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ABSTRACT  

 

In this doctoral thesis, we explore the innovative application of the Tab Transformer 

architecture in the realm of predictive process mining, marking a significant advancement in 

forecasting subsequent events within activity sequences. Utilising the PM2 methodology, 

known for its structured approach in process mining, this study rigorously handles data 

processing, model development, and validation. This methodological choice is pivotal in 

leveraging the unique capabilities of the Tab Transformer, particularly its proficiency in 

processing multiple categorical features, a dimension often overlooked in previous research. 

The empirical analysis encompassed a novel dataset and extended to three additional publicly 

available datasets: MIMIC-IV Emergency Department (ED) Data, BPIC 2012, BPIC 2013, BPIC 

2017, and BPIC Road Traffic. The model's performance was exemplary, achieving accuracies 

of 0.69, 0.812, 0.7301, 0.8766, and 0.78, and F1 scores of 0.67, 0.77, 0.70, 0.8533, and 0.734 

in these datasets, respectively. 

A major contribution of this research is the introduction of the Tab Transformer to process 

mining, a first in the field. This approach not only demonstrates the model’s versatility across 

various data forms but also highlights the importance of integrating categorical features in 

process mining, providing a more nuanced understanding of the influencing factors in activity 

sequences. 

The thesis further distinguishes itself through the application of Explainable Artificial 

Intelligence (XAI) techniques, particularly SHAP and LIME. These tools were instrumental in 

demystifying the model’s decision-making processes, thereby enhancing its transparency, 

and fostering trust in AI systems. This integration challenges the notion of AI as impenetrable 

"black boxes," paving the way for AI systems that are not only effective but also interpretable 

and trustworthy. 

In conclusion, this thesis contributes significantly to the field of predictive process mining by 

pioneering the use of the Tab Transformer, emphasizing the role of categorical features, and 

advancing the cause of transparency in AI through the application of XAI. The findings and 

methodologies established in this study represent a benchmark for future research in this 

evolving domain. 
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CHAPTER 1: INTRODUCTION 

1.1 Introduction 

Process mining has emerged as a ground-breaking interdisciplinary realm that bridges data 

science with traditional process modelling. This innovative approach fosters a unique way of 

identifying and enhancing business processes. As articulated by Van Der Aalst, often 

considered the patriarch of process mining (Van der Aalst, 2009), the primary aim of process 

mining is to discover, monitor, and improve authentic processes by harnessing knowledge 

from event logs in information systems. While some of these logs are well-structured, others 

might be erratic and inadequately measured, necessitating advanced pre-processing for 

effective process mining. With the continuous evolution of this domain, the emphasis on 

improving process visualization through research on process discovery and enhancement has 

become paramount. Notably, several challenges, like prescriptive capabilities and complex 

data structures, have emerged, leading researchers to pivot towards predictive process 

monitoring (R’bigui & Cho, 2017; Van Der Aalst, 2012). 

 

Predictive process monitoring, a subset of process mining, is focused on forecasting process 

behaviours. Current research in this subfield addresses areas like next activity prediction, 

cycle time prediction, and outcome prediction. Such areas not only shed light on current 

processes but also anticipate future behaviours, empowering businesses with foresight 

(Marquez-Chamorro et al., 2018a). 

 

Recent strides in deep learning have ushered in solutions for the challenges in next event 

prediction. Earlier studies have leveraged LSTM, ANN, and CNN for these prediction tasks with 

varying results (Tama & Comuzzi, 2019), However, as outlined in a 2021 publication, the 

industry faces challenges like trustworthiness of insights and lack of domain knowledge 

(Martin et al., 2021). The rise of the transformer architecture, particularly in tasks related to 

translation and generation, has spurred research into its potential for improving next event 

predictions. A notable study on this topic is by (Kim et al., 2022). which discusses the 

importance of understanding both sequence predictions and supporting categorical features. 
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To address the challenges, specifically in next event prediction, recent advancements in deep 

learning have proposed various solutions tailored to the next event prediction tasks. Precious 

researchers have applied LSTM, ANN, CNN on the Next event prediction tasks with varying 

degree of success (Tama & Comuzzi, 2019), But with the emergence of several recent process 

mining challenges and opportunities as described by the publication as at 2021 on the state 

of the industry and the need for future research to address the lack of trust in insights, 

insufficient prescriptive capabilities, enriching domain knowledge and enhancing business 

process transparency (Martin et al., 2021). This has led to further research in improving the 

outcomes of next event predictions task. With the emergence of transformer architecture on 

the handling of translations and generative tasks, it has led to further research on the 

applicability of method to improve the outcomes of generated next event processes, to 

understand prediction and generative further insights by understanding not only the 

sequence for prediction but also the supporting categorical features present in the complex 

data, which is highlighted in the paper by (Kim et al., 2022).  

 

Presently the traditional architecture, was recently applied to the next event prediction tasks, 

and showed an improved level of prediction accuracy compared to previous models, but 

similarly to previous applications, little emphasis has focused on the other set of categorical 

features in the data. As with any course of events, the data at each stage is associated several 

categorical features of events that occurred during such events, while also enabling the 

research to trust in insights gained from the prediction.  

 

Previous research has focused on the applicability of XAI approaches on the transformer 

approach focusing on text to text, image to image interpretation. But these approaches are 

not focused on its applicability to the Tab Transformer approach, as the approach aims to 

gather insight form all available features. The thesis aims to further explore the applicability 

of various and their applicability to the Tab Transformer architecture this was advised by the 

work done by (Velioglu et al., 2022).   

 

In the realm of predictive process monitoring, a notable gap persists in the monitoring of 

subsequent event activities, especially when integrating diverse categorical features to 
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forecast an activity. This research seeks to address this lacuna by introducing a pioneering 

approach leveraging the TAB Transformer Architecture (Huang et al., 2020). While Huang et 

al. illuminated a pathway that aligns with our objective of harnessing the multifaceted 

features present in the data for prediction, our research extends and refines this trajectory. 

 

Historically, the emphasis in this domain has been predominantly on replicating the sequence 

of events, aiming to predict the subsequent sequence and its order. The methodology used, 

however, diverges significantly. By employing the TAB Transformer Architecture 

complemented with trace Position Embedding, the research work does not only predict the 

next event activities but delves deeper into understanding the myriad factors contributing to 

such predictions. This nuanced approach facilitates a richer comprehension of the underlying 

dynamics, offering stakeholders a more granular view of the processes. 

 

Furthermore, while the potential of Transformer models in predictive process monitoring is 

increasingly recognized, their interpretability remains a relatively uncharted territory. 

(Velioglu et al., 2022) underscored this research void, emphasizing the imperative for a 

deeper exploration of Transformer model interpretability. This research not only 

acknowledges this gap but actively ventures into this domain, aiming to elucidate the 

intricacies of Transformer-based predictions, thereby enhancing the transparency and 

trustworthiness of the model's insights. 

 

In essence, this research stands at the forefront of predictive process monitoring, offering a 

novel, its comprehensive approach promises both accuracy in predictions and depth in 

interpretability. 

 

1.2 Research Problem 

The field of predictive process mining, as underscored by influential works like (Martin et al., 

2021; Munoz-Gama et al., 2022a; R’Bigui & Cho, 2017) confronts numerous challenges that 

hinder its broader application and efficacy. Central among these challenges are issues related 

to the trustworthiness of insights generated from process mining models, the need for 
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enriching domain-specific knowledge through data, and enhancing the transparency of 

business processes. These challenges are particularly pronounced in the realm of next-event 

prediction, a critical area in predictive process mining that seeks to forecast future activities 

based on past patterns.  

  

Historically, efforts in next-event prediction have largely revolved around deep learning 

models, which, while showing promise, exhibit varying degrees of accuracy and often lack 

transparency. This inconsistency in performance and the "black box" nature of these models 

contribute to a broader issue of trust and understanding in the insights they generate 

(Bathaee, 2018; Padovan et al., 2023). One significant gap in existing approaches is the 

underutilisation of the Transformer architecture, especially in handling complex event logs in 

process mining. This architecture, known for its success in natural language processing, has 

not been fully explored in the domain of predictive process mining, representing a missed 

opportunity for enhancing model accuracy and interpretability.  

  

This thesis proposes to address these gaps by implementing and investigating the Tab 

Transformer architecture. This approach is novel in the predictive process mining field and 

offers a promising avenue for tackling the aforementioned challenges. The Tab Transformer 

is particularly adept at integrating and analysing comprehensive data (Huang et al., 2020), 

including the incorporation of multiple categorical features – a critical aspect often 

overlooked in previous studies (Elkhawaga et al., 2022; Guidotti et al., 2018; Ribeiro et al., 

2021). By focusing on these categorical features, the thesis aims to provide a deeper, more 

nuanced understanding of the factors influencing activity sequences in process mining.  

  

Furthermore, the adoption of the Tab Transformer architecture is anticipated to enrich the 

domain knowledge developed from data, thereby enhancing the transparency and reliability 

of business process predictions. This approach aligns with the growing need for predictive 

models that not only offer high accuracy but also afford users a clearer understanding of how 

predictions are made. In doing so, this research seeks to contribute significantly to the field 

of predictive process mining by bridging the gap between advanced machine learning 

techniques and the practical, transparent application of these techniques in business process 

analysis. 
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1.3 Research Aims and Objectives  

In this section, the thesis aims and objectives would be described, the aims will be an overview 

of what the research seeks to achieve, and the objectives will be a breakdown of steps for the 

study.  

1.3.1 Research Aims  

The primary aim of this research is to significantly enhance the predictive accuracy and 

interpretability of process mining models, with a specific focus on next-event prediction. This 

enhancement is not merely about achieving higher accuracy rates but also about providing a 

more comprehensive understanding of the data-driven processes that inform these 

predictions. To achieve this, the study will incorporate a broader range of data features, 

including those that have been traditionally neglected or underutilised in predictive process 

mining. By doing so, the research aims to uncover deeper insights into the various factors that 

influence activity sequences, thereby providing a more nuanced and accurate representation 

of business processes.  

  

Additionally, this research aims to delve into the legal and regulatory aspects of AI and 

machine learning models, particularly those considered as "black box" models. This involves 

exploring the existing legal frameworks and regulatory guidelines that govern the use and 

implementation of such models, especially in contexts where transparency and accountability 

are paramount. The research will examine how these models are currently perceived and 

regulated, focusing on the UK context while also drawing comparisons with global standards. 

The objective is to understand the implications of these legal and regulatory landscapes on 

the development and deployment of predictive process mining models and to identify best 

practices for ensuring transparency and accountability in AI applications. 

1.3.2 Research Questions 

Research Question 1: 
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Comparative Analysis of Tab Transformer's Accuracy: How does the accuracy of the 

Tab Transformer in next-event prediction within predictive process mining compared 

to contemporary methods? This question aims to evaluate the effectiveness of the 

Tab Transformer when it incorporates a more comprehensive range of data features. 

The focus is not only on the accuracy but also on how the integration of these diverse 

data features can enhance prediction quality compared to existing methods. 

 

Research Question 2: 

Insights from Categorical Features: What additional insights can be gained from the 

inclusion of categorical features that have been previously overlooked in next-event 

prediction models? This question seeks to understand the impact of integrating a 

wider array of data features, particularly categorical ones, on the predictive 

capabilities of the models and the richness of the insights they provide. 

 

Research Question 3: 

Enhancement Through XAI Techniques: How do different Explainable Artificial 

Intelligence (XAI) techniques enhance the interpretability of the Tab Transformer in 

predictive process mining, and what specific insights do these techniques unveil? This 

question aims to explore the effectiveness of various XAI methods in making the Tab 

Transformer’s decision-making process more transparent and understandable, 

thereby assessing their contribution to enhancing the model's interpretability. 

 

Research Question 4: 

Efficacy of Specific XAI Techniques: Among the XAI techniques applied to the Tab 

Transformer, which ones most effectively elucidate the model's decision-making 

process, and what are the unique advantages and limitations of each technique? This 

question is focused on identifying and evaluating the specific XAI techniques that 

provide the most clarity and insight into the Tab Transformer's operations, considering 

their distinct benefits and constraints. 

 

Research Question 5: 
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Legal and Regulatory Landscape: What is the current legal and regulatory landscape 

regarding developer accountability for black box models, particularly in the UK, and 

how do these regulations address the need for transparency in such models? This 

question aims to investigate the existing legal framework and regulatory guidelines 

that govern the use of AI models, with a particular focus on the issues of transparency 

and accountability in the UK, and to compare these with international standards. The 

goal is to understand the challenges and requirements for legally compliant and 

transparent AI model deployment. 

1.3.3 Research Objectives   

The objective of this study are as follows:  

 

Enhancing Predictive Performance with Diverse Data Features:  

  

Objective: To significantly improve the predictive capabilities of process mining models, 

specifically in the context of next-event prediction. This enhancement will be achieved by 

integrating a broader and more diverse spectrum of data features than traditionally employed 

in such models.  

Approach: The study will systematically incorporate and analyse various data features, 

including but not limited to categorical and numerical features, to understand their collective 

impact on the accuracy of predictions. This approach aims to improve the conventional 

boundaries of data utilisation in predictive process mining, thereby providing a more 

comprehensive and multifaceted understanding of the factors influencing activity sequences. 

 

Evaluating the Tab Transformer's Performance:  

  

Objective: To conduct a detailed comparative analysis of the Tab Transformer’s performance 

against existing predictive models in process mining. This will involve a thorough evaluation 

based on key performance metrics, such as accuracy and F1 scores.  

Approach: The research will entail a series of experiments where the Tab Transformer will be 

benchmarked against current state-of-the-art models. The comparison will focus on both the 
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quantitative measures of model performance and the qualitative aspects of the predictions, 

such as their relevance and applicability in real-world scenarios. 

 

Exploring the Efficacy of XAI Techniques:  

  

Objective: To investigate and ascertain the effectiveness of various Explainable Artificial 

Intelligence (XAI) techniques in enhancing the interpretability of the Tab Transformer, 

particularly in the realm of predictive process mining.  

  

Approach: This objective will involve applying different XAI methods to the Tab Transformer 

and evaluating their effectiveness in making the model's decision-making process more 

transparent. The study will analyse how these techniques contribute to a deeper 

understanding of the model's predictions and their implications on the overall business 

process. 

 

Analysing Legal and Regulatory Frameworks for AI Models:  

  

Objective: To conduct a comprehensive analysis of the legal, regulatory, and guideline 

frameworks that govern black box AI models, with a specific focus on the implications for 

transparency and accountability.  

  

Approach: This aspect of the research will explore the current legal and regulatory landscape, 

particularly in the UK, regarding the use and development of AI models. It will involve an 

examination of existing laws, guidelines, and regulations that address the transparency and 

accountability of AI systems. The study will also compare these UK frameworks with 

international standards to identify best practices and potential areas for improvement in the 

governance of AI models. 

1.4 Research Contributions  

At the intersection of process mining and machine learning, this research delves into the 

specialised domain of predictive process monitoring. The objective is a methodological 
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enhancement for predicting subsequent events, especially when navigating complex "black 

box" models. The research provides a breakdown of the contributions below.  

 

Innovating with Tab Transformer Application Dataset. This research pioneers the use of the 

Tab Transformer for predictive process mining in the data-rich medical sector, demonstrating 

its versatility across various datasets, including complex, high-dimensional structures. This 

work highlights the Tab Transformer's adaptability and potential for transformative impacts 

in process mining, setting a new standard for its application in diverse contexts.  

 

Broadening Data Analysis Horizons:  

A key achievement of this study is the enriched analysis process through the inclusion of 

previously overlooked categorical features, enhancing the predictive models' robustness and 

accuracy. This expanded feature set captures the full complexity of underlying processes, 

offering a truer representation of real-world phenomena.  

 

Employing the MIMIC_IV_ED Dataset:  

Utilising the MIMIC_IV_ED dataset marks a significant advancement in process mining, 

introducing new dimensions to the field with its size, diversity, and detail. This dataset enables 

the exploration of the Tab Transformer's effectiveness in real-world healthcare, bridging the 

gap between theory and practice.  

 

Advancing Model Interpretability with XAI:  

This research enhances interpretability through XAI techniques like SHAP and LIME, moving 

beyond sequence tracing to a comprehensive understanding of data and model decisions. 

This approach increases transparency, trust, and acceptance among users, offering valuable 

insights on the application and effectiveness of various XAI methods in predictive process 

mining.  

Cross-Validation: K-fold cross-validation is applied, improving the Tab Transformer's accuracy 

significantly. This technique is crucial for detecting overfitting and ensuring robust model 

performance, especially beneficial for datasets with a limited number of labelled samples.  
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Data Transformation Techniques: Incorporating One Hot Encoding and factorization methods 

allowed for efficient handling of categorical data, enhancing model input quality and 

performance.  

 

These contributions advance technical capabilities and address transparency, trust, and 

applicability concerns in AI for critical sectors such as healthcare. 

 

Impact on Process Mining:  

The application of the Tab Transformer, particularly in the medical sector, has shown 

transformative impacts, such as enhanced process understanding and improved prediction 

accuracy. This technology's ability to contextualize data elements through its attention 

mechanism also facilitates the development of explainable AI, opening new pathways for 

intuitive AI capabilities.  

 

Dataset Characteristics:  

The MIMIC_IV_ED dataset exemplifies the richness and applicability of our chosen dataset for 

evaluating the Tab Transformer, showcasing the variety of medical conditions covered and 

demonstrating the model's potential in real-world healthcare settings. This reflects the 

dataset's suitability for challenging predictive models and its contribution to advancing 

process mining research. 

In general, with an emphasis on real-world applications and methodological developments, 

this study provides a thorough framework for improving predictive capabilities in process 

management by integrating cutting-edge deep learning techniques and XAI methodologies. 

1.5 Thesis Structure  

The ensuing sections of this thesis have been organised systematically to offer a 

comprehensive understanding of the research topic. The layout of the thesis is designed to 

sequentially progress from a foundational understanding of the subject to an in-depth 

analysis, ultimately leading to a conclusive summary. The chapter two of this thesis deals with 

proving understanding of the terms used, following with the introduction as foundation for 

the research explore process mining, predictive process monitoring, and the research carried 
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out in the field. The research also delves into the laws and current legal stance on black box 

models in the United Kingdom and comparing it with other parts of the world.  

 

In chapter 3, the methodology for the research is introduced and the case studies for its 

applications is examined in chapter 4. On various datasets starting with the primary data, then 

moving the other publicly available datasets. In chapter 5, the results are presented as 

obtained in the research and compared with previous works, so as to enrich the overall 

understanding of the study. Then finally, the conclusion is presented as a summary of all the 

research work, encapsulating the major findings, implications, and contributions of the 

research in chapter 6.  In general, the introduction of this research in presented in this chapter 

and the next chapter contains the literature review of the study. 
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CHAPTER 2:  LITERATURE REVIEW  

 

2.1 Background and Overview  

The preceding chapter contains the general introduction of this research and the current 

chapter begins by elucidating the definitions of key terms and concepts fundamental to this 

thesis. Following this foundational introduction is an in-depth literature review, mining 

process exploration and the nuance of predictive process monitoring. Subsequently, myriad 

applications of predictive process monitoring, inherent challenges and contextual issues are 

discussed. The discourse will further extend to the methodologies of applying predictive 

process monitoring and the diverse approaches involved. The exploration will also encompass 

'black box' models, detailing strategies for deriving insights for enhanced explainability. The 

chapter will be concluded with a discussion on pertinent legislations and regulations, 

underscoring the imperative nature of these approaches in the contemporary research 

landscape. 

 

2.2 Definition of terms  

Event Represents a recorded occurrence or action within the activity. Events provide a 

detailed log of what transpired during the execution of a process, capturing each significant 

interaction or change. 

 

An Event log is a dataset that records sequences of events, each associated with a particular 

case, occurring in a process over time. It serves as the foundational input for process mining 

techniques (Van der Aalst, 2016). 

 

Process: This element represents a specific business process or workflow within the log. It can 

contain multiple instances of that process, detailing its various executions over time. 
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Process map graphically represents the flow of activities within a process, illustrating the 

sequence of events, the roles or groups involved, and the decision points. 

In process mining, a case represents an instance of the process that traverses through a 

sequence of activities from start to finish. Each case is uniquely identified and contains a series 

of events recorded in the event log. 

 

An Instance, synonymous with a case in process mining terminology, represents a singular 

execution of a process, comprising a sequence of events recorded in the event log (Van der 

Aalst, 2016). 

 

Activity, describes a particular task or action within the process instance. Activities are the 

building blocks of a process, each serving a specific function or purpose. 

 

Process Mining (PM) is a technique used for analysing and optimizing processes based on the 

data generated by software systems.(Van der Aalst, 2016) 

 

Process models in software are defined as simplified representations of a software process 

with each model depicting a process from a particular perspective. A process can also be 

defined as a series of steps and decisions involved in the way a work is completed 

 

Predictive Process Monitoring (PPM) refers to the utilization of process mining techniques 

alongside machine learning to predict the outcomes of ongoing instances of a process 

(Marquez-Chamorro et al., 2018b). 

 

Interpretability in machine learning and artificial intelligence refers to the extent to which a 

human can understand and trust the outputs of models and the processes by which they 

arrive at decisions.(Doshi-Velez & Kim, 2017) 

 

Explainability refers to the degree to which a machine learning model's operations and 

results can be articulated in understandable human terms.(Adadi & Berrada, 2018) 
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Encoding is the process of converting data from one form to another. In the context of 

machine learning, it often refers to the transformation of categorical data into a numerical 

format that can be utilized by algorithms(Zhao et al., 2015). 

 

Embedding refers to the representation of data in a lower-dimensional space, often used to 

capture semantic relationships in data like words or items. In machine learning, embeddings 

are used to reduce the dimensionality of input data to make the learning process more 

efficient (Mikolov et al., 2013). 

 

2.3 A Review on Process mining  

To discuss the application of Process Mining, it is logical to explicitly define process mining 

and introduce the different stages involved in it. Process mining (PM) is a set of techniques 

that assist the analysis of business processes based on event logs and is the link between 

model-based process analysis and data-oriented analytical approaches (Qafari & Aalst, 2019). 

It is a developing field of study that offers methods for comprehending and enhancing 

processes in various application domains (dos Santos Garcia, et al., 2019). One of the 

objectives of PM is to extract non-trivial process-related data from event data logged by the 

available information systems (Sato, de Freitas, Barddal, & Scalabrin, 2022). Process 

discovery, which looks for a descriptive model of the underlying process in event logs, 

conformance checking, which monitors and examines whether the actual execution of the 

process conforms to the corresponding designed (or discovered) reference process model, 

and process enhancement, which enhances and enriches a process model based on the 

related event data, have all been proven to be very successful applications of PM techniques 

(Macak, Daubner, Sani, & Buhnova, 2022).  
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Figure 2.1 visualizes the intricate interplay of stages involved in process mining, a systematic 

approach to analyse and refine business processes. Starting with 'Raw Data', the foundational 

layer of information, it is transformed and interpreted through various 'Models analysers' to 

create 'Process models'. These models represent the underlying processes in a structured 

manner. Simultaneously, modern 'Software systems' generate 'Event Logs' which are records 

of executed tasks or activities, an example of this is depicted in Figure 2. 2 

 

 

 

 

 

 

 

 

 

Figure 2-1 stages of process mining (W.van der Aalst et al 2012) 

<WorkflowLog> 
<process> 

<processInstance> 
<DataInstance> 

<Activity></Activity> 
<event></event> 
<timestamp></timestamp> 
<DataAttribute ></DataAttribute> 

</DataInstance> 
</processInstance> 

</process> 
</WorkflowLog> 

Figure 2-2 sample of an event log 
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In the realm of process mining, three primary analyses are performed on these logs: 

 

• Discovery: The discovery phase is central to process mining, focused on uncovering 

the underlying process model from an event log without any prior information about 

the process. In this stage, algorithms and techniques are employed to generate a 

model that accurately describes the patterns and sequences observed in the log data. 

One of the most well-known techniques used in this phase is the "α-algorithm" 

introduced by (Van Der Aalst et al., 2004). This algorithm identifies causal relationships 

between activities and translates them into a Petri net—a graphical representation of 

the discovered process. However, numerous other techniques and algorithms have 

been proposed, each with its advantages and complexities, to address the challenges 

posed by noisy or incomplete log data (Weijters & Ribeiro, 2011). 

 

• Conformance: The conformance phase is about comparing and contrasting the 

discovered or an existing process model with the actual log data to identify any 

discrepancies. This helps in understanding whether the processes occurring in the real 

world align with the established model or if there are deviations. Misalignments can 

arise due to errors, fraud, or unanticipated behaviour. Conformance checking provides 

insights into these deviations, allowing organizations to pinpoint bottlenecks, policy 

violations, or inefficiencies (Rozinat & van der Aalst, 2008). For instance, the "token-

based replay" is a technique often employed to evaluate how well a model fits with 

the log by simulating the process and comparing actual sequences with those in the 

model (Verbeek et al., 2011). 

 

• Enhancement: Building upon the insights gained from the discovery and conformance 

phases, the enhancement phase aims to improve the existing process model. This 

could involve refining the model to better represent the real-world processes, 

annotating the model with performance data, or recommending modifications for 

optimization. The enhancement phase is not just about model accuracy, but also 

about deriving actionable insights that can lead to process improvements. Techniques 

employed in this phase can help in predicting bottlenecks, analysing resource 

allocations, or recommending process redesigns. For example, (Van der Aalst et al., 
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2012) introduced an approach where performance metrics are integrated with the 

process models, allowing for a more detailed analysis of process flow and resource 

engagements. 

 

Figure 2.1 also depicts how software systems, through their mechanisms, can support and 

control the overall mining process, ensuring alignment between the modelled processes and 

real-life executions. The flow and relationships between these components demonstrate the 

cyclical nature of process mining, emphasizing continuous improvement and evolution based 

on insights derived from real-world data. Now that the logic and processes behind process 

mining has been explained, its applications shall then be thoroughly examined. 

 

In the field of business management, PM has moved away from being seen as merely a tool 

for investigating process performance issues to a comprehensive platform for monitoring and 

augmenting operational process execution. According to the Harvard business review by lars 

Reinkemeyer and Tom Davenport, PM is instrumental in unveiling bottlenecks and other 

areas for improvement in business processes, thereby fostering a culture of continuous 

improvement (Reinkemeyer, 2020). Process mining vendors have claimed a reduction in 

automation implementation time by 50% through process discovery, showcasing PM's 

potential in accelerating digital transformation initiatives within organizations. The 

application of data science for discovering, validating, and enhancing workflows underscores 

PM's profound impact in driving operational excellence (Dumas et al., 2018; Van der Aalst, 

2013). 

 

In the finance sector, the emergence of process mining has heralded a new era of data-driven 

operational insight and efficiency enhancement. The technique is notably applied in financial 

audits, where it is conceptually embedded to augment the auditing profession with the 

prowess of data science, thus bridging a critical gap between traditional auditing methods 

and contemporary data analytics approaches (Werner et al., 2021). Beyond auditing, process 

mining unveils a realm of possibilities in optimizing financial operations by employing 

advanced technologies like computer vision and AI for automated process discovery, path 

mapping, and bottleneck identification, thereby fostering a culture of continuous 

improvement and operational excellence. The ability of process mining to provide a real-time, 



18 
 

data-centric view of finance processes is particularly instrumental for finance leaders, 

enabling them to discern improvement opportunities, visualize finance process flows, and 

objectively pinpoint process inefficiencies, which is paramount for propelling finance process 

efficiency to new heights (Reinkemeyer, 2020; Werner, 2017). Moreover, the versatility of 

process mining is exhibited in its applicability to a spectrum of financial processes including 

account payables, receivables, and procurement, where it plays a pivotal role in enhancing 

process efficiency by unearthing and addressing bottlenecks4. In the ambit of financial audits, 

process mining algorithms demonstrate their indispensability by scrutinizing source event 

logs to craft reliable process models, thereby significantly elevating the efficacy and efficiency 

of audit processes (Werner, 2017). Through these diverse applications, process mining 

delineates a path towards a more analytically driven and efficient financial ecosystem, 

underpinning the transformative potential of data analytics in the finance sector. 

 

The PM application can also be observed in the manufacturing and logistics sector; it serves 

as a linchpin for unravelling the as-is processes by analysing event logs from IT systems, 

consequently fuelling the digital transformation towards a data-driven shop floor. The 

ramifications of PM adoption are profound, encapsulating higher throughput, improved 

machine utilization, and a notable reduction in non-conformance costs. Moreover, PM's 

capability to identify and ameliorate production bottlenecks and unnecessary process steps 

holds a significant promise for trimming operational inefficiencies and continuously refining 

production processes based on data-derived insights (Gunnarsson et al., 2019; Intayoad & 

Becker, 2018). A specific study delineated the utility of PM in improving productivity in make-

to-stock manufacturing, showcasing the potential of PM in enhancing the manufacturing 

domain's operational efficiency (Lorenz et al., 2021).  

 

This ability of PM not only optimizes the overall supply chain performance but also reduces 

operational costs, thereby significantly contributing to the operational excellence in the 

manufacturing and logistics sectors. In the Field of Information technology, PM applications 

have been applied in various capacity from improving cybersecurity to software reliability. 

Studies have illustrated the application of PM techniques in the software development 

process, where it improved the process evaluation and auditing (Keith & Vega, 2017). A 

different study showed the application of PM in auditing and tackling cybersecurity and 
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software reliability issues, thus showcasing the PM potential in addressing domain specific 

challenges within the IT sector (Zerbino et al., 2018).  

 

Finally, In the healthcare sector, the application of Process Mining (PM) emerges as a 

quintessential tool for navigating the complex and dynamic nature of healthcare processes. 

The inherent characteristics of healthcare processes such as data privacy concerns, process 

variability, and the presence of multi-disciplinary teams pose unique challenges that 

necessitate a robust analytical framework like PM (Munoz-Gama et al., 2022b). A systematic 

review highlights the broad spectrum of PM applications within healthcare settings, shedding 

light on how PM can be employed to delve into the intricacies of healthcare processes, thus 

providing a structured pathway towards operational excellence and quality improvement 

(Dallagassa et al., 2021; Rojas et al., 2016a). 

 

The evolving nature of PM applications in healthcare is captured through recent scholarly 

works, showcasing the advancements in PM techniques tailored to address the distinctive 

challenges faced by the healthcare sector (De Roock & Martin, 2022). The societal value of 

PM is underscored through its application in healthcare problems, which often serve as the 

impetus for demonstrating new PM techniques aimed at improving healthcare processes and 

patient outcomes (Martin et al., 2022). 

 

Moreover, PM finds substantial application in modelling healthcare processes, thereby 

elucidating a clear representation of healthcare workflows. These models serve as the 

backbone for devising quality improvement strategies, optimizing resource allocation, and 

ensuring adherence to clinical guidelines, which are pivotal for enhancing patient care and 

overall healthcare delivery. The transition towards a more data-driven healthcare framework 

is facilitated by PM, enabling healthcare organizations to harness the power of data analytics 

for continuous improvement in process efficiency and regulatory compliance. 

Furthermore, the role of PM in fostering a culture of transparency and accountability is 

paramount, especially in ensuring regulatory compliance. PM provides a transparent view of 

healthcare processes, facilitating compliance checks, and audits, thus aligning healthcare 

operations with regulatory standards. Additionally, the educational value of PM is significant, 

aiding in the training of healthcare professionals by providing a clear understanding of 
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healthcare processes and the implications of different practice patterns, thereby enriching 

the educational landscape in healthcare. 

 

The cross-disciplinary application of PM in healthcare epitomizes the transformative potential 

of data analytics in modern healthcare operations. By navigating the complex operational 

landscapes, PM underscores its versatility and indispensability in fostering a data-driven 

culture, thereby marking a significant stride towards achieving the overarching goal of 

enhanced healthcare delivery and improved patient outcomes. PM has been applied in 

various ways as described before and further exploration of specific application in order to 

get a full grasp of the landscape was equally examined, but the introduction of some process 

discovery algorithms and tools applied in process mining are also necessary for discussion. 

 

Process mining (PM) tools and methods have been utilized for more than a decade (Van Der 

Aalst, Process mining: Overview and opportunities, 2012; Emamjome, Andrews, & Hofstede, 

2019), motivated by the necessity to continually enhance the effectiveness of business 

procedures as well as the creation of massive volumes of event data for ongoing processes. It 

seeks to establish a link between the system design that defines how to conduct a business 

process and the event log that records data on the actual deployment of process occurrences 

by a Process-Aware Information System (PAIS) (Aalst, et al., 2011). It provides insights into 

real process behaviour by analysing event logs and process models (Ghasemi & Amyot, 2020). 

Although process mining has emerged as a critical study subject in the recent decade, it still 

faces several problems acquired from its predecessor research areas. Investigation of concept 

drift is one of the key issues (Losing, Hammer, & Wersing, 2018).  Data mining and business 

process modelling are connected by PM. From event data kept in information systems, 

process-related knowledge needs to be extracted (van der Aalst W. M., 2011). 

 

2.3.1 Process Mining Algorithms and Tools  

⁸Over the years, several algorithms have been developed to decode the intricacies of event 

data, and alongside them a slew of tools have been designed to facilitate this exploration.  
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The Alpha algorithm, one of the pioneers in the domain, is specifically designed to reconstruct 

processes in the form of Petri nets by analysing causal relationships among activities ( Van 

Der Aalst et al., 2004). The strength of the Alpha algorithm lies in its deterministic approach, 

ensuring consistent Petri net outputs for identical event logs. However, it is not without its 

limitations. The algorithm often falters when confronted with complex loops and parallel 

constructs without explicit start or end points (Medeiros et al., 2004). 

 

Recognizing the limitations of the Alpha algorithm, the Heuristic Miner was developed as an 

alternative (Van Der Aalst et al., 2004; Weijters & Ribeiro, 2011). Unlike its predecessor, the 

Heuristic Miner prioritizes flexibility. It establishes heuristic nets by mapping dependencies 

between activities, with a central focus on the frequency of relations as opposed to strict 

causality. This provides it with an edge in handling noise and infrequent behaviours in logs. 

Nonetheless, a trade-off exists, as the algorithm can sometimes oversimplify intricate 

processes. 

 

In cases with extensive, diverse, and noisy logs, the Fuzzy Miner offers an alternative 

approach (Günther & Van Der Aalst, 2007). It employs adaptive techniques to visualize 

complex processes, focusing on both the frequency and significance of activities and paths. 

Through aggregation and abstraction of infrequent activities, the Fuzzy Miner delivers a high-

level view of processes, although some granularity might be sacrificed in the process. 

Complementing these algorithms are tools that enable practitioners to engage in process 

mining activities. Disco, a proprietary tool developed by Fluxicon, stands out due to its user-

centric design. It supports a myriad of process mining tasks, from discovery to conformance 

checking, and offers advanced features like animations and performance analysis (Günther & 

Rozinat, 2012). Its ability to integrate diverse data sources makes it an invaluable asset for 

analysts. 

 

Conversely, ProM provides an open-source alternative (Verbeek et al., 2011). Its modular 

framework is extensible, accommodating a wide array of plugins. Researchers and 

practitioners alike value ProM for its versatility, as it supports not only process discovery but 

also other facets like conformance checking and process enhancement. Now that the 

algorithms and tools have been introduced, studies in process mining can then be explored. 
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2.3.2 Process mining studies 

Firstly, the techniques and algorithms need to be examined. Process mining (PM) techniques 

have evolved significantly over the past few decades, with researchers delving deep into 

various aspects of this domain. (Lassen & van Dongen, 2008) focused on the Petri net search 

technique for process mining, aiming to derive insights from log-captured activities. Their 

work provided a comprehensive overview of multiple petri net-based discovery techniques 

from both process mining and region concepts, further categorizing them into five algorithm 

types, each with unique assumptions and challenges. 

However, it is worth noting that research in this domain is still in its nascent stage and needs 

further organization. For instance, feedback on the aforementioned work highlighted the 

need for a more structured approach, suggesting the inclusion of subsections to explain 

different PM methods, thereby fostering a clearer understanding. 

 

Weber et al., (2013) delved into the evaluation of PM algorithms from a machine learning 

perspective. Their probabilistic framework examined the ground truth distribution across 

activity traces using selected sample groups. Another significant contribution came from 

(Dakic & Stefanovic, 2018) emphasizing the importance of business information extraction. 

Their study centred on an extensive review of journal articles over a ten-year period, 

discussing the application of business process mining in companies. 

On a more niche front, (Mishra et al., 2018) explored the application of PM techniques in 

intrusion detection systems (IDS). Their findings highlighted the advantages of using PM in 

IDS, paving the way for more accurate threat detection. 

 

Secondly, this research study would look at the application towards, improving the knowledge 

acquired from process maps and research into the fairness and bias in application (Mishra et 

al., 2018) embarked on an exhaustive exploration of conformance verification techniques, 

underscoring the necessity for refined methods capable of pinpointing both alignments and 

deviations between a process model and its matching event log. Their research illuminates 

the intricate interplay between event data and process models, underlining the potential for 

enhanced insights. 
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Elkhawaga et al., (2020) further advanced the conversation, focusing on the dynamics of 

concept drift in PM. Their pioneering work on the Concept Drift Analysis in PM framework 

elucidated the evolving nature of processes. This research emphasized that to truly harness 

the power of process mining, there's a pressing need for proactive prediction mechanisms 

that can anticipate changes, offering organizations the foresight to adapt. 

 

Fairness, Acceptance, and the Drive towards Predictive Insights in Process Mining Process 

mining's potential is not solely confined to tracing and modelling processes; it extends to 

ensuring fairness and mitigating biases. (Qafari & van der Aalst, 2019) championed this very 

perspective with their introduction of a fairness-conscious approach. By shedding light on 

latent biases in traditional data extraction methodologies, they drew attention to the broader 

implications of PM and the necessity for insights that both reflect and respect diverse 

contexts. 

 

In the work, carried out by (Grisold et al., 2021), provides a holistic challenge that pepper the 

path of process managers. From acceptance, sensemaking and usability of the applicability of 

process mining, their research also discussed the need to make sense of process related 

information, generate insights from the processes, their research echoes the sentiment that 

for PM to be truly transformative, it needs to be insightful, predictive, and above all, 

embraced by its users. 

 

The research conducted by (Grisold et al., n.d.) also talks about the need for researchers to 

focus on capturing factors that contribute to the process, based on the paper, there is a need 

for further research into understanding the process that unfolds, the contributing factors and 

contextual factors.  

 

The research paper by (vom Brocke et al., 2021), discussed the importance of gaining insights 

from processes, discuses the need for research to focus on understanding the discovery, 

explaining the outcomes, the research provided a view of process mining more towards 

process science. These views and shows the need for research into generating insights from 

processes.  
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The application so far has highlighted the range in opportunity for the further application of 

process mining, and the need for more context and insights, the healthcare sector has also 

received its fair share of research applications which we would explore further below.  

 

(Van Dongen et al., 2009) highlighted the potential of Petri net search techniques for process 

mining, suggesting its prospects in building models to provide insights into log-captured 

activities. The work provides an overview of petri-net based discovery algorithm from both 

the area of process mining and theory of region. Their emphasis on the inadequacies of 

various techniques underscores the ongoing need for refinement in this domain. 

 

However, what is notably relevant to healthcare is the application of PM for tangible 

improvements. (Gomes et al., 2021) underscored this by emphasizing the efficacy of Inductive 

Miner and Heuristic Miner algorithms in process mining, particularly within the context of 

healthcare processes and data. The study suggests that while there are variations in execution 

times across algorithms, some, like the Petri Net model, offer greater analytical depth. 

 

Furthermore, two studies distinctly focused on the role of PM in healthcare. (Rojas et al., 

2016b) conducted action research that mapped the application of PM across 22 healthcare 

categories. This study provides a comprehensive overview of how process mining can be 

applied to diverse healthcare segments. Concurrently, (Kurniati et al., 2016) delved into the 

application of PM in cancer treatments, signifying its role in addressing specific ailments. 

 

Peleg, (2013) adds another layer to this discussion by investigating medical practical 

recommendations and highlighting process mining as a technique for principles management 

and compliance assessment. This research suggests that not only can PM be used for 

operational and analytical purposes, but also for ensuring adherence to best practices and 

guidelines in the healthcare domain. 

 

However, while the potential benefits of PM in healthcare are evident, it is crucial to 

acknowledge the existing challenges. As highlighted by (Mishra et al., 2018), there is a 

significant gap between data collection methodologies and template operational processes. 

The inherent complexities of healthcare operations often mean that a one-size-fits-all 
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approach is infeasible. There is a need for further insight into the processes, which the 

research aims to tackle in not just discovering the process but taking into account the various 

features contained in the data and making prediction on the next activities to occur and 

understanding what are the contributing factors that led to these predictions. Then, the 

predictive process mining, methods, and current challenges would be discussed. 

2.4 Predictive Process Mining: Current Methods and Challenges 

Predictive process mining represents a distinct branch of process mining that aims to discern 

and forecast the future trajectory of cases. It encompasses the prediction of various aspects, 

including the next outcome for a new case, the required completion time, and the 

forthcoming sequence of activities. The ability to make accurate predictions in these areas is 

currently a major driving force within the realm of predictive process mining, also referred to 

as predictive process monitoring, as these predictive insights hold immense value for 

organizations globally. 

 

Historically, process mining has predominantly focused on visualizing processes, validating 

process adherence to discovered models, and identifying avenues for process enhancement. 

However, the field has progressively evolved to yield deeper insights for stakeholders. The 

growing demand for process mining, with influential industry players like IBM, AWS, and 

others venturing into this domain, underscores the promising growth potential and research 

opportunities in this field. Several tools have been developed while existing ones are being 

adapted and refined to cater specifically to predictive process mining. Examples of such tools 

include MyINvenio, Apromore, UiPath, IBM process simulation, and numerous others. 

 

The primary objective of predictive process mining is to generate novel insights by leveraging 

historical data from prior process executions. These insights serve to provide valuable 

foresight into future events and predictions. The process typically involves a learning and 

training phase, followed by the prediction phase, wherein activities are forecasted based on 

the acquired knowledge. 
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The subsequent sections will delve deeply into the current methodologies employed in 

predictive process mining, elucidate the process through an illustrative example, and 

delineate the diverse challenges encountered in this field. 

2.4.1 Overview of current methods and Approaches 

Machine learning (ML), a prominent branch of artificial intelligence, has experienced 

significant growth and attention due to the increasing need for sophisticated analysis of 

complex data structures. As our capabilities in big data, cloud computing, and high-

performance computing have expanded, so too have the methods and approaches in ML to 

harness these advancements (Jordan & Mitchell, 2015). 

 

At a high level, ML algorithms can be categorized into several categories, primarily: supervised 

learning, unsupervised learning, semi-supervised learning, and reinforcement learning. These 

classifications essentially capture how algorithms learn patterns from data, depending on the 

type and amount of supervision they receive during training. 

 

▪ Supervised Learning: This is the most common technique where an algorithm learns 

from labelled training data and makes predictions based on that learned knowledge. 

It requires a clear-cut framework of input-output pairs, essentially learning to map 

inputs to the correct outputs. 

 

▪ Unsupervised Learning: Here, the algorithm is trained on unlabelled data and aims to 

uncover hidden patterns and structures from the data itself. Common applications 

include clustering and dimensionality reduction. 

 

▪ Semi-supervised Learning: As the name suggests, this method falls between 

supervised and unsupervised learning. It uses both labelled and unlabelled data for 

training, typically a small amount of labelled data with a larger amount of unlabelled 

data. The idea is to leverage the large amount of unlabelled data to aid and improve 

the learning accuracy with the small amount of labelled data. 
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▪ Reinforcement Learning (RL): This is a type of learning where an agent learns to 

behave in an environment by performing actions and receiving rewards or penalties. 

It's more about learning optimal sequences of actions in interactive environments. 

 

Having established these foundational categories, the subsequent sections will delve deeper 

into supervised learning algorithms, given their prevalent use and the specific context of this 

work. By diving into these methods in detail, we can gain a comprehensive understanding of 

their strengths, weaknesses, and suitability for various tasks. 

2.4.2 Algorithms and Techniques in Supervised Learning 

Given the framework of supervised learning, several algorithms and methodologies have 

been developed to capitalise on the clear-cut input-output pairs. These algorithms vary in 

their approaches, strengths, and applications. We would describe these approaches below 

starting with the tree-based algorithms then deep neural architectures. 

 

XGBOOST  

XGBoost, abbreviated for "eXtreme Gradient Boosting," is a pioneering ensemble algorithm 

rooted in decision-tree-based models and enhanced by a gradient boosting framework. Since 

its introduction by Chen & Guestrin in 2016, XGBoost has rapidly ascended in popularity, 

largely credited to its exceptional computational efficiency and standout model performance. 

Its prominence is further evidenced by its widespread adoption in machine learning 

competitions and real-world applications. Among its strengths, XGBoost is adept at handling 

sparse data, and it provides users with a multitude of hyperparameters for customization. 

 

Central to XGBoost is the principle of 'boosting,' a technique where weaker learners, typically 

shallow trees, amalgamate to constitute a more potent learner. This algorithm meticulously 

constructs the model stage by stage, broadening its utility by facilitating the optimization of 

a diverse range of differentiable loss functions. XGBoost also incorporates regularization, a 

strategy to counteract the frequent overfitting challenge encountered in tree-based models, 

as outlined by (T. Chen & Guestrin, 2016). 
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RANDOM FOREST  

 

Initiated by Breiman in 2001, Random Forest is an ensemble learning methodology. Its 

mechanism revolves around crafting a plethora of decision trees during the training phase. 

The end result, when classifying, is the mode of the classes derived from individual trees; for 

regression tasks, it's the mean prediction. Distinctively, Random Forest epitomizes the 

ensemble approach by harnessing the collective strength of numerous decision trees, 

sidestepping reliance on singular decision trees. 

 

An inherent strength of Random Forest is its proficiency in processing vast datasets with high 

dimensionality. It's capable of navigating through thousands of input variables, pinpointing 

the ones with utmost significance. Consequently, it's esteemed as a potent tool for 

dimensionality reduction. Ensuring accuracy, Random Forest minimizes the risk of overfitting 

by offering an objective approximation of the generalization error, as highlighted by (Liaw & 

Wiener, 2002). 

 

An added advantage of Random Forest is its adaptability to unbalanced and incomplete 

datasets. A particularly commendable attribute is its ability to evaluate feature importance in 

the prediction process, a key reason why it has become the preferred option for feature 

selection across a diverse range of application areas, as evidenced by (Díaz-Uriarte & Alvarez 

de Andrés, 2006). 

 

Deep Neural Architectures 

 

Deep Neural Architectures, as a subset of supervised learning techniques, have significantly 

influenced the domain of machine learning and artificial intelligence. These architectures can 

learn hierarchical representations from raw data, proving indispensable for complex tasks 

such as image recognition, natural language processing, and speech recognition. This segment 

will focus on specific deep neural architectures, including Recurrent Neural Networks (RNNs), 

Long Short-Term Memory Networks (LSTMs), and Transformers. 
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Recurrent Neural networks (RNN) 

 

Recurrent Neural Networks (RNNs) are a specialized subset of artificial neural networks 

designed explicitly for processing and predicting sequential data. Originating in the 1980s, 

one of the foundational architectures is the Elman network or the simple RNN (Elman, 1990). 

 

Figure 2-.2-3 Traditional Recurrent Neural network 

At its core, RNNs have a unique architecture featuring a loop that enables them to maintain 

a 'memory' or 'state' from one step in a sequence to the next. This design allows RNNs to 

capture temporal patterns and dependencies in sequential data. Figure 2.3 is a visual 

representation of this architecture, depicting a single recurrent neuron and its unfolding over 

sequential time steps. This unfolding showcases the recurrent nature of RNNs, where the 

output from a previous step is used as an input to the current step, ensuring the continuity of 

information. Below is the Equation that depicts the RNN.  

 

𝐻𝑡 =  𝜎(𝑊ℎℎℎ𝑡−1 + 𝑊𝑥ℎ𝑥𝑡−1 +  𝑏ℎ)   

Equation 2-1 RNN- Step 1 

𝑦𝑡 =  𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦   

Equation 2-2 RNN- Step 2 

 

Equation 2.1 above, 𝐻𝑡 is the hidden state at time t, 𝑥𝑡 is the input, 𝑊ℎℎ,  𝑊𝑥ℎ, and𝑊ℎ𝑦 are 

weight matrices, 𝑏ℎ and𝑏𝑦  are the biases, and 𝜎 is an activation function, often the hyperbolic 

tangent (Mikolov et al., 2010).  
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Owing to their ability to understand sequence dependencies, RNNs have been used in: 

Language modelling and generation, as seen in the work of (Mikolov et al., 2010), Voice 

recognition, highlighted (Graves, 2013), the composition of music, explored and applied in 

the analysis of sentiments, as demonstrated by (Tang et al., 2015). 

 

Though RNNs have the theoretical capacity to capture long-term dependencies, they are 

prone to issues like vanishing and exploding gradients during backpropagation through time. 

This has led to the development of advanced RNN models, notably Long Short-Term Memory 

(LSTM) networks. 

 

LONG SHORT-TERM MEMORY (LSTM) 

 

Long Short-Term Memory Networks, commonly referred to as LSTMs, are a seminal 

advancement in the domain of Recurrent Neural Networks (RNNs). They were conceived by 

Hochreiter & Schmidhuber in 1997 as a countermeasure to the vanishing and exploding 

gradient problems inherent in conventional RNNs. Since their introduction, LSTMs have 

become pivotal in numerous sequence modelling endeavours due to their exceptional 

prowess in retaining long-range temporal dependencies. Figure 2.4 provides a schematic 

representation of the LSTM block, elucidating its intricate architecture. This diagram distinctly 

demarcates the roles of various gates and their interconnectedness. 

 

 
 

Figure 2-4. LSTM Architecture retrieved from  (Van Houdt et al., 2020) 
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In essence, the LSTM unit comprises three primary gates, each responsible for regulating the 

flow of information: 

 

▪ Forget Gate (f): It decides the amount of past information to retain or discard. 

Mathematically, it uses the sigmoid activation function. 

▪ Input Gate (i): Determines the volume of new information to store in the memory cell. 

Like the forget gate, it employs the sigmoid activation. 

▪ Output Gate (o): Dictates how much of the internal state is revealed to the external 

network and subsequent LSTM blocks. Again, the sigmoid function is pivotal here. 

 

The state of the LSTM is upheld by the cell state (often denoted as c), which undergoes 

modifications guided by the gates. The peephole connections, illustrated by the dotted lines 

in the diagram, signify connections from the cell state to the gates, allowing the gates to 

"peep" into the cell state. This LSTM framework, with its refined architecture and gates, 

serves as a cornerstone in many modern deep learning architectures for sequence modelling. 

Its enduring efficacy in numerous practical applications underscores its profound importance 

in the annals of machine learning. 

 

𝑖𝑡 =  𝜎(𝑊𝑖𝑖𝑥𝑡 + 𝑏𝑖𝑖 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑏ℎ𝑖   

Equation 2-3 LSTM input gate 

𝑓𝑡 =  𝜎(𝑊𝑖𝑓𝑥𝑡 + 𝑏𝑖𝑓 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑏ℎ𝑓  

Equation 2-4 LSTM forget gate 

𝑔𝑡 =  𝑡𝑎𝑛ℎ(𝑊𝑖𝑔𝑥𝑡 + 𝑏𝑖𝑔 + 𝑊ℎ𝑔ℎ𝑡−1 + 𝑏ℎ𝑔 

Equation 2-5 LSTM cell gate 

𝑜𝑡 =  𝜎(𝑊𝑖𝑜𝑥𝑡 +  𝑏𝑖𝑜 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑏ℎ𝑜  

Equation 2-6 LSTM output gate 

𝑐𝑡 =  ¦𝑡  ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑔𝑡  

 

ℎ𝑡 =  𝑜𝑡  ⊙ tanh ( 𝑐𝑡) 
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Here, 𝑖𝑡, 𝑓𝑡, 𝑔𝑡 , and𝑜𝑡are the input, forget, cell, and output gates, respectively. W and b 

represent the weight matrices and biases, and σ is the sigmoid activation function (Van Houdt 

et al., 2020) 

 

The evolution of the Long Short-Term Memory (LSTM) network has been marked by 

continuous refinements and variations to augment its performance. A significant milestone 

in this journey is the peephole LSTM, a model proposed by (Gers et al., 2002). In this enhanced 

architecture, gate layers are given the facility to observe the memory cell state, creating a 

richer interactivity between the gates and the cell state. 

 

While structural modifications like the peephole LSTM targeted functional enhancements, 

there was an equally pressing need to address model training challenges. This led to the 

exploration and adoption of specialized regularization techniques for LSTMs. Dropout, a 

technique introduced by (Srivastava et al., 2014), emerged as a robust solution against 

overfitting. In a parallel development, layer normalization, a method brought to light by (Ba 

et al., 2016), was recognized for its potential in ensuring stable LSTM training dynamics. 

 

The culmination of these advancements is best evidenced by the diverse and successful 

applications of LSTMs across different domains. In the field of machine translation, the 

contributions of researchers like (Graves & Schmidhuber, 2005) underscore the potential of 

LSTMs. Similarly, their significance in speech recognition has been documented in pivotal 

works by (Graves & Schmidhuber, 2005) and (Sak et al., 2014). The versatility of LSTMs is 

further highlighted in creative domains such as music generation, as detailed by(Oore et al., 

2018), and practical applications including sentiment analysis and image captioning, as 

demonstrated by research from (Maas et al., 2011; Vinyals et al., 2014). 

 

Such diverse successes have positioned LSTMs as a primary choice for sequence modelling 

tasks. Their ability to handle long-range dependencies is unparalleled, and the continuous 

emergence of optimizations has only widened their applicability. Yet, no model is without its 

set of challenges, and LSTMs are no exception. One of the fundamental challenges stems from 

their sequential nature. This inherent trait restricts parallelization across time steps, often 

elongating training times for extensive datasets. Moreover, while LSTMs were innovatively 
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designed to capture long-range dependencies, there are instances where they falter, 

especially when sequence elements are considerably distant. This challenge is further 

exacerbated by the model's reliance on fixed-length context vectors, which can occasionally 

result in information loss for extended sequences. Lastly, the architectural depth and 

recurrence mechanism of LSTMs render them both memory and computation intensive. 

 

These limitations, while highlighting the challenges of LSTMs, also set the stage for the 

evolution of neural architectures. They catalysed the development of newer models, with the 

Transformer model, equipped with attention mechanisms, emerging as a promising successor 

to address the inadequacies of LSTMs.  

 

The table below is a close comparison of traditional techniques for handling categorical 

features 

Traditional 

Techniques 

 Model Dataset  Limitation  

 XGBOOST   Machine Learning 

(Supervised) 

Univariate and 

Multivariate 

Dataset 

It cannot handle 

complex problems 

where predictive 

accuracy is paramount. 

 RANDOM 

FOREST         

Machine Learning 

(Supervised) 

Univariate and 

Multivariate 

Dataset 

Time consuming in 

sequential processing 

thereby has a slow 

computational speed. 

 RNN           Deep Learning Short sequence 

Dataset 

It has difficulty 

processing long 

sequences due to the 

vanishing gradient 

problem. 

It cannot capture and 

remember long term 

dependencies in data. 
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Table 2-1 Traditional Techniques for handling categorical features 

 

The limitations highlighted from the traditional techniques above; even with the LSTM as 

better technique among the traditional models, necessitates the selection of transformer as 

one of the modern models with its highly parallelizable ability and capability leading to faster 

training on suitable hardware. Then, transformer model as emergent technique needs to be 

thoroughly examined for its suitability for this research work. 

 

TRANSFORMER 

 

The Transformer model, introduced by (Vaswani et al., 2017), marks a significant departure 

from previous methods of handling sequential data. Discarding the recurrent layers utilized 

by models like LSTMs, the Transformer architecture embraces a self-attention mechanism 

that weighs input elements differently based on their context. Figure 2-5 below provides a 

comprehensive overview of the transformer inner workings.  

 

Figure 2-5 Transformer Architecture (Vaswani et al., 2017) 

LSTM Deep Learning Long sequence 

Dataset 

Data complexity often 

led to longer training 

times 
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▪ Inputs are transformed into Input Embeddings, with Positional Encoding added to 

retain the sequence's order information. 

▪ These embeddings then pass through several layers (denoted as "N×") comprising two 

primary components: the Multi-Head Attention mechanism and the Feed Forward 

neural network. 

▪ The Multi-Head Attention allows the model to focus on different sections of the input 

sequence simultaneously, catering to various aspects of the data. 

▪ Add & Norm (Addition and Normalization) layers follow both the attention 

mechanism and the feed-forward network, ensuring stable and smooth activations 

throughout the network. 

▪ The final layer outputs are transformed via a Linear layer, followed by a SoftMax layer 

that provides the output probabilities for sequence elements. 

 

The self-attention mechanism, the hallmark of Transformers, allows the model to concentrate 

on different parts of the input sequence regardless of their order. This design is a marked 

advantage when juxtaposed with architectures like LSTMs, inherently bound by sequence 

order. By generating variable-length context vectors for each sequence element, the self-

attention mechanism enables detailed and enriched representations, significantly enhancing 

data comprehension. 

 

One of the Transformer's distinctive features is its parallel processing. Unlike LSTMs, which 

process data step by step, Transformers can process an entire sequence simultaneously, 

leading to drastic reductions in training times and efficient computation with large datasets. 

 

Transformers excel in scalability. They maintain efficiency even when tasked with extensive 

sequences, exemplified by models like GPT-3 (Brown et al., 2020) Their versatility spans 

beyond natural language processing into domains like computer vision, testament to their 

adaptability. 

 

With a solid grasp of the Transformer architecture's principles and strengths, it's pertinent to 

explore its adaptability. The subsequent section delves into 'Tab Transformers,' adapting the 
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Transformer's capabilities to handle tabular data, a domain distinct from traditional 

sequences. 

 

TAB TRANSFORMER  

 

While the Transformer architecture has primarily made its mark in the realm of natural 

language processing, its adaptability has been tested across multiple domains, one such being 

the domain of tabular data. Traditional methods of handling tabular data, like Gradient 

Boosted Trees and standard Neural Networks, have shown proficiency, the gradient-boosted 

decision trees (GBDT) and neural network approaches have great potential, in particular for 

tabular data but deep neural networks are not suitable for all types of tabular data, and GBDT 

models which often outperform deep models on tabular data has its own limitation 

depending  on the dataset (Alena et al., 2022) but with the advent of the Tab Transformer, a 

more nuanced approach tailored for the specific challenges of tabular data has emerged. 

In tabular datasets, there are two types of features encountered: categorical and continuous. 

Each of these feature types requires distinct pre-processing steps to make them amenable for 

deep learning architectures: 

 

▪ Categorical Features: These represent discrete classes or groups. The challenge lies in 

encoding these in a manner that the model can discern patterns without assuming 

ordinal relationships between categories. 

▪ Continuous Features: Continuous or numerical features can range over a wide 

spectrum and need to be normalized to ensure consistency in scale. 

 

The Tab Transformer ingeniously combines the handling of both these data types within the 

Transformer architecture, ensuring that both feature types are given due consideration. The 

Figure 2-6 below elucidates the structure of the tab transformer architecture, these are the 

key parts.  

 

▪ Column Embedding & Layer Normalization: Initial embeddings for categorical 

features and normalization for continuous features form the base upon which the 

Transformer operates. 
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▪ Transformer Block: This consists of the Multi-Head Attention mechanism, allowing the 

model to focus on diverse aspects of the input data. The subsequent Add & Norm 

layers ensure the stability of activations. This block is repeated 'N' times, facilitating 

deeper representations. 

 

▪ Concatenation & MLP: After processing through the Transformer block, the 

embeddings are unified and then passed through a Multi-Layer Perceptron for further 

complexity. 

 

.  

Figure 2-6 TAB Transformer Architecture (Huang et al., 2020) 

 

According to the paper by (Huang et al., 2020), Tab Transformer’s resilience to data 

inconsistencies, such as noise and missing values, coupled with its interpretable contextual 

embeddings, sets it apart. Delving deeper into these attributes offers an exciting avenue for 
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future exploration. This provides a base for our exploration on Next event prediction from a 

tabular data perspective. A research work conducted by (Bukhsh et al., 2021) on predictive 

business process monitoring with transformer network. The approach is for learning high-

level representation from event logs with an attention-based network and the result shown 

that the transformer-based model outperforms several baselines for the task of predicting 

event time and remaining time of a running case. 

 

The self-attention mechanism, a core component of the Tab Transformer, allows each feature 

in the input data to focus on all other features, thereby computing a weighted sum of them. 

This mechanism enables the model to discern intricate relationships between features, 

making it particularly adept at handling datasets with multiple categorical features.  While 

Transformers initially gained prominence in NLP, their potential applicability to other types of 

data, including tabular data, was soon recognized. Tabular data, which consists of structured 

rows and columns, often contains intricate relationships between features. Recognizing these 

relationships is crucial for tasks like predictive modelling. The Tab Transformer was developed 

as an adaptation of the original Transformer architecture to handle tabular data, especially 

datasets with multiple categorical features. By leveraging the self-attention mechanism, the 

Tab Transformer can capture complex interactions between features without the need for 

manual feature engineering (Shankaranarayana & Runje, 2021). 

 

 

Limitations and Addressing Challenges of Tab Transformers 

 

The Tab Transformer, while showcasing numerous advantages, is not without its limitations. 

One of the most pronounced challenges it presents is its computational intensity. Engaging 

with expansive datasets, the model necessitates vast computational resources, potentially 

resulting in prolonged training durations and difficulties in resource allocation. Such 

computational demands can be particularly challenging for researchers and practitioners who 

may not have access to top-tier computational platforms (Zhang et al., 2020). Beyond the 

computational realm, the issue of interpretability arises. The Tab Transformer, despite its 

proficiency in handling a myriad of categorical features, often conceals its decision-making 

pathways. This inherent "black box" nature of many deep learning architectures complicates 
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efforts to discern the logic fuelling their predictions. The imperative for transparency pushes 

towards the adoption of Explainable AI (XAI) techniques to demystify the model's decision-

making processes (Hassija et al., 2023) 

 

In addressing the highlighted computational intensity of the Tab Transformer, several 

strategies were employed to enhance efficiency and maintain model robustness. The batch 

size was judiciously optimized to strike a balance between computational efficiency and 

model performance. Early stopping was implemented to curtail training at its most efficacious 

point, ensuring that computational resources were not squandered on redundant training 

cycles. To further refine the model's performance, column embedding was utilized to reduce 

input data dimensions, and layer normalization ensured stable activations throughout the 

model. Preventative measures against overfitting, such as dropout and weight decay (L2 

regularization), were integrated. The learning rate was meticulously specified to guide the 

training process, and model checkpointing was incorporated to periodically save model 

states, allowing for efficient resumption, and minimizing retraining efforts. Through these 

strategic implementations, the goal was to optimize the Tab Transformer's computational 

demands without compromising its predictive capabilities. 

 

Considering the PhD research objectives, understanding both the strengths and limitations of 

the Tab Transformer is crucial. This comprehension serves as a foundation, directing the 

research trajectory, particularly when probing the model's potential in predictive process 

mining and its synergetic integration with XAI methodologies. As the architecture inherently 

delves into categorical data handling, it fitting to further explore the broader challenges and 

methodologies associated with processing such data in the domain of deep learning. The 

ensuing sections aim to provide a comprehensive insight into these facets, emphasizing the 

nuances of tabular data and the traditional techniques used for its processing. 

 

2.4.3 Tabular Data and Categorical Features 
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Tabular data is essentially data arranged in rows and columns, much like what we observe in 

spreadsheets. It is widely used in many areas, from business records to medical information. 

In this layout, each row usually stands for one item or case, and each column represents a 

different type of information or feature about that item (Avanzi et al., 2023). This data can 

have two main types of features: numerical and categorical. Numerical features have values 

you can measure, like height or price. On the other hand, categorical features describe 

qualities and can't be measured, like colours or brands. These categorical qualities can further 

be broken down into more specific categories. 

 

Nominal Categorical Features: These are categories that do not have any inherent order. 

Examples include colours (red, blue, green) or cities (New York, London, Tokyo). They are 

purely descriptive and don't have a ranking system (Kang et al., 2020). 

 

Ordinal Categorical Features: These categories have a clear, defined order. For instance, 

ratings such as low, medium, and high are ordinal because there's an inherent hierarchy 

(Chawda et al., 2022). 

 

Although, most machine learning algorithms only work with numeric values, but many 

important real-world features are not numeric but rather categorical. Thus, categorical 

features, which take on levels or values, become necessary for multivariate data. Handling 

multiple categorical features, especially those with high cardinality, poses unique challenges 

in data processing and modelling. High cardinality refers to columns with a vast number of 

unique values. For instance, a dataset containing user IDs or product codes can have 

thousands or even millions of unique values. Encoding such features using traditional 

methods can lead to: 

 

- Non-continuous nature: Unlike numerical features, categorical features are discrete, 

making them harder to model using algorithms that require continuity (Cerda & El 

Varoquaux, 2019) 

 

- High Cardinality: According to the paper (Moeyersoms & Martens, 2015) High-

cardinality attributes are categorical variables that have a vast array of distinct values. 
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These unique values can range from identifiers like bank account numbers to more 

general categories such as family names or ZIP codes. Despite their potential to offer 

valuable insights, these attributes pose challenges in predictive modelling, including 

computational difficulties and the risk of overfitting. As a result, they are frequently 

overlooked or underutilized in many modelling contexts. 

 

- Sparsity: One common method to encode categorical values, one-hot encoding, can 

introduce sparsity. For a feature with 'n' unique values, one-hot encoding will result 

in 'n' new binary features, where most values are zero, leading to a sparse matrix.  

 

Given these challenges, there's a pressing need for efficient methods to handle multiple 

categorical features, especially in high-dimensional datasets. This necessity aligns with the 

research objectives, emphasizing the evaluation of the Tab Transformer's potential in 

managing datasets with multiple categorical features. 

 

Traditional Methods for Handling Categorical Features 

 

Categorical features, which represent discrete and non-quantifiable values, are a common 

occurrence in datasets across various domains. Transforming these features into a format 

that can be efficiently processed by machine learning algorithms is a critical step in data pre-

processing. Historically, several encoding techniques have been developed to achieve this 

transformation: 

 

- One-Hot Encoding (OHE): One of the most common methods, OHE involves creating 

a binary column for each category in the original feature. For a feature with 'n' unique 

values, OHE results in 'n' new binary columns. While this method is straightforward 

and widely used, it can lead to a significant increase in dataset dimensionality, 

especially for high-cardinality features. 

 

- Label Encoding: In this method, each unique category is assigned a unique integer. 

While this method is space-efficient, it can introduce ordinal relationships that might 



42 
 

not exist in the original data, potentially leading to misleading interpretations by 

certain algorithms. 

 

- Target Encoding: Also known as mean encoding, this method involves replacing each 

category with the mean of the target variable for that category. It can be particularly 

effective for high-cardinality features. However, it's essential to be cautious with this 

method as it can introduce leakage if not implemented correctly. A study by (Pargent 

et al., 2022) found that regularized versions of target encoding consistently provided 

the best results in machine learning applications with high-cardinality features. The 

research presented by (Pargent et al., 2022), discussed gaps in research where deep 

neural network was not explored, which we aim to address by application of tab 

transformer.   

 

While the above methods offer ways to convert categorical features into numerical formats, 

their effectiveness can vary based on the dataset's characteristics and the specific problem 

context. For instance, while OHE might work well for features with a limited number of 

categories, it can be inefficient for high cardinality features due to the resulting sparsity. 

 

Furthermore, traditional machine learning models like Random Forest and XGBoost, known 

for their robustness and versatility, often require extensive feature engineering to handle 

high-cardinality categorical features effectively. These models, while powerful, can struggle 

with raw categorical data, necessitating the need for encoding techniques. However, as the 

number of categories increases, the challenges of overfitting, increased computational cost, 

and reduced model interpretability become more pronounced (Park & Ghosh, 2013).  

 

Considering the PhD research objectives, understanding the nuances, strengths, and 

limitations of these traditional methods is crucial. It sets the stage for evaluating the potential 

of newer techniques, such as the Tab Transformer, in handling multiple categorical features 

more efficiently. 
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2.4.4 Deep Learning in Predictive Process Mining 

In this section, various applications of deep learning approaches in process mining, we would 

dive into the previous studies and highlight the solution and the issue they faced, after which 

we would discuss how we addressed some of the issues described in extending the current 

field.   

 

▪ The work by (Tax et al., 2016a) discussed harnessing the power of LSTMs, this research 

ventured into multi-task learning, aiming to foretell subsequent events and their 

timestamps. They employed one-hot encoding for data transformation. A notable 

observation was the model's prowess in continuing cases but faltering in extensive 

future predictions, especially with recurrent events in logs.  

 

▪ The work carried out by (Evermann et al., 2016) drew parallels with natural language 

processing, the authors perceived event logs as text, traces akin to sentences, and 

events within as words. Leveraging LSTMs, they focused on predicting subsequent 

events from these logs. The use of embeddings helped compress input sizes, yet the 

model encountered hitches with numerical variables. While the study shed light on 

model interpretation, it conceded the limitations of its interpretative tools.  

 

▪ The research conducted by (Di Francescomarino et al., 2017) Attempted to refine the 

LSTM model proposed by Tax et al., this research integrated prior knowledge through 

the A-PRIORI algorithm and addressed log cycles using the NOCYCLE algorithm. This 

was an initiative to handle logs replete with cycles.  

 

▪ The work carried out by (Tello-Leal et al., 2018) was positioned within the industry 4.0 

framework, this work introduced an LSTM model catering to the Internet of Things 

(IoT). Although adept at predicting the imminent business process activity, the model 

faced challenges with continuous traces.  

 

▪ The work carried out by (Lin et al., n.d.) Introduced MM-Pred, an RNN-driven model, 

this research zeroed in on multi-task predictions concerning event sequences and 
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attributes. It incorporated an LSTM encoder-decoder construct, alongside a 

modulator to understand event attribute inter-dependencies. Yet, akin to Evermann 

et al.'s model, it could not anticipate attributes with numerical domains.  

 

▪ The work carried out by (Camargo et al., 2019a) was focused on exploring the melded 

LSTM architectures with embedded dimensions, aiming to predict event traces, 

associated timestamps, and roles. The methodology extracted n-grams from event log 

traces for training. Its efficacy rivalled Evermann et al. and Tax et al. in predicting 

upcoming events, with an upper hand in suffix predictions. 

 

▪ The work carried out by (Pasquadibisceglie et al., 2020) Pioneered the unique ORANGE 

technique, the framework embarks on an innovative journey to reshape outcome-

driven predictive process monitoring through image encoding and CNNs. Its primary 

pursuit revolves around astute negotiation monitoring, particularly pinpointing those 

with high success probabilities. While specifics of encountered challenges remain 

elusive, the framework's prowess in its primary function underscores its potential. The 

forward-looking trajectory for this approach seems to hinge on amalgamating 

prescriptive learning, rectifying prediction imbalances, and enriching feature vector 

formulations. 

 

▪ The work carried out by (Theis & Darabi, 2019) Ventured beyond conventional 

methodologies, this technique seamlessly fuses Petri nets with time decay functions, 

culminating in continuous process state samples quintessential for training event 

prediction-focused deep learning models. However, despite its innovative stance, the 

method grapples with transparently portraying process states, particularly in the 

context of the temporal essence of events. 

 

▪ The work carried out by (Bukhsh et al., 2021) presented the Process Transformer 

approach. This method capitalizes on high-level representations from sequential 

event logs, minimizing the need for intensive pre-processing. Employing the 

transformer network, it adeptly handles long-range dependencies, outpacing 

traditional LSTM-based models. While the Process Transformer showcased robust 
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learning capabilities, it emphasized the potential for further research, especially 

concerning its adaptability with diverse event logs and broadening its application 

horizon. 

 

▪ The work carried out by (Wickramanayake et al., 2022) Aimed to lift the veil on the 

often-obfuscated realm of predictive analytics, this work champions attention-based 

frameworks. Striving for a harmonious blend of transparency and accuracy, the model 

offers a refreshing perspective. Notwithstanding its merits, the ever-present challenge 

lies in the innate black box nature of deep learning predictions. The horizon looks 

promising, with potential avenues being bolstered predictive prowess, insightful 

model refinements, and meticulous hyper-parameter optimisation. 

 

The domain of predictive process mining has perpetually transformed, marked by remarkable 

advancements juxtaposed against lingering challenges. A primary concern, brought to the 

fore by (Tax et al., 2016a), revolves around the recurrence of events in logs. These pioneering 

studies, while providing valuable insights, encountered challenges in predicting recurrent 

events, particularly across extended durations. This limitation becomes accentuated when 

considering the constraints of model interpretation. (Evermann et al., 2016), with their 

significant contributions to the interpretive realm, were still constrained by their toolset, 

thereby restricting the depth of understanding they could impart. Concurrently, models 

exemplified by (Lin et al.,2006; Ajagbe & Adigun 2023) contended with the complexities of 

forecasting numerical attributes. Amplifying these issues was the overarching concern of 

scalability and adaptability, with many models being tailored for specific event logs, thereby 

inhibiting their broader application. 

 

Further, the dynamics of predictive analytics have been encapsulated by the intricate balance 

between transparency and accuracy. (Wickramanayake et al., 2022) confronted this challenge 

head-on, proposing the embrace of attention-based frameworks. Their innovative efforts 

provide a rejuvenated perspective on predictive models, emphasizing the importance of 

attention mechanisms. Yet, one cannot ignore that deep learning, despite its prowess, retains 

its "black box" nature, occasionally evading straightforward interpretability. Nevertheless, 
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their groundwork offers a promising base for subsequent enhancements, notably in improved 

predictive prowess, insightful model adaptions, and meticulous hyper-parameter tuning. 

 

Considering these challenges, we embarked on a mission to holistically address them. Tackling 

the recurrent event challenge, our methodology, deeply rooted in the multi-task learning 

paradigm and one-hot encoding techniques of Tax et al., introduces refined mechanisms 

adept at managing such patterns, ensuring robust and consistent predictions. Concurrently, 

informed by Evermann et al., our model integrates advanced interpretative tools, offering 

users a deeper and more intricate understanding of predictions. We also addressed the 

challenges posed by numerical variables, with our evolved model seamlessly blending 

numerical and categorical data for comprehensive predictive outcomes. Emphasizing 

adaptability, our models, while rigorous in their foundation, are designed to resonate across 

diverse event logs, ensuring a broader scope of application. 

 

Pivoting towards a deeper exploration of the next-event prediction task, we place a 

magnifying lens on the contributions of individual features within our model. It's not merely 

about the inclusion of categorical features but understanding their significance and the 

weight they carry in influencing the eventual prediction. The objective of this study extends 

beyond raw forecasting; we aim to dissect how each feature interplays with others, and the 

role it assumes in the larger predictive narrative. This detailed scrutiny offers stakeholders a 

granular perspective, illuminating the specific levers and dials that modulate predictions. 

Through this, we're not just predicting the next event but explicating the intricate pathways 

and feature contributions that lead to it, emphasising our commitment to ensuring both 

predictive precision and interpretative clarity. The next section would explore the Blackbox 

artificial intelligence model in more detail, looking at the need for understanding of these 

models being developed. Table 2.2 summarise research studies on different deep learning 

approaches for process mining. 

 
 

Author/Year Model/Technique Dataset  Limitation 

Wickramanayake 

et al (2022) 

Using attention-
based framework 
 

BPIC 2012, BPIC 2017 
 

the ever-present challenge 
lies in the innate black box 
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nature of deep learning 
predictions 
 

Bukhsh et al 

(2021) 

Deep neural 
learning (prossess 
Transformer) 
 

Helpdesk, BPIC 2012, 
BPIC 2013, Hospital, 
Road Traffic Fines  

Not completely accurate for 
the tasks of predicting 
event time and remaining 
time of a running case. 
 

Pasquadibisceglie

47 et al (2020) 

 

ORANGE 
 
(Outcome 
pRediction bAsed 
oN imaGe 
Encoding) and 
CNN 
 

Sepsis, BPIC 2011, BPIC 
2012, Production 
Dataset 

The higher training time of 
ORANGE is fully 
counterbalanced by the 
highest accuracy of the 
learned models which 
overcome all other 
competitors 

Carmago et al 

(2019) 

 RNN-LSTM 
architecture 
 

Helpdesk, BPIC 2012 *Limitation is not found* 
 

Theis & Darabi, 

(2019) 

 

Enhanced the 
Petri net model 
 

Helpdesk, BPIC 2012, 
BPIC 2013 
 

The quality of predicting 
next events and that might 
overcome the low precision 
scores47; the method 
grapples with transparently 
portraying process states, 
particularly in the context 
of the temporal essence of 
events. 
 

Tello-Leal et al., 

(2018) 

LSTM neural 
networks model 
 

Event log that originates 
from the IoT and 
Industry 4.0 domain. 
 

The study is limited to Event 
logs with small number of 
traces. 
 

Di 

Francescomarino 

et al., 2017 

NOCYCLE 
algorithm- a 
refined LSTM 
model 

logs replete with cycles  It was used only to predict 
the next activities in 
business processing 

Evermann et al., 
(2016) 

RNN BPIC 2012, BPIC 2013 Difficulty handling event 
logs that contain many 
sequences of two or more 
events in a row of the same 
activity. 

Tax et al., (2016) LSTM Helpdesk, BPIC 2012, 
Environmental permit 
dataset 

Handling event logs that 
contain traces with multiple 
occurrences. 
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Lin et al., 2006 MM-Pred- an 
RNN-driven 
model, 

event sequences and 
attributes datasets 

It could not anticipate 
attributes with numerical 
domains 

Table 2-2 Next Event Prediction applications 

2.5 Black Box Artificial Intelligence 

The term "artificial intelligence" (AI) is used to describe a wide spectrum of software with 

varied degrees of autonomy, intelligence, and dynamic problem-solving capacity. The most 

rigid AI are those that follow a set of predetermined rules to draw conclusions or weigh 

alternatives (Heaton, 2018).  This class includes, for instance, chess programs that score each 

potential move and choose the best one based on the algorithm. Modern AI applications 

based on machine-learning algorithms that can learn from data are extremely versatile. In 

contrast to rule-based AI, this type of AI would analyse a large number of chess games in real-

time to discover patterns it may use to determine its next move; it would develop its scoring 

system (Jones, 2018) guidelines for how to learn from data are all that are written into this 

type of AI (Jones, 2018)  rather than guidelines for how to tackle specific problems. 

 

Machine learning (ML) techniques are rapidly evolving, allowing for the creation of AI 

applications such as recommendations for financial products (Farquad et al., 2014), 

algorithms for detecting credit card fraud, personal virtual assistants (Lu et al., 2018) and 

autonomous driving vehicles. Black-box algorithms, which do their processing in isolation, 

don't reveal how they arrived at the answer offered to the decision-maker. It does not, for 

instance, make it possible to determine which factors affected a credit projection, or why one 

customer's loan application was declined while another was accepted.  

 

Models that are extremely sophisticated and hard to read are known as "black boxes" in the 

fields of artificial intelligence and machine learning. Although these models tend to have 

excellent predicted accuracy, their decision-making and prediction processes are typically 

opaque (Explainable Artificial Intelligence, n.d.) To emphasize how difficult or impossible it is 

to decipher these models, the term "black box" is often employed. Data and decision-making 

in black box models are distributed among thousands of artificial neurons in deep networks, 
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creating a level of complexity that rivals that of the human brain. In sum, we still don't know 

what goes on within a block box or what elements contribute to it. 

Understanding how input variables are utilized to produce predictions is comparatively easy 

in traditional rule-based systems or basic machine learning models like linear regression. 

However, the linkages between inputs and outputs get increasingly convoluted in more 

advanced models like deep neural networks or ensemble approaches, making it difficult to 

grasp the inner workings of the model (Molnar, 2023). 

 

There are questions about justice, accountability, and possible biases in black-box AI models 

despite their good performance (Ribeiro et al., 2016). It becomes tricky to discover and 

correct any biases or inaccuracies in the model since it is difficult to understand the elements 

impacting its conclusions. 

 

Both academics and government officials have realized the urgency of fixing black-box AI. 

Interpretability and explainability approaches are currently being developed to help users 

comprehend a model's decision-making process. To better understand how black box AI 

models function, researchers are looking at several different approaches, including feature 

significance analysis, gradient-based attribution methods, and surrogate models (Gebru et al., 

2018). 

 

The need for openness and responsibility in AI systems is also being addressed by regulatory 

agencies and other groups. It is the goal of several pieces of proposed legislation, such as the 

General Data Protection Regulation (GDPR) and the Algorithmic Accountability Act (AAA), to 

guarantee that all AI systems, including black box models, are transparent and ethically sound 

(Smuha, 2019) There is a continuing endeavour in the field of AI to find a happy medium 

between the precision and human-understandability of AI models. Both academics and 

industry professionals are aiming to improve the explainability and openness of AI systems 

without sacrificing performance (Smuha, 2019). Let’s delve into the laws around AI and 

Machine Learning, to understand form a legal standpoint, the need for explainability to 

further understanding of how models make their decisions.  
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2.5.1 LEGISLATIONS REGARDING AI AND MACHINE LEARNING 

The legislations concerning AI and Machine learning varies by country according to their 

peculiarities. Here are a few notable examples of legislative efforts related to AI regulation: 

 

General Data Protection Regulation (GDPR) - Data processing by AI is subject to the General 

Data Protection Regulation (GDPR) that was enacted by the European Union (EU) in 2018. 

Although not limited to Blackbox AI, it does guarantee persons the right to be informed and 

explained any major adverse effects caused by automated decision-making. The collection 

and use of personal data is governed by the General Data Protection Regulation (GDPR) and 

the Data Protection Act 2018 (DPA 2018) (ICO, 2023). This law applies to situations when AI 

is used to process personally identifiable information. This can occur when an AI system is 

trained, tested, or deployed using an individual's personal information. When explaining how 

AI works, administrative law and the Equality Act of 2010 are also important considerations. 

 

The Data Protection Act of 2018 and the General Data Protection Regulation make up the 

body of data protection legislation in the United Kingdom. Together, they control how 

information on living individuals may be gathered and used. When artificial intelligence is 

used without any personal information, it is not subject to privacy regulations (Oswald, 2023). 

Artificial intelligence has several potential applications in the sciences. Personal information 

is regularly used or created by AI systems. Massive volumes of individual information are 

sometimes utilized for the development and testing of AI systems. At the time of rollout, the 

model will have access to more detailed personal information. Individuals' predictions and 

judgments are still considered private information. Any use of AI in any of these contexts falls 

within the purview of privacy laws. 

 

The legislation protecting personal information does not favor any one technology. Neither 

artificial intelligence nor any related technology like machine learning are mentioned by 

name. 

 

The use of profiling and automated decision-making is explicitly addressed in various clauses 

of both the General Data Protection Regulation and the Data Protection Act of 2018, both of 
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which place a heavy emphasis on such processing on a massive scale. This means that it may 

be applied when suggesting or forecast based on artificial intelligence. 

 

The right to be informed 

 

Individuals have the right to be informed, as outlined in Articles 13 and 14 of the GDPR, of:  

the existence of solely automated decision-making with legal or similarly significant effects.  

▪ Meaningful information about the logic involved; and  

▪ The significance and envisaged consequences for the individual. 

 

The right of access 

 

Article 15 of the GDPR gives individuals the right of access to: Information on whether or if 

entirely automated decision-making has occurred with legal or similarly important 

repercussions, informative details about the decision-making process, and anticipated 

outcomes for the individual are all necessary (Oswald, 2023) 

 

Rights in the context of computerized decision-making are interpreted with some clarity in 

Recital 71. It mostly concerns Article 22 rights, but it also makes it quite clear that people have 

the right to get an explanation of an automated judgment after it has been made if they so 

want (Oswald, 2023) 

 

The right to object 

Article 21 of the GDPR gives individuals the right to object to processing of their personal data, 

specifically including profiling, in certain circumstances. There is an absolute right to object to 

profiling for direct marketing purposes. 

 

Rights related to automated decision-making including profiling 

According to ICO (2023), people have the right to not be subject to an automated decision 

with legal or similarly substantial repercussions under Article 22 of the General Data 

Protection Regulation. In some circumstances, however, it mandates that organizations:  
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▪ Implement appropriate safeguards to safeguard persons, including the right to receive 

human intervention.  

▪ Allow individuals to provide input; and  

▪ Allow individuals to challenge the decision. 

The interpretation of Article 22 is also clarified by Recital 71. 

 

Data protection impact assessments 

 

Data Protection Impact Assessments (DPIAs) are mandated by Article 35 of the GDPR for 

organizations whose processing of personal data, especially when utilizing new technologies, 

poses a substantial risk to individuals. Any use of automated profiling or other automated 

evaluation of personal data for decisions with legal or similarly substantial implications on 

individuals always requires a DPIA. 

 

In light of this, DPIAs should be performed prior to processing in order to identify and analyse 

the degrees of risk associated if you want to utilize AI systems to process personal data. The 

DPIA should be a "living document" that is reviewed frequently and if there is a change in the 

processing's nature, scope, context, or aims. Additional DPIA guidelines, including a list of 

processing processes that call for a DPIA, has been provided by the ICO. Artificial intelligence 

(AI), machine learning (ML), massively scaled profiling (MBP), and automated decision-making 

(ADM) that results in service/product/benefit rejection are all on the list. 

 

If a DPIA reveals severe risks to individuals' rights and freedoms that cannot be mitigated, you 

must get approval from the ICO before proceeding with the processing. 

 

As above, the GDPR has specific requirements around the provision of information about, and 

an explanation of, an AI-assisted decision where: 

▪ It is made by a process without any human involvement; and 

▪ It produces legal or similarly significant effects on an individual (something affecting 

an individual’s legal status/ rights, or that has equivalent impact on an individual’s 

circumstances, behaviour or opportunities, e.g., a decision about welfare, or a loan) 

(Oswald, 2023). 
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In these instances, compliance with the General Data Protection Regulation (GDPR) 

necessitates the following actions: 

 

- Adopt a proactive approach to ensure individuals receive comprehensive information 

about: 

o The underlying rationale. 

o The importance of decisions. 

o Anticipated ramifications of those decisions. 

- Articles 13 and 14 stipulate: 

o Individuals should have the right to human intervention from the controller. 

o This allows them to express their perspectives. 

o It also permits them to challenge any decisions made. 

- As outlined in Article 22: 

o Individuals are entitled to: 

o Acquire meaningful information about the logic behind decisions. 

o Understand the significance of decisions. 

o Be informed of anticipated outcomes. 

 

Although the recitals of the General Data Protection Regulation (GDPR) lack legal 

enforceability, they serve the purpose of elucidating the interpretation and purpose of its 

articles. The inclusion of a provision in Recital 71, which addresses the provision of an 

explanation for an automated decision after its implementation, elucidates that the 

entitlement to such a right is inherent within the provisions outlined in Articles 15 and 22 

(Oswald, 2023). It is imperative to provide individuals with a comprehensive elucidation of a 

fully automated decision to facilitate their rights to access substantial information, articulate 

their perspectives, and challenge the decision (Oswald, 2023). 

 

However, even in cases where an AI-assisted decision is not a component of a fully automated 

process, and there is significant human involvement, the utilization of personal data still 

necessitates compliance with all the principles outlined in the General Data Protection 

Regulation (GDPR). The principles of fairness, transparency, and accountability outlined in the 

General Data Protection Regulation (GDPR) hold significant importance. 
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Fairness 

 

Considering the potential impact on individual interests is an important part of determining 

whether your use of personal data is fair. A person's right to autonomy and self-determination 

may be compromised if an AI-assisted decision is made about them without any kind of 

explanation of (or knowledge about) the choice (EU Commission, 2022). 

 

Transparency 

 

Being transparent means explaining to individuals exactly how and why you want to utilize 

their personal information. Recital 60 of the GDPR states that you must provide any additional 

information necessary to ensure fair and transparent processing considering the specific 

circumstances and context in which you process the personal data, in addition to the 

information requirements on automated processing laid out in Articles 13 and 14 of the GDPR 

(EU Commission, 2022). Using people's personal information to train and test an AI system or 

explaining how an AI-assisted decision was made about them without their knowledge is not 

likely to be regarded transparent. You may demonstrate openness by explaining your 

position. It may be necessary to provide an explanation of the processing's purpose in 

accordance with Articles 13-15 of the GDPR (EU Commission, 2022). 

 

Accountability 

 

In order to fulfil the requirement of accountability, it is necessary to provide evidence of 

adherence to the various principles outlined in Article 5 of the General Data Protection 

Regulation (GDPR), such as data minimization and accuracy. One method for demonstrating 

accountability involves furnishing individuals with a comprehensive rationale for a decision 

and subsequently recording the process of its implementation. Regardless of the specific AI-

assisted decision made, particularly those involving the utilization of personal data, it is 

incumbent upon individuals to adhere to data protection legislation, which necessitates the 

provision of comprehensive explanations to those individuals who may be impacted (EU 

Commission, 2022). 



55 
 

 

Parts 3 and 4 of the DPA 2018 

Part 3 of the DPA 2018 also contains special language for cases when law enforcement 

agencies use exclusively automated conclusions that have a substantial impact on data 

subjects or have an undesirable legal consequence. People have the option to speak with a 

live person, share their thoughts, get an explanation of the decision, and even appeal it. At 

the moment, it is unlikely that law enforcement agencies will rely completely on 

computerized decision-making systems (Data Protection Act 2018, n.d.). 

 

Part 4 of the DPA 2018 has its own set of regulations for fully automated decisions made by 

intelligence agencies that have far-reaching consequences for data subjects. In certain 

situations, people have a right to seek out human help. Individuals also have a basic right to 

be informed about the controller's reasoning behind applying a decision made using their 

personal data. This allows them to seek "knowledge of the reasoning underlying the 

processing." However, the exception in Part 4 for protecting national security may restrict 

these protections. 

 

Algorithmic Accountability Act  

 

United States legislation proposed in 2019 and revised in 2022 intends to regulate artificial 

intelligence to prevent prejudice and bias. When employing automated decision systems for 

crucial choices, the law mandates that businesses do impact evaluations for bias, efficacy, and 

other criteria. It also adds 75 people to the Federal Trade Commission's enforcement team 

and establishes a public repository at the FTC for such systems (Mökander et al., 2022).  

2.5.2 AI LEGISLATIONS IN UK 

To prevent strangling innovation, the United Kingdom government produced a white paper 

(a policy document outlining ideas for future law) in 2023 detailing its objectives for regulating 

artificial intelligence (Matt Davies & Michael Birtwistle, 2023). The paper encourages 

compliance on a voluntary basis and outlines five guidelines to mitigate the dangers posed by 

AI. 
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Components of the UK AI Act 

Unlike the EU's risk-based regulation, the UK takes a different tack. Live face recognition 

technology, in which persons visible on a video feed are matched against police "watch lists," 

is prohibited in public settings under the EU's planned AI Act (Matt Davies & Michael 

Birtwistle, 2023). The European Union's strategy establishes rigorous norms for "high-risk" AI 

systems. Systems like this are used to determine who gets hired, who gets accepted to school, 

who gets financial aid, and who gets government services (Matt Davies & Michael Birtwistle, 

2023). 

 

There are three main tenets of the UK's approach to regulating AI.  

 

Firstly, rather than enacting new AI-centred legislation, it makes use of pre-existing legal 

frameworks including privacy, data protection, and product liability laws (Miranda Mourby, 

2021). 

Secondly, regulators would use five overarching principles, each of which consists of 

numerous components, in concert with pre-existing legislation (Miranda Mourby, 2021). 

Safety, security, and robustness; proper openness and explainability; fairness; accountability 

and governance; contestability and redress; on are the five guiding principles (Miranda 

Mourby, 2021). Regulators would not be compelled by law to enforce the principles during 

the first implementation period. If it becomes essential, a law might be passed to impose 

these requirements (Miranda Mourby, 2021). Therefore, initially, organisations would be 

asked to comply with the principles on a voluntary basis.  

 

Thirdly, with help from an overarching coordinating organization, regulators may tailor the 

five principles to the specific areas they oversee (Miranda Mourby, 2021). This means there 

will be no central body charged with enforcing the law. 

 

Advantages of the AI Act 

 

According to an impact assessment on the AI laws in UK, there are three reasons why the 

system in the UK has promise (Alison Kilburn, 2023). 
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First, it guarantees to use AI evidence in the right setting, rather than extrapolating results 

from one domain to another. Second, it's made such that rules may be quickly modified to 

meet the needs of AI deployed in a variety of practical contexts. Third, its decentralized 

structure offers certain benefits. For instance, the widespread adoption of AI would be 

negatively impacted by the failure of a single regulatory body. 

 

Some US-based online services, for instance, employ such algorithms to identify a person's 

sex just by analysing their visual traits. When tested with images of women with darker skin 

tones, they performed poorly. This discovery has been used to justify restricting the use of 

facial recognition by British police (Alison Kilburn, 2023). However, issues with gender 

classification may not always indicate problems with facial recognition in law enforcement. 

 

The legal requirements for these sex classification algorithms in the US are lax. In the United 

Kingdom, facial recognition technology is only utilized by police after extensive testing and 

compliance with all applicable laws (Alison Kilburn, 2023). 

 

The flexibility of the British method is an additional benefit. Particularly with artificial 

intelligence (AI) that might be appropriated for reasons other than those envisaged by its 

inventors and machine learning systems, which grow in performance over time, it can be 

challenging to identify possible problems (Oswald, 2023). With this structure in place, 

regulators may respond rapidly to emerging concerns without having to wait for protracted 

parliamentary deliberations. Organizations would take on varying levels of responsibility, the 

enforcement of rules pertaining to artificial intelligence may suffer if they are centralized 

under a single national authority (Bathaee, 2018). 

 

Expert regulators in disciplines like transportation, aviation, and the financial markets will be 

best positioned to oversee the application of AI in those sectors (Oswald, 2023). According to 

(Oswald, 2023), this decentralized strategy has the potential to lessen the impact of 

corruption, regulators' focus shifting away from the public interest, and conflicting methods 

of enforcement. It also removes the potential for a single failure point in enforcement. 
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Enforcement and coordination 

According to the UK white paper for AI regulation, some companies may be resistant to 

voluntary norms; hence, authorities should have the authority to levy fines once they are 

given that authority. When people are harmed by AI, they should be able to sue for damages. 

 

The ability to tighten or relax regulations remains with the regulatory bodies. However, the 

UK approach may run into problems in cases when artificial intelligence systems are regulated 

by more than one body (Michelle Donelan, 2023). Authorities in charge of transportation, 

insurance, and privacy may all potentially establish contradictory rules for autonomous 

vehicles. The white paper recommends a solution to this problem: the creation of an 

overarching organization whose job it is to oversee the consistent application of 

recommendations (Michelle, 2023). It is critical to mandate that the various regulatory bodies 

go to this group for guidance rather than making their own independent decisions ((Michelle 

Donelan, 2023). 

 

The United Kingdom's strategy has potential to promote innovation and reduce threats. 

Aligning the framework with laws elsewhere, notably in the EU, is necessary to improve the 

country's position as a leader in the sector (Michelle Donelan, 2023). Legal certainty for 

enterprises and public confidence can be improved by further framework refinement. It will 

also increase trust in the UK's regulatory framework for this game-changing technology 

outside of the country (Michelle Donelan, 2023). 

 
Documentation 

It is common practice for businesses to keep records of their processing operations, which 

may include details like the reasons for processing, the data shared, and the data retained. In 

addition to being required by law, maintaining detailed records of all processing operations is 

crucial for meeting the requirements of the UK General Data Protection Regulation (GDPR). 

 

According to (Oswald, 2023), documentation requirements vary depending on who is doing 

the controlling or processing. If your company has 250 workers or more, all processing actions 

must be recorded. Small and medium-sized businesses are eligible for a partial exemption. 

Processing actions that:  
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• Are not occasional.  

• Might result in a risk to the rights and freedoms of persons.  

• Include the processing of special categories of data or criminal conviction and offence 

data. 

• Involve an organization with fewer than 250 workers must be documented. 

Under Article 30 of the UK GDPR (Oswald, 2023), you must document the following 

information: 

• The organization's name and contact information, along with relevant details of other 

controllers, representatives, and data protection officers, if applicable.  

• A clear explanation of the purposes for which data is being processed.  

• A comprehensive breakdown of the categories of individuals and the corresponding 

categories of personal data being processed.  

• Identification of the recipients or categories of recipients to whom personal data may 

be disclosed.  

• Thorough documentation of any transfers of personal data to third countries, 

including the safeguards implemented to ensure the security of such transfers.  

• Retention schedules outlining the duration for which personal data will be retained.  

• A detailed description of the technical and organizational security measures in place 

to protect personal data. 

As part of your record of processing activities, it can be useful to document (or link to 

documentation of) other aspects of your compliance with the UK GDPR and the UK’s Data 

Protection Act 2018. According to (Oswald, 2023) required details for privacy notifications 

include: 

• The legal justification for processing. 

• The processing's legitimate interests 

• The rights of persons 

• The presence of profiling and other forms of automated decision-making 

• Information needed to process special category data or criminal conviction and 

offence data under the Data Protection Act 2018 includes:  

• The condition for processing in the Data Protection Act.  
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• The lawful basis for the processing in the UK General Data Protection Regulation; an 

explanation of how the data was obtained.  

• Records of consent.  

• Controller-processor contracts.  

• The location of the data.  

• Data Protection Impact Assessment reports; and  

• Records of personal data breaches. 

 

 

After an in-depth exploration of the legal stances on explainability from the UK, US, and EU, 

this research will now transition to an analysis of the prevalent techniques. Building on the 

findings of (Weidinger et al., 2022), regarding the risks posed by decision-making models, we 

will provide a comprehensive overview of current methods in XAI implementation. The 

subsequent section will expand on the need and various approaches applied.  

 

2.5.3 The Explainability of AI 

It has recently been a big social worry that AI algorithms, and in particular Machine-Learning 

(ML) algorithms, are difficult to explain (Pasquale, 2015). Governments across the world are 

finally reacting to this kind of anxiety. Human agency and oversight, technical robustness and 

safety, privacy and data governance, transparency, diversity/non-discrimination/fairness, 

societal and environmental wellbeing, and accountability are the seven criteria proposed by 

a European High-level Expert Group on AI (Smuha, 2019) for a trustworthy AI.  

 

Considering this, the Commission's White Paper on AI proposed six categories of 

requirements for high-risk AI applications, including: ensuring quality of training data; keeping 

data and records of the programming of AI systems; information to be proactively provided 

to various stakeholders (transparency and explainability); ensuring robustness and accuracy; 

having human oversight; and other specific requirements for certain AI applications. 

Therefore, clarity and explicability are prioritized throughout both texts. Therefore, numerous 

additional duties have been implemented in Europe to improve the explainability of 
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algorithmic judgments; these obligations are unique to automated systems (and hence to AI) 

and may be found in data protection standards and consumer protection rules as describe by 

the Ethics Guidelines for trustworthy Ai by the European commission.  

 

Guaranteeing the usefulness of AI models in the real world relies heavily on the incorporation 

of explainability methods, often known as XAI. It should be incorporated into the model's 

architecture from the start, but instead it is typically added as a post-training analysis (post 

hoc; see also (Narwaria, 2021). Understanding how independent factors have impacted the 

model's predictions without transformation is the focus of global interpretation, which seeks 

to provide a general explanation rather than a specific solution (an explanation for each 

observation in the dataset). This interpretation does not seek to isolate the effects of 

individual training variables on the prediction but rather to isolate the effects of overarching 

training elements. In contrast, local interpretation looks at the predictions made for each 

individual example in the sample after the model has been estimated (Adadi & Berrada, 

2018). The findings produced by the black-box algorithms can be understood on a case-by-

case basis, which is why the processes of local explainability were considered in this research.  

 

Methods of interpretability can be categorized not just as global or local, but also as agnostic 

or model specific. Without knowing the specific mathematical process that went into making 

the original model, explainability solutions can be generated with an agnostic approach. 

Black-box models may be explained with the help of this feature. Methods tailored for use 

with algorithms have been developed. (Ribeiro et al., 2016) offered one approach to agnostic 

local interpretation. Local Interpretable Model-Agnostic Explanations (LIME) is a linear proxy 

model that offers producing interpretable and accurate justifications for the predictions of 

any classifier. This study utilized the LIME technique, which has been employed in previous 

research to explain similarly opaque systems (Narwaria, 2021).  

 

Accuracy metrics may be used on a test dataset to evaluate the models. However, such an 

evaluation could not show that the model is trustworthy. For big datasets, it is vital to 

recommend which instances should be reviewed using these measures, in addition to the 

inspection of individual forecasts and their justifications. This study employs the LIME 

technique, which promises to address the "confidence in a forecast" issue by providing 
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justifications for individual forecasts, and the "model confidence" issue by selecting a subset 

of these forecasts and their justifications. 

 

Linear models, decision trees, and descending rule lists are all examples of G models that 

might be used to provide an explanation (Wang & Rudin, 2015). The user can be provided 

with a G model alongside other data types, such as images or texts. This research employed 

(g) as a measure of the complexity (rather than the interpretation) of the G explanation since 

not all such models can be sufficiently simple to be interpretable. g can be the number of 

nonzero weights in a linear model, or the depth of a decision tree. 

 

2.5.4 Explainable AI (XAI) Approaches 

The widespread integration of machine learning models across various sectors highlights the 

essential need for transparency in their decision-making mechanisms. As noted by (Doshi-

Velez & Kim, 2017), the mysterious workings of 'black-box' models, especially deep neural 

networks, while being highly precise, provide limited visibility into how they make decisions. 

This lack of clarity becomes a bottleneck for fields like predictive process mining, where 

comprehending the decisions is often as vital as the predictions themselves. XAI arises to 

address this gap, combining predictive strength with the imperative of elucidation. As we 

explore the use of the Tab Transformer for predictive process mining, the pursuit of a strong 

XAI framework becomes a key focus. We will delve into the various methods in the 

subsequent sections. 

 

SHAP (Shapley Additive explanations) 

 

In the complex domain of predictive process mining, the multitude of features dynamically 

interact to influence results. Therefore, elucidating the distinct contribution of each feature 

becomes crucial. SHAP (Shapley Additive explanations), rooted in the core principles of 

cooperative game theory, emerges as a potent instrument for this deep dive into feature 

contribution. Lundberg and Lee's pioneering work (Lundberg et al., 2017), illustrates the 
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unique capabilities of SHAP. Notably, SHAP offers a principled way to fairly and consistently 

allocate feature importance, even in intricate model structures like the Tab Transformer. 

 

SHAP works by associating each feature value with a Shapley value, a concept derived from 

cooperative game theory. It essentially represents the average marginal contribution of a 

feature value over all possible coalitions. Unlike traditional feature importance metrics that 

might be biased or inconsistent, SHAP values offer consistent and fairly distributed 

contributions. This means the sum of all the SHAP values for a single prediction is equal to the 

difference between the prediction and the average prediction for the dataset, providing a 

detailed decomposition of the prediction (Lundberg et al., 2018).  

 

 

(J. Chen et al., 2018) underscored the universality of this attribution method, highlighting its 

ability to offer a unified perspective on model interpretability across diverse model 

architectures. Nevertheless, with the increasing adaptation of SHAP in analysing voluminous 

process mining datasets, the computational burden proportionally grows. Addressing this 

challenge necessitates the exploration of advanced optimization strategies. This could range 

from harnessing the power of hardware accelerations to pioneering algorithmic 

breakthroughs, ensuring SHAP's insights are obtainable in real-time analytical environments 

(J. Chen et al., 2018). 

 

Feature Importance  

 

In predictive process mining, the inherent diversity of attributes encompasses categories, 

sequences, and time-based data. Understanding the relative significance of these attributes 

is paramount for model optimization and the generation of meaningful insights. (Breiman, 

1999) perspectives on Random Forests aptly convey this idea, demonstrating its proficiency 

in identifying and emphasizing feature importance. Building on this conversation, (Altmann 

et al., 2010) explore the concept of permutation feature importance, emphasizing its 

resilience in pinpointing attribute significance amidst potential noise or collinearity. However, 

as we delve further into the intricate landscape of process mining, characterized by its 

complex and frequently intertwined features, certain challenges arise. The potential for 
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misinterpreting importance or missing subtle interrelationships between features 

necessitates a more rigorous analytical approach. This underscores the need for innovative 

or combined methodologies to address these obstacles, ensuring that the assessment of 

feature significance remains both precise and comprehensible within the multifaceted 

framework of process mining. 

 

LRP (Layer-wise Relevance Propagation) 

 

Layer Relevance Propagation (LRP) emerges as a vital interpretability technique. This section 

will delve into the nuances of applying LRP to the Tab Transformer and explore the potential 

challenges and advantages it offers. 

 

At its core, LRP provides a clarifying lens into the decision-making pathways of deep learning 

models. It functions by retracing the predictions made by a neural architecture through its 

intricate layers, assigning a 'relevance' metric to each input component in the process. This 

approach sheds light on the significance of each input with respect to the final prediction, 

effectively elucidating the decision-making process of the model (Bach et al., 2015). 

 

The importance of such clarity becomes evident, especially when dealing with complex 

architectures like the Tab Transformer. Being able to discern which portions of the input data 

carry the most influence can provide invaluable insights. This interpretative capability is 

indispensable in domains such as predictive process mining, where critical decisions are made 

regularly. 

 

Structured tabular data, prevalent in fields such as finance, healthcare, and e-commerce, 

serves as the primary domain of Tab Transformer models. The consequences of the model's 

decisions extend to financial strategies, medical interventions, and business strategies. 

Therefore, understanding the rationale behind a prediction is of utmost importance. To 

achieve this, LRP initiates the process by tracing prediction metrics across the model's layers, 

assigning a 'relevance' metric to each feature, representing its contribution to the final 

prediction (Doshi-Velez & Kim, 2017; Samek et al., 2017). 
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However, the inherent complexity of the Tab Transformer, characterized by its self-attention 

mechanisms and embeddings, introduces unique challenges. During the process of relevance 

backpropagation, careful consideration must be given to the self-attention coefficients to 

ensure that the model's focal features during its operational phase are appropriately 

emphasized. The presence of embeddings further complicates matters, as categorical 

elements are transformed into continuous vectors. This necessitates adaptations in LRP to 

preserve the integrity of the original categorical input throughout the relevance propagation 

process. The scarcity of papers that used Tab Transformer makes the research work unique 

and a landmark study. 

 

The application of LRP to the Tab Transformer is layered with intricacies, primarily due to the 

model's architectural depth. One critical aspect is managing the interplay of features, 

especially given that tabular configurations often contain interrelated features. The self-

attention mechanism of the Tab Transformer has the potential to identify these correlations, 

requiring LRP to be adapted to highlight these interdependencies. 

 

Local Linear Models (LIME)  

 

In the evolving frontier of machine learning interpretability, LIME (Local Interpretable Model-

agnostic Explanations) emerges as a noteworthy method that attempts to make black-box 

models more accessible to human understanding. Its fundamental principle lies in deciphering 

the local decision boundaries of complex models and representing these decisions through 

simpler, interpretable models, such as linear ones (Ribeiro et al., 2016) For predictive process 

mining, which often relies on intricate models like the Tab Transformer (Huang et al., 2020), 

LIME can provide vital clarity on specific predictions. 

 

The unique value proposition of LIME is its capability to approximate the behaviour of an 

intricate model in a localized region, shedding light on how specific input features influenced 

a particular prediction (Ribeiro et al., 2016). This becomes especially valuable in predictive 

process mining tasks where understanding the nuances behind individual process predictions 

can lead to actionable insights (Di Francescomarino & Ghidini, 2022). For instance, 
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understanding why a particular transactional process might be flagged as anomalous can aid 

in early rectification and decision-making. 

 

However, while LIME's local interpretations are invaluable, they come with inherent 

challenges. One of the most prominent concerns is the dichotomy between local fidelity and 

global generalizability (Dieber & Kirrane, 2020). While LIME is designed to faithfully reproduce 

decisions in a localized region around a data point, it does not guarantee that these 

interpretations hold true across the broader spectrum of data points. In the realm of 

predictive process mining, where processes are often dynamic, non-linear, and 

interdependent, there's a need to reconcile these localized insights with the global behaviour 

of models like the Tab Transformer. 

 

Moreover, the interpretative models produced by LIME rely on perturbations of the original 

data. In large-scale process mining datasets, which may consist of complex, interwoven 

categorical features, generating meaningful perturbations without introducing noise or 

unrealistic data points becomes a challenge (Dieber & Kirrane, 2020). This raises questions 

about the reliability and robustness of LIME’s explanations in such contexts. 

 

Given these challenges and the significance of interpretability in predictive process mining, 

there's a pressing need for further exploration. Research initiatives should focus on evaluating 

LIME's efficacy in the context of the Tab Transformer(Huang et al., 2020; Kang et al., 2020; 

Sokol & Flach, 2020), understanding its limitations, and potentially integrating it with other 

XAI techniques. As the field of predictive process mining grows, ensuring the alignment of 

LIME's local surrogates with the holistic, global objectives of models becomes a pivotal 

research direction, promising to bridge the gap between high predictive accuracy and human-

understandable insights.  

 

COMPARISON  

 

The growing landscape of Explainable AI (XAI) presents a myriad of methods, each with its 

own unique advantages and challenges, especially when applied to the Tab Transformer in 

the realm of predictive process mining. Understanding the intricacies of these techniques is 
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crucial to ensuring their effective application, given the specific contexts of predictive tasks 

and the nature of data at hand. 

 

The integration of the first generic methods such as SHAP, LRP, and LIME, which are widely-

used surrogate models to explain decisions of complex Machine Learning models (Agarwal 

2020) becomes evident in XAI due to the flexibility they provide with both local and global 

explanation; they hold the promise of offsetting the limitations inherent to each individual 

method. For instance, while SHAP offers a unified measure of feature importance consistent 

across models, its computational intensity can be a bottleneck, especially for complex models 

like the Tab Transformer. This computational intensity can impact the timely interpretation 

of results. On the other hand, techniques like LRP and LIME provide granularity in 

explanations, especially for image-based tasks, but might not be as globally representative. 

This means they excel in offering detailed insights into specific aspects of the model's 

behaviour but may not capture the broader, global patterns that are essential for 

comprehensive understanding. 

 

A closer examination of these XAI techniques reveals the following: 

XAI 
Technique  

 Advantages                                        Challenges                              Applicability to 

Tab Transformer        

 Implications for 

Predictive Process 

Mining  

 SHAP            Unified 

measure of 

feature 

importance 

Computational 

intensity 

Offers consistent 

feature 

importance 

measure 

Helps illuminate 

feature importance 

for model validation 

 LRP             Granularity in 

explanations 

May not capture 

global patterns 

Provides detailed 

insights, may lack 

global context 

Elucidates intricate 

feature relationships 

 LIME            Granularity in 

explanations 

Potential lack of 

global context 

Offers fine-

grained 

explanations, may 

Provides insights into 

feature contributions 

for actionable 

insights 
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Table 2-3 XAI Technique Comparison 

 

A particularly relevant aspect for this research is how these XAI techniques illuminate the 

predictions made by the Tab Transformer when handling datasets with multiple categorical 

features. Preliminary findings suggest that while some methods are adept at highlighting 

feature importance, others excel in elucidating the intricate relationships between features 

and their contribution to predictions. This has profound implications for predictive process 

mining, where understanding the role of each categorical feature is crucial for both model 

validation and actionable insights. 

 

As the field of XAI expands, there is a marked deficiency in resources detailing the practical 

application of these techniques within the Tab Transformer for activity predictions. The 

nuances and intricacies of integrating XAI methods with the Tab Transformer to enhance 

activity predictions are an area that has not been extensively charted. This exploration is 

crucial not just for researchers and practitioners but also for stakeholder’s keen on ensuring 

that AI-driven activity predictions align seamlessly with business imperatives and comply with 

regulatory frameworks. Moreover, the fusion of XAI techniques with the Tab Transformer is 

not just a matter of technical integration. Given the research's emphasis on the legal contours 

of AI, this synthesis carries significant legal and ethical weight. The clarity these methods bring 

to the Tab Transformer's decision-making processes for activity predictions could determine 

their endorsement in sectors where regulations are particularly rigorous. 

In essence, while the integration of multiple XAI techniques offers a holistic approach to 

model interpretability, the nuanced dynamics between them, especially in the context of the 

Tab Transformer and predictive process mining, require further exploration. Addressing this 

will not only bridge the technological aspects of AI but will also align with the broader socio-

political and legal implications, fulfilling the overarching objectives of the research. 

 

lack global 

perspective 
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2.6 Conclusion  

Our exhaustive examination of the literatures concerning Tab Transformers, particularly in 

the context of managing multiple categorical features and in juxtaposition with conventional 

models, offers a holistic perspective of the prevailing research landscape. Yet, as is the case 

with dynamic disciplines, certain gaps beckon more profound investigation and research. A 

striking observation is the constrained empirical exploration of Tab Transformers across 

varied datasets and tangible real-world scenarios. Improving the results observed from 

previous models, gaining insights from the predictions by utilising all the features available 

previously ignored (Appice et al., 2019; Evermann et al., 2016; Taymouri et al., 2020; Tello-

Leal et al., 2018; Weytjens & De Weerdt, 2020). Such a limited scope hinders our capacity to 

generalize outcomes and casts doubts about the model's resilience and adaptability in diverse 

environments, as posited by (Shankaranarayana & Runje, 2021).  

 

The interpretability of deep learning architectures, including Tab Transformers, emerges as a 

consistent challenge. Notwithstanding some endeavours to amalgamate Explainable AI (XAI) 

mechanisms with Tab Transformers, a void exists in holistic research that ventures into the 

intricacies of such integrations and their impact on augmenting model transparency, a 

sentiment echoed by (J. Chen et al., 2018; Dieber & Kirrane, 2020; Samek et al., 2017; Sokol 

& Flach, 2020). 

 

Another aspect that merits scrutiny is the applicability of Tab Transformers across diverse 

fields. While the model showcases considerable promise, there is a palpable need to broaden 

its applicability to ensure it meets the diverse demands of varied sectors. Concurrently, 

addressing the innate computational demands of Tab Transformers remains imperative. 

Studies dedicated to finetuning this model for increased scalability and computational 

efficiency, crucial for seamless real-time deployments, appear to be in short supply. (Huang 

et al., 2020; Zhang et al., 2020). From an ethical and legal standpoint, the literature offers 

glimpses into the concerns enveloping "black-box" AI solutions. Yet, a focused discourse on 

the ramifications of implementing Tab Transformers, particularly in sensitive sectors like 

healthcare and finance, remains amiss.  The exploration on how these techniques is applied 
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in a tabular data for increased decision making and recommendations. (Cerda et al., 2018; 

Cerda & El Varoquaux, 2019; Matt Davies & Michael Birtwistle, 2023; Narwaria, 2021; Oswald, 

2023; Samek et al., 2017).  

 

In conclusion, while the Tab Transformer stands as a testament to the advancements in 

processing tabular data, the myriad uncharted territories and unresolved questions 

underscore the vast potential and challenges awaiting future endeavours. The scarcity of 

papers that used Tab Transformer makes the research work unique. Bridging these gaps will 

not only magnify the prowess of the model but also augment the overarching discourse on 

AI's responsible and efficacious deployment. The next chapter would focus on the 

Methodology applied in the thesis. Using deep learning techniques to improve predictive 

process monitoring necessitates a methodical approach that includes data pre-processing, 

model selection, training, assessment, and deployment. By using this methodology, one can 

improve predictive process monitoring and make better decisions across a range of domains 

by methodically utilizing deep learning approaches. The review of other researchers’ works 

around predictive process mining broadens the knowledge needed for this research 

methodology as implemented in the next chapter. 
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CHAPTER 3: RESEARCH METHODOLOGY  

3.1 Introduction  

In the multifaceted realm of research, the methodology acts as the compass guiding the 

explorative journey. It delineates the strategic procedures adopted for data acquisition, 

analysis, and interpretation. By offering a systematic blueprint, the methodology not only 

ensures the reproducibility of the research but also fortifies its legitimacy and reliability. 

The Tab Transformer-enhanced predictive process mining approach used in this study 

demonstrates the need for a rigorous and comprehensive methodology. As shown in Figure 

4.1, the PM2 Methodology (Van Eck et al., 2015) provides a structured and systematic 

approach to predictive process mining. The use of the Tab Transformer in this methodology 

enhances the predictive power of the model and helps to ensure a robust and accurate model 

is created. The methodology used in this study is a significant advance in the field of predictive 

process mining and will allow for more accurate and useful models to be created. This chapter 

provides an extensive exploration of the data acquisition techniques, elucidating both the 

novel and the traditional datasets that will be harnessed. As the work progresses, it will be 

logical to shed light on the bespoke methodological trajectory chosen for this research, 

meticulously detailing each stride and the encompassing research design.  

 

Figure 3-1 The overview of the PM2 Methodology retrieved from (M. L. Van Eck et al., 2015) 
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Historically, the realms of machine learning and data mining have witnessed the dominance 

of frameworks like the Crisp-DM Methodology, devised by SPSS, and SEMMA, crafted by SAS. 

Yet, as the boundaries of our research blur the lines between process mining and machine 

learning, we find ourselves resonating more with the PM2 methodology. A brainchild of PM2 

offers a tailored approach to cater to the unique needs of our study by (M. L. Van Eck et al., 

2015).  To appreciate the significance of the chosen methodology, it is pertinent to briefly 

touch upon the evolution of methodological approaches, particularly in the intersections of 

data mining, machine learning, and process mining. For years, Crisp-DM held its ground as a 

seminal framework for many scholars and industry practitioners alike. Its structured 

approach—starting with a business understanding, culminating in deployment—offered a 

clear roadmap for a wide array of data mining tasks. Similarly, SEMMA, with its emphasis on 

sample, explore, modify, model, and assess, provided a robust method for many statistical 

data projects. Both frameworks, in their essence, were archetypes of their time, emblematic 

of a period where the boundaries of data and process were distinctly demarcated. Yet, with 

the surge in digital transformation and the increasing complexity of organisational processes, 

emerged a novel paradigm: process mining. Unlike traditional data mining, process mining 

placed emphasis on the 'process' itself, unravelling the sequences, patterns, and flow of tasks 

within an organisation. This shift in focus necessitated a fresh methodological approach—one 

that would be holistic yet flexible enough to accommodate the nuances of process analysis. 

 

 The PM2 methodology was adopted to suit the unique requirements as shown in Figure 3.1. 

The inherent flexibility of PM2 allowed the integration of innovative tools, such as the Tab 

Transformer. Its emphasis on ongoing monitoring aligned perfectly with our goal of predicting 

the next event. In the ensuing sections, there will be need to delve into the intricacies of each 

stage of the PM2 approach, shedding light on its principles, uses, and the specific 

modifications implemented for the study. The objective is to outline a transparent, 

comprehensive, and replicable framework that underpin the research. The methodology 

presented in this study not only serves as a roadmap for our current investigation, but also 

provides a valuable reference for future studies in this rapidly evolving field. The predictive 

process mining approach with the Tab Transformer is a powerful tool for analysing and 

understanding complex data, and we hope that our work will help to inspire further research 
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in this area. This research creates excitement to see how this methodology will be applied in 

future studies, and how it will continue to evolve and improve over time. 

 

 

 
Figure 3-2 Adapted PM2 Methodology 

 

 
Figure 3-3 Description of pointers on Methodology 

 

Planning: The planning stage is foundational and sets the trajectory for the entire research. 

Given the research problem's emphasis on predictive process mining challenges, especially 

with datasets containing multiple categorical features, the planning stage becomes crucial in 

ensuring that the research direction aligns with addressing these challenges. 

The business process in this case is the research problems, which is about interpreting 

complex data. The data selected for this application should fit the adopted business 
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processes. As part of implementation involves with machine learning, so an in-depth study of 

the evaluation metrics, applicable algorithms, is required in designing the project. 

 

Extraction: The extraction stage is a pivotal step in my PhD research, focusing on the 

meticulous extraction of event data, and if necessary, process models. This stage is 

instrumental in ensuring that the subsequent analysis is grounded in accurate and 

comprehensive data, especially given the intricacies of predictive process mining. This stage 

the data is prepared as event log for pre-processing, during this phase the following stages 

would be implemented Determining scope, Extracting the Relevant Event Data and 

Transferring process Knowledge.  

 

Data Processing: Data processing is a pivotal stage in the process mining research journey. It 

primarily focuses on transforming the raw event data into structured event logs, optimised 

for subsequent mining and analysis. This stage is instrumental in ensuring that the data is not 

only accurate but also presented in a manner that facilitates in-depth analysis and 

interpretation. The essence of data processing is to refine and structure the data, making it 

conducive for deriving meaningful insights. This stage involves the creation of view looking 

into the inclusion and exclusion criteria, aggregating events, enriching logs and filtering logs.   

 

Mining and Analysis: The mining and analysis stage is the crux of the process mining 

methodology, where the structured event logs, crafted in the data processing stage, are 

subjected to rigorous analysis to extract meaningful insights. This stage is dedicated to 

applying process mining techniques and other data mining techniques to extract meaningful 

insights from the on-event logs to answer research questions, providing a comprehensive 

understanding of business processes, their performance, and compliance. The primary 

objective is to delve deep into the event logs, uncover patterns, and derive actionable insights 

that can drive process improvements. 

 

Evaluation: The evaluation stage is a pivotal phase in the process mining methodology, 

serving as a bridge between the analytical findings and actionable improvement strategies. 

This stage is dedicated to critically examining the results obtained from the mining and 

analysis phase, ensuring they align with the project's objectives and are grounded in the real-
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world context of the business process. The primary goal is to translate the analytical findings 

into tangible improvement ideas or, if necessary, refine the research questions for 

subsequent iterations. At the heart of the evaluation stage is the need to ensure that the 

results are not only accurate but also meaningful and actionable.  

 

Process Improvement: The "Process Improvement & Support" stage is a culmination of the 

insights and findings derived from the preceding stages of the process mining methodology. 

It is here that the theoretical insights are translated into actionable strategies for enhancing 

the actual process execution. This stage is pivotal as it bridges the gap between analytical 

findings and real-world applications, ensuring that the insights gained are not merely 

theoretical but have tangible implications for process enhancement. 

 

However, in the context of a PhD thesis, the primary focus is on in-depth research, analysis, 

and the presentation of findings. While the actionable implementation of process 

modifications is beyond the scope of academic research, the insights and recommendations 

derived can serve as a valuable foundation for future practical applications. 

 

3.2 Planning Stage 

Within this section, the data acquisition process is examined and further discussed the various 

types of data collected with furnish detailed insights about the data itself. 

3.2.1 Data Acquisition: Novel and Standard Data 

Data forms the bedrock of any empirical research. The quality and relevance of data directly 

influence the accuracy and applicability of the research findings. In the context of the thesis, 

the justification for utilizing the MIMIC-IV_ED data along with BPIC 2012, BPIC 2017, and Road 

Traffic Data could be linked to Table 2.2 by emphasizing the diversity and complexity of the 

datasets to validate the robustness of predictive models. The inclusion of MIMIC-IV_ED, a 

comprehensive medical dataset, alongside the varied BPIC logs and Road Traffic Data, 
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provides a multi-industry perspective on event prediction, allowing for a thorough 

examination of model versatility and adaptability across different domains. 

 

The utilization of these datasets also aligns with the precedent set by the methodologies in 

Table 2.2, where diverse data sources have been employed to validate predictive models. For 

example, Pasquadibisceglie et al., 2020 used data from healthcare (Sepsis) and other 

industries (BPIC 2011, BPIC 2012, Production) to test their ORANGE method. The Orange 

method is a novel approach to predictive process mining that allows for the analysis of large 

and complex datasets. The data from the various sources was used to train and validate the 

Orange method, and the results were found to be accurate and robust. Similarly, other studies 

have utilized BPIC datasets from different years, reflecting the evolution of process 

management challenges. 

 

By extending the range of datasets to include MIMIC-IV_ED and Road Traffic Data, the 

research benefits from a broader validation scope, which is crucial for demonstrating the 

generalization capability of the proposed approach. This justification underscores the 

commitment to creating predictive models that are not only accurate but also versatile and 

applicable to real-world scenarios across different sectors.  

 

MIMIC-IV_ED Data 

The Medical Information Mart for Intensive Care (MIMIC) dataset, in its fourth iteration, 

focuses on emergency department data. This rich dataset provides insights into patient 

demographics, vital signs, laboratory tests, medications, and more. It serves as a valuable 

resource for understanding patterns and predicting outcomes in a medical setting. This also 

allows for the work to be transferable across various medical settings (Alistair Johnson et al., 

2023). Due to the nature of medical data, accessing these data can be quite complicated 

especially in settings such as the NHS and other medical institutions. With the MIMIC-IV_ED 

dataset, we can create an event log that like what could be generated from other medical 

institutions. We applied to the Physio Net team in MIT, for access and had to complete 

certification in CITI Data or Specimen Only Research. 
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BPIC 2012 

Process mining, in today's digitized business landscape, has emerged as a potent tool for 

extracting actionable insights from vast process-related datasets. The Business Process 

Intelligence Challenge (BPIC) stands as a beacon of collaboration within this realm, catalysing 

innovation by offering real-world datasets for research. BPIC's 2012 dataset, sourced from a 

renowned global financial institution and diligently curated by Boudewijn van Dongen in 

2012, delves deep into the nuances of the loan application process. With its exhaustive log 

capturing each event, from loan initiation to its conclusion, the dataset is a treasure trove of 

data points like timestamps, resources, and key decisions. It boasts of remarkable granularity, 

voluminous data, diverse event types, and has been ethically prepared with thorough 

anonymization. Researchers tapping into this resource can explore the intricate journey of 

each loan application, analyse patterns, predict outcomes, and derive strategies to optimize 

the loan approval process. 

 

Granularity: The dataset provides fine-grained insights into each step of the loan 

application process. Each event is tagged with a precise timestamp, allowing for 

intricate temporal analysis and bottleneck identification. 

 

Volume: With thousands of individual applications and events, the BPIC 2012 dataset 

offers ample data for robust statistical analysis, minimizing the impact of outliers and 

ensuring generalizable insights. 

 

Variety: The dataset captures a multitude of event types, representing various subprocesses 

within the broader loan application workflow. This diversity allows for a comprehensive view 

of the process, from preliminary checks to final decisions. 

 

Anonymization: To ensure confidentiality and adhere to data protection norms, all sensitive 

and personally identifiable information within the dataset has been anonymized. This 

guarantees ethical usage while preserving the integrity of the process data.  

The BPIC 2012 dataset provides a detailed look into the loan application process of a Dutch 

financial institution. Each case in the dataset represents an individual loan application, 

capturing its journey from initiation to either approval or rejection. These cases encompass a 
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sequence of events or activities, such as starting the application, verifying details, and making 

final decisions. Each event within a case has attributes like its name, timestamp, executing 

resource, and lifecycle transition. Cases also have specific attributes, including the type of 

application (personal loan or overdraft), the requested amount, and the outcome (approved 

or declined). 

 

BPIC 2013 

The BPIC 2013 dataset emerges as a fundamental component of this doctoral research. 

Originating from a real-world IT company's incident management system, this dataset 

encompasses a comprehensive log of incident management activities, providing a detailed 

perspective on the processes involved in managing IT incidents from their inception to 

resolution. The dataset's meticulous detailing, including timestamps, activities, and process 

pathways, offers an unmatched resource for analysing and understanding the complexities of 

incident management workflows. 

 

The significance of the BPIC 2013 dataset in this research aligns with previous studies in the 

next event prediction task. It serves as an essential tool for the empirical evaluation of process 

mining algorithms, facilitating the identification of patterns. The real-world origin of the 

dataset ensures that the insights obtained are both theoretically sound and practically 

applicable, effectively bridging the gap between academic research and operational IT service 

management practices. A primary focus of the thesis is on making next event predictions and 

comparing our approach with previous work; the dataset is ideal, as it has been utilised by 

several researchers, as detailed in Table 2.2 in our literature review. This approach aims to 

contribute to the broader field of predictive process mining by showcasing the usability and 

applicability of our methodology. 

 

BPIC 2017 

The Business Process Intelligence Challenge (BPIC) consistently offers valuable datasets to the 

academic and business communities to drive advancements in process mining. The BPI 2017 

dataset, one of its salient contributions, provides meticulous insights into the loan application 

processes of a Dutch financial institution. 
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The BPI 2017 dataset is sourced from an online loan application system of the institution. It 

records all loan applications initiated throughout 2016 and continuously monitors them until 

a specific endpoint: February 1st, 2017, at 15:11. A comparative analysis reveals that this 

dataset corresponds to the same institution as encapsulated by the dataset with the identifier 

doi:10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f (Boudewijn van Dongen, 2017). 

Despite this similarity, there is a discernible evolution in the systemic infrastructure and its 

functionalities from the earlier datasets. 

Structurally, the BPI 2017 dataset is organized as an event log. Key attributes characterizing 

each event encompass: 

 

▪ Case ID: Denoting a unique loan application. 

▪ Event ID: A specific identifier for individual events within a case. 

▪ Timestamp: The exact chronological marker of the event's occurrence. 

▪ Activity Name: Elucidates the specific activity, such as "Initial Offer Extended" or 

"Loan Finalized". 

▪ Resource: An indicator of the entity (person or system component) responsible for the 

event's execution. 

▪ Offer ID: A distinguishing attribute introduced in this iteration; it differentiates 

between multiple offers related to a singular application. 

▪ Status: Signifies the current stance of an offer, categorized as accepted, rejected, or 

pending. 

 

For academic endeavours, the dataset is provisioned with open access, typically hosted on 

the BPIC's official portal or affiliated academic repositories. Researchers may be required to 

acknowledge terms of use or complete a nominal registration. The dataset is generally 

available in XES or CSV format. An important augmentation in the BPI 2017 dataset, compared 

to its predecessors, is its capability to encapsulate multiple offers within a single loan 

application trajectory. This nuanced inclusion not only adds a layer of complexity but also 

enriches the dataset, offering a multifaceted perspective into the financial institution's 

decision-making paradigms and strategic negotiations. The data would allow us to benchmark 

our application and model across other published work, providing detailed insights towards 

how our model perform on various instances.  
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Our primary data, which was created from the MIMIC_IV Dataset provides an opportunity for 

use to integrate various features and visualise how they contribute towards the prediction 

observed, the standard data allows us to visualise how the model would perform across 

various datasets.  

 

3.3 Data Preparation 

The incorporation of MIMIC-IV_ED data is pivotal to our research. This dataset not only 

bridges the gap from previous studies that employed MIMIC-III data for process mining but 

also advances the field by offering newer, more comprehensive data meticulously 

transformed the databases from the MIMIC repository into a coherent event log suitable for 

our analytical pursuits. as delineated by (Alistair Johnson et al., 2023)  

 

The Emergency Department (ED) serves as a critical pillar in the healthcare infrastructure, 

addressing immediate and often life-threatening medical exigencies. The ceaseless 

operational demands of EDs require that they be equipped both in terms of expertise and 

resources. Patients arriving at the ED undergo an initial assessment or triage, which 

determines the subsequent course of medical intervention. The setting is characterized by its 

dedicated resources, which are optimized to augment the likelihood of favorable patient 

outcomes. In this backdrop, the datasets from MIMIC ED grant researchers an unprecedented 

lens to scrutinize the intricate dynamics of emergency care. 

The data is structured into six tables which is depicted in Figure 4.4 below, each capturing 

specific facets of patient care: 

- Edstays: This table tracks how patients are admitted and discharged from the 

Emergency department after a single stay. 

- Diagnosis: This table provides contains the diagnosis of the patients coded with the 

International Classification of Diseases Ninth or Tenth revision. 

- Medrecon: This table provides a list for the medications the patient was taking prior to 

ED admission.  

- Pyxis: This table provides information for the dispensation of medication.  
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- Triage: This table contains information gathered from patients at the time of their 

triage, this process involves generating insights about the patient health status and 

reason for visiting.  

- Vitalsign: The patient's aperiodic vital signs that were recorded throughout their stay 

are included in the vital-sign table. 

A healthcare information model is a representation of how tables in a medical database relate 

to one another and to potential healthcare events. Because it facilitates the extraction of 

event logs and the comprehension of process-oriented queries, the information model is 

important in process mining research 

 

Figure 3-4 MIMIC-IV_ED data reference model 

To further our analytical endeavours, we have curated a csv file and an event log. These 

formats facilitate visual representations of the process and enable the application of our 

technique on structured data. We would explore how MIMIC data was previously utilised and 

how our work is different.  
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3.4 Previous Application of MIMIC Datasets in Process Mining 

The research conducted by Alharbi as part of the thesis in unsupervised Abstraction 

techniques utilised the MIMIC-III Database to generate an event log for reducing complexity 

with the discovered process maps using an abstraction approach in discovering process maps, 

the research approach followed the following stages event log extraction, pre-processing, 

learning, decoding, optimisation, selection, Model visualisation, Evaluation (Alharbi, 2019). 

The research conducted by Kusuma, and other researchers focused on developing log 

transformations tools to enable further researchers utilising the records. The steps provided 

in the research was based on the following stages planning, Extraction, Data Analysis and 

Mining & Analysis. These are the steps used in generating actionable insights from the data 

(Kusuma et al., 2021). 

The research conducted by Rojas focussed on assessing the data quality issues associated with 

process mining, in the research conducted he utilised the MIMIIC-III datasets, the method 

used was an adaptation of the L* life-cycle model to include assessing the data quality of the 

event log. The research commended the availability of the data, as it enables research to be 

validated and replicated by other researchers (Rojas et al., 2018). 

 

The research of Kurniati was focused on an exploratory approach in understanding the cancer 

treatment processes within the MIMIC-III dataset, the research utilised the approach of 

presented by van der Aalst in the process mining manifesto of 2011 called the L∗ life-cycle 

model describing a process mining project (M. L. Van Eck et al., 2015). Kurniati added some 

addition steps form the pm2 process mining project methodology to cater for the extraction 

and data processing stage (M. L. Van Eck et al., 2015). The findings from the research indicated 

a necessity for enhanced data cleaning and the deployment of additional algorithms to glean 

deeper insights, as suggested by (Kurniati et al., 2018).  This study centres on readying the 

data for event prediction tasks, contrasting past efforts that concentrated on uncovering 

processes behind activities. Specifically, this research is geared towards offering predictions 

on the next activity and subsequently elucidating the rationale behind those predictive 

outcomes. The study aspires not just to visualize but to harness the entirety of the data's 

information. This approach marks a departure from previous methodologies, aiming to offer 
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clarity and understanding regarding the basis of our predictions. The next section would focus 

on data processing of the primary data.  

3.5 Data processing  

The primary objective of this stage is the creation of event logs format. The process involved 

assigning the actual names required for an event log and gathering further general insights 

on the data. This study would start by performing a data exploratory analysis, then we would 

discuss the pre-processing steps taken.  

3.5.1 Data Exploratory Analysis  

Our research revolves around a comprehensive analysis of patient activities and procedures 

in the Emergency Department (ED). The focus is to not only study the existing patterns but to 

predict future trends and improve patient care. In this section we provide information about 

our data. Figure 4.5 shows a bar chart represents that shows the distribution of various 

activities and procedures that patients undergo in the ED and outcome. The top three 

activities, by volume, are 'Medicine reconciliation', 'Medicine dispensations', and 'Vital sign 

check', respectively. 
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Figure 3-5 Bar chart on MIMIC_IV_ED Data 

 

The information displayed in table 4.1 below, shows that Medicine Reconciliation ranks 

highest with 3,143,791 instances, indicating that a significant portion of the patient 

population requires a review and verification of their medication details while the information 

in table 4.2 below provides information on the patient data encompassing several patient 

attributes. Medicine Dispensations are noted 1,670,590 times, suggesting a vast number of 

patients are given medication during their ED visit. The third most common activity is the Vital 

Sign Check with 1,646,976 instances, which is essential for monitoring patient's immediate 

health condition. 

 

Activity/Procedure Count 

Medicine reconciliation 3,143,791 

Medicine dispensations 1,670,590 

Vital sign check 1,646,976 

Enter the ED 447,712 
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Triage in the ED 447,712 

Discharge from the ED + diagnosis 1 446,530 

Discharge from the ED + diagnosis 2 269,945 

Discharge from the ED + diagnosis 3 134,685 

Discharge from the ED + diagnosis 4 59,303 

Discharge from the ED + diagnosis 5 23,818 

Discharge from the ED + diagnosis 6 8,696 

Discharge from the ED + diagnosis 7 2,730 

Discharge from the ED + diagnosis 8 788 

Discharge from the ED + diagnosis 9 197 

Table 3-1 MIMIC_IV_ED Activity Details 

On the other end, the number of patients being discharged with a higher count of diagnosis 

(from diagnosis 5 to diagnosis 9) is significantly lower, suggesting that most patients in the ED 

have fewer complications. 

 

#     Column               Dtype     #     Column               Dtype    

0  stay_id              int64    
   

1  gender               object   16  o2sat                float64  

2  race                 object   17  sbp                  float64  

3 arrival_transport    object   18  dbp                  float64  

4  disposition          object   19  pain                 object   

5  subject_id           int64    20  acuity               float64  

6  hadm_id             float64  21 chiefcomplaint       object   

7  timestamps           object   22  rhythm               object   

8  activity             object   23  name                 object   

9  seq_num              float64  24  gsn                  float64  

10  icd_code             object   25  ndc                  float64  

11  icd_version          float64  26  etc_rn               float64  

12  icd_title            object   27  etccode              float64  

13  temperature          float64  28  etcdescription       object   

14  heartrate            float64  29  med_rn               float64  

15  resprate             float64  30  gsn_rn               float64  

Table 3-2 MIMIC_IV_ED Data column details 

 

▪ Demographics: This includes gender, race, and other identification details. 
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▪ Arrival Mode: Various methods through which patients arrive at the ED, such as 

walking, ambulance, or helicopter. 

▪ Medical Metrics: These include vital signs like temperature, heart rate, respiratory 

rate, blood pressure, and more. 

▪  Diagnosis and Medication: Details on ICD codes, medication details, and their 

descriptions. 

 

 

 

 

 

Table 3-3 Arrival transport details 

The Arrival Transport Details section offers insights into the modes through which patients 

arrive at the emergency department as shown in table 3-3. This categorization includes 

standard methods like "WALK IN" and "AMBULANCE," as well as more specialized ones such 

as "HELICOPTER." Each mode is represented with a count, shedding light on the prevalence 

of each transportation method. In summation, the dataset not only provides a holistic view 

of the operations within the emergency department but also emphasizes discerning the 

significance of specific columns. Their potential influence on predicting subsequent activities 

is a focal point of this research. The subsequent sections will delve deeper into the pre-

processing steps and the analytical methodologies employed to derive these insights. 

3.5.2 Data Pre-processing approach 

This approach was applied to all the datasets, to form a level of consistency.  

In my pursuit to optimize the dataset for subsequent analyses, I meticulously crafted a pre-

processing function. This function not only reshaped the data into an appropriate format but 

also augmented it with pivotal features for my research. The following elucidates the 

rationale and logic behind each pre-processing step: 

 

Timestamp Conversion 

Mode of Transportation  Count 

 Walk in                 4,478,823 

 Ambulance               3,604,183 

 Unknown                 179,599 

 Other                   23,826 

 Helicopter              17,042 
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I transitioned the timestamps in the dataset to a standardized datetime format. This step was 

crucial to ensure that all ensuing operations involving time were consistent and accurate. 

Rationale: Handling time data in its raw string format can lead to inconsistencies. By 

transitioning it to a standardized datetime format, I could effortlessly utilize built-in 

functionalities for time-based operations, a sentiment echoed by (Narajewski et al., 2021). 

 

 

Sorting by Timestamp 

The dataset was sorted chronologically based on timestamps, ensuring the sequence of 

events remained intact, which is vital for time series analysis. 

Rationale: The sequence of events in a patient's journey through the emergency department 

can yield invaluable insights. By maintaining events in chronological order, I could document 

the natural progression of each patient's experience. 

Trace Positioning 

A 'tracePosition' column was introduced, counting the number of events for each patient 

case, providing a sequential position for each event within its respective case. 

Rationale: Recognizing the position of an event within a patient's journey can be pivotal in 

forecasting subsequent activities. This trace position acts as a relative timestamp, offering 

context to each event. 

 

Day Categorisation 

The dataset was enhanced by categorizing each event based on the day of the week it 

occurred, leading to the creation of columns such as 'weekday', 'saturday', and 'sunday'. 

Rationale: The day of the week can significantly influence the operations of an emergency 

department. By categorizing events based on the day, I aimed to capture these potential 

variations, a perspective supported by (Becker & Bagrow, 2019). 

Encoding and Dummies 

In this study, categorical data within the dataset were subjected to encoding processes to 

ensure compatibility with the machine learning algorithms utilized. Specifically, the 

'event:concept:name' column underwent one-hot encoding, a process that generated 

dummy variables to represent the distinct categories within the column. This encoding 

technique was selected to preserve the categorical distinctions without introducing an ordinal 
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relationship that could potentially mislead the algorithm. In parallel, label encoding was 

applied to several other categorical columns, namely 'gender' and 'race'. This encoding 

strategy was deemed suitable for these columns as it transformed the categorical values into 

a numerical format, a requirement for the machine learning models employed in this analysis. 

The rationale behind these encoding approaches stems from the established practice of 

converting categorical variables into a numerical format to facilitate machine learning 

algorithms, a practice underscored by (Dahouda & Joe, 2021; Kosaraju et al., 2023; Valdez-

Valenzuela et al., 2021). 

 

Target variables Calculation 

In this study, I designated specific target variables, namely 'true_activity' and 

'true_activity_life', to represent the subsequent activity corresponding to each event. This 

formulation was driven by the primary objective of predicting the forthcoming activity based 

on the given data. The delineation of these target variables serves as a foundational step 

towards employing supervised learning techniques. By establishing a clear representation of 

subsequent activities through the target variables, I have created a structured framework that 

facilitates the application of predictive algorithms to achieve the desired forecasting accuracy. 

In summary, the pre-processing steps executed in this study transcended mere mechanical 

transformations; each step was underpinned by a well-considered rationale. This rationale 

was intimately intertwined with the nuanced operational dynamics of emergency 

departments and aligned with the overarching objectives of my research. By meticulously 

tailoring the pre-processing procedures to the distinctive characteristics and demands of the 

emergency department setting, I aimed to foster a robust analytical framework conducive to 

insightful analysis and meaningful predictions. 

 

3.6 Mining and Analysis  

In the implementation phase of our study, we engaged in a multifaceted approach to extract 

insights from the data. Initially, we employed process mining techniques, enabling us to 

visualize the data and delineate the processes undertaken. This visualization served as a 
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precursor to our next objective: the development and implementation of a predictive model 

aimed at forecasting subsequent events within our process framework. 

Furthermore, we intend to incorporate Explainable Artificial Intelligence (XAI) methodologies. 

The adoption of XAI will not only facilitate deeper insight generation but also provide a lucid 

understanding of the mechanisms through which our models derive results. A primary aim 

here is to discern the variables significantly impacting the decision-making process, thus 

promoting a more transparent and interpretable model operation. 

3.6.1 Process Mining Implementation 

The process mining initiative was undertaken employing a range of algorithms, notably the 

Alpha and Heuristic Miner algorithms, to conduct an initial analysis on the data. Subsequent 

to this initial analysis, we opted to utilize the Disco software tool to achieve a more enriched 

visualization of the process map. This transition to Disco facilitated a comprehensive 

identification and visualization of the various processes involved. Figure 3-6 below displays a 

sample log generated from this implementation, exemplifying the practical application of 

process mining on the MIMIC_IV_ED dataset. 

 

Figure 3-6 sample of event log of MIMIC_IV_ED data 

3.6.2 Model Building 

In our model-building section, we delineate the data preparation methodology, emphasizing 

the criticality of representative training and test datasets. We adopted a stratified split to 

maintain consistent class distributions across both datasets, ensuring that our model's 

performance metrics are reflective of its true predictive power. Additionally, we utilized a 

fixed random state to guarantee the reproducibility of our data splits—an essential practice 

for transparent and verifiable scientific research. 
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Our approach judiciously combines train-test splits and cross-validation, leveraging their 

respective strengths in different scenarios. While train-test splits offer computational 

efficiency, making them suitable for preliminary learning and exploratory analysis, cross-

validation is employed when our dataset size is moderate to small. This method amplifies the 

reliability of our model evaluation, protecting against overfitting by averaging performance 

across multiple partitions of the data. 

For our substantial datasets, possibly spanning millions of records, we favour the train-test 

split due to its sufficiency in capturing data variability and providing reliable evaluation 

outcomes. Conversely, for smaller datasets, cross-validation emerges as the superior choice, 

enhancing the robustness of our performance assessment. 

The objective of the research is to construct a predictive model that is both robust and 

versatile. To achieve this, we have chosen to employ a combination of advanced machine 

learning algorithms, each bringing its unique strengths to the table. The algorithms selected 

for this endeavour are Random Forest, XGBoost, and the Tab Transformer, these algorithms 

have been deeply introduced and explained in section 2.4.2. Let's delve deeper into the 

rationale behind this selection and the methodology we will employ. For the empirical 

evaluation of our model, we will be utilising four distinct datasets. These datasets have been 

meticulously curated to ensure a comprehensive understanding of the underlying patterns 

and relationships. By training and testing our model on these diverse datasets, we aim to 

ensure that our model is not only accurate but also generalisable across different scenarios. 

 

ML MODEL IMPLEMENTATION  

In our study, we've incorporated several machine learning models, including the Random 

Forest, XGBoost, and the advanced Tab Transformer, with the latter designed for tabular data. 

Each of these models necessitates distinctive pre-processing, hyperparameter tuning, and 

fine-tuning steps, which we elucidate below: 

 

TAB TRANSFORMER  

Firstly, we would delve deeper and discuss our approach and the approach published by 

Bukhsh et al 2021 in the application of Transformer Architecture, we would analyse the 

difference between our implementation and theirs. Looking at various dimensions such as 

architectural approach, data processing, training protocols, versatility, and computational 



91 
 

complexity (Bukhsh et al., 2021). The work conducted by the Bukhsh, although predicted the 

next event, is not able to capture the effects of the categorical features associated in the 

process, this is one of the limitations that our approach solves, with our customised encoding, 

we are able to gain further insights on the data. Our approach extends for the applicability of 

Explainable Ai on our architecture.  

 

Criteria Bukhsh Methodology Our Methodology 

Dimensionality of 

Architectural Approach 

Utilizes standard Transformer model 

focusing on forecasting subsequent 

activities. 

Employs a nuanced Tab Transformer 

structure, managing categorical and 

numerical attributes independently. 

Architectural 

Components 

Token and positional embeddings, 

Transformer blocks, attention, and 

feed-forward networks. 

Multi-head attention, categorical 

embeddings, Layer Normalization. 

Data Processing and 

Encoding Strategies 

Focuses on structuring sequential 

data into tokenized forms through 

comprehensive pre-processing. 

Employs intricate encoding mechanism 

focusing on embedding categorical data, 

adaptable across diverse datasets. 

Training Protocols and 

Model Optimization 

Trained using conventional protocol 

with Adam optimizer and Sparse 

Categorical Cross entropy as a loss 

function. 

Incorporates multifaceted training 

regimes and sophisticated optimization 

techniques due to advanced 

architecture. 

Versatility and 

Application Spectrum 

Specialized and oriented towards a 

singular task, limiting its applicability 

to diverse scenarios. 

Demonstrates superior adaptability and 

versatility, extending its applicability to a 

wider array of tasks and scenarios. 

Algorithmic 

Sophistication and 

Computational 

Complexity 

Balanced between computational 

complexity and specificity, employing 

canonical transformer mechanisms. 

Engages in advanced mechanisms and 

nuanced handling of disparate data 

types, demanding sophisticated 

comprehension. 

Specialization Highly specialized in sequential 

prediction tasks. 

Universally applicable solution due to its 

ability to cater to varying categories of 

numerical and categorical data. 

Table 3-4 Comparison Our approach with the work done by Bukhsh et al., 2021 

 

The table 3.4 provides a comparison between our approach and that of bukhsh, in the table 

we mentioned several steps taken such as intricate Encoding mechanisms, Multifaceted 
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Training Regimes and sophisticated Optimisation, Superior Adaptability and Versatility, 

Advanced Mechanisms and Nuanced handling of Disparate Data Types.  

• Intricate Encoding Mechanism: 

In our methodology, we employ a specialized and intricate encoding mechanism 

focusing primarily on embedding categorical data. This mechanism is crucial for 

transforming categorical variables into a numerical format, using advanced techniques 

such as embedding layers, enabling the model to represent categorical data in higher 

dimensions and capture more complex relationships within the data. Each categorical 

feature undergoes a separate embedding process, and the resulting embeddings serve 

as refined inputs to the model. This approach allows the model to understand and 

learn the categorical data more effectively. Furthermore, this encoding mechanism is 

highly adaptable, designed to handle a variety of datasets with different categorical 

features seamlessly. This adaptability ensures the model's versatility and applicability 

across diverse problems and domains, making it a robust solution for a multitude of 

tasks involving categorical data. 

 

• Multifaceted Training Regimes and Sophisticated Optimization: 

The methodology designed incorporates advanced and multifaceted training regimes 

coupled with sophisticated optimization techniques, attributed to the model's 

advanced architecture. The model is trained using refined training protocols, including 

learning rate scheduling, gradient clipping, and the Adam optimizer with weight decay 

and clip value. These advanced techniques stabilize the training process, preventing 

overfitting and ensuring the model learns the underlying patterns in the data 

effectively. The sophisticated architecture of the model, including components like 

multi-head attention and layer normalization, necessitates such advanced training 

and optimization processes. These processes enable the model to learn and adapt 

effectively to the complexities and nuances of the diverse datasets it encounters. 

 

• Superior Adaptability and Versatility: 

The model designed demonstrates a high degree of adaptability and versatility, 

extending its applicability to a wider array of tasks and scenarios. The architecture of 

the model, enriched with advanced components like multi-head attention and layer 
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normalization, is designed to learn complex patterns and relationships in the data. 

This design makes the model suitable for a plethora of tasks, ranging from 

classification to regression, and across various domains. The adaptability and 

versatility of the model are paramount, allowing it to be a universally applicable 

solution, capable of catering to varying categories of numerical and categorical data 

across diverse application spectrums. 

 

• Advanced Mechanisms and Nuanced Handling of Disparate Data Types: 

This methodology designed engages in advanced mechanisms and employs nuanced 

strategies to handle disparate data types, including both categorical and numerical 

data. The model processes numerical and categorical features separately, applying 

normalization to numerical features and embedding to categorical ones. This separate 

processing enables the model to handle mixed data types effectively and efficiently. 

The nuanced handling of different data types and the advanced computational 

strategies employed require a deep and sophisticated comprehension of the data and 

the relationships between features. This level of comprehension and analysis is crucial 

for developing models that are effective and robust, capable of handling the 

complexities and diversities of the datasets they are applied to. 

 

After discussing the differences between this work and Bukhsh's approach, this research now presents 

its own methodology and highlights its unique features. The approach taken in this work is distinct 

from Bukhsh's in several ways, including the use of a different process mining tool (PM4Py) and the 

application of the Tab Transformer, a powerful machine learning algorithm. The approach also makes 

use of a refined version of the PM2 Methodology, which has been adapted for use with the PM4Py 

tool. The Tab Transformer is a sophisticated model tailored for tabular data. Drawing 

inspiration from the transformer architecture widely used in natural language processing 

tasks, the Tab Transformer has been fine-tuned to address the nuances and challenges posed 

by structured data. Unlike conventional models that treat each feature independently, the 

Tab Transformer captures interactions between features, making it potent in deciphering 

intricate patterns. 

Model Components: 
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• Embeddings: At the heart of the Tab Transformer lies the embedding mechanism. 

This system translates categorical features into dense continuous vectors, 

ensuring they are in a format conducive for deep learning models. The dimension 

of these embeddings, controlled by the embedding dims parameter, is critical. It 

determines the amount of information each categorical feature can encapsulate. 

• Multi-Head Attention: Borrowed from the transformer architecture, the multi-

head attention mechanism enables the model to concentrate on different portions 

of the input data simultaneously. This parallel attention mechanism captures 

various facets and relationships within the data, enriching the model's 

understanding. 

• Positional Embeddings: For sequences or ordered data, positional embeddings are 

added to provide the model with a sense of order, enabling it to factor in the 

significance of the feature's position. 

• Feed-forward Neural Networks: After the attention mechanism, the model 

employs feed-forward networks. These networks further process the information, 

adding depth and complexity to the model's learning capability. 

Hyperparameters and Their Implications: 

1. LEARNING RATE  

• Description: The learning rate is a crucial hyper parameter that determines the 

step size at each iteration while moving towards a minimum of the loss function. 

In essence, it controls how swiftly or gradually the neural network adjusts its 

weights during the training process. 

• Rationale: A smaller learning rate, as chosen (0.00002), allows for a meticulous 

and incremental update to the weights. Such an approach is beneficial in 

preventing drastic changes that might cause the model to overshoot the optimal 

weights. In situations characterized by a convoluted loss landscape, such a 

conservative learning rate can aid in achieving more stable convergence. 

2. WEIGHT DECAY  

• Description: Weight decay is a regularization technique that penalizes larger 

weights. It effectively works by adding an additional term to the loss that's 

proportional to the size of the weights. 
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• Rationale: A weight decay of 0.001 implies that during each update, the weights 

are slightly decayed by this factor. This discourages the model from having overly 

large weights, thereby preventing overfitting. 

3. DROPOUT RATE  

• Description: Dropout is a widely used regularization method wherein a 

predetermined fraction of neurons in a layer are randomly omitted or 

"deactivated" during the training phase. 

• Rationale: Implementing a dropout rate of 0.3 signifies that, during training, 30% 

of the neurons in the designated layers are disregarded in each forward pass. This 

mechanism ensures that the neural network does not become exceedingly 

dependent on any particular neuron, fostering generalized and resilient learning. 

4. BATCH SIZE  

• Description: The batch size delineates the number of training examples processed 

during a single forward and backward pass. This hyperparameter profoundly 

impacts the optimization dynamics and computational requirements. 

• Rationale: Selecting a batch size of 32 offers an optimal trade-off between 

computational efficiency, achieved through parallel processing, and the veracity 

of the gradient estimate. This choice is informed by extensive empirical studies in 

the deep learning domain, which have showcased its efficacy across a variety of 

tasks. 

5. Number of Epochs (NUM_EPOCHS) 

• Description: An epoch is representative of one complete cycle, where the model 

processes the entirety of the training dataset once, performing both forward and 

backward passes. 

• Rationale: Opting for 5 epochs implies the model undergoes training over the 

entire dataset twenty times. This number has been chosen to find a judicious 

equilibrium between the risks of underfitting (where the model fails to capture the 

underlying patterns in the data) and overfitting (where the model becomes overly 

attuned to the training data and performs poorly on unseen data). It ensures that 

the model adequately learns the patterns without over-extending its training 

duration. 
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6. Number of Transformer Blocks (NUM_TRANSFORMER_BLOCKS) 

• Description: This parameter dictates the number of transformer blocks integrated 

into the Tab Transformer model. 

 

• Rationale: The Opting for a four-transformer block configuration strikes a balance 

between complexity and efficiency. This design decision implies that, for our 

specific task, we believe a moderate model depth is optimal. It suggests we aim to 

harness the transformer's capabilities without overcomplicating the architecture, 

possibly because our dataset's characteristics and complexities don't demand an 

excessively deep structure. 

7. Number of Attention Heads (NUM_HEADS) 

• Description: This parameter refers to the total number of attention heads present 

in the multi-head attention mechanism, a foundational component of the 

transformer architecture. 

• Rationale: Incorporating eight attention heads empowers the model to 

concurrently concentrate on five distinct portions of the input data. This 

configuration ensures the model can discern and assimilate a richer tapestry of 

patterns and relationships in the data, thereby improving its capacity to capture 

diverse contextual relationships. 

8. Embedding Dimensions (EMBEDDING_DIMS) 

• Description: This parameter specifies the dimensionality of the dense vector 

representations, or embeddings, into which categorical features are mapped. 

• Rationale: Selecting an embedding size of 16 offers a harmonious balance 

between dimensionality and expressiveness. It ensures that the embeddings are 

succinct yet potent enough to encapsulate the critical nuances of the categorical 

data. 

9. MLP Hidden Units Factors (MLP_HIDDEN_UNITS_FACTORS) 

• Description: These coefficients influence the configuration of hidden units within 

the Multi-Layer Perceptron (MLP) segments of the model. Specifically, the hidden 

unit count is determined by multiplying these factors with the input count. 
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• Rationale: Adopting factors of [1, 1] denotes that the count of neurons or units in 

the MLP's hidden layers mirrors that of its inputs. This symmetry ensures a steady 

flow of information and aids in preserving the structural integrity of the data within 

the MLP. 

10. Number of MLP Blocks (NUM_MLP_BLOCKS) 

• Description: This parameter is indicative of the total count of distinct MLP blocks 

incorporated into the model's architecture. 

• Rationale: Incorporating two MLP blocks endows the model with an augmented 

capacity for nonlinear data transformations. This is instrumental in identifying and 

representing multifaceted relationships in the data, thus enhancing the model's 

expressive power. 

 

 Turning attention to the encode input’s function, meticulously designed to prepare data for 

seamless integration with our model. 

 

The encode_inputs Function: Bridging Raw Data to Model-Ready Format 

 

Tabular data presents a unique challenge in deep learning. The variance in data types—

specifically categorical and numerical—demands specialized pre-processing to feed them into 

neural networks. Recognizing this, we've designed the encode_inputs function to navigate 

the complexities of this transformation. In this section, we elucidate the inner workings of 

this function, detailing its pivotal role in preparing data for the Tab Transformer. 

 

1. Categorical Feature Processing: Categorical data holds distinct attributes that render it 

incompatible for direct insertion into neural models. This incongruence necessitates a 

series of methodical transformations, outlined below: 

 

a) Vocabulary Extraction: At the onset, it's imperative to discern the breadth and 

uniqueness of values within each categorical feature. To this end, a vocabulary is 

meticulously constructed, chronicling every unique value a categorical column holds. 

This vocabulary, apart from serving as a record, facilitates subsequent encoding 

stages. 
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b) String to Integer Conversion: With the vocabulary in place, the next imperative is to 

convert these categorical string values into an interpretable format for neural 

networks. Harnessing the capabilities of the StringLookup layer, we map each distinct 

categorical value to a unique integer. This deterministic mapping ensures 

reproducibility and paves the way for the next transformation phase. 

 

c) Embedding Creation: Numerical representations alone, although a step forward, 

don't fully harness the potential of deep learning. To remedy this, we employ an 

embedding layer. Here, each integer value representing a category is transformed into 

a dense, continuous vector. These embeddings not only enhance model input 

expressiveness but also capture intricate relationships between categories. 

 

d) Storage: Post-transformation, it's essential to ensure systematic storage for efficiency 

and subsequent retrieval. The processed embeddings are hence catalogued in the 

encoded_categorical_feature_list. 

 

2. Numerical Feature Processing: Unlike categorical data, numerical features already reside 

in a model-compatible format. However, ensuring their seamless integration with the 

model demands additional steps: 

 

a) Dimension Expansion: To homogenize the input data structure and to ensure 

seamless tensor operations, numerical features are subjected to dimension 

expansion. This procedure ensures that numerical data aligns flawlessly with the 

architectural expectations of the Tab Transformer. 

 

b) Storage: Following their transformation, these processed numerical features are 

securely stored in the numerical_feature_list. This organized storage facilitates 

streamlined data feeding during model training and evaluation. 

 

In the subsequent sections, we'll explore how the transformed data interacts with the model 

and impacts its performance metrics. By intertwining theoretical underpinnings with 



99 
 

empirical results, this comprehensive analysis aims to provide readers with a holistic 

understanding of our system's inner mechanics. 

 

XAI Implementation  

 

Transparency and interpretability in deep learning models are essential, especially in areas 

requiring comprehensive understanding of the decision-making process. Our research 

endeavours to use cutting-edge XAI techniques to render our models both potent and 

interpretative. 

 

Techniques Applied: 

a) SHAP (SHapley Additive exPlanations): 

• Description: SHAP values, grounded in game theory, enable the elucidation of 

machine learning model outputs. They bridge optimal credit allocation with localized 

explanations. 

• Implementation: In our study, SHAP was utilized to underline the weight of each 

feature in the predictive process, ensuring every feature's influence on model 

decisions is transparent. 

 

b) Feature Importance: 

• Description: A methodology that ranks and pinpoints the most pivotal attributes 

within a dataset. 

• Implementation: We harnessed feature importance to zone in on salient data, 

ensuring that model predictions rest on crucial attributes. 

 

c) Layer-wise Relevance Propagation (LRP): 

• Description: LRP backtracks through model layers attributing relevance scores to 

individual attributes. 

• Implementation: With LRP, relevance scores were accorded to features, offering 

insight into their influence within each model layer. 
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d) Local Interpretable Model Agnostic Interpretation (LIME): 

• Description: Local Interpretable Model-agnostic Explanations (LIME) clarifies 

complex machine learning models' decisions on a case-by-case basis. It works across 

different models by creating simple, interpretable models that approximate 

decisions locally around a specific instance. This approach reveals the influence of 

individual features on the model's predictions, enhancing understanding of the 

model’s reasoning for particular outcomes. 

• Implementation: To implement LIME, perturbed samples near the target instance 

are generated and fed into the complex model to predict outcomes. The model is 

analysed to identify the impact of features on the prediction, providing insights into 

the model’s local decision-making. 

 

 

3.7 Conclusion  

This chapter outlines a structured research methodology for a study on predictive process 

mining. The methodology includes careful planning, data preparation, and data processing. 

The study focuses on data integrity, quality, and exploratory analysis. The research 

methodology also includes state-of-the-art techniques for process mining implementation 

and fine-tuning advanced models. The methodology reflects the dedication to rigorous 

research, innovation, and knowledge quest, setting the stage for future explorations in the 

domain. The doctoral thesis provides a comprehensive examination of each phase and 

activities involved. 
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CHAPTER 4: Case Studies 

4.1 Introduction 

A structured research methodology for a predictive process mining study is presented in the 

preceding chapter. Careful planning, data preparation, and data processing are all part of the 

methodology. The study is centred on exploratory analysis, data quality, and integrity. 

Modern methods for applying process mining and optimizing complex models are also part 

of the study methodology. The methodology lays the groundwork for further investigations 

into the field by demonstrating a commitment to inventiveness, thorough study, and 

information acquisition. The doctoral thesis offers a thorough analysis of every stage and task 

involved.  

In this chapter, we delve into a series of case studies, each serving as a practical 

application and validation of the methodologies, models, and theories developed in the 

preceding chapters of this thesis. These case studies are crucial for testing and refining our 

research hypotheses and objectives, providing tangible insights into the real-world 

applicability and efficacy of our proposed solutions. The case studies have been carefully 

chosen to represent a variety of domains, each with its unique set of challenges and 

requirements. This diversity ensures a thorough evaluation of our research methodologies 

and contributes to the robustness and adaptability of our results. The selected domains 

include the medical field, with a focus on conditions such as sepsis, and extend to other areas, 

providing a well-rounded perspective on the applicability of our research. 

Each case study is approached with meticulous attention to detail, ensuring the integrity and 

reliability of our findings. The insights gained from these studies are not isolated; they 

contribute to a holistic understanding of the models and methodologies employed, shedding 

light on potential improvements, refinements, and new avenues for future research. 

In the subsequent sections, we will present each case study in detail, discussing the specific 

challenges encountered, the methodologies applied, and the insights gained, all while 

maintaining clarity and conciseness in our exposition. 
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4.2 Case Study 1: Medical Domain MIMIC-IV ED Dataset 

The Healthcare sector is a heterogenous and multi-disciplinary sector, these systems generate 

quite large medical records on a constant bases, understanding these processes and 

predicting the sequence, in which activities would occur has been a main stay challenge within 

the healthcare sector process mining has proven to generate an important analysis view on 

the process, we can understand the actual working of the process, thereby generating an 

actual working of the healthcare process (De Oliveira et al., 2019; Kieny et al., 2017; Munoz-

Gama et al., 2022b; Rehman et al., 2021) ,. However, the challenge over time has been 

utilising the information to predict the next sequence of activities (Baier et al., 2020; Weytjens 

& De Weerdt, 2020).  

In the medical domain, chosen specifically for our case studies, the emphasis on reliable and 

interpretable predictive models is paramount. These models not only play a pivotal role in 

enhancing patient outcomes and healthcare delivery but are also indispensable for aiding 

healthcare professionals. With accurate and comprehensible predictions, professionals can 

make informed decisions, ensuring timely interventions and appropriate treatments, thereby 

elevating the standards of patient care, and optimizing healthcare efficiency. 

4.2.1 An In-depth Exploration 

MIMIC-IV-ED is a large, freely available database comprising approximately 425,000 

emergency department (ED) stays at the Beth Israel Deaconess Medical Centre in Boston 

Massachusetts (MA) USA, between 2011 and 2019. It is intended to support diverse research 

studies and education initiatives in emergency care. 

• Background and Purpose: 

The ED is a high-demand, resource-limited environment where patients with varying 

severity levels are assessed and triaged. MIMIC-IV-ED supports data analysis in emergency 

care by providing a comprehensive database of admissions to an ED at a tertiary academic 

medical center in Boston, MA. 

 

 

• Data Composition: 
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MIMIC-IV-ED is composed of a single patient tracking table, edstays, and five data tables: 

diagnosis, medrecon, pyxis, triage, and vitalsign. Each table provides different aspects of 

patient information, such as vital signs, medication reconciliation, medication 

administration, and discharge diagnoses. 

 

Figure 4-1 Diagnosis Data sample 

 

The diagnosis Figure in 4.1 stands as a testament to the rigorous post-admission evaluation 

procedures, documenting coded diagnoses as per the International Classification of Diseases 

(ICD) - either the Ninth or Tenth revision. This figure relevance is underscored by its utility in 

hospital billing processes. Within this table, the seq_num column offers a gradient of 

diagnostic relevance, with a lower value typically denoting higher pertinence. Additionally, 

the icd_code, icd_version, and icd_title columns collectively provide a comprehensive 

understanding of the diagnosis itself, ranging from its coded representation to its textual 

description. 

 

 

Figure 4-2 Edstays Data Sample 
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The edstays table in Figure 4.2 serves as the backbone of the MIMIC-IV-ED database, 

meticulously recording each unique visit an individual makes to the emergency department. 

Each row in this table encapsulates a distinct ED visit. Specifically, the subject_id column, a 

unique identifier, ensures seamless cross-referencing across tables, making it possible to link 

data with other datasets such as MIMIC-IV and MIMIC-CXR. Furthermore, the hadm_id 

column is of particular interest as its presence signifies subsequent hospital admissions post 

the ED visit. The timestamps intime and outtime chronicle the exact duration of the ED stay, 

revealing patterns about patient flow and ED efficiency. 

 

 

Figure 4-3 Medrecon Data Sample 

With patient safety at its core, the medrecon figure 4-3 offers a detailed account of a patient's 

medication history prior to their ED visit, embodying the essence of medication reconciliation. 

Columns such as name, gsn, and ndc furnish explicit details about each drug, from its textual 

description to its Generic Sequence Number and National Drug Code. In cases where drugs 

fall into multiple ontology groups, the etc prefixed columns play a pivotal role, facilitating a 

holistic understanding of drug categorization. 
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Figure 4-4 Pyxis Data sample 

The integration of technology into patient care processes is vividly captured by the pyxis 

figure in 4.4, which logs details related to the BD Pyxis MedStation—an automated 

medication dispensing system in the ED. Each row in this table not only details the medication 

dispensed but also offers timestamps via the charttime column, which can be instrumental in 

assessing medication administration timelines and compliance. 

 

 

Figure 4-5 Triage Data Sample 

 

At the frontlines of the ED, the triage presented in table 4.5 captures the immediate 

assessments made as patients present themselves. Columns detailing vital signs—like 

temperature, heartrate, and sbp—along with the chief complaint field, paint a vivid picture 

of a patient's health status upon arrival. The acuity column, which designates the severity of 

the patient's condition, can serve as a vital metric for studies into ED response times and 

resource allocation. 
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Figure 4-6 Vitalsign Data Sample 

 

The Vitalsign table 4.6 above is an extension of the triage table, the vitalsign table logs 

periodic vital signs captured during a patient's ED stay. It mirrors many columns from the 

triage table, but notably includes the rhythm column, detailing the patient's heart rhythm. 

This table, when analysed in tandem with others, can provide insights into the trajectory of a 

patient's condition during their stay. It also offers various other facets such as:  

• Integration: 

The dataset is a module of MIMIC-IV, meaning the information contained within MIMIC-

IV-ED is linkable to information in MIMIC-IV. This integration allows for a broader and 

more integrated analysis, enabling researchers to obtain additional information regarding 

individuals and compare different aspects of patient care. 

• Clinical Relevance: 

The extensive and diverse information available in MIMIC-IV-ED is crucial for developing 

advanced algorithmic approaches aimed at improving the quality of care delivered in the 

ED. It enables a thorough analysis of patient conditions, treatments, and responses, 

providing insights that can inform clinical practices and healthcare delivery. 

The MIMIC-IV-ED database is a meticulously structured repository capturing diverse facets of 

patient experiences within an emergency department setting. The various tables provide a 

lens into patient diagnostic data, their journey through the ED from admission to discharge, 

their prior medication records, administered medications within the ED, their initial health 

assessment details, and periodic vital signs throughout their stay. Each table, from Diagnosis 
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Data to Vitalsign Data, collectively furnishes a holistic portrayal of patient care, ensuring 

comprehensive research insights for scholars investigating emergency medical care dynamics. 

Objective and Significance of Dataset Selection 

The MIMIC-IV-ED dataset is pivotal for our research. These datasets not only provide a wealth 

of information but also represent real-world scenarios where the application of advanced 

predictive models can have significant impacts. The detailed and diverse data available in 

these datasets allow for an exhaustive exploration and evaluation of various aspects of 

medical conditions and healthcare processes. By leveraging the insights derived from these 

datasets, we aim to enhance the accuracy and interpretability of predictions in the medical 

domain, contributing to improved clinical decision-making and patient outcomes. 

 

The rationale behind selecting the medical domain, is to explore the realms where the risks 

are exceptionally high, and the margin for error is minimal. By applying our developed models 

and methodologies to such a critical area, we aim to demonstrate the practical utility, 

adaptability, and impact of our research. The insights derived from the analysis of these 

datasets are intended to contribute to the ongoing discourse on predictive modelling in 

healthcare, offering potential pathways for advancements in medical diagnostics, 

interventions, and patient care strategies. 

In our research, the application of the constructed event log is crucial, with the overarching 

aim to apply process mining techniques to discover the inherent structure of processes within 

the Emergency Department (ED). The essence of this application is to unravel the intricate 

web of activities and interactions occurring within the ED, providing a structured and 

coherent view of the operational dynamics inherent in such a critical medical environment. 

Process mining will allow us to meticulously discover and visualize the process structure, 

revealing the sequences and patterns of activities, their interdependencies, and the flow of 

information and tasks within the ED. This discovered structure will serve as the foundational 

framework upon which our research will build, enabling a deeper understanding of the 

operational intricacies of the ED and allowing for the identification of areas for improvement 

and optimization in emergency care delivery. 

 

The application of our Tab Transformer for predicting activities is not just a technical 

endeavour but a strategic initiative aimed at enhancing the precision and reliability of 
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predictions in the medical domain. In conditions such as sepsis, where swift and accurate 

interventions can be the difference between life and death, the ability to predict the next 

event with high accuracy is invaluable. It ensures that medical practitioners are well-informed 

and prepared to administer the necessary interventions promptly, thereby improving patient 

outcomes and optimizing the utilization of medical resources. 

Process Modelling 

Process modelling is a crucial step in our research methodology, allowing us to visually map 

out and analyse the flow of activities within the ED. By creating a process model based on the 

event log, we can: 

1. Identify Patterns: Uncover recurring sequences and patterns of activities, revealing 

the typical flow of events within the ED. 

2. Detect Anomalies: Identify deviations and anomalies in the process flow, which can 

indicate potential areas of concern or improvement. 

3. Analyse Relationships: Examine the relationships and dependencies between 

different activities, providing insights into the interconnectedness of ED processes. 

Predictive Analysis 

Following the development of the process model, our research will employ advanced 

predictive analytics techniques to forecast the next event in a sequence (Appice et al., 2019; 

Tello-Leal et al., 2018; Theis & Darabi, 2019; Weytjens & De Weerdt, 2020). This predictive 

analysis aims to: 

 

1. Enhance Proactivity: Enable healthcare providers to anticipate subsequent events 

and activities, allowing for more proactive and informed decision-making. 

2. Optimize Resource Allocation: Facilitate better planning and allocation of resources 

by predicting future demands and requirements. 

3. Improve Patient Outcomes: Contribute to improved patient care and outcomes by 

allowing timely interventions based on predicted events. 

 

Importance for Healthcare Delivery 
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The application of this methodology has profound implications for healthcare delivery in 

emergency care settings. It provides a structured and analytical approach to understanding 

and improving ED processes, contributing to enhanced efficiency, effectiveness, and quality 

of care. The insights and knowledge gained from this application can inform the development 

of innovative solutions and strategies for optimizing healthcare delivery and improving 

patient outcomes in the ED. 

4.2.2 Methodology Implementation 

The first phase was the application of process mining algorithms to discover the process flow 

of our event log. We explained the various algorithms and tools in section 2.3.1 of the thesis, 

we applied the Heuristic and alpha algorithm to visualise the process discovery phase of the 

process but for further insight and improved visualisation we would be using the disco tool to 

discover a process map that generates as much detail as possible. Figure 5.2 describes the 

sepsis data event log providing a visual look at the activities and how they occur.   
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Figure 4-7 MIMIC_IV_ED Process Map Model 

 

Figure 4.7 provides an intricate visualization of the patient's journey through various stages 

within an Emergency Department (ED). Each node in the diagram represents specific actions 

or checkpoints, while the directed arrows (edges) denote the transition from one action to 

another. Alongside these transitions are numerical values, which likely indicate the frequency 
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of occurrences for each specific pathway. This quantitative aspect provides a deeper 

understanding of common trajectories and interactions within the ED. 

Upon entry, as marked by the "Enter the ED" node, most patients are promptly directed to a 

"Vital sign check." This immediate assessment serves to gauge the patient's current health 

status, ensuring that the most urgent cases receive timely care. The flow then typically 

advances to the "Triage in the ED" phase, a critical juncture where patients are systematically 

evaluated. The purpose of triage is to ascertain the severity of a patient's condition and 

subsequently prioritize their treatment accordingly. On notable significance in the flowchart 

are two medication-related nodes: "Medicine reconciliation" and "Medicine dispensations". 

The "Medicine reconciliation" node emphasizes the importance of verifying the patient's 

ongoing medications to avoid potential drug interactions or contraindications. In contrast, 

"Medicine dispensations" pertains to the actual provision of prescribed medications to the 

patients. 

A distinctive feature of the diagram is the multiple "Discharge from the ED" nodes, each 

correlated with a unique diagnosis. These nodes categorize and account for the varied 

reasons or conditions treated within the ED. Their presence underscores the diverse nature 

of cases handled in emergency settings, from the most common to the rare and complex. 

Furthermore, the overlapping arrows capture the intricate interdependencies and myriad 

paths a patient may traverse in the ED. Some routes, indicated by larger numerical values, are 

more prevalent, while others are less frequently observed. These cyclic patterns, especially 

around nodes like "Medicine reconciliation", insinuate that certain stages may require 

revisits, possibly due to iterative checks, repeated procedures, or necessary corrections. 

In wrapping up, Figure 5.1 serves as a comprehensive lens into the multifaceted patient 

interactions and processes within the ED. By delineating the most common to the least 

frequent pathways, this visualization is an invaluable tool. It not only enhances our 

understanding of patient flow but also offers insights that can drive optimization efforts in 

emergency care settings. 

Upon visualising our data, in line with our objective, we want to predict the next activity in 

the process flow. We would be applying our approach primarily on the MIMIC_IV_ED Event 

log after which, we would apply it on the Sepsis log and describe the application on the other 

case studies.  
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Historically, research in the domain of next event prediction has predominantly concentrated 

on the sequential order of activities, formulating predictions strictly based on these 

sequences. This approach, while foundational, has been somewhat restrictive, primarily 

focusing on the linear progression of events and overlooking the multifaceted nature of 

influencing factors and their interdependencies. Traditional models, relying heavily on 

attention mechanisms, learn and generate predictions based on the significance and values 

of sequences, often neglecting the potential impact of other crucial metrics. 

In the complex realm of medical processes, every element can be significant in guiding the 

next step. Our grasp of the importance of each element is still growing. Hence, we aim to 

combine all pertinent elements, letting the model independently determine the most 

influential ones. By taking this all-encompassing approach, we aim for a more refined and 

accurate prediction, enhancing the precision and dependability of predictive process 

monitoring. 

 

The implementation of the Tab Transformer in our research is a strategic endeavour to 

elevate the accuracy and reliability of next event predictions in medical settings. This 

innovative architecture is designed to assimilate a diverse range of features, providing a more 

holistic and multifaceted view of the influencing factors in medical processes. By enabling the 

model to learn from a broader spectrum of features, the Tab Transformer can identify 

intricate patterns and relationships that traditional models might overlook, thereby 

enhancing the predictive capability of the model. 

The Tab Transformer’s ability to integrate and learn from a multitude of features is 

particularly pivotal in medical domains such as emergency departments, where a myriad of 

factors converges to influence patient trajectories and outcomes. By leveraging the advanced 

learning capabilities of the Tab Transformer, our research aims to uncover deeper insights 

into the complex interplay of factors in medical processes, contributing to the advancement 

of predictive analytics in healthcare and paving the way for more informed and proactive 

medical interventions. 
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At the outset of this research, it was imperative to establish a foundational structure would 

guide our subsequent experimental approaches. A designated structure as "baseline model" 

was made.  The inception of this model was primarily to facilitate an elementary 

comprehension of the dataset in hand and to assess the practicability of the methodologies 

we intended to deploy. Base model in this context meaning our first experiment where we 

implemented a very simple multi-layer feed-forward network using a defined method called 

create_baseline_model(), which is basically training and evaluating the baseline model 

against the tab transformer. One of the differences in the method is that with baseline model, 

it does not incorporate self-attention mechanisms and positional embeddings like the tab 

transformer does, so it is like a pre-cursor to see how it performs before we now use Tab 

Transformer in simplified terms. To elucidate further, the baseline model was architecture as 

follows: 

 

Model Design and Functionality: 

 

• Inputs Creation: The model begins by generating appropriate inputs using the 

create_model_inputs() function. 

• Features Encoding: This step involves encoding the input data. The categorical data is 

encoded using embeddings of specified dimensions (embedding_dims), and these 

encoded categorical features are stored in encoded_categorical_feature_list. The 

numerical features are retained in the numerical_feature_list. 

• Features Concatenation: All the aforementioned encoded categorical features and 

numerical features are concatenated to form a unified feature set. 

• Feedforward Layers with Skip Connections: Multiple feedforward layers are 

integrated, each with skip connections. The create_mlp() function is employed to 

establish these layers, ensuring data transformation and augmentation. The layers 

utilize GELU (Gaussian Error Linear Unit) as the activation function and Layer 

Normalization for normalizing the activations. 

• Multilayer Perceptron (MLP): An MLP is constructed, post the feedforward layers. The 

hidden units of this MLP are computed based on factors (mlp_hidden_units_factors) 

of the last feature shape. The activation function for this MLP is SELU (Scaled 
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Exponential Linear Unit), and the normalization is performed using Batch 

Normalization. 

• Output Layer: The model concludes with a dense output layer. Given the multi-class 

nature of our target, a SoftMax activation function is utilized to ensure that the output 

values lie between 0 and 1 and sum up to 1, representing the probability distribution 

over target labels. 

 

Within the context of our investigation, the baseline model's significance is not primarily in 

its sophistication but its capability to shed preliminary light on the dataset's characteristics 

and inherent challenges. As the study unfolds, there is an intention to iterate, enhance, and 

possibly expand upon this initial model to meet our investigative objectives. On testing, the 

baseline model registered an accuracy of 55.6% with the validation dataset. Although this 

level of accuracy is insightful and establishes an initial benchmark, it emphasizes the 

imperative for more intricate models that can adeptly encapsulate the multifaceted nature of 

our dataset. 

 

Model Configuration and Parameters: 

 

The baseline model was configured with the following parameters: 

• Learning Rate: 0.0001 

• Weight Decay: 0.0001 

• Dropout Rate: 0.2 

• Batch Size: 128 

• Number of Epochs: 20 

• Number of Transformer Blocks: 1 

• Number of Attention Heads: 5 

• Embedding Dimensions: 16 for the categorical features. 

• MLP Hidden Units Factors: [1, 1] 

• Number of MLP Blocks: 2 in the baseline model. 
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Development Process 

 

The development of the baseline model involved meticulous configuration and tuning of 

parameters to ensure optimal performance on the preliminary dataset. During this phase, we 

encountered several challenges related to data pre-processing and feature selection, which 

were addressed through iterative refinements and optimizations. The model was compiled 

with an optimizer utilizing the AdamW algorithm, with a learning rate and weight decay as 

specified above. The loss was computed using Sparse Categorical Cross entropy, and the 

model’s performance was evaluated based on sparse categorical accuracy.  

 

The comprehensive data, derived from CSV files, was thoughtfully partitioned into training 

and testing segments. This division was executed using a predetermined method to ensure 

consistent replicability, anchored by a designated random state. The result of this division was 

a 75% allocation to the training set and a 25% allocation to the test set. These datasets were 

then preserved in distinct CSV files, reinforcing data coherence, and facilitating 

straightforward retrieval. This delineation enabled the model to hone its abilities on a specific 

data subset while reserving an untapped dataset for unbiased performance evaluation, 

upholding the rigorous standards of our investigative approach. 

 

The baseline model's development and subsequent performance evaluations provided a 

comprehensive understanding of our research's initial phase. With an accuracy of 55.6% on 

the validation dataset, this model's modest results served as an informative benchmark. The 

derived performance metrics illuminated the inherent challenges in capturing the dataset's 

multifaceted nature and highlighted the imperative for enhanced modelling techniques. 

 

Conclusion and Transition to Main Model 

The foundational knowledge gleaned from the baseline model became the cornerstone for 

progressing towards the more sophisticated Tab Transformer. The baseline's moderate 

performance brought to light certain limitations, making it evident that a more nuanced 

approach was required. This realization reinforced the need to explore complex data 

relationships further and target higher prediction accuracy. Consequently, our research 

trajectory shifted towards leveraging the innovative capabilities of the Tab Transformer 
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architecture, an endeavour aimed at achieving a profound understanding of the dataset and 

elevating the predictive accuracy. 

Reflection 

In retrospect, the baseline model's role in our research journey was pivotal. More than just 

an initial attempt, it provided us with valuable insights into the dataset's characteristics and 

the inherent challenges of our chosen methodology. Serving as the bedrock, this model paved 

the way for the introduction of the Tab Transformer, facilitating a continuous refinement 

process. The takeaways from this foundational phase proved indispensable, influencing our 

subsequent endeavours and directing us closer to the realization of our research goals. 

4.2.3 Tab Transformer Implementation 

The implementation of the Tab Transformer model is characterized by a meticulous and 

structured approach, aiming to optimize the model's predictive capabilities. The model's 

architecture is designed to process and transform both categorical and numerical features 

effectively, ensuring that each feature contributes to the model's overall predictive accuracy. 

An in-depth description of our model was described in 3.6.2, we would discuss our result 

below and hyperparameters tuning steps taken.  

 

Hyperparameter Tuning of Tab Transformer 

 

The optimization of the Tab Transformer model's hyperparameters is essential for achieving 

the best performance on the task at hand. Given the intricacies of the model's architecture 

and the numerous potential hyperparameters, conventional tuning methods can be resource 

intensive. To address this challenge, we adopted a systematic methodology. 

 

 

Methodology 

Instead of exploring each hyperparameter combination individually, a predefined set was 

established. This set considers crucial hyperparameters such as learning rates, dropout rates, 

batch sizes, and other architecture-specific parameters. A programmatic approach was taken 
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to generate all possible combinations, ensuring a comprehensive exploration across the 

diverse hyperparameter space. 

 

Hyperparameter Combinations Explored 

 The following table represents the various hyperparameter combinations that were tested 

during the tuning process: 

 

Table 4-1 Hyperparameter Tuning 

 

Upon exploring the various hyperparameter combinations, the model demonstrated varied 

performances. The objective was to discover a combination that would yield the highest 

accuracy and ensure the model's generalization to unseen data. The systematic approach to 

hyperparameter tuning played a pivotal role in achieving a significant improvement in 

predictive accuracy. The chosen Hyperparameter is highlighted in Bold on the table above.  

Comparative Analysis with Base Model 

The Tab Transformer model demonstrated a substantial improvement in predictive accuracy, 

achieving 69%, compared to the base model's 55.6%. This improvement is indicative of the 

Tab Transformer model's advanced capability to process and learn from the features 

effectively. 

a) Enhanced Feature Processing: 

Unlike the base model, the Tab Transformer model is adept at handling both 

categorical and numerical features, ensuring that each feature is adequately 

processed and contributes to the model's predictive accuracy. 

 

b) Incorporation of Diverse Metrics: 

Epochs Learning 
Rate 

Batch 
Size 

Weight 
Decay 

Dropout 
Rate 

Transformer 
Blocks 

Attention 
Heads 

Embedding 
Dims 

5 0.00001 265 0.001 0.5 4 5 128 

5 0.0001 128 0.0001 0.4 4 16 128 

5 0.00002 32 0.0001 0.4 4 8 64 

5 0.00002 32 0.001 0.3 4 8 64 

5 0.001 265 0.0001 0.2 4 4 16 
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The model's ability to incorporate a variety of features such as gender, race, mode of 

arrival, and medicine dispensations, in addition to the sequence of activities, has been 

pivotal in its improved performance. This incorporation allows the model to have a 

more holistic understanding of the data, enabling it to make more informed and 

accurate predictions. 

 

c) Advanced Learning Capabilities: 

The Tab Transformer model excels in learning complex representations from the data 

due to its structured flow and advanced architecture, including multi-head attention 

and feedforward layers within the transformer blocks. This advanced learning 

capability is a significant advancement over the base model, allowing the Tab 

Transformer to capture intricate relationships and dependencies between different 

features effectively. 

 

Implications 

 

The successful implementation of the Tab Transformer model has substantiated its efficacy 

in predictive process monitoring, showcasing its potential in various applications. The 

structured and advanced approach adopted in its implementation has enabled the model to 

achieve superior predictive accuracy, making it an asset in research and development in this 

domain.  

The comparative improvement over the base model underscores the advancements made in 

feature processing, learning capabilities, and the incorporation of diverse metrics, paving the 

way for further innovations and research in predictive modelling. The detailed 

implementation and the resultant improvements of the Tab Transformer model serve as a 

significant contribution to the field, providing a foundation for future research endeavours in 

advanced predictive modelling techniques. 

 



119 
 

4.2.4 Implementation of the Explainable Artificial Intelligence (XAI) 

Phase 

After the successful implementation and evaluation of the Tab Transformer model, the next 

crucial phase in our research is the deployment of Explainable Artificial Intelligence (XAI) 

methodologies. This phase is pivotal as it aims to decipher the intricate workings of the model, 

providing insights into how and why specific predictions are made. The incorporation of XAI 

is essential to validate the reliability and trustworthiness of the model, ensuring its decisions 

are understandable, transparent, and justifiable. 

 

Objectives of the XAI Phase 

 

a) Model Interpretability: 

The primary objective is to unravel the internal mechanisms of the Tab Transformer 

model, making its operations and decision-making processes interpretable to humans. 

This interpretability is crucial for validating the model’s predictions and understanding 

the significance of each feature in the decision-making process. 

 

b) Feature Importance Analysis: 

Through XAI, we aim to analyse and rank the importance of different features used by 

the model. Understanding which features are pivotal in making predictions allows for 

model refinement and provides insights into the underlying processes being modelled, 

ensuring more informed and accurate future predictions. 

 

c) Trust and Validation: 

By making the model's workings transparent and understandable, we seek to build 

trust in the model's predictions and validate its reliability and robustness. This trust is 

essential for the practical deployment of the model in real-world scenarios, where the 

stakes of each prediction can be significant. 

 

d) Enhanced Model Refinement: 
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Insights gained from understanding the model’s internal workings will facilitate 

further refinement and optimization of the model. This enhanced refinement is aimed 

at improving the model’s accuracy and reliability, ensuring its robustness in varied and 

dynamic environments. 

 

Methodological Approach 

 

In this phase, we will employ a range of XAI techniques and tools designed to elucidate the 

internal structures and operations of the model. These methodologies will focus on visualizing 

the model’s decision pathways, analysing feature contributions, and exploring the model’s 

response to different input variations. By leveraging these techniques, we aim to derive 

meaningful insights into the model’s functioning, facilitating its continuous improvement and 

optimization (El-Khawaga et al., 2022). 

 

Shap Implementation 

 

The SHAP implementation, provides insight into the impact on certain values for certain 

prediction. The use of SHAP (SHapley Additive exPlanations) provides a deeper level of insight 

into the decision-making process of the model, allowing us to understand which features of 

the data are most influential in making predictions. This feature importance information can 

be used to improve the model and make it more accurate and robust. SHAP is a powerful tool 

that has been shown to be effective in a variety of machine learning applications, and we 

believe that its use in this work will provide valuable insights into the model's decision-making 

process. By visualizing the SHAP values through force plots, we can observe the positive and 

negative contributions of each feature to the model's output, compared to the expected 

value. 

 

Figure 4-8 Force plot predictive instance of test case on MIMIC_IV_ED Prediction Model 
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In the context of machine learning, predictions in the logit space, especially with classification 

tasks, are not bounded between 0 and 1 as shown in Figure 5.3. Instead, they can range from 

negative to positive infinity. A logit value of zero corresponds to a probability of 0.5, with 

positive logits indicating probabilities greater than 0.5 and negative logits indicating 

probabilities less than 0.5. This is how the Figures are represented from the shap 

implementation.  

The central point of focus in the force plot is the model's prediction value f(x) that stands at 

0.91. This isn't a probability but a raw output indicating the likelihood of the next event's 

occurrence on a logit scale. For the given instance, this value signifies the model's confidence 

regarding the upcoming event based on the presented features. 

 

Positioned at roughly 0.9503, the 'base value' offers a reference point, illustrating the model's 

average prediction for the next event across all instances or a specific benchmark group. The 

departure of the f(x) value from this base indicates how the specific data point in question 

varies from the average behaviour. 

 

Feature Contributions and Their Dynamics 

 

Two distinct color codes encapsulate feature contributions: 

 

• Red features, like "zithromyc 500mg/250mL 250mL BAG", in Figure 4.8 are positive 

influencers, suggesting they increase the likelihood of the predicted next event. The 

magnitude of influence resonates with the bar's width. 

 

• In contrast, blue features, such as "event_concept_name = Medicine_dispensations", 

decrease this likelihood, pulling the prediction value toward a direction opposing the 

event's occurrence. 

 

It's essential to highlight features with NaN values. In a next event prediction context, these 

absent features can still be influential. Their non-presence might indicate a deviation from 

the usual pattern, which the model deems significant for the prediction. 
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Figure 4-9 Decision plot predictive instance of test case on MIMIC_IV_ED 

As discussed on the feedback on Figure 4.8, Figure 4.9 is the decision plot of the same event 

and illustrates a decision plot of the same prediction and the features influencing the 

prediction are provided below.  

 

Feature Influence in Logit Space: 

 

• chiefcomplaint: Lacking a defined value (nan), the absence or non-specificity of a chief 

complaint appears not to notably sway the prediction, suggesting its neutrality in this 

instance. 

• event_concept_name: The value "Medicine_dispensations" positively influences the 

prediction, pushing the logit score slightly higher than the base value. This indicates 
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that the event concept of dispensing medicine might increase the likelihood of the 

predicted event. 

• name (Azithromyc 500mg/250mL 250mL BAG): The presence of this specific 

medication and its dosage format seems to considerably elevate the logit value, 

emphasizing its role in determining the subsequent event. 

• disposition (HOME): Indicating the patient's intended location after the event, its 

value of 'HOME' mildly propels the prediction upwards, suggesting a potential 

relationship between the patient's post-event disposition and the predicted next 

event. 

 

The other features like hadm_id, etc_rm, and so forth, with their respective (nan) values, 

suggest that they either lack specific data for this instance or their absence/neutrality doesn't 

substantially deviate the prediction from the base value. 

 

While SHAP values provide an in-depth understanding, it's paramount to ensure that the 

interpretations align with real-world scenarios. Introducing or emphasizing features that 

might not naturally occur can skew interpretations. In next event prediction, the goal is to 

glean insights from features that genuinely matter and can naturally exist in the dataset. 

 

LRP Implementation  

The heatmap in Figure 5.5 provides a visual representation of the relevance of each feature 

in the specified layer, allowing us to discern which features are more influential in the model's 

predictions. The red features, 'icd_title', 'pain', and 'name’ which is the drug name in this case 

Azithromyc 500mg/250mL 250mL BAG, are significant, contributing positively to the model's 

output, while the blue features have less impact. 
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Figure 4-10 LRP heatmap plot of categorical features 

 

This detailed insight into feature relevance is crucial for understanding the model's decision-

making process, enabling further refinement and optimization of the model by focusing on 

the most influential features. It also aids in validating the model's predictions and ensuring its 

reliability and robustness in diverse scenarios. 

 

Lime Implementation 

 

 

Figure 4-11 MIMIC_IV_ED LIME Implementation 
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In our study, we employed the LIME framework to interpret the predictive model's decision-

making process for individual predictions. This approach provides local explanations, 

illuminating how the model's output is influenced by the input features for specific instances. 

 

As depicted in the figure 4-11, the prediction was categorized as 'positive' with a probability 

of 0.95. The LIME output demonstrates the features contributing to this classification, along 

with their respective weights, which are indicative of the feature's impact on the model's 

prediction. 

 

The features listed are shown alongside their corresponding weights in a descending order, 

indicating their relative importance. A positive weight suggests that the feature contributes 

toward the 'positive' class, while a negative weight suggests a push towards the 'negative' 

class. For instance, 'Discharge_flow_from_0-30_degrees' with a value of -8.00 has the most 

significant negative impact on the prediction, pulling the instance towards the 'negative' class. 

Conversely, 'Discharge_flow_from_30-60_degrees' with a value of 6.00 is the strongest 

positive contributor, pushing the prediction towards the 'positive' class. 

 

The color-coding further aids in visual interpretation: orange represents positive influence, 

while blue indicates negative influence. The shade intensity correlates with the feature's 

weight magnitude, allowing for a quick assessment of each feature's impact. 

 

In conclusion, the LIME analysis facilitates an understanding of the model's behaviour in the 

context of individual predictions. By doing so, it aids in validating the model's trustworthiness 

and provides insights into the model's operational mechanics, which is paramount for 

complex models in critical application areas. 

4.2.5 Case study review 

In this case study, advanced machine learning techniques were applied to medical data to 

develop a model capable of making accurate predictions. The model was built using a Tab 

Transformer architecture, and its interpretability was enhanced using SHAP values and Layer-

wise Relevance Propagation (LRP). In our exploration of next event predictions in the 
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healthcare environment, various machine learning models were trained and evaluated using 

the Mimic_iv_ED dataset. The performance metrics for each model, segmented by test and 

train datasets, are tabulated below: 

 

Mimic_iv_ED Test   Train  

Random Forest  0.65 0.634 

XGBoost 0.656 0.641 

TAB TRANSFORMER 0.69 0.68 

Table 4-2 Mimic_IV_ED Accuracy of observed algorithms 

 

The Random Forest model yielded an accuracy of 0.65 in the test dataset and 0.634 in the 

train dataset. Although this model offers inherent advantages like feature importance and 

ease of visualization, its accuracy was surpassed by both XGBoost and the TAB 

TRANSFORMER. XGBoost, a gradient boosting algorithm, slightly improved upon the Random 

Forest's performance, achieving a test accuracy of 0.656 and train accuracy of 0.641. This 

model's ability to optimize on the fly and handle missing data potentially contributed to its 

marginally superior performance. 

 

However, the most commendable performance came from the TAB TRANSFORMER, which 

achieved an accuracy of 0.69 on the test dataset, markedly surpassing the base model's 

accuracy of 0.556. Its slightly reduced gap between training and testing accuracy, compared 

to XGBoost, hints at better generalization to unseen data. 

The interpretability techniques employed provided profound insights into the underlying 

features influencing the model's predictions. Utilization of SHAP force plots and LRP heatmaps 

visualized the impact of each feature, shedding light on the contributions of individual factors 

in the model's decision-making process. 

In one of the instances analysed using SHAP, the logit space activity value of 0.91, within a 

frame between 0.89 and 0.97. The SHAP force plot highlighted the significance of features 
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like 'Disposition' and 'Name', contributing positively to the model's value of 0.91, while 

features with NaN values didn’t contribute towards the positive prediction of the model. 

The task of predicting the next event enables medical professionals to anticipate necessary 

interventions, hence optimizing the flow of patient care and mitigating potential risks. For 

instance, in one of our cases, our predictive model accurately forecasted that a "Vital Sign 

Check" would be the subsequent event, aligning perfectly with the actual event that took 

place. In another intriguing scenario, the model designed exhibited its capability to forecast a 

complex event, specifically predicting the activity "b'Discharge_from_the_ED_diagnosis_2". 

While this was the true next event, it's noteworthy to mention that the model provided 

probabilities for a myriad of potential subsequent events, ranging from various diagnoses 

upon discharge from the Emergency Department to tasks like "Medicine dispensations" and 

"Triage in the ED". This diverse set of predictions, ordered by their likelihood, equips 

healthcare providers with a comprehensive outlook, allowing them to better prepare for 

possible eventualities. By leveraging next event prediction in such a manner, healthcare 

institutions can usher in a new era of patient-centric care, characterized by efficiency, 

foresight, and adaptability Implications: 

 

1) Enhanced Decision-Making: 

The insights gained from the model provide medical professionals with a nuanced 

understanding of the factors influencing the model's predictions, aiding in more 

informed and accurate decision-making. The highlighted features such as 'icd_title', 

'pain', and 'name' in LRP analysis can guide medical practitioners to focus on specific 

areas for diagnosis and treatment plans. 

2) Improved Patient Outcomes: 

The model's high accuracy and the interpretability of its predictions can lead to more 

precise diagnoses and treatment plans, potentially improving patient outcomes. Early 

and accurate identification of medical conditions can facilitate timely intervention, 

reducing the risk of complications and improving the quality of life for patients. 

3) Enhanced Medical Research: 

In the analysis of next event predictions within the healthcare domain, the model's 

results were particularly illuminating. The prediction for the "Vital Sign Check" event 

exhibited perfect alignment with the real event, showcasing the model's capability to 
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predict routine or commonly occurring tasks in the healthcare environment. Such 

accurate predictions for standard tasks can significantly streamline processes, 

ensuring that necessary resources, such as medical personnel and equipment, are 

readily available. 

 

However, the prediction for the "b'Discharge_from_the_ED_diagnosis_2" event 

presented a more intricate scenario. While the model did successfully predict the 

event, the list of potential events showcased diverse possibilities with varying 

probabilities. For instance, "Medicine dispensations" and "Triage in the ED" had high 

probabilities, suggesting these events are common post-discharge or in conjunction 

with discharge procedures. This presents an opportunity for healthcare institutions to 

consider optimizing these processes, perhaps by ensuring that medicine dispensation 

is expedited after certain diagnoses or that triage processes are refined for quick and 

efficient patient care. 

Interestingly, among the predictions for the discharge diagnoses, there seems to be a 

near even distribution of probabilities across various diagnoses (from 

"b'Discharge_from_the_ED_diagnosis_5" to 

"b'Discharge_from_the_ED_diagnosis_8"). This indicates the inherent uncertainty in 

predicting the exact diagnosis upon discharge, given the numerous potential 

outcomes. Hospitals could use this insight to ensure that they're prepared for a wide 

range of patient needs upon discharge, rather than focusing resources on a singular 

predicted outcome. 

The events with the highest probabilities, "Vital_sign_check" and 

"Medicine_dispensations", suggest that these are critical and frequent interventions. 

Therefore, hospitals might consider reallocating resources or introducing 

technological solutions, like automated vital sign monitors or efficient medicine 

dispensation systems, to cater to these frequent events more seamlessly. 

A noteworthy observation is the presence of "Enter_the_ED" with a relatively high 

probability, suggesting that the model perceives a significant number of patients re-

entering the Emergency Department after certain events. This could be indicative of 

recurring patient issues, potentially due to premature discharges or complications. 
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This insight is crucial for hospitals to evaluate the quality of patient care and introduce 

measures to minimize return visits. 

In terms of improvement, the model could benefit from more granular data, especially 

regarding patient history, specific symptoms, and the duration between events. This 

would allow for more precise predictions. Moreover, integrating feedback loops 

where medical professionals validate or correct the model's predictions in real-time 

would be invaluable for iterative model refinement. 

 

4) Ethical and Responsible AI: 

The interpretability of the model ensures that the predictions are transparent and 

understandable, adhering to the principles of ethical and responsible AI. This 

transparency is crucial in medical settings where understanding the rationale behind 

predictions is essential for trust and accountability 

4.3 Case Study 2: Financial Domain (Loan Application Dataset) 

In transitioning from the medical domain to the financial domain, Case Study 2 sharpens its 

focus on loan application datasets, specifically BPIC 2012 and BPIC 2017, to further explore 

the applicability and efficacy of the Tab Transformer in predictive process mining. The choice 

of these datasets is strategic, allowing for a meticulous comparison of our results with existing 

works and offering a diversified perspective on how our model performs under varied 

circumstances. The BPIC datasets are renowned for their extensive and varied data points 

related to loan applications, providing a rich ground for detailed exploration and analysis in 

the financial sector. This sector, with its intricate and multifaceted processes, presents an 

ideal environment to investigate our first research question: "How does the Tab Transformer 

perform in predictive process mining for datasets with multiple categorical features, in 

comparison to existing methods like Random Forest and XGBoost?" By addressing this 

question, it was aimed to uncover the nuances of handling multiple categorical features in 

financial datasets and evaluate the relative strengths and limitations of the Tab Transformer 

in this specific context. 
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The integration of our research questions within this case study is not merely procedural but 

is intricately woven into every aspect of our analysis. We delve deep into the financial domain 

with a clear objective to understand the key determinants affecting loan approvals and to 

optimize loan application processes, thereby addressing our second research question: "How 

effective are various XAI techniques, when applied to the Tab Transformer in predictive 

process mining, at enhancing model interpretability and providing meaningful insights?" The 

insights derived from this study are not isolated observations but are reflections of the 

intricate interplay between various features and determinants in the financial sector. By 

focusing on the financial domain, this case study aims to provide substantial and actionable 

insights, contributing significantly to financial decision-making and risk management, and 

offering a refined understanding of the implications of our findings in the realm of finance.  

 

4.3.1 An In-depth Exploration 

We would describe both the BPIC 2012 and BPIC 2017 Data Below.  

 

BPI Challenge 2012 (BPIC 2012) 

The 2012 dataset (Boudewijn van Dongen, 2012), sourced from a global financial institution, 

centres around the intricate loan application process of the bank. Each application captured 

within this dataset passes through a series of states, leading up to a conclusive decision. The 

dataset comprehensively documents 262,200 events across 13,087 cases, with a diversity of 

24 unique event classes. These events encompass various attributes, ranging from 

timestamps to lifecycle transitions and resource identifiers. 

 

Delving into the process flow, the journey commences with an applicant initiating the loan 

application online. For cases not receiving an auto-approval, the application advances to the 

institution's personnel for further verification. During this phase, applicants might be 

prompted to revise or furnish supplementary details. As the application meanders through its 

lifecycle, it undergoes numerous state transitions, often changing hands between different 

departments or responsible individuals. Ultimately, every application converges to one of two 

resolutions: a "declined" status or an "approved" one. 
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Historically, this dataset has proven invaluable for academic and industrial research. Scholars 

have leveraged it to unearth underlying process models intrinsic to the loan application. 

Furthermore, it's been a pivotal resource to spotlight potential bottlenecks, inefficiencies, and 

to dissect the determinants steering an application to its final verdict. 

 

BPI Challenge 2017 (BPIC 2017) 

Offering a lens into the domain of personal loans and overdrafts, the 2017 dataset (Boudewijn 

van Dongen, 2017) emerges from an anonymized banking institution. This dataset paints a 

detailed picture of the application procedures, from the embryonic stages of initiating an 

application to its final outcome. With a vast repository of 1,202,267 events distributed over 

31,509 cases, the dataset boasts 26 distinct event classes. Each event, encapsulated within 

this dataset, is characterized by a myriad of attributes, including event-specific details, 

timestamps, lifecycle transitions, and the associated resource data. 

 

Shedding light on the process trajectory, it kicks off when potential customers embark on 

their loan application journey online. Post initiation, an associated offer springs into 

existence, setting the stage for negotiations. As customers and the bank endeavour to finalize 

the offer's terms, the application is subjected to a battery of validations, checks, and 

verifications. Navigating through this maze of procedures, every application culminates in one 

of three terminal states: "cancelled", "denied", or "accepted". 

 

The 2017 dataset, much like its predecessor, has been a cornerstone for process mining 

research. Researchers have wielded it to discover, juxtapose, and dissect diverse process 

variants. A focal point has been to trace pathways culminating in successful loan applications. 

In parallel, the dataset has empowered studies to pinpoint bottlenecks, inefficiencies, and 

instances necessitating rework or redundant validation. 

4.3.2 Methodology Implementation 

As we described in the case study of medical data, we discover the process flow of our event 

log which is presented below. The figure below describes BPIC 2017 and BPIC 2012 Loan 



132 
 

application process flow diagram. The figure3.7 below shows the BPIC 2017 process flow 

diagram of how the loan application process is carried out, there are 31,509 cases. Each 

following a set of subsequent or multiple activities before a decision is made.  

 

In the provided BPIC 2017 process model Figure 5.8 below, is a representation of the 

multifaceted application journey within a specific operational system is depicted. Each 

rectangular node symbolizes a distinct event or activity, illustrating pivotal stages of the 

application process. Notably, the inception of this journey is marked by the "A_Create 

Application" event, with a recorded initiation count of 31,509, emphasizing its foundational 

role in the process. 

Sequentially, arrows delineate the progression and transition from one event to its 

subsequent stage. These arrows, inscribed with numerical values, encapsulate the frequency 

of each specific transition. For instance, a prominent transition, witnessed 31,382 times, 

ushers applications from their creation to the "A_Submitted" stage, signifying the submission 

of these applications. 

Post-submission, the diagram illuminates several potential trajectories for the application. A 

segment of these applications seamlessly transitions to an "A_Accepted" status, while others 

navigate through an intermediary "W_Complete application" phase, accentuating the 

existence of conditional checkpoints or additional information requisites. In contrast, certain 

applications are directed towards a "A_Declined" or "A_Cancelled" state, suggesting varied 

outcomes based on predefined criteria or external factors. 

 

Further intricacies of the process are showcased through various sub-processes and tasks. 

The "W_Handle leads" task, for instance, might allude to a lead management or nurturing 

phase. Meanwhile, the "W_Validate application" activity, underscored by its loopback arrow, 

highlights potential iterative validation steps, hinting at meticulous verifications or possible 

amendments necessitated by discrepancies. 
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Figure 4-12 BPIC 2017 process model Diagram 

A particularly salient flow emerges between the "W_Call after offers" and "W_Incident late 

fee" events. The bold delineation of this transition underscores its significance, possibly 

indicating a prevalent or crucial pathway, where subsequent to an offer's issuance and a 

reminder call, incidents associated with late fees are recurrently observed. 

 



134 
 

On the spectrum's other end, less frequented paths, such as the one connecting "W_Personal 

Loan collection" to "O_Refused", shed light on rarer transitions or exceptional scenarios, 

meriting further exploration for optimization opportunities or anomaly detection. 

 

Each of these activities represents a distinct step or phase in a process and understanding 

them is crucial for comprehending the overall workflow or system being studied in the thesis. 

The clear delineation and description of each activity facilitate a deeper insight into the 

interactions, dependencies, and outcomes within the studied processes. Below we would 

describe the BPIC 2012 process flow model.  

 

The BPIC 2012 process flow model presented in Figure 4.13 provides a comprehensive 

visualization of the various stages and transitions within an operational workflow, 

characteristic of the BPIC 2012 dataset. The rectangular nodes, representing distinct events 

or activities, effectively map out the complex journey of applications or requests within the 

system. 

 

Initiation of this process is demarcated by the "O_CREATED-COMPLETE" activity, logging 

7,300 instances. This foundational activity likely represents the genesis of a request or 

application within the system, paving the way for subsequent activities. 

 

Transitioning forward, arrows guide the path from one activity to the next, with numeric 

annotations denoting the frequency of each specific transition. For instance, from the initial 

creation, there's a notable progression of 7,300 cases to the "O_SENT-COMPLETE" stage, 

hinting at a submission or dispatch process of the initial requests. 

 

Subsequently, the journey branches out into multiple trajectories. Some requests progress to 

the "O_SELECTED-COMPLETE" stage, while others traverse to the "A_ACCEPTED-COMPLETE" 

state, indicating potential approval or selection criteria met by these applications. 

Noteworthy is the dual transition from "A_ACCEPTED-COMPLETE" to either "W_Completeren 

aanvraag-START" or directly to "A_FINALIZED-COMPLETE", suggesting alternate routes based 

on certain conditions or requirements. 
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Figure 4-13 BPIC 2012 Process Model Diagram 

 

In the upper quadrant, the "A_SUBMITTED-COMPLETE" activity stands out with a substantial 

count of 13,087 instances. Following this, there's an intriguing iterative loop involving the 

"W_Afhandelen leads-START" and "W_Afhandelen leads-SCHEDULE" activities, suggesting 

possible iterative tasks or reviews associated with handling leads. 
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Additionally, a significant pathway emerges from the "A_PREACCEPTED-COMPLETE" stage, 

bifurcating into the "W_Completeren aanvraag-SCHEDULE" and "W_Completeren aanvraag-

START" events. The dense arrow lines underlining these transitions emphasize their 

prevalence, potentially underscoring a mandatory or frequent process phase. 

 

On the diagram's periphery, activities such as "A_DECLINED-COMPLETE" and the interactions 

involving "W_Nabellen offertes" series underscore specific outcomes or follow-up processes. 

The latter, characterized by a sequence of "START", "SCHEDULE", and "COMPLETE" stages, 

sheds light on a meticulous follow-up or feedback mechanism inherent to the system. 

 

4.3.3 Tab Transformer Implementation  

The focal point of our research is to predict subsequent activities in the process diagram, 

leveraging the trace positions of the records. We aim to discern the patterns and correlations 

within the sequences to anticipate the forthcoming steps in the application journey. 

Subsequently, we intend to elucidate the factors influencing these predictions, employing the 

explainable approach delineated in Case Study 1. This endeavour not only enhances our 

understanding of the procedural dynamics but also sheds light on the underlying factors 

steering the process trajectories, providing a comprehensive insight into the loan application 

ecosystem. 

We utilised the same model architecture and configuration for all case studies as described 

in case study 1.  

 

In the data pre-processing phase, essential transformations were applied to the raw event log 

data to augment its structure and extract salient features, thereby facilitating subsequent 

analyses. Initially, timestamps present in the 'time: timestamp' column were standardized, 

ensuring a consistent datetime format throughout the dataset. Post-conversion, the dataset 

was chronologically ordered based on these timestamps, reflecting the genuine sequence of 

events. A pivotal addition was the 'tracePosition' attribute, capturing the ordinal position of 

each event within its corresponding trace. This was achieved by iterating through each unique 

trace, sequentially assigning position values to its constituent events. 
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To capture temporal patterns potentially indicative of variations in process behaviors, day-

specific features were introduced. The 'dayOfWeek' column identified the particular day of 

the week an event occurred, while subsequent binary columns – 'weekday', 'saturday', and 

'sunday' – distinctly flagged weekdays and weekends. The categorical 'event:concept:name' 

column, representing diverse event activities, underwent one-hot encoding, culminating in a 

set of dummy variables. These widened the feature space, enabling distinct representation of 

each activity type. 

 

Subsequent encoding leveraged the Label Encoder, serving a dual purpose: firstly, to 

numerically represent the event names, and secondly, to provide a combined encoding based 

on event names and their dispositions. This nuanced encoding strategy was pivotal in 

capturing the intricacies of event characteristics. A significant pre-processing step entailed 

the calculation of target variables, especially concerning predicting subsequent activities. By 

iterating through the ordered dataset, the next activity in a trace was discerned and recorded 

for each event. This information, encapsulated in the 'true_activity' and 'true_activity_life' 

columns, holds paramount importance for forecasting tasks, enabling the model to learn 

patterns and transitions between events. 

 

In our implementation of the Tab Transformer model, we achieved notable results, 

demonstrating the model's efficacy in analysing loan application processes. For the BPIC 2017 

dataset, the model yielded a result of 0.87, indicating a high level of accuracy and reliability 

in predicting the subsequent activities in the loan application process. Similarly, for the BPIC 

2012 dataset, the model produced a result of 0.74, showcasing its substantial predictive 

capability in diverse datasets. These results underscore the potential of the Tab Transformer 

model as a robust tool for understanding and optimizing loan application processes, providing 

valuable insights that can inform strategic decision-making and process enhancement 

initiatives. 
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4.3.4 Implementation of the Explainable Artificial 

The information presented in figure 4.14 below, provides a visualization offers a deep dive 

into the influences of distinct features on a model's prediction in logit scale. Observing the x-

axis, which signifies the logit scale, the prediction is anchored at f(x) = 0.13. From the base 

value, which embodies the average model prediction, certain features exert varying degrees 

of impact. OfferID stands out with a pronounced negative sway, reducing the prediction 

notably from the base.  

 

Figure 4-14 force plot predictive instance of test case on BPIC 2017 Prediction Model 

 

Features such as Loan Goal and Remaining debt home contribute further moderate negative 

pressures. In contrast, EventOrigin, org_resource, and lifecycle_transition have more 

subdued effects. This insightful representation underscores the pivotal role of OfferID in the 

prediction mechanism and highlights areas for potential further exploration to grasp the 

intricacies of its influence on the outcome. 

 

When we dive deeper into understanding model interpretations, the force plot and waterfall 

diagram, both rendered on a logit scale, offer salient insights. In our initial force plot, the 

model's baseline prediction was situated at 0.2733. Among the listed features, OfferID, 

denoted by 'Offer_1967986467', stood out as the most influential, pushing the prediction 

higher on the logit scale. The Remaining debt home as a loan goal and the event's origin being 

an Offer also contributed positively to this upward shift. 

 

Similarly, the subsequent waterfall chart presents a more granular perspective. Here, OfferID 

is again unequivocally dominant, steering the prediction substantially away from the scale's 

lower end. Secondary features, including case_LoanGoal and Event Origin, offer supportive 

roles, enhancing the prediction in a positive trajectory. org_resource and lifecycle_transition 

- identified by 'User_1' and 'complete' - further buttress this positive momentum.  
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Figure 4-15 Decision plot predictive instance of test case on BPIC 2017 Prediction Model 

 

In contrast, lower-impact attributes such as dayOfWeek and CreditScore are visible but don't 

exert a substantial influence on the model's output. The juxtaposition of these visual tools, 

set against a logit backdrop, underscores the pivotal role of OfferID within the predictive 

architecture and illuminates its overarching influence on model predictions. 

 

 
Figure 4-16 LIME Implementation for BPIC 2017 
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Figure 4-17 LIME Implementation BPIC 2012 

 

In figure 4.16 and 4.17, we present the application of the LIME framework to the Tab 

transformer model's predictions on the BPIC 2012 and 2017 datasets. These datasets 

encompass a multitude of classes, distinguishing our task from binary classification and 

adding a layer of complexity due to the multi-class nature of the event prediction. 

 

Upon evaluation, we observe the decision-making process of the model for specific instances. 

For instance, from the BPIC 2012 dataset, a randomly chosen instance, identified as '4' in the 

validation set, was analysed. The model attributed the highest probability to the 'next event 

process class 4' which is state in the sequence of activities, with a probability score of 0.99, 

which corresponds to the actual label of the instance. The explanation provided by LIME 

allows us to see the model’s rationale, indicated by the weights assigned to each feature. In 

the visualization, features contributing to the classification of '4' are highlighted in faint green, 

whereas features pushing towards 'NOT 4' are indicated in light green. 

 

For the BPIC 2017 dataset, the analysis focuses on an instance where class '19' was predicted 

with a high probability of 0.71. This predictive certainty, as interpreted by LIME, transforms 

the black-box nature of the model into a more transparent 'white-box' structure. This 

transformation is pivotal as it offers an understanding of which features influence the model's 

predictions most significantly. 
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4.3.5 Case study review.  

In this case study, we meticulously explored the financial domain, specifically focusing on loan 

application datasets, BPIC 2012 and BPIC 2017, to scrutinize the capabilities of the Tab 

Transformer in predictive process mining and its interpretability through various Explainable 

AI (XAI) techniques. This exploration was pivotal to address our research objectives and 

questions, concentrating on the evaluation of the Tab Transformer and the enhancement of 

its interpretability in the context of predictive process mining in the financial sector. 

 

The Tab Transformer demonstrated commendable accuracy, achieving 0.87 and 0.77 on the 

BPIC 2017 and BPIC 2012 datasets respectively. These results are indicative of the model's 

proficiency in handling complex financial datasets, showcasing its potential in effectively 

managing high cardinality categorical variables and providing nuanced insights into the 

intricate interactions within the financial domain. The application and analysis of various XAI 

techniques with the Tab Transformer have been pivotal in enhancing the model's 

transparency and interpretability, addressing the critical need for understanding the decision-

making process in AI applications, especially in domains like finance where interpretability is 

crucial. 

 

In conclusion, this case study has facilitated a deeper understanding of the financial domain, 

leveraging the advanced capabilities of the Tab Transformer and the application of XAI 

techniques. The insights and knowledge acquired from this study are not just augmentations 

to the existing body of research in predictive process mining and model interpretability but 

are also foundational for future explorations and innovations in this field. The refined 

understanding and the actionable insights derived have substantial implications for the 

financial sector, fostering informed and responsible decision-making and optimizing loan 

application processes, thereby contributing to the advancement of predictive process mining 

in finance. 
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4.4 Case Study 3: Customer Service Domain (Road Traffic Fine 

Dataset, BPIC 2013) 

In this third case study, we shift our focus to the Customer Service domain, specifically 

exploring datasets related to road traffic and incident reporting. This domain is chosen for its 

critical role in urban planning, incident planning, traffic management, and public safety, and 

it presents unique challenges and opportunities for predictive process mining and model 

interpretability. The complexity of traffic patterns, the diversity of influencing factors, and the 

dynamic nature of road traffic make it a suitable domain to further test the capabilities of the 

Tab Transformer model and the effectiveness of various Explainable AI (XAI) technique. 

 

For Case Study 3, the data is sourced from the Road Traffic Fine Management Process and 

BPIC 2013 dataset available on the 4TU.ResearchData platform (M. (Massimiliano) de Leoni 

& Felix Mannhardt, 2015). This dataset is a rich repository of information related to road 

traffic and is publicly accessible, allowing for reproducibility and validation of the research 

findings. 

 

The dataset encompasses a wide array of variables related to road traffic fines, including 

details about the infractions, the vehicles involved, and the ensuing management processes. 

It provides a comprehensive view of the different facets of road traffic management, from 

the issuance of fines to the resolution of appeals, making it a valuable resource for exploring 

the intricacies of traffic management and customer service interactions in this domain. The 

diversity and depth of the data points available in this dataset offer a robust foundation for 

exploring the predictive capabilities of the Tab Transformer model and the interpretability 

enhancements provided by various XAI techniques. Additionally, the public availability of the 

dataset ensures transparency and allows for comparative analysis with other studies, 

fostering collaborative advancements in the field. 

 

The Road Traffic Fine Management Process dataset consists of a substantial number of cases, 

totalling 150,370, each representing a unique instance of road traffic fine management. Each 
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case in the dataset is structured around a series of activities that depict the flow and 

management of traffic fines.  

In the Road Traffic Fine Management Process dataset, each case is structured around a series 

of activities that depict the flow and management of traffic fines. For instance, one case 

structure example includes the sequence of creating a fine, sending the fine, inserting a fine 

notification, adding a penalty, and concluding with a payment. Another case structure 

involves creating a fine, sending the fine, inserting a fine notification, adding a penalty, and 

then sending for credit collection notification. A third example of a case structure starts with 

creating a fine, sending the fine, inserting a fine notification, inserting the date of appeal to 

the prefecture, adding a penalty, and finally, sending an appeal to the prefecture. These 

diverse case structures represent the varied set of activities that could occur in the 

management of road traffic fines, each contributing to a comprehensive understanding of the 

road traffic fine management process. 

 

The dataset encompasses a diverse range of activities that could occur in the management of 

road traffic fines. The set of activities include but are not limited to: 

 

• Create Fine: 150,369 occurrences. 

• Send Fine: 103,987 occurrences. 

• Insert Fine Notification: 79,860 occurrences. 

• Add Penalty: 79,860 occurrences. 

• Payment: 77,601 occurrences 

• Send for Credit Collection: 59,013 occurrences. 

• Insert Date of Appeal to Prefecture: 4,188 occurrences 

• Send Appeal to Prefecture: 4,141 occurrences. 

• Receive Result of Appeal from Prefecture: 999 occurrences 

• Notify Result of Appeal to Offender: 896 occurrences 

• Appeal to Judge 

 

The process flow map, as displayed in Figure 11, visually represents the sequence and flow of 

activities within each case, providing a clear and concise overview of the road traffic fine 
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management process. This map is instrumental in understanding the interactions and 

dependencies between different activities, allowing for a more nuanced analysis of the 

dataset, and facilitating the identification of patterns and anomalies within the process flow. 

 

 

 

Figure 4-18 Process Model Visualisation of Road Traffic Data 
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In Figure 4.18, the process flow shows that fines are generated in the system, with a 

substantial count of 150,370 instances. Once initiated, these fines are promptly dispatched to 

the concerned entities, a process that has been executed 103,987 times. Following the 

dispatch, a notification process ensues, ensuring that 79,860 recipients are adequately 

informed about their pending dues. Notably, within this vast pool of notified entities, only a 

fraction, totalling 4,188 instances, actively engage with the system to schedule an appeal to 

the prefecture. This appeal process, seen 4,141 times, involves the prefecture's evaluation 

and subsequent dispatch of the appeal results, a sequence noted in 999 cases. The appeal 

outcome is then relayed to the appellant, culminating in 896 instances. Interestingly, for 

appeals not favourably adjudicated by the prefecture, there exists an alternative recourse - 

an escalation to a judicial entity. However, this step, represented by 555 cases, is 

comparatively rarer. 

 

A crucial aspect of the fine management system is the imposition of penalties on defaulters. 

This punitive action is not an infrequent occurrence, as evidenced by its 79,860 instances, 

signalling either a systemic inefficiency or a general nonchalance towards timely fine 

payment. Persistently unpaid fines trigger a credit collection mechanism, operationalized in 

59,013 instances. The ultimate objective, however, remains the successful clearing of dues, 

achieved in 77,601 cases. 

 

Several implications arise from this analysis. The significant disparity between fine initiation 

and eventual payment indicates potential bottlenecks, necessitating further investigation. 

Moreover, the limited engagement with the appeal mechanism may allude to its perceived 

inaccessibility or perhaps a lack of awareness among recipients. Furthermore, the rampant 

imposition of penalties warrants a deeper dive into the system's payment infrastructure and 

its user-friendliness. The figure 4-19 below describes a similar management system from 

Volvo on the incident management system.  

 

In our examination of the case management process within the BPIC 2013 dataset, as 

illustrated in Figure 4.19, we observe a comprehensive progression of activities that 

collectively narrate the journey of cases from inception to resolution. 
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Figure 4-19 Process Model Visualisation of BPIC 2013 

 

A significant quantity of cases, amounting to 30,239 instances, marks the intensive activity 

within the "Accepted + In Progress" stage, symbolizing the central hub where cases are 

actively managed and processed. This dataset effectively captures the myriad paths that cases 

traverse in the workflow of case management, from the initial phase where they are queued 

to the final closure or other resolutions. 

 

For example, one sequence observed in the dataset begins with a case in the "Queued + 

Awaiting Assignment" phase, consisting of 11,544 instances, highlighting the entry point of 

cases into the system. From there, a considerable volume progresses into the "Accepted + In 

Progress" stage. Within this stage, there is a dynamic loop where 7,293 cases are reiterated 

within the same stage, suggesting a review or additional information is needed before 

proceeding further. From the "Accepted + In Progress" stage, multiple pathways emerge. For 

instance, 4,217 cases enter into a "Wait - User" state, indicating a pause in the process as user 

interaction or input is awaited. In contrast, 3,221 cases move to the "Accepted + Assigned" 

phase, suggesting that these cases have been allocated to specific entities for action. 

 

Resolution of issues is reflected in the 6,115 cases that reach the "Completed + Resolved" 

stage, with a subset of these, amounting to 5,716 cases, subsequently moving to the 

"Completed + Closed" stage, thereby concluding the case's lifecycle. Another noteworthy 
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path includes the "Completed + In Call" stage, which indicates that 2,035 cases required direct 

communication with the user or another form of engagement before they could be resolved 

or closed. Less frequently, cases transition into various waiting stages, such as "Wait - 

Implementation," "Wait - Vendor," and "Wait - Customer," highlighting dependencies that 

the case might have on external processes or inputs before they can proceed. In rare 

occurrences, cases are marked as "Unmatched + Unmatched" (5 cases) and "Completed + 

Cancelled" (1 case), which could represent exceptions or atypical scenarios that do not 

conform to the standard process flows. These diverse case pathways in the BPIC 2013 dataset 

represent the multifaceted nature of the case management process, reflecting the complex 

set of activities and decision points that characterize the workflow from case inception 

through to its eventual resolution or closure. Each sequence of activities provides insight into 

the operational procedures of case management and underscores the intricate dance 

between process efficiency and the necessity for adaptability in handling each case's unique 

requirements. 

 

Our analytical journey through the Customer Service Domain, with a focus on the Road Traffic 

Fine Management Process dataset, has led to substantial insights. The implementation of the 

Tab Transformer model on this dataset has yielded commendable results, demonstrating the 

model's proficiency with an accuracy of 0.72 and an F1 score of 0.785. These metrics are 

indicative of the model's ability to adeptly navigate and discern the intricate and diverse 

sequences of activities presented within the fine management processes. Similarly, when the 

Tab Transformer model was applied to the BPIC 2013 dataset, it maintained a noteworthy 

performance with an accuracy of 0.7301 and an F1 score of 0.70. Although these scores are 

slightly lower than those achieved with the Road Traffic Fine Management dataset, they still 

signify the model's substantial capability in interpreting and managing the complexities of 

case structures within this domain. 

 

The accuracy and F1 score for the BPIC 2013 dataset confirm the model's consistent reliability 

in extracting meaningful patterns and making informed predictions across varied datasets. 

This consistent performance underscores the potential of the Tab Transformer model as a 

robust tool for processing and analysing sequential data in complex case management 

scenarios. These findings are integral to advancing the capabilities within the Customer 
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Service Domain, suggesting that the Tab Transformer model could serve as a significant asset 

in enhancing operational efficiency and decision-making processes in the management of 

road traffic fines and potentially across other similar domains. 

4.5 Conclusion 

In summary, the three case studies presented in this work thoroughly addressed the research 

objectives and questions, providing a detailed analysis of the Tab Transformer's applicability 

and the effectiveness of various XAI (Explainable Artificial Intelligence) techniques in 

predictive process mining across different domains. The case studies demonstrated that the 

Tab Transformer can be effectively applied in a variety of domains, and that XAI techniques 

can be used to explain and interpret the predictions made by the model. These findings have 

important implications for the future of predictive process mining and the use of AI in 

decision-making systems. 

 

Case Study 1: Medical Domain 

• Dataset: MIMIC_IV_ED 

• Key Findings: The Tab Transformer exhibited an accuracy of 0.69 on the dataset. An 

intriguing observation arises from the SHAP instance, presented on a logit scale, 

which registered a value of 0.91. This score, confined within a confidence interval 

spanning from 0.89 to 0.97, underscores the model's proficiency in effectively 

navigating high-cardinality categorical variables in a complex medical setting. It is 

worth noting that this logit-scaled SHAP value reflects the log-odds of predicting a 

specific activity, which can be particularly valuable for discerning subtle relationships 

in medical data. 

• Contribution to Objectives: The case study serves a dual purpose, providing insights 

into the model's operational performance and its ability to offer clear 

interpretations, especially for medical datasets. It aptly addresses Objective 1 by 

assessing the Tab Transformer and aligns with Objective 2 by employing XAI methods 

like SHAP and LRP. 

Case Study 2: Financial Domain 
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• Dataset: BPIC 2012 and BPIC 2017 

• Key Findings: The model exhibited an accuracy of 0.87 and 0.81 for BPIC 2017 and 

BPIC 2012 respectively, showcasing its proficiency in managing multiple categorical 

features in financial datasets. 

• Contribution to Objectives: The study addressed Objective 1 by evaluating the Tab 

Transformer in the financial domain and Objective 3 by developing a comparative 

analysis of different XAI techniques, providing a nuanced understanding of their 

relative strengths and weaknesses in interpreting the predictions made by the Tab 

Transformer. 

Case Study 3: Customer Service Domain (Road Traffic Dataset), BPIC 2013 

• Dataset: Road Traffic Fine Management Process. BPIC 2013 

• Key Findings: The Tab Transformer achieved an accuracy of 0.72 and 0.7301 and an 

F1 score of 0.785 and 0.70 respectively, reflecting its reliability and balanced 

predictive outputs in customer service domains. 

• Contribution to Objectives: This case study contributed to Objective 1 by examining 

the potential of the Tab Transformer in a customer service domain and Objective 2 

by applying and analysing various XAI techniques with the Tab Transformer, 

assessing their effectiveness in improving the interpretability of the model’s 

predictions. 

 

Collectively, these case studies significantly contribute to the overarching research objectives 

by providing empirical evidence of the Tab Transformer’s efficacy across varied domains and 

by offering a comprehensive analysis of the applicability of different XAI techniques. They not 

only validate the model’s versatility and adaptability in handling datasets with multiple 

categorical features but also enrich the understanding of the interpretability of such advanced 

models, paving the way for future research and developments in predictive process mining 

and explainable AI. The insights derived from these studies are instrumental in bridging the 

technological aspects of AI with its real-world applications and implications.  
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CHAPTER 5: Results and Discussion 

 

The three case studies presented in previous chapter thoroughly addressed the research 

objectives and questions, providing a detailed analysis of the Tab Transformer's applicability 

and the effectiveness of various XAI (Explainable Artificial Intelligence) techniques in 

predictive process mining across different domains. The case studies demonstrated that the 

Tab Transformer can be effectively applied in a variety of domains, and that XAI techniques 

can be used to explain and interpret the predictions made by the model. These findings have 

important implications for the future of predictive process mining and the use of AI in 

decision-making systems.  

 

In this chapter, we would explore the insights and knowledge acquired from the meticulous 

exploration and application of the Tab Transformer and assorted Explainable AI (XAI) 

techniques across diverse domains, as illustrated in the preceding case studies. The essence 

of this chapter is not merely to present a synthesis of results but to delve deeper into a critical 

and reflective analysis of the findings, meticulously aligning them with the predefined 

research objectives and hypotheses, thereby providing a coherent and nuanced 

understanding of the results in the context of the broader research paradigm. 

 

The primary objectives of this chapter are multifaceted. Firstly, it aims to critically scrutinize 

the empirical results, evaluating the efficacy and applicability of the Tab Transformer in 

predictive process mining and assessing the interpretative power and reliability of various XAI 

techniques. This critical scrutiny is pivotal for drawing substantive correlations and inferences 

between the empirical findings and the theoretical frameworks and hypotheses posited at 

the outset of this research. 

 

Secondly, this chapter seeks to interpret and clarify the findings, assessing their diverse 

impacts and potential uses in real-world contexts. It involves a thorough examination of how 

these outcomes align with, reinforce, or challenge the existing body of knowledge in 

predictive process mining and explainable artificial intelligence. It is vital to understand the 

practical consequences of these findings, particularly in terms of their ability to guide 
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decision-making, shape policy-making, and influence professional practices in the respective 

fields under study. 

Moreover, this chapter is committed to providing a reflective and balanced discourse on the 

contributions of the findings to the extant literature and knowledge in the field. It seeks to 

elucidate the nuances of the results, offering profound insights and interpretations that can 

enrich the academic discourse and potentially pave the way for future research endeavours 

in the intertwined fields of predictive analytics, process mining, and explainable artificial 

intelligence. 

In essence, this chapter strives to elevate the discourse by intertwining empirical insights with 

theoretical reflections, providing a rich, comprehensive, and nuanced understanding of the 

findings and their overarching implications in the broader academic and practical landscapes. 

By doing so, it aims to foster a deeper comprehension of the synergies between predictive 

process mining and explainable AI, contributing to the ongoing dialogues and developments 

in these pivotal and ever-evolving fields. 

5.1 Comparative Analysis and Evaluation of Results 

In this section, we will conduct a thorough and detailed comparative analysis to meticulously 

examine and integrate the results from each case study. The focus will be on evaluating the 

effectiveness, practicality, and interpretability of the Tab Transformer across various 

domains. This analysis is crucial for assessing the flexibility and adaptability of the Tab 

Transformer when dealing with different types of data, and for gaining deeper insights into 

its performance and interpretability in diverse scenarios. 

 

Performance Metrics: 

The performance of the Tab Transformer is quantitatively assessed using accuracy and F1 

score, which are crucial metrics for evaluating the model's predictive precision and reliability 

(Efr´ et al., 2022; Tama & Comuzzi, 2019). The following are the performance metrics obtained 

from each case study. Table 5. 1 highlights the performance of our Tab Transformer approach 

 

Dataset Accuracy  F1 Score 
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MIMIC_IV_ED 0.69 0.67 

BPIC 2017 0.8766 0.8533 

BPIC 2012 0.812 0.77 

Road Traffic 0.78 0.734 

BPIC 2013 0.7301 0.70 

Table 5-1 Next event prediction results 

 

Our approach entailed the incorporation of categorical features to delve deeper into 

understanding their influence on the prediction of subsequent events. By integrating these 

features, we aimed to unravel the intricate relationships and dependencies between different 

variables and how they collectively impact the model's predictive outcomes. This approach is 

instrumental in enhancing the model's predictive in providing more nuanced and contextually 

relevant predictions, this is visible in table 6.2 below. 

 

Table 5-2 Categorical Data Sample for MIMIC_IV_ED 

Case 

Concept 

Name 

Event 

Concept 

Name 

Gender Race Arrival 

Transport 

Disposition True Activity 

30000012 Vital sign 

check 

0 28 AMBULANCE ADMITTED Enter the ED 

30000012 Enter the ED 0 28 AMBULANCE ADMITTED Triage in the 

ED 

30000012 Triage in the 

ED 

0 28 AMBULANCE ADMITTED Medicine 

reconciliation 

30000012 Medicine 

reconciliation 

0 28 AMBULANCE ADMITTED Medicine 

reconciliation 

 

In this table: 

• Case Concept Name represents the unique identifier for each case. 

• Event Concept Name represents the name of the event. 
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• Gender, Race, Arrival Transport, and Disposition are the categorical features 

incorporated to understand their influence on the prediction of subsequent events. 

• True Activity represents the actual subsequent event that occurred.  

 

 

Figure 5-1 Road Traffic Fine 1 case visualisation 

 

 

Figure 5-2 Visualisation of 10 Cases on Road Traffic Fine 

As part of our comprehensive analysis into the financial domain, Figures 5.1 and 5.2 present 

intricate visual elucidations on how different features impact the model's decision-making 



154 
 

process concerning road traffic fines. These visual representations are pivotal to our 

research, shedding light on the relationships between distinct variables and the model's 

resultant predictions. 

Figure 5.1 delves into a specific instance of a road traffic fine. The x-axis delineates the 

model's output values, spanning roughly from 0.6 to 1.1, while the y-axis lists out the myriad 

features, such as concept_name, time_timestamp, and notificationType. Noteworthy 

observations include the pronounced influence of features like concept_name and 

time_timestamp. Moreover, there's an evident intertwining of certain attributes like 

EventID and vehicleClass, hinting at potential correlations or mutual significance in shaping 

the output. Furthermore, features such as Send_for_Credit_Collection display a distinct 

skew towards higher output values, emphasizing their profound impact. 

On the other hand, Figure 5.2 offers an aggregate perspective, encapsulating the influences 

across ten separate road traffic fine cases. This bird's-eye view is instrumental in discerning 

overarching patterns and trends. While variability is a given across multiple cases, some 

features emerge as consistent influencers, underscoring their dominant role in predictions. 

For instance, trajectories of features like weekday and sunday reveal their fluctuating 

influence across cases. In contrast, attributes like Add_penalty exhibit a steadier impact, 

highlighting their uniform significance. 

5.1.1 Primary Data MIMIC_IV_ED 

For datasets such as the MIMIC_IV_ED Data, which was meticulously constructed from 

scratch, we were afforded the unique opportunity to integrate various features into the event 

process, enabling a more profound and nuanced understanding of their impact on 

subsequent event predictions. This approach allowed for a more intricate exploration and 

extrapolation of the relationships and dependencies between different features and their 

collective influence on the model's predictive outcomes. 

In our exploration, we observed the significant role of features like the prescribed drugs and 

disposition in contributing to the event prediction, in line with our objectives and the need 

for further exploration on complex data, we aimed to understand how the tab transformer 

would perform with all the feature provided (Huang et al., 2020). By incorporating these 
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diverse features, we were able to delve deeper into the complexities and intricacies of the 

event processes and understand how each feature interacts and influences the prediction of 

subsequent events. 

The incorporation and analysis of these varied features enabled a more comprehensive 

understanding of the event dynamics and offered a richer context for interpreting the model's 

predictions. This enhanced understanding allowed for more accurate extrapolation of how 

specific features affect the likelihood of different events occurring, providing more nuanced 

and detailed insights into the event processes (Wickramanayake et al., 2022). Using the 

inference script, we can perform test cases and see how the model responds and generates 

results as shown in Figure 5.3  

 

 

Figure 5-3 Case Instance Prediction 

This work into a specific case instance with the 'case_concept_name' as 30422758. This 

instance represented a female patient, identified as 'WHITE', who walked into the emergency 

department and was eventually admitted. The initial event in this case was 

'Triage_in_the_ED', with the chief complaint being 'Abd pain, Nausea'. Various parameters 

such as temperature, heart rate, respiratory rate, and blood pressure were recorded, along 

with other relevant details, providing a comprehensive overview of the patient's condition 

Case 
Instance 

•Gender:F

•event_concept_name: 
traige_in_the_ED

•temperature: 98.8

•heartrate:95, etc...

Prediction
•b'Medicine_reconciliation

•b'Vital_sign_check

•b'Medicine_dispensation

•b'Discharg_from_the_ED
_diagnosis_1'

XAI
•SHAP Decision inputs : 

Drug Name, Disposition, 
Medicine Dispensations
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upon arrival. The Tab Transformer model generated prediction probabilities for various 

potential subsequent events. The model predicted a high probability for events like 

'Vital_sign_check' and 'Medicine_reconciliation', indicating a likelihood of these events 

occurring as the next steps in the process. 

 

 

Case Instance  Prediction probabilities 

b'Medicine_reconciliation' 0.9893262982368469 

b'Vital_sign_check' 0.8714606165885925 

b'Medicine_dispensations' 0.7831727862358093 

b'Discharge_from_the_ED_diagnosis_1' 0.297267884016037 

b'Discharge_from_the_ED_diagnosis_2' 0.20532074570655823 

Table 5-3 Case instance prediction probabilities 

 

This detailed analysis of a specific case instance illustrates the model's ability to predict the 

likely subsequent events based on the provided features and the initial event. The high 

prediction probabilities for events like 'Vital_sign_check' and 'Medicine_reconciliation' 

suggest that these are common subsequent events in similar cases, providing valuable 

insights into the typical progression of events in the emergency department. 

The insights derived from this case instance are representative of the model's capabilities in 

handling real-world, complex datasets and its potential applications in various domains, 

contributing to the broader objectives of enhancing predictive process mining and model 

interpretability. In the intensive exploration of our dataset, the utility of SHAP provided 

invaluable insights that transcend general interpretations. Our research uniquely dissected 

the myriad factors driving the predictions of our model in the healthcare realm. Prominently, 

three features emerged as cardinal determinants: the Drug Name, Disposition, and Medicine 

Dispensations. 

The Drug Name's pre-eminence in our results underlines its crucial role in steering the model's 

decision-making process. Specific medications have discernible patterns and repercussions in 

the patient care journey, and our model adeptly identified this. Disposition, indicative of 

immediate medical necessities, surfaced as another dominant factor. Its influence 
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underscores the importance of immediate medical evaluations in predicting future care 

requirements. Equally significant is Medicine Dispensations, reflecting ongoing medical 

interventions. Our model evidently recognizes this as a beacon for forecasting subsequent 

medical procedures and care paths. 

Positioning these findings within our overarching research goals, the discernment offered by 

SHAP is not just academically enlightening but holds tangible implications for the healthcare 

sector. By pinpointing the prime movers in our model's predictions, we validate its real-world 

applicability, reinforcing its credibility especially in a field as delicate as healthcare. The 

implications of this study are not restricted to mere theoretical advancements. On the 

contrary, by understanding the intricate interplay of these pivotal features, medical 

professionals are empowered with actionable intelligence. They can fine-tune patient care 

strategies, marshal resources with heightened precision, and pre-emptively address potential 

challenges. This crystallizes the indispensable role of Explainable AI, not as a mere academic 

tool, but as a transformative force in sectors where stakes are paramount. 

5.1.2 Effectiveness of XAI Techniques 

The application of the Tab Transformer, complemented by our tailored use of Explainable AI 

techniques, has yielded robust insights across various industries, capturing the multifaceted 

nature of our research. Each domain-specific application brought its unique set of challenges 

and nuances, and the XAI techniques provided the interpretative lens to make sense of them. 

In the healthcare domain, our utilization of SHAP revealed salient features driving the model's 

predictions. We identified that specific medications, their dispensation patterns, and the 

immediate medical needs signified by disposition status were primary influencers. These 

insights elucidated the pivotal role of medication prescriptions, ongoing medical 

interventions, and immediate healthcare needs in determining subsequent events within the 

patient care process. 

Contrastingly, in the financial domain represented by datasets like BPIC 2012 and BPIC 2017, 

the Tab Transformer's decisions were illuminated through a comparative analysis of different 

XAI techniques. Here, the model exhibited proficiency in managing multiple categorical 

features intrinsic to financial datasets, showcasing the importance of variables like 

transaction frequencies, payment patterns, and credit behaviours. 
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These domain-specific findings aren't merely academic footnotes; they pave the way for real-

world applications and implications. For instance, in healthcare, understanding these 

influential features can empower professionals to anticipate patient needs and optimize care 

pathways. Similarly, in finance, discerning the key categorical features affecting predictions 

can aid in better risk assessment and financial decision-making. 

Through our study and the measured use of XAI techniques, we've made strides in 

understanding the often-opaque nature of intricate AI models. By providing nuanced insights 

across diverse domains, we aim to enhance the trustworthiness of our models, highlighting 

the value of transparent and considerate AI practices. 

5.2 Black BOX AI Laws and Regulations 

In today's data-driven environment, there's no escaping the sweeping impact of artificial 

intelligence (AI). But along with this marvel of technology comes the challenge of ethical and 

legal implications, something our research delved deeply into. 

The Need for Transparency: 

Europe's GDPR (EU Commission, 2022) set a strong precedent, echoing a global sentiment. 

The regulation's call for transparency isn't just a bullet point; it's a demand for a fundamental 

shift in our approach to AI. It's as if GDPR is saying, "If you're going to use someone's data, 

they deserve to know why and how." Particularly, Recital 60, which champions 

comprehensive information provision, sends a clear message: transparency is indispensable. 

 

Holding Stakeholders Accountable: 

Delving deeper into GDPR's Article 5 reveals an intricate web of responsibility. The regulation 

doesn't just stop at demanding transparency; it mandates guardianship of data. This is a 

clarion call for organizations to take the lead, ensuring not just accuracy but minimalism and 

ethical handling of data. 

 

Deciphering the DPA 2018: 

The UK's Data Protection Act 2018 brought forth new perspectives. While one might get lost 

in the legalese of Parts 3 and 4, the crux is clear: we cannot, and should not, fully leave critical 



159 
 

decisions to automated entities, especially when there's a significant human impact. We must 

not forget that behind every byte of data is a real individual with rights and feelings.  

 

Learning from the American Approach: 

Across the pond, the USA too acknowledged the intricate dance between AI's possibilities and 

its biases. Their legislative foray in 2019, revamped in 2022, was a significant move. It didn't 

just lay out rules; it demanded introspection, nudging businesses to frequently evaluate the 

ethical footprints of their AI algorithms (Mökander et al., 2022). 

 

The UK's Fresh Perspectives on AI: 

2023 was a significant year here, with the introduction of the UK's white paper on AI. Contrary 

to popular belief, it's not a mere repetition of the EU's mandates. Instead, it crafts a unique 

narrative. Through its guidelines and approach, the UK seems to be forging its path, one that 

prioritizes domain specificity and flexible adjustments to the rapidly evolving AI landscape 

(Matt Davies & Michael Birtwistle, 2023; Miranda Mourby, 2021; Oswald, 2023.) While these 

regulations offer frameworks, the road ahead isn't devoid of bumps. Enforcing such intricate 

laws on AI, which often seamlessly blends into various domains, is daunting. The proposed 

idea of an overarching regulatory body, as highlighted by Michelle Donelan in 2023 (Michelle 

Donelan, 2023), might be an essential step toward a consistent and holistic regulatory 

practice. After sifting through pages of regulations and countless hours of research, one thing 

stands crystal clear: our AI systems must be not just brilliant but morally sound. The 

importance of explainability, especially in realms like next-event prediction, isn't just a nicety 

but a necessity. As we continue our AI journey, these legal and ethical insights will serve as 

our guiding stars. 

5.3 Discussion and critical analysis 

In the discussion of our results for predictive process monitoring, we have meticulously 

curated a set of parameters, aligning with established research protocols for validity and 

reliability. Adopting benchmark metrics from Rama-Maneiro et al., 2020, particularly 

accuracy, we harmonize our evaluations to a universal standard, facilitating comparisons 

across diverse studies. Our adherence to converting accuracies to percentages not only 
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enables a direct cross-study comparison but also reflects the broader scientific consensus on 

performance measurement, as encapsulated in Table 5.4. 

 

Moreover, our parameter selection is deeply rooted in their applicability to predictive tasks, 

reflecting their widespread acceptance in current research. This provides a solid foundation 

for assessing various predictive models on an even footing. By situating our results within this 

extensive research fabric, we enable substantive comparisons that underscore the 

comparative advantages and constraints of our methods. Our intentional parameterization 

promotes transparency and methodological rigor, bolstering the credibility and 

generalizability of our outcomes. 

 

In addition to the case studies presented, we have examined a range of methodological 

approaches taken in seminal papers within the field of comparative analysis. This examination 

has helped to inform others about the methodology and ensure that it is in line with the best 

practices in the field. The approaches examined included statistical tests, meta-analysis, and 

systematic literature reviews, among other. The integration of various techniques—from the 

image encoding of Pasquadibisceglie et al. (2020) to the LSTM networks of Tax et al. (2016), 

and even the Transformer networks of Bukhsh et al. (2021)—demonstrates our commitment 

to a broad-based evaluation. This comprehensive methodology not only contextualizes our 

approach within a field characterized by rapid evolution but also assures that our selection of 

comparative parameters is thoroughly justified. Thus, we establish a clear rationale for our 

parameter choices, affirming the robustness of the comparative results presented. 

 

Paper Method BPIC 

2012 

BPIC 

2013 

BPIC 

2017 

MIMIC_IV_ED 

Pasquadibisceglie et al., 

2020 

Orange 74.55 31.10 - - 

Tax et al., 2016 LSTM 79.39 67.50 - - 

Camargo et al., 2019 LSTM 79.22 68.01 - - 

Hinkka et al., 2020 RNN and 

Clustering 

79.76 - - - 
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Appice et al., 2019 pmKOMETA 
(KNN, SVR, 
J48, LR, M5 
model tree) 

 

78.72 - - - 

Evermann et al., 2016 RNN 63.37 68.15 - - 

Theis & Darabi, 2019 Supervised 

learning, 

DREAM_NAP 

73.10 - - - 

Bukhsh et al., 2021 Transformer 85.20  62.11 - 66.6 

Wickramanayake et al., 

2022 - Shared 

LSTM  79 - 83 - 

Wickramanayake et al., 

2022 - Specialised 

LSTM 79 - 82 - 

Our Approach  81 73.01 87.66 69 

Table 5-4 Accuracy results as extracted from Wickramanayake et al., 2022 

 

Our methodology distinctly outperforms in the BPIC 2017 and MIMIC_IV_ED datasets, 

achieving accuracies of 87.66 and 69 respectively, a testament to the efficacy of our approach 

in comparison to the majority of existing studies. The intricate and nuanced Tab Transformer 

structure we adopted not only manages sequential data effectively but also efficiently 

handles categorical and numerical attributes independently, allowing for a more 

comprehensive understanding and representation of the data. 

 

In contrast, while this approach is competitive, it does not surpass the accuracy of 85.20 

achieved by Bukhsh Zaharah et al., 2021 on the BPIC 2012 dataset. Zaharah’s methodology is 

characterized by its focus on parsing a trace sequence as input, a technique that, while 

effective, does not accommodate the integration of several other features that could 

potentially provide insight into contributing factors for processes. This limitation in feature 

integration could potentially restrict the model's applicability for further approach in 

generating insight on the contributing issues to a process.  
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Comparatively, the approach adopted by Wckramanayake, which constructs an LSTM-based 

model with shared and specialized attention mechanisms for the prediction of the next event, 

was found to be less effective in our datasets. Our approach yielded an accuracy of 81 

compared to their 79 for the BPIC 2012 and 87.66 compared to their 83 and 82 for the BPIC 

2017 dataset. It is noteworthy that Wckramanayake did not explore the MIMIC IV_ED data, 

possibly due to its recent introduction to the field. The work discussed by Wckramanayake 

also suggests the need for interpretable AI and Explainable feedback. 

 

While the work of Hikka et al. 2020 is particularly notable for its emphasis on integrating 

several feature types into their input vectors. Their approach necessitates the conversion of 

process activity into a sequence and prioritizes the inclusion of only relevant features, such 

as the event activity label and event attributes. However, this method, while innovative, 

requires a deeper exploration and understanding of encoding case attributes, as 

acknowledged in their work, indicating a potential avenue for further research and 

refinement. 

 

5.3.1 Validating XAI Implementation 

In the pursuit of establishing the robustness of our XAI-enhanced predictive model, a 

comprehensive validation approach was undertaken. This involved examining the integrity of 

the underlying data, the model's predictive performance, and the fidelity of the explanations 

provided by the XAI techniques. The XAI explainers were rigorously tested to validate the 

explanations' consistency and relevance to the model's predictions. Sensitivity analysis was 

performed to measure the impact of each feature on the model's output.  

 

The consistency of the explanations with domain knowledge was verified, ensuring that the 

XAI outputs align with expert understanding. This check provided an additional layer of 

validation, reinforcing the trustworthiness of the explanations. Special attention was given to 

the treatment of imbalanced classes within the dataset. Analysis of the XAI's performance in 

scenarios with disproportionate class distributions offered insights into the model's fairness 

and explanation equity. The validation exercises outlined in this section provide strong 
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evidence supporting the reliability of our XAI implementation. The robust performance 

metrics, coupled with the transparency afforded by the XAI explainers, bolster confidence in 

the model's utility for real-world applications. Future work may delve deeper into the causal 

relationships within the features, aiming to enrich the explanations and enhance the 

interpretative value further. 

5.4 Implications and Contributions 

This section presents a comprehensive exploration of the implications and contributions 

derived from our research, ensuring a detailed reflection upon our results from the MIMIC-

IV_ED, BPIC 2012, BPIC 2013 and BPIC 2017 datasets. 

 

Implications: 

 

• Practical Applications: 

Our research illuminates the broad practical ramifications across multiple sectors: 

▪ Healthcare: Leveraging the MIMIC-IV_ED dataset, our model's ability to predict 

events such as 'Discharge from the ED diagnosis' and 'Vital Sign Check' with high 

accuracy showcases the potential to optimize patient pathways and improve 

outcomes. 

▪ Financial Processes: The BPIC 2012 and 2017 datasets, focusing on loan application 

processes, demonstrate our model’s prowess in predicting the likelihood of loan 

application approvals or rejections. This could streamline loan processing times and 

improve the efficiency of financial institutions. 

 

• Enhanced Decision-Making: 

The specificity and transparency of our predictions, be it in healthcare with the MIMIC-

IV_ED data or in finance with the BPIC datasets, arm decision-makers with actionable 

insights. In the context of BPIC datasets, our predictions can potentially assist banking 

officials in making timely and informed decisions on loan applications, minimizing 

default risks. 
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• Optimization of Resources: 

Across datasets, our results emphasize the promise in strategic resource allocation. In 

a banking context, as illuminated by BPIC results, accurate prediction of loan 

outcomes enables banks to channel resources more effectively, ensuring faster loan 

processing and potentially higher customer satisfaction. 

Contributions:  

• Advancement of Knowledge: 

Our in-depth analyses of both the MIMIC-IV_ED and BPIC datasets contribute 

substantially to academic discourse. The nuance with which we tackled diverse 

domains—healthcare and finance—offers a holistic understanding of the applications 

of predictive AI models. 

• Methodological Innovation: 

Our methodologies stand out when benchmarked against traditional models. The 

success of the TAB TRANSFORMER in the MIMIC dataset, combined with the insights 

gleaned from the BPIC datasets, showcase our innovative approach in tackling varied 

and complex data structures. 

• Promotion of Explainable AI: 

Our emphasis isn’t just on predictive accuracy but also on model transparency. This 

commitment is evident in our use of SHAP force plots and LRP heatmaps, ensuring 

that our model's predictions are both reliable and interpretable across datasets. The 

transparency is especially crucial in sensitive domains such as finance, where 

stakeholders need to understand the rationale behind AI-generated predictions. 

5.5 Relevance to Research Objectives 

In this research, the findings and interpretations are meticulously aligned with the predefined 

research objectives, providing a coherent and comprehensive understanding of their 

implications and contributions. This alignment is pivotal for validating the relevance and 

significance of our research outcomes, offering a structured framework for interpreting the 

results in the context of our predefined goals and objectives. 
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Objective 1: Evaluate the applicability of the Tab Transformer in predictive process mining. 

 

Finding Alignment: The findings from our research provide substantial insights into the 

Tab Transformer’s efficacy in managing multiple categorical features within predictive 

process mining, compared to conventional methods like Random Forest and XGBoost. 

The detailed analysis and evaluation of the Tab Transformer have elucidated its 

strengths and limitations, contributing to a deeper understanding of its applicability 

in predictive process mining. 

 

Objective 2: Comparing our results with Benchmark work 

Utilizing benchmark metrics set by Rama-Maneiro et al., 2020, our research 

demonstrated significant prowess, especially with the BPIC 2017 and MIMIC_IV_ED 

datasets, achieving accuracies of 87.66% and 69% respectively. This is attributed to 

our innovative Tab Transformer structure, adept at handling sequential data and 

distinguishing between categorical and numerical attributes. While our approach 

showed a competitive edge, it didn't outshine the 85.20% accuracy on BPIC 2012 by 

Bukhsh Zaharah et al., 2021, which focused primarily on trace sequence inputs but 

performed better on the BPIC 2013 data. 

 

Drawing parallels with Wickramanayake et al., 2022, our methodology consistently 

surpassed their LSTM-based model in accuracy across datasets. Notably, 

Wckramanayake's exclusion of the MIMIC IV_ED data highlights potential unexplored 

areas in the field. Both studies emphasize the emerging importance of interpretable 

and Explainable AI in modern research. 

 

Objective 3: Apply and analyse various XAI techniques with the Tab Transformer 

 

Finding Alignment: The application of selected XAI techniques to the Tab Transformer 

has been critically analysed, demonstrating their effectiveness in enhancing model 

interpretability and providing meaningful insights. The insights derived from these XAI 

techniques have been instrumental in interpreting the model's predictions, 
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contributing to the broader understanding of model interpretability within predictive 

process mining, the utilisation of SHAP, LRP and feature importance. 

 

 

Objective 4: Conduct a comprehensive analysis of the laws, regulations, and guidelines 

pertaining to black box AI models. 

 

The in-depth literature review conducted in this research has revealed intricate 

nuances, commonalities, and disparities within the legal frameworks governing black 

box AI models across different jurisdictions. This exploration has yielded a profound 

understanding of overarching trends and has spotlighted potential gaps and areas 

necessitating improvement within these legal structures. The research has illuminated 

the subtle nuances and shared principles within different legal frameworks, providing 

insights into the varied approaches and mutual concerns of different jurisdictions 

regarding black box AI models. These insights are pivotal for comprehending the 

multifaceted nature of legal considerations surrounding AI technologies and for 

pinpointing areas of convergence and divergence among different legal systems. 

The findings of this research have substantial implications for the development and 

deployment of black-box AI models, highlighting the varying emphasis placed on 

transparency, accountability, and intellectual property protection across jurisdictions. 

The research has clarified the delicate equilibrium that legal frameworks attempt to 

maintain between ensuring transparency and explainability in AI and safeguarding the 

intellectual property rights of innovators. Additionally, the study has provided 

foresights into the potential trajectories of future legal developments in the AI field, 

offering indications of how legal frameworks might evolve to address the challenges 

and opportunities arising from advancements in AI technologies. The exploration of 

enforcement mechanisms and compliance requirements has also enriched the 

understanding of the robustness of these legal structures in regulating black box AI 

models. 
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5.6 Conclusion 

This chapter analyses predictive process mining and explainable AI, focusing on the Tab 

Transformer's applicability and legal frameworks. It evaluates the Tab Transformer against 

conventional methods and highlights areas for improvement. It also affirms that the tab 

transformer was not applied in previous work for predictive mining and our research would 

be the first application of the architecture. The research also explores Explainable AI 

techniques' effectiveness and provides guidance for selecting appropriate techniques, 

enhancing model transparency and interpretability. This research also conducted an in-depth 

exploration of the legal landscapes surrounding the use of black box AI models, examining the 

similarities and differences in the legal frameworks of various jurisdictions. This exploration 

revealed the complex interplay between the need for transparency and the protection of 

intellectual property rights, and provided valuable insights into the future of legal 

developments in the field of AI. These insights are crucial to ensuring that the development 

and use of AI technologies is done responsibly and ethically, while also protecting the rights 

of innovators and developers. 
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CHAPTER 6: Conclusion and Future Work 

In this chapter, the conclusion is derived from the findings of the previous chapter, which 

analyses predictive process mining and explainable AI, focusing on the Tab Transformer's 

applicability and legal frameworks. It evaluates the Tab Transformer against conventional 

methods and highlights areas for improvement. The research also explores Explainable AI 

techniques' effectiveness and provides guidance for selecting appropriate techniques, 

enhancing model transparency and interpretability.  The application of approach adopted 

would be discussed, the applicability of the tab transformer architecture on predictive process 

monitoring and the need for the interpretability of prediction results. The conclusion derived 

are based on the aims of the study. We would explain the implications of our findings and 

recommendations and challenges faced. Future recommendations are based on the 

conclusions and potential areas for further investigations identified during the study.  

6.1 An overview of the Research 

The study adopted the PM2 Methodology to achieve the set of objectives to investigate and 

generate insights to our research problem. We delve into an exploratory, descriptive, and 

qualitative study into our predictive process monitoring (PPM) in process mining. We looked 

at the current approaches and their limitations. We researched on the implementation of tab 

transformer as an alternative to previous methods as the transformer architecture has shown 

promises since its first release in 2017. We explored the previous application of the 

Transformer architecture in PPM. We developed our event data based on the public 

distribution of the MIMIC IV Emergency Department dataset, BPIC 2017, BPIC 2012, Road 

traffic Fine management dataset.  

 

The research methods and approach were applied to the gaps identified in applying 

Explainable AI to predictive process monitoring, Generating further insights into the 

applicability of Tab transformer across other various constraints and data. The findings and 

recommendations we have prepared are based on our research problems.  

- The acquisition of additional data which provided direct insights to the Tab 

transformer architecture for PPM, the data was derived from the public data on the 
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MIMIC IV ED dataset, BPIC 2012, 2017 dataset and Road traffic Fine management 

dataset. 

- Identifying the best method for various Next event prediction approach, given 

various methods. and how best to extract insights from the model performance and 

applying XAI to gain knowledge on feature contribution and understand the current 

method applicability to TAB Transformer.  

- To undercover the XAI methods with respect to their application to tab transformer  

- To generate insights on the legal framework for Blackbox AI models with respect to 

understanding how it performs and the current legislative climate and the need to 

gain further insight on how the models performs.  

The objectives delineated and elaborated upon are as follows: 

 

• Employing the Tab Transformer on a unique dataset abundant with diverse categorical 

features, contrasting its performance with other methodologies. This involves utilizing 

various pre-processing steps and transformations to construct a machine learning 

model that derives meaningful insights from data for Predictive Process Monitoring 

(PPM). 

 

• Evaluating the most appropriate models within the current legal framework 

surrounding opaque AI models. This entails recognizing different Explainable AI (XAI) 

methodologies and their relevance to the PPM domain, as well as juxtaposing the 

outcomes of XAI methods like SHAP with their applicability to the Tab Transformer in 

generating insights. 

 

• Contrasting our findings from unique datasets with results from other publicly 

accessible datasets. 
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6.2 An overview of our result 

By incorporating and analysing varied features, we gained a deeper understanding of event 

dynamics. This offered a richer context for interpreting our model's predictions. Such 

enriched understanding empowered us to identify how specific features influence the 

likelihood of different events. Our case studies vividly illustrate these insights. A detailed 

analysis of a specific case showcased the model's aptitude to predict potential subsequent 

events based on the initial event and provided features. Predicting these events with high 

accuracy is pivotal for optimizing workflows in emergency departments, leading to enhanced 

patient care. The case analysis exemplifies our model's prowess with complex datasets and 

highlights its potential applications in various domains, emphasizing our contributions to 

predictive process mining and model interpretability. SHAP's application in our study 

underscored significant features impacting our model's predictions, particularly on datasets 

like BPIC 2012, BPIC 2013, BPIC 2017, and the Road Traffic fine dataset. The MIMIC_IV_ED 

Data was particularly noteworthy as we had access to ongoing patient care data. Our findings 

highlighted those predictions were majorly driven by the Drug Name, Disposition, and 

Medicine Dispensations. Depending on the dataset, other significant factors emerged, 

shedding light on the model's internal considerations. Our approach notably excelled with the 

BPIC 2017, BPIC 2013 and MIMIC_IV_ED datasets, achieving accuracies of 87.66, 73.01 and 

69.00, respectively. This stands as proof of our method's superiority over other studies. The 

nuanced Tab Transformer structure we employed excels at sequential data management and 

distinctively processes categorical and numerical attributes, leading to a holistic data 

representation. 

 

6.3 Summary  

To initiate this research, a comprehensive literature review was undertaken to discern 

prevailing research gaps. By analysing methodologies employed in prior works (Camargo et 

al., 2019; Chen & Guestrin, 2016; Evermann et al., 2016; Tama & Comuzzi, 2019; 

Wickramanayake et al., 2023) it became evident that while several studies have leveraged 
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LSTM, CNN, and RNN frameworks, a conspicuous absence of exploration into the transformer 

architecture was noted at the outset of our investigation. Subsequent delves into the 

literature revealed another significant gap pertaining to model explainability and the ability 

to extract insights therefrom. This was particularly highlighted by (El-Khawaga et al., 2022), 

whose discourse on varied methodologies aligned closely with our investigative trajectory. 

 

This research also entailed rigorous data pre-processing and cleaning, culminating in the 

formulation of an event log tailored for our implementation. The dataset in question, crafted 

by (Alistair Johnson et al., 2023), is a seminal work of the MIMIC team and represents an 

enhancement of the MIMIC IV data, with a specialized focus on the processes of the 

Emergency Department within hospital settings. Adhering to the protocols delineated in 

section 4.2.1, we integrated various tables, thereby facilitating the creation of a detailed 

event log and data repository for our subsequent analysis. It is worth acknowledging the 

pivotal role of the Physio Net team in democratizing data accessibility for the wider research 

community (Goldberger et al., 2000). 

 

Upon reviewing prominent works (El-Khawaga et al., 2022; Hanga et al., 2020; Ribeiro et al., 

n.d.; Shrikumar et al., 2017), a compelling necessity emerged for interpretability and 

explainability within Predictive Process Monitoring (PPM). For our investigation, we 

endeavoured to employ a gamut of Explainable Artificial Intelligence (XAI) methodologies, 

with an emphasis on the TAB Transformer approach to elucidate the produced results. Our 

tailored strategy processed each categorical datum, cultivating a trace position to delineate 

the event process's progression and coherence. Two distinct methods were adopted: 

encoding as numerical values, and subsequently, embedding the trace position. Notably, 

implementing the latter yielded a 2% enhancement in our results. The embedding of the trace 

position was thereby solidified as our definitive approach for juxtaposition with assorted 

tasks. 

 

In benchmarking our results, a discernible superiority of our method over traditional LSTM 

and RNN approaches was evident. Contrasting our methodology with Wckramanayake 2022, 

our algorithm exhibited augmented efficacy, particularly on BPIC 2012 and BPIC 2017 

datasets. While Bukhsh 2021 surpassed our performance on the BPIC 2012 datasets, our 
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methodology outperformed theirs on the MIMIC_IV_ED Datasets. This differential can be 

attributed to Bukhsh 2021's exclusive reliance on trace activity sequences, neglecting the 

integration of other categorical data attributes which influence outcomes. Our strategy 

prioritized this integration, facilitating granular insights into determinants beyond the 

established processes that modulate forthcoming activity predictions. For instance, our 

application of Shap revealed the significant influence of drug prescriptions on subsequent 

predictions, corroborating prevailing observations linking specific medications to particular 

treatment pathways. Other variables, such as disposition and unique dataset attributes, 

further moulded the prediction outcomes. 

 

Furthermore, we delved into the evolving landscape of Black Box AI Legislation, we described 

our outcomes in 5.2, underscoring the imperative for enhanced model interpretability. The 

United Kingdom has championed the ethical deployment of AI models, advocating for their 

transparency, accountability, and engendering trust, a standpoint contrasting with other 

regions which prioritize model efficacy over its underlying mechanics. The UK's regulatory 

focus gravitates towards bolstering privacy, fortifying data protection, and refining liability 

laws, mandating regulatory bodies to uphold these stringent standards and principles. 

 

6.3.1 Scalability of Research 

The expansion of machine learning applications into increasingly complex and data-intensive 

domains necessitates models that excel in scalability. Scalability, within the scope of this 

research, has been addressed from both a theoretical and a practical standpoint. As 

demonstrated by transformer-based architectures, such as GPT-3, scalability is paramount to 

maintaining efficiency and performance across varied tasks and domains. This concluding 

section delineates the guidelines that were pivotal in ensuring the scalability of our Tab 

Transformer model throughout the research. A cornerstone of scalability lies in a model’s 

capability to efficiently harness available computational resources. This research adhered to 

principles of optimized resource utilization, ensuring that memory and processing power, 

spanning single to multiple machine environments, were leveraged effectively. The 

architectural design of the Tab Transformer, akin to models like Random Forest and XGBoost, 
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was fine-tuned to capitalize on parallelization capabilities and algorithmic efficiencies, which 

are essential for handling expansive datasets. 

 

Efficiency and Performance Stability 

 

Efficiency in scalability was evaluated by the model's ability to maintain or improve 

performance as the size and complexity of the dataset increased. Our findings underscored 

the efficiency of XGBoost and the inherent parallelizable nature of Random Forest. 

Nevertheless, the Tab Transformer displayed exceptional scalability when handling extensive 

sequences, thanks to its capacity for both speed and consistent performance, which often 

eclipses traditional models like Random Forest. 

 

Real-World Application 

 

The practical implications of scalability were extensively tested through the deployment of 

the Tab Transformer across large-scale, real-world datasets. The Tab Transformer’s adeptness 

in handling these datasets is underscored by its: 

 

I. Efficiency: With the advent of powerful GPUs and distributed computing 

frameworks, our model demonstrated accelerated training capabilities, essential for large-

volume data processing. 

 

II. Effectiveness: The model proved competent in managing the diversity and noise 

typical of real-world data. The minimal necessity for extensive data transformation 

underscores the model’s robustness in practical applications. 

 

The model has the ability to abstract complex feature relationships without the need for 

extensive fine-tuning. Furthermore, the strategic use of embeddings for categorical variables 

amplifies this potential, allowing for sophisticated pattern recognition across diverse 

categories and establishing a new benchmark in the utility of deep learning for tabular data. 
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6.4 Research Limitations 

In this section we describe some of the limitation we have observed their implications and 

potential solutions 

6.4.1 Limited Access to Diverse Data: 

The study predominantly focused on analysing public data for the next event prediction task, 

which inherently poses several limitations. The availability of only a specific type of data 

restricts the scope and applicability of the model, potentially impacting its generalizability and 

adaptability to different scenarios and domains. The lack of access to complete data with 

multiple categorical information of the actors within a process limits the depth of analysis and 

understanding of the intricate relationships and patterns within the data. 

• Implications: 

▪ The inability to access diverse and complete datasets restricts the exploration 

of the model's capabilities and its potential applications in various fields. 

▪ The limited data scope may hinder the development of more robust and 

versatile models capable of handling complex and heterogeneous datasets. 

• Potential Solutions: 

▪ Encouraging more organizations and companies to share and contribute their 

data can enrich the available datasets, allowing for more comprehensive and 

diverse analyses. 

▪ Establishing collaborations and partnerships with organizations possessing 

diverse datasets can facilitate access to a wider range of data, enhancing the 

model's applicability and effectiveness. 

6.4.2 Hardware Limitation: 

The implementation of the model was conducted using Google Colab Pro+, which, while 

resource-rich, was expensive. The platform offered about 51Gb of RAM and 161 GB of Disk 

Space, which, although substantial, may still pose limitations for extremely resource-intensive 

tasks and analyses. The cost and resource limitations inherent in the available platforms can 
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impact the scale and scope of the research, potentially restricting the exploration of more 

advanced and sophisticated models and techniques. 

• Implications: 

▪ The high cost of utilizing advanced platforms can be a significant barrier for 

researchers, especially those with limited funding and resources. 

▪ The resource limitations of the platforms can restrict the development and 

exploration of more sophisticated and computationally intensive models and 

analyses. 

• Potential Solutions: 

▪ Establishing further partnerships between research institutions and big tech 

platforms like Google and IBM is crucial to develop systems that are cost-

effective and resource-efficient for researchers. 

▪ Advocating for more accessible and affordable research platforms can 

facilitate the conduct of advanced research, allowing for the exploration of 

more sophisticated models and techniques. 

6.4.3 Expert Validation of Explanatory Outputs: 

The meticulousness with which we approached the development and testing of our models 

is noteworthy. However, one aspect that warrants further emphasis is the incorporation of 

expert validation for the explanations our models generate. As advanced as our models are, 

it's crucial to remember that technology's most profound insights arise when paired with 

human expertise, especially in areas demanding nuanced domain-specific interpretations. 

 

• Implications: 

▪ While our models stand on a foundation of robust technological prowess, the true 

test of their value lies in their alignment with domain-specific knowledge. Without 

the lens of expert scrutiny, there exists a potential mismatch between model 

outputs and practical applicability. The gravity of this becomes even more 

pronounced in contexts where precision in interpretation is non-negotiable. 

▪ The lacuna of expert validation might raise eyebrows among stakeholders and 

practitioners. Their apprehension would not be about the model's technical 
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capabilities but its relevance in the real world, which could influence its broader 

adoption. 

 

• Potential Solutions: 

▪ Looking ahead, the fusion of machine learning and domain expertise is the way 

forward. Actively fostering collaborations with domain experts to vet the model's 

explanations can ensure a harmonious blend of technological rigor and domain 

relevance. 

▪ Instituting a system of iterative feedback loops, where experts have the agency to 

refine and validate the model's outputs, can be transformative. Such a symbiotic 

relationship not only enriches the model's explanations but also anchors it in 

practical realities, elevating its trustworthiness manifold. 

6.4.4 Implications for Future Research and Applications: 

The journey of this research has been an exploration filled with insights and discoveries. While 

we've identified certain limitations, they serve as guiding posts pointing towards uncharted 

territories that beckon further investigation. 

 

The focus on specific public data types, although strategic, hints at the vast expanse of 

untapped datasets that can further enrich this domain. Such challenges, far from being 

deterrents, are invitations for the academic community to venture into broader horizons. We 

believe that by securing more diverse datasets in future research, the adaptability and 

robustness of models like ours will only amplify. 

 

While acknowledging the constraints of platforms such as Google Colab Pro+, it's 

commendable how much was achieved within these bounds. Nevertheless, the research 

community's endeavour should be to democratize access to powerful tools, ensuring that 

financial implications don't stymie innovation. The call is clear: the quest for more accessible 

and potent platforms should gain momentum. 
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Our emphasis on the need for expert validation underlines a philosophy that we hold dear: 

technology and human expertise are most potent when they collaborate. The symbiosis 

between machine-generated explanations and domain-specific validations will ensure that 

our findings remain rooted in reality, offering actionable insights and pragmatic solutions. 

 

In conclusion, every limitation pointed out paves a path for further exploration. Our study, 

with its achievements and challenges, serves as a steppingstone, setting the stage for more 

comprehensive, nuanced, and impactful research in the future. 

6.5 Future Research 

Our study has illuminated a path forward, shedding light on critical areas that can guide 

subsequent investigations. When considering our findings and the inherent limitations, we 

recommend the following as promising avenues for future research: 

 

1. Expanding Data Diversity: 

▪ To truly harness a model's potential, there is an urgency to seek broader and more 

eclectic datasets. This expansion will enhance the model's versatility and ensure 

its applicability across a wider spectrum of scenarios. 

 

2. Leveraging Large Language Models for Interpretability: 

▪ The advent of large language models presents a unique opportunity. Their prowess 

can be channelled to bolster the interpretability of AI in business contexts. By 

translating outcomes into context-rich insights, we can substantially reduce the 

reliance on domain-specific experts. 

 

3. Comparative Analysis of Transformer Architectures: 

▪ Transformers, given their significance in modern AI research, warrant a granular 

examination. Comparative studies should dissect various transformer 

architectures, probing their efficiency, flexibility, and computational intricacies in 

multiple application domains. 
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4. Marrying AI and Human Expertise: 

▪ Our research highlighted the importance of expert validation. As we advance, 

collaborations with domain authorities become pivotal. Such joint endeavours 

would ensure that AI outputs, while being technologically sound, also resonate 

with the nuances of domain-specific knowledge. 

 

By pursuing these avenues, we believe the academic community can address the gaps 

highlighted in our research, ensuring that AI continues to evolve in a manner that's both 

transformative and grounded in real-world applicability. 
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