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A B S T R A C T   

Having a good grasp on modelling the dynamics of occupants for estimating electricity con
sumption in office buildings is a vital asset for realistic predictions. Nowadays, agent-based 
models are widely used for this purpose. Previous approaches to modelling dynamics of occu
pants in multi-floor office buildings simplified the models by teleporting agents between zones 
during transitions without considering the routes used to reach their final destination such as 
going through corridors, stairways and hallways, thus, underestimating the potential energy 
usage during those transition period. This paper proposes a more realistic approach by incor
porating detailed routes of agent movement when transiting from one zone to another. To 
demonstrate the case, detailed routes and route choice preferences are used as inputs within the 
model for the agents to make independent decisions when transiting from one place to another 
within the simulated office building. The route choice preferences are computed from data gained 
from an earlier extensive real world occupancy detection trial conducted within the model office 
building using state of the art indoor positioning system. The simulation experiments compare the 
previous approach against the proposed approach and based on the evaluation it is found that 
there is approximately 19% underestimation of electricity consumption per day when detailed 
routes are not considered. The research demonstrates, the proposed approach is applicable to any 
office buildings and will produce predictions which will be much more realistic and closer to the 
real world electricity consumption level.   

1. Introduction 

Building Performance Simulation (BPS) is a widely accepted and established method for predicting energy consumption in the 
design phase of commercial buildings. As discussed in Refs. [1,2] the energy-use behaviour in commercial buildings depends on factors 
such as occupancy pattern, occupant activity and interactions with building infrastructures and appliances. Occupancy monitoring can 
help to identify occupancy numbers and patterns which acts as a key input for advanced building simulation tools such as Energy Plus, 
ESPR, DeST and TRNSYS, producing energy consumption forecast for heating, cooling and lighting and guiding design choices. 
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Nevertheless, their advanced abilities to model complex building systems fall short of considering different and changing energy use 
characteristics of building occupants, contributing to important prediction errors. In parallel, Agent-Based Modeling (ABM) has 
emerged in recent years as a technique capable of capturing occupants’ dynamic energy consumption behaviours and actions. ABM is a 
simulation technique where agents can behave independently and stochastically such that the general behaviour of a complex system 
emerges from the interactions of its agents [3]. Agent based simulation technique is capable of producing complex stochastic occupant 
models exhibiting real world characteristics and features of occupant behaviours and interactions important for realistic predictions of 
energy consumption in both commercial and residential buildings. 

1.1. Related work 

According to the United Nations report in Ref. [4], the populations of cities worldwide will be increasing at a rate of 2 million per 
week and due to improved living conditions, jobs and basic amenities, more and more people are relocating to cities. This requires 
careful planning and maintenance of the city infrastructure and optimised allocation of energy resources such as water and electricity 
to avoid wastage. To ensure this, it is critical to understand and predict the energy requirements at the design stages of infrastructure to 
evaluate its post-operation performance. In recent years lot of focus has been given to understanding energy consumption in com
mercial and academic buildings since they consume and waste the most [5]. Especially in academic buildings, since government grant 
allocation is directly related to energy efficiency it is increasingly becoming important to reduce energy consumption but maintain the 
same level of facilities and services [6]. According to one study, 19% of the UK, CO2 is contributed by non-commercial buildings with 
current statistics providing evidence to suggest that building energy performance is not up to the mark [7]. One of the earliest research 
projects related to Post Occupancy Evaluation (POE) and Post-occupancy Review of Buildings and their Engineering (PROBE) aiming 
to illustrate the extent of this so-called “performance gap” can be seen in Ref. [8]. Most recent papers [9–12] covering the last 10 years 
show there is a significant difference between predicted performances during the design stage and with actual occupied stage. The 
reason for this performance gap is due to various discrepancies related to design and model assumptions, management of power 
sources, occupancy behaviour and quality of building materials. Results from the PROBE study suggested the measured electricity 
demands are approximately 60–70% higher than predicted in schools and offices, and over 85% higher than predicted in university 
campuses [9]. Thus, realistic models would likely help to better estimate and understand their consumption behaviour. This could also 
help to raise awareness for energy conservation and identify energy saving potential from occupant behavioural measures as seen in 
Refs. [13,14]. Simulation results showed appropriate measures and changes in behaviour can achieve 41% energy savings and 
schedules of occupancy play a major role in the savings measure. 

A lot of prior research looked into development of agent based model to predict building energy consumption and investigated 
agent activities, behaviours and interaction with building infrastructure as simulation input. As seen in Ref. [13] the author developed 
a single floor agent based model and incorporated electrical appliances, building lighting and diverse occupant behavioural stereo
types to simulate electricity usage and also investigated different strategies that can influence energy management policies towards a 
more energy saving occupancy behaviour. One of the major simplifications of the model was teleporting agents to their destination 
when moving from one zone to another. Similar work focusing on influencing occupant behavioural changes towards more economical 
energy consumption can be seen in Ref. [15] which implements an agent based model to simulate the occupancy of student residences 
on the university campus in Shenzhen, China. In Refs. [16,17] the authors introduced hourly modelling of electricity consumption and 
tiered pricing mechanism-based electricity consumption to see if occupant electricity usage behaviour can be impacted. Similar work 
can be seen in Ref. [18] where agent behaviour is observed as a major factor in predicting energy usage trends and reducing con
sumption. Predefined occupancy activity profiles and scenarios are used as input within the model. Similarly, in Ref. [19] occupancy 
behaviour has been highlighted as the major factor that influences realistic energy consumption prediction and [20] demonstrated 
human building interaction by incorporating characteristics and environmental context of real offices as occupant profiles and studied 
how thermal comfort and HVAC are impacted. The use of machine learning models to generate synthetic occupancy profiles of ac
ademic building can be seen in Ref. [21] taking into consideration several students as occupants, use of computers and lighting, as well 
as weather data as input in the model. Interactions with lights were either PIR controlled or manually controlled, and all rooms had 
desktop PCs as input. Interestingly occupant behaviour was also simplified when it comes to agent movements such as entering the 
building and transporting the agents to their destination such as meeting rooms or public places of learning based on the shortest 
distance using a concept known as the social force model (SFM). The use of detailed occupancy patterns and information may also 
contribute to optimal workplace design and spatial layout of the floor plan as seen in Refs. [22,23] proposes a framework where the 
level of detail (LoD) related to occupant presence and actions, occupant type and spatial location and the modeling approach necessary 
to develop a realistic agent based model. The importance of occupancy behaviour and its relation to better prediction of energy usage 
in office buildings can be seen again in Ref. [24] where the author proposes a scalable model to predict occupancy schedule, based on 
occupant presence, location, and interaction with the model building. Although occupant movement detail is again limited to zone 
level transition. A recent work on HVAC energy demand prediction in airport terminals [25] shows the incorporation of corridors and 
hallways for computing demand prediction during the transition from one zone to another during checkout and boarding in the 
terminal but it is likely that hallways and corridors in airports are big enough to form individual zones. Regardless there has been a 
major simplification when modelling agent movements between zones such as corridors and stairways in commercial and academic 
office spaces. Contemporary work on mathematical or graphical multi-state and single state occupancy models such as using Markov 
chain [26–30] also investigated zone level occupancy by simply teleporting agents to their designated zone during state transition 
when performing activities in the simulation environment. 
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1.2. Contribution 

In agent based model agents are free to move and make independent choices in the simulation environment with their unique 
characteristics. Although they are quite good at predicting consumption patterns a lot of calibration is required due to over
simplification. This is a major drawback, especially for predicting building energy performance during the design stage due to the lack 
of actual consumption data likely to be seen in post design occupancy. As discussed, previous papers mention different approaches, 
metrics, and input parameters but none of them discussed agent movement behaviour incorporating possible routes between state 
transitions, taken during the movement between zones. 

In this paper, a novel methodology for agent based model development is proposed that looks into a specific case study to analyse 
the potential impact on the predicted electricity consumption by incorporating transition routes for agents when they are travelling 
between zones within the simulation environment. The conceptual model is implemented based on a standardized framework 
developed by Ref. [31] known as Engineering Agent-Based Social Simulation (EABSS) following software engineering principles and 
techniques for developing agent based models. The insights gained from this case study are a major contribution of this paper and the 
potential impact on the prediction capability is discussed quantitatively and validated against real world electricity consumption data. 
The next section will discuss the methodology adopted followed by the model development and simulation results then a discussion 
and conclusion. 

2. Methodology 

2.1. Occupancy trial and simulation 

One of the core aspects of built environment research is the efficient management of building energy demand leading to sustainable 
and optimal energy usage. This leads to modelling energy usage in the design stage of buildings with credible and realistic input 
parameters related to building layouts, expected occupancy and agent behaviours within the simulation settings. Current study focuses 
on the implementation of a building occupancy model by incorporating realistic transition routes as parameters within the simulation 
environment and demonstrate the difference in energy usage prediction when not included. Thus, highlighting the limitations of 
existing methodologies where agents are simply teleported to their destinations. 

The methodology adopted in the occupancy model development can be seen in the simplified block diagram of Fig. 1. It could be 
divided into three stages. The first stage is to identify route preference patterns in the test bed building such as the use of stairs, 
hallways and corridors through a real-world occupancy trial leading to occupancy data collection. In the second stage, the data is post 
processed to obtain the transition probabilities of route choice preferences. The third stage implements the agent based occupant 
model and uses the transition probabilities as inputs within the simulation environment to predict electricity consumption from 
lighting and compare and contrast when not using them. 

The occupant model implements a simplified version of the Nottingham Geospatial Building (NGB)’s first two floors and its 
population as a case study following the EABSS principle [31]. To identify route choice preferences within the building, the occupancy 
of individuals was observed by tracking participants using state-of-the-art indoor positioning system while performing spatially 
distributed Lego building tasks. It required participants to start from various locations, move around the building and perform a series 

Fig. 1. Block diagram of the overall framework.  
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of tasks mimicking day to day activities within a specified time. 
For simplification, the movement was limited to travelling between major rooms when performing tasks to cover all possible 

transitions through corridors and stairs to identify zones and floors. As seen from Fig. 2, the NGB floor plan is partitioned into multiple 
zones, and the major rooms such as A20, A19, B05, Store and kitchen, corridors and stairways are marked for agent destination. Floor A 
is divided into four zones and Floor B into three zones. It is expected that when participants travel from one zone to another, they will 
have their preferences of route choice. The partition of the floor maps and designation of zones were completely arbitrary and done to 
simplify the Lego trial task and route preference identification. The same principle is used in the agent-based model allowing agents to 
move from one place to another based on their route choice preferences. Route choices may include going through other rooms, 
corridors, and stairs when travelling between zones and within zones and could exhibit different patterns depending on their location 
at any given point in time. 

The indoor positioning system was developed using Wifi and Bluetooth sensors and was deployed across the two floors of the NGB. 
In total, 22 volunteers agreed to participate in 50 trials Each of the participants was provided with a smartphone with a data logger 
running, copies of floor maps and an instruction sheet and had 20 min to complete the task. The recorded data is post-processed for 
each trial and used to compute the participant’s transition routes taken when performing the tasks using appropriate tools and 
techniques, details of which can be found in our previous study [32,33]. The trials helped to recreate a realistic day to day occupancy of 
the building and identify how different rooms, stairs and corridors are used and their preferences. Below is a sample instruction to 
understand what a typical trial looked like. 

2.1.1. Sample instructions for a trial  

1. You will start from a Zone in room B05, floor B (to be shown by the researcher). Keep the phone in your trouser pocket and wait for 
approximately 20 s for initialisation after the data logger is started by the researcher.  

2. Go to Corridor 4 and Corridor 2 (marked on the floor map) and find the Lego model pictures on the floor. There will be a total of 
eight pictures.  

3. Keep the Lego pictures with you as well as all other sheets. 

Fig. 2. The floors A and B respectively of NGB and its partition into zones and rooms.  
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4. Take the Lego pictures in room A20, floor A. The Lego bricks are also kept in room A20, marked on the map. You can check the Lego 
pictures decide which model you want to build and gather the Lego bag. You can then go and build Lego models in room A19, Floor 
A. You can only take one Lego picture for building at a time. If you finish or decide to change your mind and build another one, you 
can check the remaining Lego model pictures in room A20 and collect appropriate Lego structures as many times as you want, but 
you can build the models only in room A19.  

5. You will have to complete as many models as you can within 20 min.  
6. When finished, the researcher will ask you to stop, and he will stop the data logger app for you. 

2.2. Route choice probability 

One of the main objectives of the trials was to ensure all possible transitions were covered that involved going through stairs and 
corridors since their preference would act as input in the model. Table 1 below provides the possible transition between zones covered 
by the trials and implemented in the model and Table 2 provides some examples of transition route choices a person can have when 
moving between zones in the model. For each zone transition, there can be several possible routes via corridors, stairs and rooms as 
seen in Fig. 2. Transition probabilities of route choices were derived simply by calculating how many times each possible route was 
chosen during transition based on their start and end locations and the zones they passed through. The complete lookup list of route 
choice probability derived can be found coded in the simulation environment which can be accessed through the shared GitHub 
repository. 

During the trials, the participants had complete control over route choices to reach their destination and were not advised or 
distracted during the task. The instructions like the one above were changed for different participants by changing the location of the 
resources to be collected and their starting point so that occupancy across a variety of locations and routes can be observed within the 
building as seen in Table 1. Thus, a credible source of transition data is gathered covering all the zones and various combinations of 
routes and their probabilities for the agents to choose from during movement between zones in the simulation environment. 

3. Model development 

3.1. Creating a conceptual model 

In this section, the conceptual model is developed using the EABSS framework [31] which provides a step-by-step approach to 
conceptualise and develop agent-based models as seen in Fig. 3. 

3.1.1. Define objectives 
Aim: Develop a building occupation model to analyse the local dynamics of electricity consumption over time by introducing intra- 

state transition between rooms, stairs, and corridors in multi-floor offices such as academic buildings. 
Hypothesis: Using trajectory information during the agent’s transition between rooms and floors helps to predict a more realistic 

electricity usage, compared to other commonly used agent transition representations. 
Experimental factors: These are the parameters needed to set up before a simulation run to define the individual experiments 

which is to test if the hypothesis holds for different scenarios of agent occupancy modelling:  

1. Type of agent occupancy modelling 

Responses: These are simulation outputs required to test the hypothesis and to improve the credibility of the model by increasing 
transparency and understanding of the processes modelled. In this case, the following is required:  

1. Aggregate electricity consumption of the agent population (per half hour)  
2. Aggregate building occupancy (per half hour). 

3.1.2. Define scope 
The scope table template defined in the EABSS framework is used for defining relevant elements and phenomena that need to be 

represented in the model, considering the hypothesis tested. The result can be seen in Table 3. 

Table 1 
Zone transition covered.  

Start Zone Target Zones to cover 

Zone 1 Floor B ———> Zone 1 Floor A Zone 2 Floor A Zone 3 Floor A Zone 4 Floor A 
Zone 2 Floor B ———> Zone 1 Floor A Zone 2 Floor A Zone 3 Floor A Zone 4 Floor A 
Zone 3 Floor B ———> Zone 1 Floor A Zone 2 Floor A Zone 3 Floor A Zone 4 Floor A 
Zone 1 Floor A ———> Zone 1 Floor B Zone 2 Floor B Zone 3 Floor B  
Zone 2 Floor A ———> Zone 1 Floor B Zone 2 Floor B Zone 3 Floor B  
Zone 3 Floor A ———> Zone 1 Floor B Zone 2 Floor B Zone 3 Floor B  
Zone 4 Floor A ———> Zone 1 Floor B Zone 2 Floor B Zone 3 Floor B  
Zone 1 Floor A ———> Zone 1 Floor A Zone 2 Floor A Zone 3 Floor A Zone 4 Floor A 
Zone 2 Floor A ———> Zone 1 Floor A Zone 2 Floor A Zone 3 Floor A Zone 4 Floor A 
Zone 3 Floor A ———> Zone 1 Floor A Zone 2 Floor A Zone 3 Floor A Zone 4 Floor A 
Zone 4 Floor A ———> Zone 1 Floor A Zone 2 Floor A Zone 3 Floor A Zone 4 Floor A  
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3.1.3. Define activities 
In Fig. 4 the possible interactions between the actors and the interactions between the actors and the physical environment can be 

seen. The bubbles represent so called “use cases” [34]. Agents have their own office space, they can use other rooms such as toilets, 
kitchen and printing, and they can communicate to go to seminars in groups and go out of office buildings. 

3.1.4. Define agent/object templates 
State charts are used to define the states’ actors (also called agents) and objects can be in and how they transition from one state to 

another. Then the trigger mechanisms are defined for these transitions in a table. 
User agents: Initially these user agents are out of the building; at a certain time (depending on their stereotype) they will enter the 

building and go directly to their office. Only from there, they can reach other facilities. Their office arrival and departure time is 
computed based on which they enter and exit the building. When the agent moves into and between different parts of the building, they 
need to pass through some transit state (e.g.: transitEntry1, transitReturn1) as seen in Fig. 5 below. Details of agent occupancy are 
explained later in section 3.2.2. The probabilities of route choices are coded within each transit state which helps to compute the route 
covering stairways, corridors, and other rooms to their destination. The destination can be other rooms within the same floor or 
another or places inside the compound state of “inShortbreak”, “inLongBreak” and “inOffice” or entering and exiting the “inside
Building” state altogether. 

A list of all the transitions between states within the user agent, what triggers them, and when they are triggered, can be found in 
Table 4. 

Office object: The state chart for the office object is shown in Fig. 5. It simply shows the three occupancy states, “vacant”, 
“partlyInUse” and “fullyInUse”. The “partlyInUse” is just a transition between the office being “vacant” and “fullyInUse” depending on 
if all lights in the room are switched on. 

The transition table (Table 5) provides details about the potential transitions between the three states of the office object. When an 
agent enters or leaves any office room, the lights are switched on or off causing the “energyConsumption” variable to satisfy either of 
the conditions and trigger a state change. The individual power capacity of the lights in the model is kept constant at 60 W for 

Table 2 
Agent route choice example.  

Start zone End zone Transition Routes & Probabilities 

Zone 1, Floor A Zone 3, Floor A Corr1, Corr4 = 0.99 
Corr1, Corr2, Corr3 = 0.01 

Zone 4, Floor A Zone 1, Floor B Corr1, Corr2, Corr3, kitchen, Stair2 = 0 
Corr1, Corr2, Corr3, kitchen, B05, Stair1 = 0 
Corr1, Corr3, Corr4, kitchen, B05, Stair1 = 0.4 
Corr1, Corr3, Corr4, Stair2, kitchen = 0 
Corr3, Corr4, Stair3, kitchen = 0.6 

Zone 2, Floor A Zone 3, Floor B Corr1, Corr2, Kitchen, Stair2 = 0 
Corr1, Corr2, Corr3, Corr4, Kitchen, B05, Stair1 = 0 
Corr1, Corr2, Kitchen, B05, Stair1 = 0.3 
Corr1, Corr2, Corr3, Corr4, B05, Stair2 = 0 
Corr1, Corr2, Corr4, Kitchen, Stair3 = 0 
Corr2, Corr3, Corr4, B05, Stair3 = 0.7  

Fig. 3. Structure of the EABSS framework as depicted in [31].  
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simplicity. 
Light object: The state chart for a light object is shown in Fig. 5. It’s quite simple. There are two states “on” and “off”, and an entry 

point leading into the “off” state. 

Table 3 
Scope table of our conceptual model.  

Category Element Decision Justification 

Actor  Faculty Include as a 
group: Users 

Occupies everyday 
Research Fellow 
PhD Students 
Visitors Exclude Does not have regular presence, so no control 
MSc Students 

Physical Environment Appliances HVAC Exclude Does not impact the consumption of electricity due to 
the movement of occupants in the building, also not 
every element usage by occupants can be controlled 

Computer 
Microwave 
Fridge 
Personal Appliances 
Light Include Can be controlled by the user and has a direct impact 

according to occupants’ presence in the area 
Weather Temperature Exclude Not required to prove hypothesis 

Day/Night 
Room Kitchen Include as 

other rooms 
Common areas used for different reasons and impact 
electricity usage from lights Toilet 

Corridors 
Activity rooms 
Stairways Include Used for the transition between floors and also impacts 

electricity usage from lights 
Own Office Include Required for every occupant 
Out of building Include Required to include out of office breaks impacting 

possible electricity usage from light switch off/on 
Social/Psychological Aspect  Communication between 

occupants. General shout out during 
a seminar or lunch breaks 

Include Word of mouth communication to join seminar, 
presentation or joining colleagues during lunch, out of 
office breaks. Many impact electricity usage from the 
light source depending on occupancy 

Comparative feedback Exclude Not required to prove hypothesis 
Informative feedback 
Apportionment level 
Free – riding 
Sanction 
Anonymity  

Fig. 4. Use case diagram of our conceptual model.  
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The transition table (Table 6) provides details about the potential transitions between the two states of the light object. The 
condition that is used for triggering the transition depends on the room occupancy. 

3.1.5. Define interaction 
The sequence diagram in Fig. 6 captures the interaction between actors and between actors and the physical world in more detail. It 

also shows the order of interaction and other methods of interaction such as message passing between entities and the lifeline of each 
interaction using vertical lines and solid line arrows. 

3.1.6. Define artificial lab 
The artificial lab is the primary environment where all the entities defined above are embedded. It also provides some global 

functionalities. A class visualisation of the artificial lab is shown in Fig. 7. Class visualisations are composed of three compartments: 
name, attributes, and operations. Her, the attributes represent parameters (experimental factors) and variables (including container 
variables that contain our agents/objects, identifiable by their [] ending). The operations represent activities performed by the 
environment (e.g. statistics; read/write files) to generate and store the required responses. 

Fig. 5. State charts in the conceptual model.  
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3.2. Implementing the conceptual model 

3.2.1. Energy calculation engine 
For the implementation of the conceptual model, a multi-paradigm simulation package; AnyLogic [35] is used, which supports 

agent-based, discrete event and system dynamics simulation as well as optimisations. The NGB lighting infrastructure is carefully 

Table 4 
Transition table for user agents in our conceptual model.  

From State To State Triggered by When ? 

outOfBuilding transitEntry Conditions When agent arrival time matches with the simulation time during weekdays or agent arrival time 
matches and the day is a weekend with a given probability 

transitEntry inOwnOffice Timeout Average travelling time of 5 min from entrance to own office inside the building and identifying the 
possible trajectory route in the Entry State 

inOwnOffice transitEntry1 Condition When current simulation time matches with a uniform distribution pick within agent arrival and leave 
time 

transitEntry1 inShortBreak Timeout Identification of possible route to destination with an average travelling time of 5 min 
inShortBreak transitReturn1 Timeout Leave after between 5 and 10 min 
transitReturn1 inOwnOffice Timeout Identification of possible route to own office with an average travelling time of 5 min 
inOwnOffice transitEntry2 Condition When current simulation time matches with a uniform distribution pick within agent arrival and leave 

time 
transitEntry2 inLongBreak Timeout Identification of possible route to destination with an average travelling time of 5 min 
inLongBreak TransitReturn2 Timeout Leave after between 20 and 40 min 
transitReturn2 inOwnOffice Timeout Identification of possible route to own office with an average travelling time of 5 min 
inLongBreak inOwnOffice Condition If room attendance is above threshold/full 
inOwnOffice inLongBreak 

(Outside) 
Message +
guard 

When message is received by an agent and probability of response (groupProb) satisfies 

inOwnOffice inOtherRooms 
(Seminar Rooms) 

Message +
guard 

When message is received by an agent and probability of response (groupProb) satisfies during 
Wednesday or Tuesday only 

inOwnOffice Exit Condition When leave time is reached 
transitExit outOfBuilding timeout Identification of route to out of building with an average travel time of 5 min  

Table 5 
State chart transition table of office shown in Fig. 5.  

From State To State Triggered by When ? 

vacant partlyInUse energyConsumption >0 Agent moves in the office 
partlyInUse fullyInUse energyConsumption ≥ numberOfLights*60 When all lights are switched on 
fullyInUse partlyInUse energyConsumption ≤ 2*(numberOfLights*60)/3 When agent leaving office  

Table 6 
State chart transition table of light shown in Fig. 5.  

From State To State Triggered by When ? 

Off On condition When agent enters room 
On Off condition When agent leaves room  

Fig. 6. Sequence diagram for our conceptual model.  
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observed physically, and the original floor plan design is studied to identify the number of lights in each room and their associated 
power, Φi. The building has a variety of light models and designs having different power capacities. So, for simplification, the power 
capacity for each light in the model is kept constant at 60w, and the number of lights λ in each room in the model is allocated according 
to equation (1) below. 

λ=

∑i

1
Φ

60
(1)  

Here Φ is the power associated with each light in the actual room. The number of lights λ is calculated for each model room and 
assigned during model implementation. Also, occupants in each room were observed before allocation, which also includes office 
sharing between multiple occupants and an open plan office space as well. During the simulation the engine computes the electricity 
power consumption (W) based on the agents’ occupancy and a recurring check is done every minute for rooms, corridors and stairs’ 
occupancy and the lights are switched on or off accordingly. Since the individual capacity of the lights is kept constant at 60 W the total 
number of lights in the rooms, corridors and stairs is checked to calculate the total power (W) consumption every minute for the entire 
office space. 

3.2.2. Stereotypes 
The agent population is divided into four stereotypes based on their work pattern and their arrival and departure times in the NGB 

office as seen in Table 7. 

3.2.3. Population dynamics 
The agents communicate with the agent population, in general, to invite colleagues for seminars and take out-of-office breaks. To 

avoid complexity, networks among agents representing close circles and friendships were not created, which might be common among 
colleagues. It was observed that occupants in g NGB were showing almost negligible probability of forming large social circles or 
herding behaviour in this building and as such general mass communication was assigned a low probability of response. 

For model simplification, some key rooms were selected for agent transition to and from their respective offices, which were always 
accessed by the building occupiers of the two floors irrespective of their office desk locations. For the transition to other rooms, route 
choices are implemented incorporating detailed trajectories between rooms and corridors, which also involved stairways depending on 
the model scenario. The destinations are separated into two blocks, ‘inShortBreak’ for a 5–10 min break and ‘inLongBreak’ for a 20–40 
min break, as shown earlier in the state chart diagram in Fig. 5. 

Fig. 7. The artificial Lab class of the simulation model environment.  

Table 7 
Agent population’s behaviour stereotype in the simulation environment.  

Stereotypes Workday Arrival Departure 

Early Bird Mon - Fri 6am–8am 60% probability 
Timetable complier Mon - Fri 9am–10am 4pm–7pm 
Flexible Mon - Fri 10am – 1pm 40% probability 
Hardworking Mon – Fri + Sat/Sun 30% probability 9am–10am 1pm–9pm  
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3.2.4. Occupant movement strategies 
Each agent is assigned an office and the stereotype they belong. The agent follows the arrival and departure time depending on the 

stereotype they are assigned when entering and leaving the office and then goes through the transit states defined in Fig. 5 before 
moving into any rooms or out of the building. The transit states define what kind of transition strategy to follow eg: probability-based 
route choice, random route choice or direct teleporting to their destination. The probability-based route choice is derived from the trial 
data already discussed in Section 2 and the route choice computation for the transition is coded within the transit states. Details of 
possible transition states an agent can go through can be found in Table 4 as well. 

3.2.5. Lighting policies 
For the simulation, two lighting policies are used. For the base model, the NGB lighting policy was implemented which was a 

mixture of PIR sensor controlled and Estates controlled i.e. switched on for 24 h. For the later models, all lights were changed into PIR 
controlled smart lighting, meaning the lights turned on/off based on occupancy. More details can be found in section 4 below. 

3.2.6. Simulation model 
A screenshot of the main screen of the implemented simulation model (the implementation of the artificial lab from the conceptual 

model) is shown in Fig. 8. The model shows the floor plan of the NGB on the left and some informative stats about electricity con
sumption on the right. 

The agents/objects have been implemented as described in the conceptual model. When running the simulation, access to the main 
screen and each agent/object is provided via the simulation environment. The implemented model is available for download from the 
following source, https://github.com/shadab1418/NGB-Occupancy-Model.git. 

4. Experimentation 

In this section, two case studies are conducted by running computer simulation experiments with the model developed. The ex
periments are described in more detail followed by the analysis and discussion of the simulation outputs for each of the experiments. 

Fig. 8. Main screen of the final simulation model.  
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• Case study 1: At first, the lighting electricity usage of NGB with existing lighting policy as a base case is simulated and compared 
against actual lighting electricity consumption data collected from Estates for validation and calibration of the model.  

• Case study 2: The base case model always had lights switched on, especially in corridors, stairs, kitchen etc. So, to ensure clear 
distinction the base model is modified to simulate lighting electricity usage but using smart lighting policy (e.g., using PIR sensors) 
for each of the following cases.  
o Simulate the agent’s movement without incorporating individual trajectories during the transition between rooms and corridors; 

teleporting agents to their destinations during simulation, as done by Ref. [13].  
o Simulate the agent’s movement incorporating individual trajectories during the transition between rooms and corridors.  
o Compare and contrast the energy usage with and without trajectories. 

4.1. Case study 1: model validation using existing lighting policy against Estates’ data 

To understand the efficacy of the model, it is important to compare and validate the model against real-world data. In this case, the 
base model was designed to mimic the NGB lighting policy currently being implemented. Based on observation of the building, it was 
found to be a mixture of PIR sensor controlled and centrally controlled. Some sections of the building lights are active 24 h such as the 
reception area, corridors on floor A, open plan space on floor B, stairways, kitchen etc. To verify this, electricity consumption data of 
NGB for lights were collected from the University of Nottingham Estates department for February. 

For the first experiment, the base model is used for simulation. For the simplicity of the model, only weekday energy data is 
simulated and compared. This is because the occupancy behaviour of NGB during weekends could not be observed reliably. Fig. 9 
shows the simulated lighting electricity consumption data (W) updated every 30 min and the actual electricity consumption data (W) 
of Estates from sample weekdays. Both the plots show some similarity in their pattern and electricity consumption. Fig. 10 shows the 

Fig. 9. NGB simulated and Estates actual power consumption during weekdays only.  

Fig. 10. Simulation energy data vs Estate’s energy data consumption over 24 h.  
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lighting electricity consumption in (KWh) for both the simulated and Estates’ data over a 24 h period which is also similar in pattern. 
It is important to note that a simple discrete uniform distribution is followed to determine the agent’s occupancy behaviour 

representing entry and exit time, their likelihood of coming to the office and transition between rooms and facilities. 
To ensure the statistical significance of the result, the simulation was replicated 100 times with a random seed for each run of 24 h 

and then compared with Estates’ data. The plot in Fig. 11 illustrates the lighting electricity consumption predicted every 30 min over 
24 h. 

In general, the simulation results show the similarity of the simulated electricity output and the Estate’s pattern. Although the 
variability is very different the mean of total simulated electricity consumption (230.65 KWh) is almost equal to that of Estates (231.65 
KWh) thus satisfying the objective of model validation outlined in case study 1 which can now be used as a base model for further 
analysis. 

4.2. Case study 2: impact of trajectory route choice in occupant model 

In the agent-based occupant model developed by Ref. [13] agent movement between rooms implied teleporting the agent to their 
destination through one corridor. In reality, to travel between rooms an agent might need to pass through multiple corridors; this 
means none of the corridor’s electricity consumption from lighting usage is used in the calculation except one even though looking at 
the floor plan it was evident that some of the transition would require an agent to cross multiple corridors. As a result, the electricity 
consumption was always underestimated. The model also only investigated a single floor scenario; on multiple floors, especially in 
large commercial buildings, there can be more than one stairway, multiple corridors, and rooms to go through. The NGB is a perfect 
example with three stairways exiting at different zones of the building with multiple corridors and stairs. 

The undergoing research investigated the impact of passing through one or more corridors, stairs, rooms etc. during the transition 
by introducing trajectory routes for agent movement between rooms. The validated model is used as a base model for case study 2. 

Fig. 11. Simulation result after 100 repetitions compared against Estate’s data every 30 min over 24 h.  
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With the existing lighting policy, most of the NGB lights are always in active mode, so there is no way to determine the impact on 
electricity consumption due to the agent’s occupancy throughout the building. As such, all the default settings of the model were kept 
and only changed the lighting configuration to smart lighting, i.e. PIR sensor controlled. The updated model is then used to compare 
and contrast simulation results with and without trajectory route choices during agent movement. 

Simulation results illustrated in Fig. 12 show the electricity consumption difference between the two scenarios for the same period 
of occupied hours. The experiment was replicated 100 times with random seeds for each of the two scenarios, and the aggregate results 
are plotted, as shown in Fig. 13. For simplicity of the model, any kind of lighting such as emergency lights that might be continuously 

Fig. 12. The difference between power consumption when using and not using trajectory route choice during agent movement is seen above. The blue is the extra 
energy usage when route choice is introduced. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 

Fig. 13. Showing lighting energy consumption data without using trajectory and using trajectory information.  
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kept switched on during unoccupied hours were ignored. So, with the adoption of a smart lighting policy, zero lighting electricity is 
consumed when the building is empty, and the lights respond to agent presence only. As seen in Fig. 13, electricity consumption starts 
to rise from 6 a.m. morning and goes to zero by 9 p.m. as defined by the agent stereotype in Table 6. The peak energy consumption 
every half hour in the model without trajectory route choice is just over 3 KWh which when introduced goes over 4 KWh, thus showing 
a significant underestimation of lighting energy consumption prediction when modelling without trajectory route choice. 

Although trials were run to identify route choice preferences and derive their probabilities for our test site it might not be possible 
to do so everywhere. The model was simplified slightly, and the simulation was run again with trajectory included but with random 
route choice instead of probabilities. Simulations were run with 100 replications for both cases and the results were plotted, as shown 
in Fig. 14. The lighting energy consumption illustrated in Fig. 14 shows very little difference between the two cases, but using 
probability-based route choice makes the simulation outcome more realistic and gives more confidence in the result. 

The total lighting energy consumption differences between the three scenarios over 100 replications were; without trajectory 
(68.91 KWh), random trajectory (85.36 KWh) and probability-based trajectory (83.54 KWh). It can be seen there is a significant 
difference, approximately 19% between including trajectory and not including trajectory during agent movement but a minimal 
difference between random and probability specific route choice. The results will not be comparable with the base model result in case 
study 1 since the lighting configuration was mostly manually controlled, always switched on, did not include trajectory and required 
model calibration. 

5. Discussion 

In case study 1 the base model was implemented following NGB lighting policy. It can be seen in Fig. 11 that the mean base energy 
consumption every half hour is around 4 KWh, which moves up to a little over 6 KWh during the peak times of the day. The energy 
consumption starts to rise from 6 a.m. and starts to fall gradually from 6 p.m. The variance of the electricity consumption data from the 
Estate’s record throughout the month is fairly high. The model was slightly calibrated to ensure we have the same baseline for 
electricity consumption during the night. The lights in hallways, corridors, stairs etc. in the simulation environment were kept 
switched on mimicking the lighting policy of NGB but it was not possible to identify exactly how many since not all facilities were 
accessible at night for observation. As a result, the simulated electricity consumption was still falling below the mean consumption of 
the Estate’s data at night (near 4 KWh) as seen in Fig. 11. So, to ensure a similar baseline for comparison during the night time a 
constant value was introduced as miscellaneous electricity consumption in the base model. The simulated electricity output, although 
stochastic, shows less variance since it is less unpredictable compared to the real-world scenario. The mean electricity consumption 
from the simulation shown by the red line is around 6 KWh during peak times, nearly similar to Estate’s data but the pattern varies 
slightly and seems flatter during the rise and fall. This difference can be explained due to various real-life factors such as intermittent 

Fig. 14. Showing the energy consumption between random and probability-based route choice.  
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absence by occupants, whereas during the simulation, they are not considered and all agents are present during weekdays. As a result, 
all the personal office spaces in the simulation are always occupied at some point of the time during the day, which might not be true in 
real life. Also, some of the major rooms listed for agent movement during simulation might not be occupied every day in real life. These 
and various other unforeseen everyday situations impact real-life energy consumption, which is evident from the significant variance 
in the Estate’s energy data. 

In case study 2 the simulation at first considered typical agent state transition (teleporting) as seen in Ref. [13] and then introduced 
trajectory routes. The route choice probabilities derived from the trials as discussed in the methodology section are used by the agents 
when making route choices within the transit states when the trajectory is introduced in the model. 

The results showed a significant difference between the two cases, approximately 19%. Simulation results without trajectory 
showed 68.91 KWh consumption compared to 85.36 KWh consumption with trajectory per day for the whole office during weekdays. 
This shows a typical underestimation of 16.45 kWh per day or 4277 kWh per year (only considering weekdays). Considering the 
average variable unit electricity price of 31.42 pence/KWh for a medium business according to the census provided in powercompare. 
co.uk, 2023, the model prediction underestimates roughly 1343 GBP annually without incorporating trajectory. Thus, it proves the 
case that incorporating trajectory information during agent movement between rooms helps to minimise underestimation and predict 
more realistic electricity consumption data. 

The proposed modelling approach using the EABSS framework helps to develop a high level conceptual model with clearly defined 
relationships and activities related to agent interaction and behaviour before implementing the model. Although the main novelty of 
the proposed methodology lies in incorporating intra-state transition routes during agent movement to any destination it can make the 
model implementation quite complex. This is because the model needs to add almost all possible combinations of transition routes 
leading to any agent destination and this may not be feasible for larger buildings such as hospitals and corporate offices where there 
may be too many corridors, stairs and hallways crisscrossing. Nevertheless, the methodology can still be applied by simplifying the 
model and generalising the transition routes. Also, to make the model prediction more credible and realistic, transition probabilities 
were used by agents when choosing a particular route, which was computed from the extensive occupancy trial using an indoor 
positioning system, but this can also be simplified by making random route choice as an alternative as shown in one of the experiments 
in case study 2. This ensures the proposed modelling approach is applicable for any type of building to predict realistic energy con
sumption during the design stage to evaluate post-occupancy performance. 

6. Conclusion 

6.1. Summary 

In this paper, an alternative methodological approach to agent based modelling is proposed which takes into account the trajectory 
of the agent’s movement during building simulation for predicting electricity usage. The trajectory incorporates potential states of 
transition through various office spaces before the agent reaches its destination thus making the modelling more realistic and adding 
credibility to the prediction. Two case studies were implemented. The first case study discussed developing the baseline model 
following the EABSS framework which was validated against actual electricity usage data provided by Estates. The predicted electricity 
consumption was 230.65 KWh compared to that of Estates 231.65 KWh per day. The base model was then updated to implement the 
proposed approach by introducing transition routes and compared against the existing practice of teleporting agents during the 
transition to their destinations. The model made use of the trials conducted earlier in previous studies [32,33] to identify route choice 
preferences of occupants during office hours in NGB and used those probabilities as input. Results show the proposed approach helps to 
predict lighting electricity usage with more confidence and identified an underestimation of 19% when compared to previous ap
proaches without incorporating transition routes. 

6.2. Limitations and future work 

In this study, a simplified version of the simulation environment was implemented and investigated the electricity consumption of 
occupants from building lights only. The first two floors of the NGB were used to simulate occupant movement although it was a three- 
storied building due to access limitations. Agent movements mimicking building occupants were also simplified to some extent by 
allowing occupancy and movement between own office rooms and other rooms commonly used such as toilets, presentation/seminar 
rooms, laboratory/equipment, and kitchen areas. The floors were arbitrarily divided into zones to ease the process of modelling and 
identifying zones of occupancy. Communication between agents was very limited typical of group activities or movement, especially 
out-of-office movement. Weekends were avoided due to limitations of accessibility. 

Nevertheless, the paper successfully demonstrates the value of incorporating transition routes in agent based building occupancy 
models to predict more realistic energy consumption at the design stage. The results show previous approaches underestimate the 
consumption prediction significantly which highlights the issue of the “Performance gap” discussed in Ref. [9]. The proposed approach 
can also be applied in any model related to building performance evaluation and reduce the discrepancies related to design and model 
assumptions. Furthermore, the design and implementation of the real world occupancy trial to derive the probability-based route 
choice adds credibility and validation in the prediction results objectively. 

In the future, additional activities can be added to the model for the agents such as the use of additional electronic appliances such 
as microwave, fridge/freezer, and laptops to make the simulation environment more realistic and also include weekend activities. If 
possible, evaluate electricity consumption across different seasons by modifying the occupant behavioural pattern based on obser
vation during Fall, Spring and Summer. All the above will help to improve the model significantly and make it more robust and 
credible. 
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