newtonian parameters namely the Rosseland radiative number, Darcy number, 

Forchheimer number (non-Darcy inertial parameter), magnetic interaction parameter, tangent-

hyperbolic non-Newtonian power-law index, non-isothermal power law index and Weissenberg 

(non-Newtonian) number on axial, tangential velocity components and temperature distributions 

with is included. Additionally, axial and tangential (circumferential) skin friction and Nusselt 

number values are tabulated for variation in selected key control parameters. The present 

simulations will be beneficial for industrial coating designers in optimizing thermal processes in 

magnetic polymer spin coating with porous media.  

 

2. HYDROMAGNETIC SPINNING CONE RHEOLOGICAL COATING MODEL 

The regime under consideration comprises the steady, laminar, axisymmetric, electrically 

conducting, incompressible radiative-convective boundary layer flow of a tangent hyperbolic 

magnetic polymer from a steadily rotating inverted vertical cone with a non-isothermal (variable 

wall temperature) external surface to a non-Darcy isotropic homogenous porous medium. This 

system is depicted in Fig. 1. in an (x, y, z) coordinate system. The vertical cone spins at a constant 

angular velocity, , around its axis of symmetry. Fluid friction causes a circumferential velocity, 

w, of fluid elements, which are also subjected to a centrifugal force causing the radial velocity, v. 

By virtue of mass conservation, the outward-moving fluid is being replaced by fluid eventually 

flowing along the cone surface with velocity u. An external static uniform magnetic field, 0B  acts 

transverse to the cone surface. The surface of the cone is sustained at a variable temperature 

proportional to the power of the distance along the cone from the vertex (x) i.e., ( ) m

wT x T ax= + , 

where a and m are constants. Gravitational acceleration, g, acts downwards. The magnetic 

Reynolds number is assumed to be small enough to neglect magnetic induction effects since the 

magnetic field is not distorted. The Brinkman-Darcy-Forchheimer model is deployed for the 

porous medium. Rosseland’s diffusion flux approximation [52, 53] is employed for the radiative 

heat transfer and the magnetic polymer is assumed to be optically thick. 
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Fig. 1 Magnetic non-Newtonian coating with radiative heat transfer from a rotating cone 

 

The viscoelasticity and pseudoplasticity of the magnetic polymer to be investigated is studied with 

the tangent hyperbolic non-Newtonian model. The associated Cauchy stress tensor for the coating 

fluid can be shown to take the form [55]: 

( )
. .

0 tanh

n

      

  
 = + +  
   

                     (1) 

where  τ̅  is extra stress tensor,   is the infinite shear rate viscosity, 0  is the zero shear rate 

viscosity, 𝛤 is the time dependent material constant, m is the rheological power law index i.e. flow 

behaviour index and γ̅̇ is defined as: 

. . .1 1

2 2
ij ji

i j

  = =                     (2) 

Here ( )( )
21
.

2

T
tr gradV gradV = +  We consider Eqn. (1), for the case when  = 0 as it is not 

possible to simulate the flow problem for the infinite shear rate viscosity and for shear thinning 

effects so  γ̅̇ < 1.  Then Eqn. (1) takes the form: 
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. . . .

0 0

. .

0

1 1

1 1

n n

n

      

  

      
   =  = +  −   
         

  
= +  −  

     

            (3) 

The appropriate electromagnetic equations are as follows [34]:  

Maxwell Electromagnetic Equations: 

Je= B


        (4) 

t


−=
B

E


        (5) 

0 J


        (6) 

0= B


                  (7) 

Here q is the velocity vector ( ), ,u v w , J = (Jr, J, Jz) is electrical current density vector, B is the 

magnetic field vector, E is the electrical field vector, σ is electrical conductivity of the magnetic 

polymer. Furthermore, e is the magnetic permeability of the fluid. Since there exists no applied 

or polarization voltage on the magnetic polymer flow field, and the cone surface is electrically 

insulated, the electric field vector vanishes i. e. E = 0. Under these approximations, and invoking 

the appropriate terms from the tangent hyperbolic model eqn. (3), the boundary layer equations 

under the linear Boussinesq approximation may be written by extending the model of Abo-Eldahab 

and Elaziz [56] to include non-Darcy effects:  

( ) ( )
0

ru rv

x y

 
+ =

 
                                 (8) 

( ) ( )
22 2 2

20

2 2
1 2 cos

Bu u w u u u
u v n n g T T u u

x y x y y y K

 
   




      
+ − = − +  + − − + −   

       

       

(9) 

( )
22 2

20

2 2
1 2

Bw w u w w w w
u v n n w w

x y x y y y K

 
 



      
+ + = − +  − + −   

       
       (10) 

2

2

1 r

p p

qT T k T
u v

x y c y c y 

  
+ = −

   
              (11) 

The corresponding boundary conditions are: 

𝐴𝑡 𝑦 = 0, 𝑢 = 𝑣 = 0, 𝑤 = 𝑟𝛺, 𝑇 = 𝑇𝑤(𝑥) = 𝑇∞ + 𝑎𝑥𝑚  
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                                        𝐴𝑠  𝑦 → ∞, 𝑢 → 0, 𝑤 → 0, 𝑇 → 𝑇∞               (12) 

The Rosseland algebraic diffusion approximation is deployed for the radiative heat flux rq  [43, 

52]: 

44

3
r

T
q

k y

 




= −


          (13) 

Implementing the Taylor series approximation for 4T , we have: 

4 3 44 3T T T T  −           (14) 

Using Eqn. (14) in Eqn. (11), yields the modified version of the energy (thermal boundary layer) 

eqn, viz: 

( )
2

2
1

T T T
u v R

x y y

  
+ = +

  
         (15) 

Here 

316 *

3 *

T
R

k k

 =  and represents the Rosseland-Boltzmann radiative parameter (also known as 

Stark number). The dimensional stream function   is defined by the Cauchy-Riemann equations, 

ru
y


=

  

and rv
x


= −


, and therefore, the continuity equation (8) is automatically satisfied. Here 

the local radius is defined as ( ) sinr x x = . 

In order to render the governing equations and the boundary conditions in dimensionless form, the 

following non-dimensional quantities are introduced. 

( ) ( )

( ) 31 2 1 2 2

1 4

, , , , , , ,
1

cosRe Re sin
, , Re ,

R

w

w

T Ty w
r f g

x r T T

g T T xx
Ra

a


         



 
 

  







−
= = = = =

+  −

−
= = = =

          (16)

 

Invoking the scaling transformations defined in eqn. (16), the boundary layer eqns. (9), (10) and 

(15) are reduced to the following coupled, nonlinear, dimensionless axial and tangential linear 

momentum and thermal partial differential boundary layer equations in a (, ) coordinate system: 

( )
( )( )

( )

( )( )
( )

4 2 4 2

2 2

1 1
Pr 1 ''' 2 '' '' ''' Pr 1 Pr

4

1 1 1 1 '
1 ' Pr ' 1 ' ''

2 4

e

m
n f f f nW f f g

m m f f
Fs f M f f f

Da


  


   

 

 − −
− + − + + − + 

 

 − −  −     
− − + − + = − −      

      

    

            (17) 
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( )
( )( )

( )

2 2

3 2

1 1 1
Pr 1 '' Pr ' '' 2 ' 2 ' Pr

4

1
Pr 1 ' '

4

e

m
n g nW g g fg gf M g

Da

m g f
Fs g f g


 

  
 

 − −  
− + + − − − +   

  

 −   
− = − −  

   

            (18) 

( )
( )( )

( )
1 1 1

'' 1 2 ' ' 1 ' '
4 4

m m f
R f m f f

 
     

 

 − −  −   
+ + − − = − −    

    
                   (19) 

The transformed dimensionless wall and free stream boundary conditions (12) by virtue of eqn. 

(16) emerge as: 

0, 0, ' 0, 1, 1

, ' 0, 0, 0

At f f g

As f g

 

 

= = = = =

→  → → →
                                                                   (20) 

In eqns. (17)-(19), primes denote the differentiation with respect to transverse coordinate, , 

Pr



=  is Prandtl number, 

3

2

2
eW

x

 
=  is Weissenberg number, 

2

0

sin

B
M



 
=


 is magnetic 

interaction parameter (ratio of Lorentzian magnetic body force to rotational body force), 

sinK
Da






=  is a modified Darcy number and 

sin
Fs





= 


 is a modified Forchheimer 

inertial porous drag number. All these parameters are defined in the notation section. The skin-

friction coefficient components in the axial and tangential (circumferential) directions (shear 

stresses at the cone surface) and Nusselt number (heat transfer rate at the cone surface), subject to 

the scaling transformations in eqn. (16) are readily obtained as follows: 

( ) ( )
2

1 ''( ,0) ''( ,0)
2Pr

wx e

n
C n f W f = − +                                                                          (21) 

( ) ( ) ( )( )
22 4Pr

1 Pr ' ,0 ' ,0
2

wz e

n
C n g W g   = − +                                                              (22) 

'( ,0)Nu  = −                                                                                                                      (23) 

The location,  0 i. cone vertex, corresponds to the vicinity of the lower stagnation point on the 

cone. For this scenario, the model defined by eqns. (17) – (19) reduces to an ordinary differential 

boundary value problem: 

( ) 27 1
Pr 1 ''' '' ''' '' ' Pr 0

4 2
e

m m
n f nW f f f f f 

+ +   
− + + − + =   

   
                       (24) 

( )
7

Pr 1 '' ' 2 ' 0
4

m
n g fg gf

+ 
− + − = 

 
                                  (25) 
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( )
7

'' 1 ' ' 0
4

m
R f mf  

+ 
+ + − = 

 
                                                  (26) 

 

3. COMPUTATIONAL KELLER BOX SOLUTION AND VALIDATION  

The general model defined by eqns. (17) - (19) with associated boundary conditions (20) for 

radiative convective magnetic polymer swirling flow from a revolving non-isothermal cone to a 

non-Darcian porous medium is solved using the unconditionally stable second order accurate 

implicit finite difference technique known as the Keller-box finite difference method [54] which 

can accommodate arbitrary spacing and possesses excellent extrapolation features. An in-house 

code has been developed in MATLAB symbolic software environment.  

 

Fig. 2: Stages involved in the Keller box implicit finite difference scheme. 

 

Stage 1: Decomposition of Nth order partial differential equation system to N first order 

equations 

Equations (17) – (19) subject to the boundary conditions (20) are first cast as a multiple system of 

first order differential equations. New dependent variables are introduced: 

( , ) ', ( , ) '', ( , ) , ( , ) 'u x y f v x y f s x y t x y = = = =                                                             (27) 

'f u=     (28) 

'u v=     (29) 
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'g p=     (30) 

's t=             (31) 

( )
( )( )

( )

( )( )
( )

4 2 4 2

2 2

1 1
Pr 1 ' 2 ' Pr 1 Pr

4

1 1 1 1
1 Pr 1

2 4

e

m
n v f v nW v v s g

m m u f
Fs u M u u v

Da


 


   

 

 − −
− + − + + − + 

 

 − −  −     
− − + − + = − −      

      

  (32) 

( )
( )( )

( )

2

2 3 2

1 1
Pr 1 ' Pr ' 2 2

4

1 1
Pr Pr 1

4

e

m
n p nW p p f p g u

m g f
M g Fs g u p

Da




   
 

 − −
− + + − − 

 

 −     
− + − = − −    

     

             (33) 

( )
( )( )

( ) ( )
1 1 1

' 1 2 1
4 4

m m s f
t R ft m su u t


 

 

 − −  −   
+ + − − = − −    

    
                    (34) 

where primes denote differentiation with respect to .  In terms of the dependent variables, the 

boundary conditions become: 

0, 0, 0, 1; 1

, 0, 0, 0

At f u g s

As u g s





= = = = =

→  → → →       (35) 

 

Step 2: Finite Difference Discretization 

A two-dimensional computational grid is imposed on the -η plane as sketched in Fig. 3. The 

stepping process is defined by:  

0 1

0 1

0, , 1,2,..., ,

0, , 1,2,...,

j j j j

n n

n

h j J

k n N

    

  

− 

−

= = + = =

= = + =
 

                
(36) 

where nk  is the  - spacing and jh
 
is the  - spacing.  If 

n

jg  denotes the value of any variable 

at ( ), n

j  , then the variables and derivatives of Equations (28) – (34) at ( )1/2

1/2 , n

j  −

−  are 

replaced by: 

( )1/2 1 1

1/2 1 1

1

4

n n n n n

j j j j jg g g g g− − −

− − −= + + +                  (37) 

( )
1/2

1 1

1 1

1/2

1

2

n

n n n n

j j j j

jj

g
g g g g

h

−

− −

− −

−

 
= − + − 

 
                (38) 

( )
1/2

1 1

1 1

1/2

1

2

n

n n n n

j j j jn

j

g
g g g g

k

−

− −

− −

−

 
= − + − 

 
                (39) 


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Fig. 3 Keller box computational cell and boundary layer meshing procedure 

The resulting finite - difference approximation of equations (28) – (34) for the mid - point

( )1/2 , n

j −
, are:  

( )1

1 1/2

n n n

j j j jh f f u−

− −− =                                         (40) 

( )1

1 1/2

n n n

j j j jh u u v−

− −− =                                       (41) 

( )1

1 1/2

n n n

j j j jh g g p−

− −− =           (42) 

( )1

1 1/2

n n n

j j j jh s s t−

− −− =                    (43) 

( )( )
( )( ) ( )( )
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1 1 1
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1 1 1 1
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2 2 4 4

1
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2 4 2

1 1

8

j

j j j j j j

j

j j j j j j

j j j

j j j j j j

j n

j j j

hm m
n v v f f v v

hm mnWe
v v v v Fs u u

h h h
s s g g M u u
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m h
f v v

  

  


  

 

− − −

− − −

− − −

−

− −

 − − − −
− − + − + + + 

 

 − − − −
+ + − − − + + + 

 

 
+ − + + + − + + 

 

− −
− +

( )( )
( )  

11

1/2 1 1 /12

1 1

8

nj n

j j j j

m h
v f f R

  −−

− − −

− −
+ + =

  (44) 
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( )( ) ( ) ( )

2 2

1 1 1 1

2
3

1 1 1

1 1

1 1

1/2 1 1/2 1

Pr 1
Pr 1 Pr

2 2

1 1 1 1
2 Pr

4 4 4 4

1 1
2

4 4

1 1

8

j

j j e j j j j j j

j j

j j j j j j

j

j j j j

n n

j j j j j jj

h
n p p nW p p p p M g g

Da

h hm m
f f p p Fs g g

hm
g g u u

g u u u g gm h

 

  


 

 

− − − −

− − −

− −

− −

− − − −

 
− − + + − − + + 

 

 − − − −
+ − + + + − + 

 

 − −
− + + + 

 

+ − +− −
+

− ( ) ( )
 

1

2 /121 1

1/2 1 1/2 1

n

jn n

j j j j j j

R
f p p p f f

−

−− −

− − − −

 
  =
 + + +
 

  (45) 

( )( )
( )( ) ( )( )

( )( )

( )( )
( )( )

( )( )
( ) ( ) ( ) ( )( )

 

1 1 1

1 1

1 1 1 1

1/2 1 1/2 1 1/2 1 1/2 1

1

3 /12

1 1 1 1
1 2

4 4 4

1 1

4 4

1 1

8

j

j j j j j j

j

j j j j

j n n n n

j j j j j j j j j j j j

n

j

hm m
R t t f f t t

hm
m s s u u

m h
s u u u s s f t t t f f

R

  

 

 

− − −

− −

− − − −

− − − − − − − −

−

−

 − − − −
+ − + − + + + 

 

 − −
− + + + 

 

− −
+ + − + − + + +

=

   (46) 

where we have used the abbreviations 

 
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   
= −  
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  (49) 

The boundary conditions are: 

0 0 0 00, 1, 0n n n n n n n

J J Jf u g s u g s= = = = = = =                   (50) 

 

Stage 3: Quasilinearization of Non-Linear Keller Algebraic Equations 

If we assume 
1 1 1 1 1 1 1, , , , ,n n n n n n n

j j j j j j jf u v g p s t− − − − − − −
 to be known for 0 j J  , this leads to a system 

of 7J+7 equations for the solution of 7J+7 unknowns , , , , ,n n n n n n n

j j j j j j jf u v g p s t , 0,1,2,...,j J= . This 

non-linear system of algebraic equations is linearized by means of Newton’s method. 

 

Stage 4: Block-tridiagonal Elimination Solution of Linear Keller Algebraic Equations 

The linearized system is solved by the block-elimination method, since it possesses a block-

tridiagonal structure. The bock-tridiagonal structure generated consists of block matrices. The 

complete linearized system is formulated as a block matrix system, where each element in the 

coefficient matrix is a matrix itself, and this system is solved using the efficient Keller-box method. 

The numerical results are strongly influenced by the number of mesh points in both directions. 

After some trials in the η-direction (radial coordinate) a larger number of mesh points are selected 

whereas in the -direction (tangential coordinate) significantly less mesh points are utilized. 
max

has been set at 25 and this defines an adequately large value at which the prescribed boundary 

conditions are satisfied. max is set at 3.0 for this flow domain. Mesh independence is achieved in 

the present computations. The numerical algorithm is executed in MATLAB on a PC. The method 

demonstrates excellent stability, convergence and consistency, as elaborated by Keller [54]. 

This code has previously resolved many challenging multi-physical fluid dynamics problems 

including enrobing viscoplastic boundary layer coating flow with hydrodynamic slip [57], 

magnetic viscoelastic nanofluid coating of a cylinder [58], radiative heat transfer in hydromagnetic 

non-Newtonian third grade coating of a cone [59], mixed convection Falkner-Skan nanofluid 

dynamics [60], pseudoplastic thermal coating of a cone [61], inclined substrate coating flow with 

magnetic field, radiation, viscous heating and entropy generation effects [62] and magnetic 

nanofluid fuel cell internal convection flows with Ohmic dissipation [63, 64]. The Keller-Box 

discretization is fully coupled at each step which reflects the physics of parabolic systems – which 
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are also fully coupled.  Discrete calculus associated with the Keller-Box scheme has also been 

shown to be fundamentally different from all other physics capturing numerical methods.  The 

Keller Box Scheme comprises four stages which are summarized in Fig. 2. LU decomposition is 

utilized in the 4th and final stage [58-64]. A typical Keller box (cell) and boundary layer grid design 

is given in Fig. 3. The 9th order coupled system defined by Eqns. (17)-(19) is reduced to 7 first 

order differential equations via suitable variable substitutions. The code is executed in several 

minutes on a laptop or desktop PC and excellent convergence is achieved. To validate the Keller 

box code, verification is conducted against the special cases considered earlier in Anil Kumar and 

Roy [65] and Sparrow and Cess [66] in the absence of tangent hyperbolic parameters i. e. n = 0, 

We = 0, for isothermal  behaviour (m = 0) and neglecting porous medium effects i. e. Da →,  Fs 

= 0, for the steady state case, over a range of Prandtl numbers (Pr). Both magnetic (M = 0) and 

non-magnetic cases (M = 1) are however considered in the validations.   

Table 1: Comparison values of ( )' ,0 − for various values of Pr and M  

Pr 

Present Keller Box 

Results 

Kumar and Roy 

[65] 

Sparrow and Chess 

[66] 

M = 0 M = 1 M = 0 M = 1 M = 0 M = 1 

0.5 0.0425 0.2818 0.0426 0.2819 0.0428 0.2820 

1.0 0.0274 0.1936 0.0282 0.1939 0.0244 0.1940 

2.0 0.0105 0.0980 0.0107 0.0981 0.0108 0.0982 

3.0 0.0059 0.0586 0.0061 0.0587 0.0061 0.0588 

4.0 0.0040 0.0398 0.0041 0.0344 0.0041 0.0395 

 

Table 1 documents the Nusselt number, '( ,0)Nu  = −  at the cone surface and very close 

correlation is achieved between the Keller box results and previous studies. Confidence in the 

accuracy of the Keller box solutions executed in MATLAB is therefore established. 

 

4. GRAPHICAL AND TABULAR RESULTS AND DISCUSSION 

The Keller box computations are visualized in Figs. 4- 9 a, b, c for the effects of selected control 

parameters on radial, tangential velocity and temperature with spanwise (transverse) coordinate). 

In these graphs, the location  =1 is considered along the cone surface (wall). Aqueous-based 

magnetic polymers are considered. All data is obtained to represent physically realistic scenarios 

[47-51]. Table 2 provides solutions for the primary shear stress (Cfx), secondary shear stress (Cgx) 

and Nusselt number (Nux) with variation in stream-wise coordinate and all key parameters. All 
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data utilized is given in the figure captions and corresponds to highly porous media (Da =2) and 

weak magnetic field (M = 0.5) with weak second order inertial (Forchheimer) drag (Fs = 0.5).  

Figures 4a-c depicts the effects of Weissenberg number (We) on the axial velocity (𝑓′), tangential 

velocity (𝑔) and temperature () distributions through the boundary layer regime. Fig 4a reveals 

that with increment in We, axial velocity is strongly damped in the vicinity of the cone surface 

(=0); at further distances into the boundary layer no tangible modification is computed. The 

Weissenberg number 𝑊𝑒 is required to simulate the nonlinear relation between shear stress and 

strain rate in the non-Newtonian nanofluid. It characterizes the ratio of elastic to viscous forces in 

the magnetic polymer. It also expresses the ratio of fluid relaxation time to specific time.  

 

Fig. 4a) Effect of Weissenberg number, We on axial velocity with  =1, Pr = Da =2, n=0.3, m = 1, M =R = Fs = 0.5. 
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Fig. 4b) Weissenberg number, We, effect on tangential velocity with  =1, Pr=Da =2, n=0.3, m = 1, We = 0.3, M =R = Fs =0.5. 

 

Fig. 4c) Weissenberg number, We, effect on temperature with  =1, Pr = Da = 2, n=0.3, m = 1, M =R = Fs =0.5. 
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Fig. 5a) Tangent hyperbolic power law index, n, effect on axial velocity with  =1, Pr =Da=2, m = 1, We=0.3, M =R = Fs =0.5. 

 

Fig. 5b) Tangent hyperbolic power law index, n, effect on tangential velocity; =1, Pr =Da=2, m = 1, We=0.3, M =R = Fs =0.5. 
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Fig. 5c) Tangent hyperbolic power law index, n, effect on temperature; =1, Pr =Da=2, m = 1, We=0.3, M =R = Fs =0.5. 

 

  Fig. 6a) Magnetic interaction parameter, M, effect on axial velocity; =1, Pr =Da=2, m = 1, n=We=0.3, R = Fs =0.5. 
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Fig. 6b) Magnetic interaction parameter, M, effect on tangential velocity; =1, Pr =Da=2, m = 1, n=We=0.3, R = Fs =0.5. 

 

Fig. 6c) Magnetic interaction parameter, M, effect on temperature; =1, Pr =Da=2, m = 1, n=We=0.3, R = Fs =0.5. 
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Fig. 7a) Darcy parameter, Da, effect on axial velocity; =1, Pr =2, m = 1, n=We=0.3, M=R = Fs =0.5. 

 

 

Fig. 7b) Darcy parameter, Da, effect on tangential velocity; =1, Pr =2, m = 1, n=We=0.3, M=R = Fs =0.5. 
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Fig. 7c) Darcy parameter, Da, effect on temperature; =1, Pr =2, m = 1, n=We=0.3, M=R = Fs =0.5. 

 

  Fig. 8a) Forchheimer parameter, Fs, effect on axial velocity; =1, Pr =2, m = 1, n=We=0.3, M=R = Da =0.5. 
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Fig. 8b) Forchheimer parameter, Fs, effect on tangential velocity; =1, Pr =2, m = 1, n=We=0.3, M=R = Da =0.5. 

 

Fig. 8c) Forchheimer parameter, Fs, effect on temperature; =1, Pr =2, m = 1, n=We=0.3, M=R = Da =0.5. 
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Fig. 9a) Rosseland radiative parameter, R, effect on axial velocity; =1, Pr =Da=2, m = 1, n=We=0.3, M=Fs =0.5. 

 

Fig. 9b) Rosseland radiative parameter, R, effect on tangential velocity; =1, Pr =Da=2, m = 1, n=We=0.3, M=Fs =0.5. 
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Fig. 9c) Rosseland radiative parameter, R, effect on temperature; =1, Pr =Da=2, m = 1, n=We=0.3, M=Fs =0.5. 

 

 Table 2: Values of Cfx, Cgx and Nu for different of n, We, M, Da, Fs, R, Pr, m and  . 

n We M Da Fs R Pr m 
 = 0  = 1.0 

Cfx Cgx Nu Cfx Cgx Nu 

0        0.7696 0 0.8847 0.7933 -2.6356 0.5758 

0.1        0.7454 0 0.9007 0.7528 -2.4850 0.5646 

0.2        0.7195 0 0.9184 0.7088 -2.3207 0.5496 

0.3        0.6915 0 0.9381 0.6600 -2.1375 0.5290 

0.4        0.661 0 0.9602 0.6032 -1.9255 0.4989 

 0       0.6863 0 0.9415 0.6769 -2.2198 0.5499 

 0.2       0.6898 0 0.9392 0.6660 -2.1660 0.5363 

 0.4       0.6931 0 0.9370 0.6533 -2.1076 0.5214 

 0.6       0.6963 0 0.9349 0.6369 -2.0423 0.5042 

 0.8       0.6995 0 0.9328 0.6129 -1.9619 0.4831 

  0      0.6915 0 0.9381 0.7830 -1.8093 0.7064 

  0.15      0.6915 0 0.9381 0.7399 -1.9123 0.6501 

  0.3      0.6915 0 0.9381 0.7025 -2.0112 0.5942 

  0.45      0.6915 0 0.9381 0.6700 -2.1065 0.5445 

  0.6      0.6915 0 0.9381 0.6414 -2.1984 0.4993 
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   1     0.6915 0 0.9381 0.5803 -2.1284 0.4046 

   1.5     0.6915 0 0.9381 0.6299 -2.2382 0.4807 

   2     0.6915 0 0.9381 0.6600 -2.1375 0.5890 

   2.5     0.6915 0 0.9381 0.6803 -2.0751 0.5606 

   3     0.6915 0 0.9381 0.6949 -2.0327 0.5828 

    0.01    0.6915 0 0.9381 0.6970 -1.8963 0.5710 

    0.2    0.6915 0 0.9381 0.6816 -1.9931 0.5528 

    0.5    0.6915 0 0.9381 0.6600 -2.1375 0.5290 

    0.8    0.6915 0 0.9381 0.6411 -2.2729 0.5118 

    1    0.6915 0 0.9381 0.6298 -2.3589 0.5051 

     0   0.6425 0 0.7134 0.6456 -2.1237 0.4553 

     0.25   0.6693 0 0.8299 0.6532 -2.1310 0.4956 

     0.5   0.6915 0 0.9381 0.6600 -2.1375 0.5290 

     0.75   0.7104 0 1.0396 0.6661 -2.1435 0.5579 

     1   0.7269 0 1.1357 0.6717 -2.1490 0.5840 

      0.5  0.6207 0 0.8070 0.2700 -0.5863 0.2463 

      1  0.6575 0 0.8778 0.3954 -1.1012 0.3542 

      2  0.6915 0 0.9381 0.6600 -2.1375 0.5290 

      3  0.7098 0 0.9678 0.9283 -3.1747 0.6756 

      9  0.7493 0 1.0234 2.8467 -9.5502 1.2444 

      10  0.7455 0 1.0197 2.5561 -10.5178 1.3855 

       1 0.6915 0 0.9381 0.6600 -2.1375 0.5290 

       1.2 0.6784 0 0.9667 0.6124 -2.1949 0.5448 

       1.5 0.6608 0 1.0060 0.5912 -2.1640 0.5916 

       2 0.6357 0 1.0636 0.5701 -2.1391 0.6093 

       3 0.5964 0 1.1585 0.5503 -2.1199 0.6911 

 

For large values of We, fluid relaxation time will greatly exceed the time scale of the flow and 

elastic stresses will be dominant. The reverse behavior will arise when relaxation time is exceeded 

by time scale of the flow for which the viscous effects will dominate, and elastic effects will 

subside. The magnetic polymer is therefore able to move with less tensile stress impedance when 

We is reduced, and this produces the observed acceleration in axial flow at lower Weissenberg 

numbers.  Similarly, a very strong reduction in tangential velocity is computed in Fig 4b with 

increasing Weissenberg number. However, temperature (Fig. 4c) is substantially elevated with 

increment in Weissenberg number and there is an associated increase in thermal boundary layer 

thickness. It is interesting to note that We arises only in the modified shear terms, +𝑛𝑊𝑒𝑓′′𝑓′′′ in 
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the axial momentum eqn. (17) and + 𝑃𝑟 𝑛 𝑊𝑒𝜉2𝑔′𝑔′′ in the tangential momentum eqn. (18), but is 

absent in the energy conservation eqn. (19). However, via strong coupling between the axial 

momentum (17) and energy eqn. (19), for example via the term, + 𝑃𝑟(1 − 𝜉)4 𝜃 in the former and 

numerous terms in the latter, viz, + (2 −
(1−𝜉)(1−𝑚)

4
) 𝑓𝜃′, −𝑚𝑓′𝜃, 𝜉(1 − 𝜉) (

1−𝑚

4
) (𝑓′

𝜕𝜃

𝜕𝜉
− 𝜃′

𝜕𝑓

𝜕𝜉
) 

the Weissenberg number exerts a strong indirect influence on temperature field.  

Figs 5a-c depict the response in axial velocity (𝑓′), tangential velocity (𝑔) and temperature () 

distributions with a variation in tangent hyperbolic index (n). This parameter arises in the modified 

shear term, 𝑃𝑟(1 − 𝑛) 𝑓′′′ in the axial momentum eqn. (17). For the case of n = 0 the tangent 

hyperbolic effect is negated and the model contracts to the Newtonian viscous fluid. As n is 

increased the pseudoplasticity (shear-thinning) of the magnetic polymer is increased and viscosity 

is modified. This causes an initial very weak increase in axial velocity magnitudes closer to the 

cone surface. However, very quickly the axial velocity is damped implying that axial flow 

deceleration is generally produced further from the cone surface (wall) with greater values of n. 

Further towards the free stream, the initial accelerating effect is resumed indicating that rheological 

shear-thinning behaviour has a complex influence on axial velocity distribution. The response 

changes with location from the cone surface (wall), as seen in Fig. 5a. Entanglement of the 

magnetic polymer chains is also associated with stronger pseudoplastic behaviour, and this may 

also contribute to the modification in viscosity and the variable response in axial velocity 

distributions. Fig 5b demonstrates that a strong reduction is computed in tangential velocity with 

increasing n values. A weak tangential back flow (flow reversal) is computed at intermediate 

distances from the cone surface. The coating boundary layer thickness maybe adjusted via the 

deployment of different shear-thinning polymers. Both axial and tangential velocity distributions 

exhibit generally very smooth decays into the free stream confirming that a sufficiently large 

infinity boundary condition has been utilized in the Keller box computations. Fig. 5c shows that 

temperature is strongly enhanced with elevation in rheological power-law index, n values. 

Asymptotically smooth decays are computed from the cone surface to the free stream (edge of the 

boundary layer). Thermal boundary layer thickness is also decreased with greater pseudoplasticity 

(higher n values) of the magnetic polymer. Although the parameter, n, does not arise in the energy 

eqn. (19), nevertheless, indirectly thermal diffusion is impacted by the coupling with the axial 

velocity field, via the terms, (2 −
(1−𝜉)(1−𝑚)

4
) 𝑓𝜃′, −𝑚𝑓′𝜃, 𝜉(1 − 𝜉) (

1−𝑚

4
) (𝑓′

𝜕𝜃

𝜕𝜉
− 𝜃′

𝜕𝑓

𝜕𝜉
). When 

tangent hyperbolic index (n) becomes zero, the shear-thinning effect vanishes, and minimal 

temperature is observed.  
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Figures 6a-c visualize the impact of magnetic interaction parameter M, on the axial velocity) (𝑓′), 

tangential velocity (g) and temperature () distributions with transverse coordinate ().  The 

parameter 

2

0

sin

B
M



 
=


defines the ratio of Lorentzian electromagnetic force and the rotational 

inertial (centrifugal) force in the regime. It arises in the axial momentum eqn. (17) and is also 

present in the tangential eqn. (18), respectively in the terms, −𝑃𝑟𝜉2𝑀 f / and −𝑃𝑟𝜉2𝑀 g. These 

terms are the Lorentzian body force components in the axial and tangential (circumferential) 

directions. For M = 0 magnetic field effects vanish, and the polymer becomes electrically non-

conducting. Fig. 6a reveals that shows that stronger magnetic field strongly damps the axial flow, 

in particular in the vicinity of the cone surface. Peak velocities are also progressively displaced 

further from the cone surface with increment in M. Maximum axial velocity clearly arises for the 

non-magnetic case (M = 0) and this will produce a thicker momentum boundary layer. All axial 

velocity profiles converge in the free stream. In other words, after a critical distance from the cone 

surface into the boundary layer the magnetic field effect is negated. The key modification in 

momentum characteristics is therefore achieved in proximity to the cone surface. Fig. 6b shows 

that there is a significant damping in tangential flow with larger values of M. However distinct 

from the axial velocity topologies, there is no near-wall peak computed. A consistent decay in 

tangential velocities is computed throughout the entire boundary layer regime from the cone 

surface to the free stream Peak tangential velocity always arises at the cone surface (wall). Again, 

maximum tangential flow acceleration is produced with the elimination of the Lorentzian magnetic 

retarding force for M = 0. A slight tangential flow reversal (negative velocities) is computed at 

large distance from the cone surface. In the free stream tangential velocity vanishes in accordance 

with the infinity boundary condition prescribed in eqn. (20). Fig. 6c indicates that temperature is 

substantially boosted with elevation in magnetic interaction parameter, M. Asymptotic decays are 

computed in all cases. The excess work expended in dragging the magnetic polymer against the 

action of the radial magnetic field manifests in heat dissipation. This heats the magnetic polymer 

and elevates thermal boundary layer thickness. The effect is sustained at all locations from the 

cone surface to the free stream. Clearly minimum temperature and thermal boundary layer 

thickness correspond to the non-magnetic case (M = 0).  

Figures 7a-c illustrate the effect of the Darcy number, Da, on the axial velocity ( )'f , tangential 

velocity (g) and temperature () distributions with transverse coordinate (). This parameter 

features in both momentum balance eqns. (17) and (18) in the terms, −𝑃𝑟𝜉2(
1

𝐷𝑎
)f / and 
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−𝑃𝑟𝜉2 (
1

𝐷𝑎
) 𝑔. These are the Darcian axial and tangential body force components and are linear 

terms. 𝐷𝑎 =
𝐾𝛺 𝑠𝑖𝑛 𝜑

𝜈𝑠
 and when Da tends to infinity, the porous medium has infinite permeability 

for which both Darcian body forces vanish. Fig 7a clearly shows that with increment in Da, the 

axial velocity is strongly accentuated, and this effect is maximized near the cone surface. Clearly 

larger permeability implies a reduction in solid fibers which are present to impede the axial flow 

and this diminishes the Darcian resistance which results in axial flow acceleration. Peak velocity 

is pushed further from the wall (cone surface) with increasing Darcy parameter. The topologies 

are similar to those computed with magnetic interaction parameter earlier. Fig 7b shows that strong 

accentuation in tangential velocity also accompanies an increment in Darcy parameter. A 

consistent response is computed throughout the boundary layer regime. Again, evidently 

percolation of the magnetic polymer through the porous medium is assisted with greater 

permeability and the associated reduction in Darcian bulk matrix impedance to the tangential flow. 

Clearly the deployment of a porous medium offers an excellent Fig. 7c demonstrates that a strong 

damping in temperature is produced by increasing Darcy parameter. The depletion in solid fibers 

in the porous matrix associated with higher permeability manifests in a suppression in thermal 

conduction. This curtails heat diffusion in the regime and cools it. Thermal boundary layer 

thickness on the rotating cone surface is therefore decreased. Lower permeability porous media 

clearly achieve much higher temperatures than higher permeability media.  

Figures 8a-c illustrate the effect of the Forchheimer number, Fs, on the axial velocity ( )'f , 

tangential velocity (g) and temperature () distributions with transverse coordinate (). 

sin
Fs





= 


 and simulates the impact of nonlinear (second order) porous media drag. As 

with Darcy number, it features in both axial and tangential Forchheimer drag components, for 

example -Fs (f/)2 in eqn. (17). It is clearly quadratic whereas Darcian drag components are linear. 

For the case of Darcy-Brinkman flow, Fs = 0 and inertial drag effects vanish. Fig 8a shows that a 

marked depletion in axal velocity is induced with increment in Forchheimer number since stronger 

inertial impedance is present which opposes axial flow. The effect is optimized near the cone 

surface and further away a weaker deceleration is computed in axial flow with greater Forchheimer 

number. In the free stream no tangible influence of Forchheimer number is observed on axial flow. 

Fig 8b shows that a sustained deceleration in tangential flow is induced with greater Forchheimer 

number. There is no secondary dip in profiles as with the axial flow. Peak velocity corresponds to 

the weak Forchheimer scenario (Fs=0.01) at all location’s transverse to the cone surface into the 
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free stream. Fig 8c reveals that larger Forchheimer number produces a substantial heating effect 

in the regime. Temperatures are consistently elevated at all values of transverse coordinate (). 

Thermal boundary layer thickness is therefore minimal for the weak Forchheimer drag case (Fs = 

0) and maximum for the strong Forchheimer case (Fs = 1). Of course, our simulations are limited 

to isotropic and non-tortuous porous media. However, the significant influence of linear Darcian 

impedance and second order inertial porous drag on manipulating flow and thermal characteristics 

in rotational coating applications is clearly demonstrated.  

Figures 9 a-c illustrate the effect of the Rosseland-Boltzmann radiative parameter (also known as 

Stark number) on axial velocity ( )'f , tangential velocity (g) and temperature () distributions 

with transverse coordinate (). 
316 *

3 *

T
R

k k

 =  and represents the relative role of radiative heat 

transfer to conduction heat transfer in the regime. This parameter only features in the augmented 

thermal diffusion term, 𝜃′′(1 + 𝑅), in eqn. (19). Fig 9a demonstrates that an increment in R i. e. 

stronger radiative flux initially boosts the axial velocity noticeably in close proximity to the 

rotating cone surface. The near-wall peak is progressively displaced further from the wall with 

larger R values. Clearly an increment in radiative heat flux energizes the boundary layer and 

influences the axial and tangential flow via coupling with many terms in both eqns. (17) and (18) 

with eqn. (19). However further from the wall, at intermediate distances into the boundary layer, 

there is a dampening in axial flow. Towards the free stream this deceleration with stronger radiative 

flux is eliminated. Near the cone surface the non-radiative case (R = 0) produces minimal axial 

velocity whereas further from the cone surface it achieves maximum magnitudes, although these 

magnitudes are much smaller than those computed near the cone surface. Fig 9b shows that a 

tangential velocity is weakly damped by increasing radiative flux and this behaviour is sustained 

at all locations from the wall (cone surface) to the edge of the boundary layer (free stream). 

Tangential flow is therefore strongest for the purely conductive heat transfer case (R = 0). Fig. 9c 

reveals that a very strong enhancement in temperature is produced with increasing R values. 

Thermal boundary layer thickness is therefore also elevated with stronger radiative flux in the 

coating regime. A homogenous effect on the temperature evolution is observed which is 

characteristic of the Rosseland diffusion flux model. Radiative equilibrium is achieved, and 

radiation acts purely diffusively with source terms due to emission. However, this model is 

restricted to gray fluent media and very high optical thicknesses. Nevertheless, it is evident that 

temperature augmentation is captured which is not possible when radiative effects are ignored in 

the mathematical model. While a simple algebraic model, Rosseland’s model does provide a 
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reasonable estimate of high temperature radiative behaviour. For more refinement multi-flux 

models are needed such as the two-flux model or Chandrasekhar discrete ordinates model (DOM) 

which can also accommodate specular radiation and transmittivity and reflectivity of the cone 

surface (wall). These approaches are under consideration for future investigations.  

Table 2 presents the influence of selected parameters on axial and tangential skin frictions (Cfx 

and Cgx) and Nusselt number (Nu), along with a variation in the stream wise coordinate values, .  

Both the cone vertex (lower stagnation point, =0 and a general point downstream of the vertex 

along the cone surface are considered i. e. =1). An increase in tangent hyperbolic power law 

index (n) is found to suppress the axial skin friction, has no influence on tangential skin friction 

and elevates Nusselt number at the cone vertex. At =1, larger n values i. e. stronger shear-thinning 

characteristic of the magnetic polymer, again decreases axial skin friction, but elevates tangential 

skin friction and reduces Nusselt number. The location along the cone i. e. streamwise coordinate 

therefore exerts a role in how the shear-thinning non-Newtonian behaviour influences the axial 

flow.  At =0, increasing Weissenberg number, We, increases axial skin friction, has no influences 

on tangential skin friction but strongly reduces Nusselt number. Further along the cone surface at  

=1, an increment in Weissenberg number, We, conversely decreases axial skin friction but 

enhances tangential skin friction and again suppresses Nusselt number. At the cone vertex, =0, 

an increment in magnetic interaction parameter (M) exerts no tangible influence on axial or 

tangential skin friction or Nusselt number (although only tangential skin friction has zero 

magnitude). At  =1, however a very strong depletion in all three surface gradients is computed 

with larger magnetic interaction parameter indicating a suppression in both axial and tangential 

flow and a net reduction in heat transferred to the cone surface. Increasing Darcy parameter (Da) 

also induces no variation in axial or tangential skin friction or Nusselt number at =0. However, 

further along the cone at  =1, larger Da values i. e. greater permeability boosts the axial skin 

friction component, decreases tangential skin friction and elevates Nusselt numbers. Increasing 

Forchheimer parameter (Fs) again has no impact at the cone vertex =0 on axial or tangential skin 

friction or Nusselt number at. However, further along the cone at  =1, larger Fs values i. e. greater 

second order inertial drag decreases axial and tangential skin friction components and also reduces 

the Nusselt numbers.  Increasing Rosseland radiative parameter (R) at the cone vertex =0, 

strongly enhances axial skin friction, has no impact on circumferential skin friction (it is always 

zero at the cone vertex irrespective of whatever parameter is varied) and enhances significantly 

Nusselt number.  Further along the cone at  =1, larger R values i. e. stronger thermal radiation, 

again increases axial skin friction and Nusselt number but suppresses tangential skin friction. With 
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increasing Prandtl number (i. e. decreasing thermal conductivity of the magnetic polymer), at the 

cone vertex =0, axial skin friction is elevated, no change arises in circumferential (tangential) 

skin friction and Nusselt number is also boosted.  Further along the cone at  =1, a much stronger 

enhancement in axial skin friction and Nusselt number is induced whereas tangential skin friction 

is very strongly depleted. Finally, an increment in non-isothermal power-law index (m), strongly 

reduces axial skin friction, has no effect on tangential skin friction and significantly elevates 

Nusselt number, at the cone vertex, =0. At  =1, again axial skin friction is reduced and Nusselt 

number is enhanced; however, there is also a substantial boost in tangential skin friction.  

 

5.CONCLUSIONS 

To simulate high temperature multi-physical rotational boundary layer coating flow, a detailed 

mathematical model has been developed to investigate the effects of thermal radiative flux on 

steady laminar convection boundary layer flow and heat transfer in magnetized tangent hyperbolic 

non-Newtonian coating flow external to a spinning cone with power-law variation in wall (cone 

surface) temperature, adjacent to a non-Darcian porous medium, under radial magnetic field. The 

Brinkman-Darcy-Forchheimer model is deployed for the porous medium which is assumed to be 

isotopic and homogenous. Rosseland’s diffusion flux approximation is employed for the radiative 

heat transfer. The transformed non-dimensional conservation equations are solved numerically 

subject to physically appropriate boundary conditions using a second-order accurate implicit finite-

difference Keller Box method. The numerical code is validated with previous studies. 

Comprehensive graphs are presented for the impact of Rosseland radiative number, Darcy number, 

Forchheimer number (non-Darcy inertial parameter), magnetic interaction parameter, tangent-

hyperbolic non-Newtonian power-law index, non-isothermal power law index and Weissenberg 

(non-Newtonian) number of axial, tangential velocity components and temperature distributions 

with is included. Additionally, axial and tangential (circumferential) skin friction and Nusselt 

number values are tabulated for variation in selected key control parameters. The principal findings 

of the present analysis can be summarized as follows: 

 

(i) An increment in Darcy parameter (Da) produces strong axial flow acceleration near the 

the cone surface (due to larger permeability), and also enhances significantly the 

tangential velocity; however, it considerably suppresses temperatures throughout the 

boundary layer transverse to the wall.  
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(ii) Further from the cone vertex, larger Da values enhance the axial skin friction 

component, decrease tangential skin friction and elevate Nusselt numbers.  

(iii) Increasing Forchheimer parameter (Fs) further along the cone i. e. greater second order 

inertial drag decreases both axial and tangential skin friction components and also 

reduces the Nusselt numbers.   

(iv) Increasing Rosseland radiative parameter (R) at the cone vertex =0, strongly enhances 

axial skin friction, has no impact on circumferential skin friction and enhances 

significantly Nusselt number.  Further along the cone at  =1, larger R values i. e. 

stronger radiative heat transfer, again increases axial skin friction and Nusselt number 

(i. e. boosts heat transfer to the cone surface) but suppresses tangential skin friction. 

(v) Increasing non-isothermal power-law index (m), strongly reduces axial skin friction, 

has no effect on tangential skin friction and significantly increases Nusselt number, at 

the cone vertex, =0. At  =1, again axial skin friction is also reduced and Nusselt 

number is again enhanced, although there is also a substantial elevation in tangential 

skin friction. 

(vi) Increasing Weissenberg number decelerates axial flow and tangential flow whereas it 

boosts the temperature and thermal boundary layer thickness.  

(vii) Elevation in non-Newtonian tangent hyperbolic index (n), elevates the pseudo-

plasticity (shear-thinning) of the magnetic polymer and increases axial velocity 

magnitudes closer to the cone surface but suppresses tangential velocity and elevates 

temperature and thermal boundary layer thickness. 

(viii) An increment in magnetic interaction parameter M, damps the axial flow, in particular 

in the vicinity of the cone surface, and pushes peak velocity further from the cone 

surface. Larger M values also strongly damp the tangential flow but significantly 

elevate temperature (due to work expenditure as heat in dragging the magnetic polymer 

against the action of the radial magnetic field) and also thermal boundary layer 

thickness. 

The present study has shown the exceptional versatility of the Keller box finite difference method 

in accommodating two-parameter nonlinear multi-physical boundary layer flows in smart 

rotational coating systems. Future investigations may consider more complex radiative heat 

transfer flux models e. g. Traugott’s P1-radiative differential approximation [67] and convective 

mass transfer (species diffusion) and anisotropic porous media [68]. Studies along these directions 

are underway and will be communicated imminently.  
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