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Abstract  15 

Habitat disturbance affects, directly or indirectly, the predation risk and food available 16 

to animals. One group of animals that may be negatively affected by habitat disturbance 17 

are forest-dependent aerial insectivorous bats, especially in the Amazon rainforest, 18 

where forest clearance and degradation continue unabated. However, we still have a 19 

limited understanding of the mechanisms underlying the negative effect of habitat 20 

disturbance on forest aerial insectivorous bats. Evaluating the changes in prey-predator 21 

interaction in disturbed habitats can provide helpful information for protected area 22 

management. We evaluated how predation risk, insect biomass, and moonlight intensity 23 

affect bat activity levels in continuous primary and disturbed forests (fragments and 24 



secondary forest) at the Biological Dynamics of Forest Fragments Project, Central 25 

Amazon, Brazil. We sampled bats using autonomous ultrasound recorders in continuous 26 

forest, forest fragments, and secondary forest. To assess insect biomass, we placed 27 

malaise traps close to the recorders and conducted a playback experiment consisting of 28 

owl calls to assess the influence of increased predation risk by natural predators on bat 29 

activity. We found that continuous forest had higher bat activity than fragments and 30 

secondary forest, probably reflecting higher insect biomass in continuous primary forest 31 

compared to secondary forest. Insect biomass was the best predictor of activity in 32 

disturbed habitats compared to predation risk and moonlight. Predation risk did not 33 

modulate bat activity in any habitat type. The effect of moonlight intensity on activity 34 

was only apparent in three species in different habitats. Our results suggest that these 35 

responses were related to the abundance of specific insect orders and not predation risk. 36 

Overall, our findings emphasize the importance of evaluating the effects of prey-37 

predator interactions on the distribution of bats in disturbed tropical forests, as habitat 38 

disturbance can negatively affect lower trophic levels and consequently influence not 39 

only bats but other insect consumers.  40 

Keywords Acoustic sampling; Bat conservation; Fragmentation; Temporal activity; 41 

Tropical ecology 42 

 43 

Introduction 44 

 45 

Prey-predator interactions involve minimizing exposure to predators and 46 

maximizing feeding efficiency (Lima 1985; Pyke 2010). Antipredator decisions by prey 47 

can involve predator behavior and prey behavior. Predators are categorized as either 48 

ambush predators (i.e., sit-and-wait strategy) or cursorial predators (i.e., active hunting 49 



strategy) (Gable et al. 2021; Schmitz 2008). Prey can flee from ambush predators (i.e., 50 

evasion) or hide from cursorial predators (using cover, crypsis, or freezing) (Sih et al. 51 

1998; Wirsing et al. 2010). For prey species that use cover to reduce exposure to a 52 

predator, environmental variables such as vegetation density and habitat quality can be 53 

key factors determining habitat use (Lima and Dill 1990; Massé and Côté 2006). High 54 

vegetation density can limit prey visibility for predators that use vision to forage, and 55 

prey also find more places to hide (Lima and Dill, 1990; Riginos and Grace, 2008). 56 

Moreover, lower-quality habitats can increase the predation risk for prey, resulting in 57 

altered foraging patterns or behaviorally-mediated trophic cascades (Palmer et al. 2022). 58 

Thus, heterogeneous landscapes can create different situations of fear and forage (Kotler 59 

and Brown 1999), but, intuitively, lower-quality habitats can negatively affect predators 60 

and prey compared to higher-quality habitats.  61 

Lower-quality habitats may originate from human activities, such as 62 

deforestation, fragmentation, and forest degradation, which are increasing across the 63 

tropics. One of these human-disturbed habitats is secondary regenerating forest, which 64 

is rapidly expanding in the Brazilian Amazon, amounting to an area of 180,215 km² 65 

(Smith et al. 2021). These disturbed habitats differ from preserved habitats in a range of 66 

characteristics, such as vegetation structure and abiotic and biotic conditions, which can 67 

alter prey availability and foraging opportunities for predators (Haddad et al. 2015; 68 

Michalko et al. 2021). Indeed, degraded forests, including tropical regenerating forests 69 

have lower biodiversity than primary forests (Gibson et al. 2011), consequently 70 

affecting the availability of different prey species for forest predators. Small forest 71 

fragments surrounded by a low-contrast matrix, for example, can suffer from edge 72 

effects, including reduced forest cover, which exposes prey species to greater predation 73 

risk relative to that experienced in larger fragments and continuous primary forest 74 



(Morrison et al., 2010; Tufto, Linnell, & Andersen, 1996). The abundance and biomass 75 

of moths are positively and strongly determined by local plant diversity and vegetation 76 

complexity (Alonso-Rodríguez et al. 2017; Hawes et al. 2009), which can directly affect 77 

insectivorous animals such as forest-dwelling insectivorous bats (Froidevaux et al. 78 

2021).  79 

Aerial insectivorous bats are crucial to providing ecosystem services such as the 80 

suppression of agricultural pests and mosquitos that transmit diseases (Puig-Montserrat 81 

et al. 2020; Montauban et al. 2021; Curran et al. 2022). Forest-dwelling bat species are 82 

highly dependent on complex vegetation, providing adequate opportunities for roosting 83 

and foraging (López-Baucells et al. 2022). Most aerial insectivorous bats respond 84 

negatively to habitat disturbance, showing curtailed activity in disturbed habitats (Jung 85 

and Kalko 2010; Estrada-Villegas et al. 2010; de Araújo and Bernard 2016; Falcão et al. 86 

2021). In the Central Amazon, the activity of some forest insectivorous species can 87 

decrease in fragments and secondary regenerating forest (Appel et al. 2021; Rowley 88 

2022). The mechanisms that explain this reduction in aerial insectivorous bat activity in 89 

disturbed forest habitats may be related to changes in abiotic conditions, prey-predator 90 

interactions, roost availability, and mating opportunities (Kingston 2013; Arrizabalaga-91 

Escudero et al. 2015).  92 

Moonlight intensity, predation risk, and insect availability, directly and 93 

indirectly, influence the foraging activity of tropical bats (Saldaña-Vásquez and 94 

Munguía-Rosas 2013). In forest fragments, aerial insectivorous bats are less active on 95 

extremely bright nights than dark nights, probably due to higher vulnerability to 96 

predators when traversing the matrix (Appel et al. 2021). Observational evidence 97 

indicates that presence of diurnal predators at the entrance of bat roosts can affect the 98 

timing of emergence (Welbergen 2006) and the number of bats that emerge (Kalcounis 99 



& Brigham 1994). However, the behavioural responses of bats to perceived nocturnal 100 

predation risk while foraging are still unclear, especially for tropical species (Lima and 101 

O’Keefe 2013). Only one study tested the risk of owls for frugivorous bats in the 102 

tropics, showing that bats decreased their foraging activity in fruit trees when stimulated 103 

by visual cues of owls (Breviglieri et al. 2013). For tropical aerial insectivorous bat 104 

species, which rely less on vision to hunt than frugivores and nectarivores, assessing the 105 

effect of vocalizing predators on activity is essential to understand habitat selection in 106 

undisturbed and disturbed habitats. Moreover, many studies suggest that insectivorous 107 

bats concentrate their activity during periods when insects are most abundant 108 

(Speakman et al. 2000; Meyer et al. 2004; Oliveira et al. 2015). Habitats with different 109 

vegetation cover and disturbance may affect the trophic interaction between bats and 110 

their prey through reduced insect availability (Treitler et al. 2016) and can provide 111 

useful information about the management of disturbed forests to promote bat activity.   112 

In this study, we evaluated how human-modified landscapes influence the 113 

activity of seven aerial insectivorous bat species in relation to food availability, 114 

predation risk, and moonlight intensity. We acoustically quantified bat activity in the 115 

disturbed landscape of the Biological Dynamics of Forest Fragments Project (BDFFP) 116 

in the Brazilian Amazon, specifically in continuous forest (control) and in disturbed 117 

habitats (forest fragments and secondary forest) to examine variation in species-level 118 

activity. Playback experiments in each habitat type were conducted to determine the 119 

effect of perceived predation risk on bat activity. To assess food availability, we 120 

sampled aerial insects in the vicinity of the acoustic recorders in each habitat type and 121 

determined their biomass. We also considered moonlight intensity as a factor 122 

influencing the foraging behaviour of bats in each habitat type (Appel et al. 2021). Our 123 

general hypothesis was that the activity of aerial insectivorous bats would be highest in 124 



continuous primary forest and lower in disturbed habitats due to the higher predation 125 

risk and reduced insect biomass (Hallmann et al. 2017). Thus, across the disturbed 126 

landscape, we tested the following predictions: 127 

(1) We anticipated that most aerial insectivorous bat species would respond to insect 128 

biomass rather than predation risk in continuous forest. By contrast, in disturbed 129 

habitats (fragments and secondary forest), most aerial insectivorous bat species 130 

would respond to predation risk more than insect biomass. These responses 131 

would reflect the higher insect biomass across the continuous forest and the 132 

greater exposure to predators in disturbed habitats due to the reduced habitat 133 

quality. 134 

(2) We expected that the interaction of moonlight intensity with insect biomass and 135 

predation risk would not affect bat activity in continuous forest, where habitat 136 

quality and insect biomass are assumed to be higher than in disturbed habitats 137 

(Uhler et al. 2021). For the disturbed habitats, we predicted that most bat species 138 

would be negatively affected by moonlight intensity and predation risk (Appel et 139 

al. 2021).  140 

(3) We predicted that the hourly activity of bat species would be affected by 141 

predation risk in fragments and secondary forest.  142 

 143 

Material and Methods 144 

Study site 145 

The study was conducted at the Biological Dynamics of Forest Fragments 146 

Project (BDFFP) (2°25'S; 59°50'W), located ~80 km north of Manaus, Brazil (Fig. S1), 147 

one of the world’s most extensive and longest-running experimental investigations of 148 



habitat fragmentation and forest regeneration (Laurance et al. 2018). Located in Central 149 

Amazonia, the area contains lowland evergreen terra firme rainforest at 50 to 100 m of 150 

elevation (Laurance and Williamson 2001). The study area includes 11 forest fragments 151 

(five of 1 ha, four of 10 ha, and two of 100 ha), surrounded mainly by a matrix of 152 

secondary forest in an advanced stage of regeneration and significant extensions of 153 

continuous forest that act as experimental controls (Laurance et al. 2018). Periodically, 154 

the fragments are re-isolated by clearing the forest up to 100 meters around the 155 

fragments; the last re-isolation took place in 2014 (Rocha et al. 2017). The secondary 156 

forest is dominated by Cecropia spp. in areas that were only cleared and by Vismia spp. 157 

in areas where forest was removed, burned, and used for pasture before abandonment 158 

(Mesquita et al. 2001). The dry season typically lasts from July to November when 159 

precipitation is less than 100 mm/month and, the rainy season occurs from November to 160 

June, when precipitation can reach 300 mm/month (Ferreira et al. 2017). We estimated 161 

canopy cover using a spherical densiometer (Model C, Robert E. Lemmon, USA). In 162 

each habitat type, four readings were taken and we found that canopy cover varies little 163 

between habitat types (continuous forest interior: 91.5 ± 1.32 [mean ± SD]; fragments 164 

of 10 ha interior: 89.7 ± 0.55; secondary forest: 86.7 ± 2.82). Canopy height in the large 165 

fragments and continuous forest averages 28 m (Almeida et al. 2019), while in the well-166 

developed secondary forest the average canopy height is 15 m (Jakovac et al. 2014; 167 

Mokross et al. 2018). In view of the limited variation in canopy cover, we assumed that 168 

moonlight penetrates into the forest similarly in all habitats. 169 

 170 

Bat acoustic sampling and bat identification  171 

We sampled at nine sites across the BDFFP landscape: three sites in continuous 172 

forest (Cabo Frio, Florestal and Km 41 camps), three 10 ha fragments (Porto Alegre, 173 



Colosso and Dimona camps) and three sites in secondary forest (Porto Alegre, Cabo 174 

Frio and Dimona camps) (Fig. S1). Each site was visited twice in each season (dry 175 

season of 2018 and rainy season of 2019) and the number of sampling nights varied 176 

between 18 and 30 per season in each habitat type (Tab. S1). We positioned one passive 177 

ultrasound recorders in the center of the fragments, in the secondary forest at least 500 178 

m away from the edge of a fragment or continuous forest, and in the interior of 179 

continuous forest 1000 m away from the edge. At each site, we installed an automatic 180 

ultrasound recorder (Song Meter SM2Bat+) with an omnidirectional ultrasonic SMX-181 

US microphone (Wildlife Acoustics, Inc., USA) placed at a height of 1.5 m above the 182 

ground. The recorders were programmed to passively register bat activity in real time, 183 

with a full spectrum resolution of 16 bit, a high-pass filter set at fs/32 (12 kHz), and an 184 

adaptive trigger level relative to noise floor of 18 SNR. Bat activity was recorded 185 

between 17:30 and 06:30 for two to four consecutive nights per visit, totalling at least 186 

40 nights per sampling site (Tab. S2). We recorded for 138 nights, totalling 1,794 187 

recording hours.  188 

Each night’s recordings were split into five-second long segments using 189 

Kaleidoscope software (Wildlife Acoustics, Inc.,, USA) and we defined a bat pass as a 190 

five-second segment with at least two recognizable search-phase calls per species 191 

(Appel et al. 2019; Gomes et al. 2020). We manually identified the bat passes to species 192 

level or sonotype level when it was impossible to assign the call to a particular species. 193 

Identification followed the acoustic key in López-Baucells et al. (2016). For manual 194 

identification of each recording, we used Kaleidoscope Software (version 4.0.4). We 195 

calculated bat activity as the sum of five-second segments with bat passes per night 196 

(nightly activity) and per hour (hourly activity).  197 



We identified ~39,800 bat passes of 13 aerial insectivorous bat species and 10 198 

sonotypes. To minimize potential detection biases we focused on species that were 199 

detected in at least 45% (63 nights) of the total number of recording nights. Thus, we 200 

selected seven species for analysis: Pteronotus alitonus, P. rubiginosus (revised by 201 

Pavan et al. 2018), Centronycteris maximiliani, Cormura brevirostris, Saccopteryx 202 

bilineata, S. leptura and Peropteryx kappleri (Table S3).  203 

 204 

Predator call experiment 205 

To test if predation risk influences the activity of aerial insectivorous bats, we 206 

performed playback experiments with three treatments at all sites: a) playback of owl 207 

species calls; b) broadcasting noise treatment; c) without owl calls or noise (control 208 

treatment). Each night of acoustic sampling, we ran one of the treatments, maintaining 209 

an order that did not repeat the treatment of the previous night. Owl calls and noise 210 

sound were played using a JBL (Clip 2) speaker connected to a portable battery and a 211 

cell phone that contained one playlist. The speaker was installed five meters away from 212 

the ultrasound recorder at a height of 1.5 m above ground level. Predator and noise 213 

treatments lasted for the same duration of the deployment of the ultrasound recorder 214 

(17:30 to 06:30) and were broadcasted every 15 minutes for a duration of one minute. 215 

This temporal vocal activity pattern of owls agrees with that observed for owl species at 216 

the BDFFP (Bonamoni et al., personal communication). Indeed, we used a different 217 

playlist order of owl species calls to avoid repetition of the same playlist from the 218 

previous night. We used noise treatment to validate the treatment of owl calls, if bats 219 

respond to noise this means that a possible response to the owl calls is not validated. We 220 

had at least 11 nights for each treatment in each habitat type (Tab. S2). 221 



For the treatment of owl calls, we selected the following species that were 222 

reported to prey on bats and that were previously registered at the BDFFP (Bonamoni 223 

2013): Lophostrix cristata, Megascops watsonii, Strix huhula, Strix virgata and 224 

Pulsatrix perspecillata (Almeida et al. 2021; Cadena-Ortiz et al. 2013; Carvalho et al. 225 

2011; Rocha and López-Baucells 2014; Serra-Gonçalves et al. 2017). Owl calls were 226 

obtained from the Xeno-canto website (https://xeno-canto.org/), which is an open bird 227 

song repository. The owls' vocalization frequency range (8-20 kHz) was within the 228 

hearing capacity of the bat species evaluated here (Pteronotus: 10-112 kHz, Kössl and 229 

Vater 1996; emballonurid species such as S. bilineata and S. leptura: 5-100 kHz, 230 

Lattemkamp et al. 2021). We used a broadcasting noise in the noise treatments that 231 

contains all frequencies across the spectrum of audible sound in equal measure ranging 232 

between 0 and 8268.8 kHz. This noise was obtained from the SimplyNoise website 233 

(https://simplynoise.com/). This broadcasting noise has been used in studies which 234 

tested the influence of noise on animal activity (Medeiros et al. 2017).  235 

 236 

Nocturnal insect sampling 237 

Nocturnal flying insects (hereafter insects) were sampled at each site alongside 238 

acoustic sampling of bats and predator experiments. To avoid possible biases associated 239 

with the use of light traps while recording bats (Froidevaux, Fialas, & Jones, 2018), we 240 

used Malaise traps to capture insects (1.60 m height x 1.50 m length). These traps 241 

collect a great variety and abundance of insects eaten by bats such as Diptera, 242 

Coleoptera, Lepidoptera, Hymenoptera, Hemiptera and Orthoptera (Table S4). We 243 

installed four malaise traps around the ultrasound recorder whereby each malaise trap 244 

was placed 20 meters from the recorder in the four cardinal directions (Fig. S2). To 245 



collect only nocturnal insects, we installed the traps before sunset (17:30) and took them 246 

down at sunrise (06:00). 247 

Insects were preserved in bottles containing 90% alcohol, which were labeled 248 

and taken to the Animal Biology Laboratory of the Federal University of Amazonas 249 

(UFAM) for sorting and identification. Species identifications were made by UFAM 250 

and National Institute for Amazonian Research (INPA) entomologists and identified to 251 

order level based on identification keys by Rafael et al. (2012). For each insect order, 252 

we counted the number of individuals and weighed them to estimate the total biomass 253 

of insects per night. To remove excess alcohol from the insects, we dried them with 254 

filter paper and weighed each insect on a precision balance (precision limit 0.0001 g; 255 

Ohaus Discovery, Pine Brook, New Jersey). We estimated the average insect biomass 256 

per night by dividing the mass by the number of insects collected (Oliveira et al. 2015).  257 

 258 

Moonlight intensity 259 

Moonlight intensity for each night was calculated using the “sunmoon” software 260 

(Kyba et al. 2020), a robust method for quantifying the amount of sunlight reflected by 261 

the moon. This software employs the illuminance model proposed by Janiczek and 262 

DeYoung (1987). We used the percentage of moonlight intensity instead of the moon 263 

phase because moonlight luminosity varies greatly within the same moon phase (Appel 264 

et al. 2017; 2021). At each site and for each treatment, we sampled nights with different 265 

percentages of moonlight intensity to cover the whole gradient in variation of moonlight 266 

intensity (0 to 100%).  267 

 268 

Data analysis 269 



 To understand if bat activity levels and insect biomass vary between habitat 270 

types, we tested the effect of habitat type (continuous, fragment and secondary forest) 271 

on total and species-specific bat activity levels and insect biomass. For the bats, we 272 

performed generalized linear mixed models (GLMMs) in the R package “glmmTMB” 273 

(Bolker et al. 2020) and the response variable was the number of bats passes per night, 274 

all species combined and per species. Models were fitted using a negative binomial 275 

distribution and we used zero-inflated models when the species distribution showed a 276 

signal of zero inflation (Zuur et al. 2009). To account for the temporal autocorrelation in 277 

the data, habitat type was the categorical fixed effect and, we used sampling night 278 

nested within research camp as a random effect. To compare activity levels between 279 

fragments and secondary forest, we evaluated these differences using least-squares 280 

means (predicted marginal means) analysis with the lsmeans package (Lenth 2016). For 281 

insect biomass, we tested the influence of habitat type on insect biomass using Gardner-282 

Altman estimation plots and evaluated statistical differences using non-parametric 283 

permutation tests with 1000 bootstrap samples to estimate effect sizes and 95% 284 

confidence intervals for the difference of means with the package “dabestr” (Ho et al. 285 

2019). The statistical significance of differences in insect biomass between habitat types 286 

was inferred based on the lack of overlap in the frequency distributions of the data. 287 

 As the bat activity levels and insect biomass vary between the habitat types, we 288 

performed GLMMs for each bat species and total bat activity in each habitat type. We 289 

conducted these analyses rather than putting all the variables (including habitat type) 290 

into one model, because we chose to understand what are the variables that drive bat 291 

activity in each habitat type and to avoid overparameterization and collinearity of 292 

models with many interactions (Grueber et al. 2011). To test the effects of insect 293 

biomass and owl calls on bat activity in each habitat, we also performed GLMMs using 294 



“glmmTMB”. First, we made a model testing the additive effects of insect biomass and 295 

playback treatment (control, noise, and owl call) on bat activity levels. Second, we 296 

tested the additive effects of insect biomass and moonlight intensity and their interactive 297 

effect on bat activity levels. The predictors (insect biomass and moonlight intensity) of 298 

this second model were standardized to a mean of 0 and an SD of 1 to facilitate a 299 

comparison of their relative effects. Third, we made a model with the additive effects of 300 

playback treatment and moonlight intensity, and their interactive effect on bat activity. 301 

In the third model, we did not standardize the predictors due to the categorical predictor 302 

of playback treatment. For all models, we used sampling night nested within the 303 

research camp as a random effect to account for the temporal autocorrelation in the data 304 

and the negative-binomial distribution of response variables. For the analysis of species 305 

that included insects as a predictor, we used only the insect orders that each bat species 306 

consumes according to the literature (Tab. S5). The residuals of all models were 307 

checked using the DHARMa package (Hartig 2022) and we tested overdispersion and 308 

zero inflation with the same package.  309 

 Differences in hourly activity between owl call playback treatment and control 310 

treatment for each habitat type were assessed using Kolmogorov-Smirnov 2-sample 311 

tests. Bat activity of each species was divided into 12 intervals (hourly intervals). For 312 

comparisons between these two treatments, we used data from 36 nights in continuous 313 

forest (17 nights of owl calls, 19 of control), 30 nights in fragments (13 nights of owl 314 

calls, 17 of control), and 30 nights in secondary forest (15 nights of owl calls, 15 of 315 

control). All analyses were performed in the software R 4.02. and R Studio 4.0.2 (R 316 

Core Team 2021; Rstudio Team 2021).  317 

 318 

Results 319 



Effects of habitat type on bat activity and nocturnal insect biomass 320 

Total bat activity was higher in continuous forest compared to disturbed habitats 321 

(Fig. 1), with activity levels being 2.06 and 1.84 times higher in continuous forest 322 

compared to fragments and secondary forest, respectively (Tab. S3). The most negative 323 

effects on species-specific activity responses were observed in the fragments. The 324 

activity of two species (C. maximiliani and C. brevirostris) was lower in fragments than 325 

continuous forest (Fig. 1). Only P. rubiginosus activity was lower in secondary forest 326 

than continuous forest, in contrast to P. alitonus and P. kappleri which showed higher 327 

activity in secondary forest than continuous forest (Fig. 1). When comparing fragments 328 

with secondary forest, four species (P. alitonus, C. maximiliani, C. brevirostris and P. 329 

kappleri) had higher activity in secondary forest while only P. rubiginosus had higher 330 

activity in fragments (Tab. S6).  331 

We sampled a total of 46,401 nocturnal insects and Diptera represented 61.7% 332 

of all sampled individuals, followed by Hymenoptera with 17.13%, Collembola with 333 

9.2%, and Lepidoptera with 3.7% (Tab. S4). The remaining orders (e.g., Hemiptera, 334 

Coleoptera, Orthoptera, Isoptera, Blattodea, Trichoptera) accounted for 9% of total 335 

insects. Nocturnal insect biomass (based on insect orders relevant to the diet of most bat 336 

species; P. alitonus, P. rubiginosus, S. bilineata, C. maximiliani, C. brevirostris and P. 337 

kappleri) in secondary forest was on average 3.1 times lower than in continuous forest 338 

(Fig. 2). No differences in insect biomass were found between continuous forest and 339 

fragments (Fig. 2; Tab. S7). On the other hand, the biomass of insects featuring in the 340 

diets of S. bilineata, C. maximiliani, and P. kappleri was on average two times lower in 341 

the secondary forest compared to fragments (Fig. 2).  342 

 343 

Effects of insect biomass and owl call on bat activity in each habitat type 344 



 We found a positive relationship between activity of four species (P. alitonus, P. 345 

rubiginosus, S. bilineata and C. brevirostris) and insect biomass in continuous forest 346 

(Fig. 3A). Conversely, in secondary forest, total bat activity and activity of P. alitonus 347 

were negatively related to insect biomass (Fig. 3A). We did not find any influence of 348 

owl call playback on bat activity in any habitat, except for P. kappleri which responded 349 

negatively to the owl calls, but also to noise, indicating that this species is affected by 350 

any type of sound, not necessarily the predator call (Fig. 3A). We also did not find any 351 

relationship between insect biomass and owl call with bat activity in the fragments (Fig. 352 

3A). 353 

 354 

Effects of moonlight intensity, insect biomass, and owl call on bat activity 355 

 Only three bat species responded to moonlight intensity when we included insect 356 

biomass in the GLMM models (Fig. 3B). In continuous forest, only C. maximiliani was 357 

less active during brighter nights with greater insect biomass (Fig. 3B). In fragments, P. 358 

alitonus reduced activity with increasing moonlight intensity and P. kappleri was more 359 

active during brighter nights with greater insect biomass (Fig. 3B). In secondary forest, 360 

only P. rubiginosus was less active on brighter nights with lower insect biomass (Fig. 361 

3B).  362 

 There were no significant effects of moonlight and owl call playback on bat 363 

activity in any habitat (Fig. 3C). The only significant result (P. rubiginosus in secondary 364 

forest) was associated with noise and therefore not considered (Fig. 3C).  365 

  366 

Effects of owl call on hourly bat activity in each habitat type 367 

In continuous and secondary forest, bat activity for all species combined was 368 

significantly greater during nights without owl calls than those with owl call playback, 369 



particularly in the early evening (Fig. 4). However, at the species level, hourly activity 370 

did not differ between nights with owl calls and control nights, irrespective of habitat 371 

type (Fig. 4). 372 

 373 

Discussion 374 

At the BDFFP, there is growing research into understanding how forest 375 

disturbance affects the functional, taxonomic, and behavioral responses of aerial 376 

insectivorous bats  (López-Baucells et al. 2019, 2021, 2022; Meyer et al. 2016; Núñez 377 

et al. 2019; Yoh et al. 2022). Several studies have shown that some Amazonian aerial 378 

insectivorous bats are particularly vulnerable to habitat disturbance and fragmentation, 379 

especially understory forest specialists (Appel et al. 2021; Núnez et al. 2019; Colombo 380 

et al. 2022; Yoh et al. 2022). However, the mechanisms that explain why these species 381 

are sensitive to habitat disturbance are unknown. Our results indicate that predation risk 382 

does not modulate the activity of understory aerial insectivorous bats in disturbed 383 

habitats and that the higher activity in continuous forest is related to higher insect 384 

biomass. We also found that moonlight does not intensify the predation risk effect and 385 

does not interfere with insect consumption in preserved and disturbed habitats.  386 

In agreement with our predictions, the total activity of aerial insectivorous bat 387 

species was negatively affected by habitat disturbance. Our results suggest that total 388 

activity in disturbed habitats (fragments and secondary forest) is half that observed in 389 

continuous forest. The reduced activity in human-disturbed habitats especially for 390 

forest-dependent aerial insectivorous species has commonly been reported (Estrada-391 

Villegas et al. 2010; Falcão et al. 2021; Meyer et al. 2016), and this might be caused by 392 

a decrease in resources, such as roosts, food and safe environments for foraging 393 

(Bernard and Fenton 2002; Evelyn et al. 2004; Pereira et al. 2018). As we found, insect 394 



biomass was higher in continuous forest than secondary forest but is similar in 395 

fragments and continuous forest. Thus, greater availability of insects in continuous 396 

forest probably creates better foraging opportunities for aerial insectivorous bats, as has 397 

been reported in other studies (Oliveira et al. 2015; Ketzler et al. 2018; Put et al. 2018; 398 

Scanlon and Petit 2008). This difference in insect biomass between continuous forest 399 

and secondary forest likely reflects differences in plant species composition (Alonso-400 

Rodríguez et al. 2017; Hawes et al. 2009). Herbivorous insects often consume specific 401 

plant genera or species (Haddad et al. 2009), so well-preserved habitats commonly have 402 

higher diversity and biomass of vegetation-associated insects  (Ebeling et al. 2019; 403 

Welti and Kaspari 2020). Secondary forests dominated by Vismia have lower plant 404 

diversity than continuous forest (Jokovac et al. 2014) and consequently, insects are 405 

probably less diverse and may have lower dry body mass (Salomão et al. 2018).  406 

Fragments had more species with negative activity responses than secondary 407 

forest, and five species had lower activity in fragments than secondary forest. This 408 

result is different from what we expected, because based on intensive acoustic sampling 409 

conducted at the BDFFP between 2011 and 2013 we showed that most aerial 410 

insectivorous species were less active in secondary forest (Appel et al. 2021). This was 411 

probably due to the reisolation of the fragments in 2014 (Rocha et al. 2017). The 412 

acoustic sampling of the present study (2018-2019) was done in fragments surrounded 413 

by a secondary forest at an early stage of regeneration compared to 30 years of matrix 414 

regeneration in the previous study (Appel et al. 2021; López-Baucells et al. 2022). 415 

Fragment reisolation thus had substantial negative effects on total activity of aerial 416 

insectivores, even after just four years of forest regeneration.  417 

Our findings suggest that insectivorous bats exhibit species- and guild-specific 418 

responses to forest disturbance. Such responses may be affected by their foraging 419 



strategy, wing morphology, echolocation call structure and forest strata preference 420 

(Alpízar et al. 2019; Gomes et al. 2020; Colombo et al. 2022). Pteronotus alitonus was 421 

clearly more active in secondary forest than in continuous and fragment forest. This 422 

species has intermediate values of aspect ratio and wing loading, showing a flexible and 423 

adaptable flight (Marinello and Bernard 2014) and at the BDFFP is known as a species 424 

with no preference for any habitat type or fragment size (Rowley 2022; Yoh et al. 425 

2022). Peropteryx kappleri also had increased activity in secondary forest, and this is 426 

probably related to its strategy of being an edge forager and its canopy preference 427 

(Gomes et al. 2020; Yoh et al. 2022). Secondary forests at the BDFFP are less tall than 428 

continuous forest (<15 m), so vertical stratification is less pronounced and possibly the 429 

recorders in these regenerating forests detect more of this aerial insectivorous species.  430 

As we expected, most aerial insectivorous bat species responded to insect 431 

biomass rather than predation risk in continuous forest. Bat species can maximize the 432 

energy gain with higher insect biomass and minimize exposure with the protective 433 

cover of continuous forest, therefore the benefits outweighed the risk of predation (Jung 434 

and Kalko 2010; Rydell et al. 1996). However, contrary to our expectations, predation 435 

risk did not affect bat activity responses in disturbed habitats. Our results indicate that 436 

owl calls do not alter aerial insectivorous bat activity in any habitat type. A lack of 437 

response of bats to owl calls was also found for temperate species (Janos and Root 438 

2014) and for neotropical frugivorous species (Breviglieri et al. 2013). There are several 439 

possible reasons for this: (1) Owls use their vision to hunt, and they cannot hear 440 

ultrasound calls emitted by bats as the upper limit of hearing frequency of owls is 441 

between 7 and 18 kHz (Beason 2004; Konishi 1973). Thus, the perception and pursuit 442 

of prey by owls in dense vegetation can be hampered (Apolloni et al. 2017). The 443 

response of bats to owls presumably might be higher in open areas such as pastures and 444 



agricultural lands. (2) Bats probably perceived the owl calls as nonthreatening nocturnal 445 

noise in forested sites (Janos and Root 2014) as the vocal activity of owls is not 446 

associated with hunting, but with territorial advertising and mate attraction (Penteriani 447 

and Delgado 2009); (3) The acoustic stimulus is not strong enough to trigger anti-448 

predator responses in bats compared to other stimuli such as visual cues, odor, 449 

movement and vocalization of an attacked bat (Breviglieri et al. 2013; Fenton et al. 450 

1994). We only used owl calls as predation risk stimulus and we evaluated only the 451 

changes in activity as antipredator response of bats, thus further investigation is needed 452 

to test other stimuli (Baxter et al. 2006), predators, and different response measures of 453 

bats such as changes in the timing of emergence from roosts (Petrzelkova and Zukal 454 

2003) and mobbing behavior as antipredator adaptation (Knörnschild and Tschapka 455 

2012). 456 

Our results also show that variation in moonlight intensity has a weak effect on 457 

bat activity and does not suppress the activity of most bat species in disturbed habitats. 458 

Our previous study showed that variation in moonlight intensity between nights affects 459 

aerial insectivorous bat activity in disturbed habitats very little (Appel et al. 2021). 460 

However, in the present study, three bat species responded to moonlight in association 461 

with insect biomass, but no species responded to moonlight associated with predation 462 

risk. These results suggest that insect availability may indirectly influence the activity of 463 

some aerial insectivorous species on nights with different moonlight intensities (Lang et 464 

al. 2007). Insect orders eaten by P. alitonus and P. rubiginosus decrease with moonlight 465 

in fragments and secondary forest (linear regression analysis: estimate = -0.002; t = -466 

5.24; P <0.0001 for fragments, and estimate = -0.002; t = -6.47; P <0.0001 for 467 

secondary forest). By contrast, Lepidoptera were more abundant at greater moonlight 468 

intensities in fragments, which could explain the higher activity of P. kappleri on bright 469 



nights in fragments (estimate = 0.006; t = 4.18; P <0.001). For C. maximiliani, we found 470 

no statistical effect of moonlight for the insect orders consumed by this species 471 

(Lepidoptera and Coleoptera; estimate = 0.001; t = 1.17; P <0.65), and maybe this 472 

reflects the lack of knowledge about other insects that C. maximiliani eats since we only 473 

found two studies (Starrett and Casebeer 1968; Woodman 2003).  474 

We found a reduction of hourly total activity on nights with owl calls in 475 

continuous and secondary forests. In continuous forest, total bat activity was lower at 476 

the beginning of the night and 2 and 3 pm on nights with owl calls compared to control 477 

nights. In secondary forest, total bat activity on nights with owl calls was also slightly 478 

reduced the whole night compared to control nights. This provides some evidence that 479 

tropical aerial insectivorous bats may change activity in response to predation risk for 480 

short periods throughout the night. Some bat species tend to emerge later when 481 

predators are present (Russo et al. 2011; Welbergen 2006). Bats need to feed at the 482 

beginning of the night to meet their energetic demands, but when predation risk is high, 483 

they can adjust and distribute their activity over the course of the night, especially 484 

gleaning insectivorous species whose food is evenly distributed over the night (Kalko et 485 

al. 1999; Weinbeer and Kalko 2004). However, we did not find a species-specific 486 

response, indicating that the activity at the assemblage level often does not correspond 487 

to the activity of the species that compose it.  488 

Despite species-specific differences, in general, total bat activity was higher in 489 

continuous forest compared to disturbed habitats, likely a consequence of the higher 490 

insect biomass of continuous forests. The effects of habitat disturbance on aerial 491 

insectivorous bat activity appeared to be more related to insect biomass than predation 492 

risk and moonlight. Therefore, the regeneration of the matrix probably will increase 493 

available insect biomass and consequently bat activity over time. Nonetheless, we 494 



should strongly prioritize areas that constitute hotspots of nocturnal insect biomass as 495 

protected reserves for bat conservation, since changes in insect biomass may have 496 

cascading effects on bat activity (Froidevaux et al. 2021). Many birds and other 497 

vertebrates are linked to the prey of insectivorous bats, so the conservation of these 498 

foraging habitats ensures the nocturnal trophic structure is preserved (Arrizabalaga-499 

Escudero et al. 2015). Otherwise, other characteristics such as vegetation structure, 500 

terrain elevation, forest composition, weather conditions, and roost quality can shape 501 

bat activity (Barros et al. 2014; Meyer et al. 2004; Russo et al. 2016; Cabral et al. 2023) 502 

in disturbed habitats, and they need to be considered in further investigations to better 503 

understand the local needs of bats.  504 

Finally, our study highlighted the importance of continuous primary forest for 505 

forest aerial insectivorous bat species and to preserve their ecological functions, such as 506 

insect control. Aerial insectivorous bats from the Brazilian savanna consume a 507 

significantly greater number of pest insects than of other functional groups (e.g., 508 

pollinators, predators, parasitoids) (Aguiar et al. 2021). According to our literature 509 

review, there are no studies on the diet of aerial insectivorous bats in the Brazilian 510 

Amazon, so we recommend that future studies address this knowledge gap. Even in 511 

low-contrast matrix landscape such as the BDFFP, substantial changes in insect 512 

availability influence bat activity and probably the activity of several other insect 513 

consumers. In conclusion, conservation efforts for tropical aerial insectivorous bats 514 

should concentrate on the maintenance of mosaic landscapes which encompass large 515 

tracts of continuous forests. 516 
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 555 

Legends  556 

Fig. 1. Comparison of the activity of each bat species between continuous forest (green 557 

boxes), fragments (yellow) and secondary forest (orange) at the BDFFP. Significant 558 

comparisons (P ≤ 0.05) are indicated with ‘*’. 559 

 560 

Fig. 2. Comparison of the aerial insect biomass (g) per bat species diet between 561 

continuous forest (green dots), fragments (yellow) and secondary forest (orange) at the 562 

BDFFP. Significant comparisons (P ≤ 0.05) are indicated with ‘*’. 563 

 564 

Fig. 3. The first heatmap (A) depicts the significant results of a GLMM evaluating the 565 

effects of insect biomass, owl calls and noise on bat activity for each bat species and 566 

habitat type. The second heatmap (B) shows the significant results of a GLMM 567 

assessing the effects of insect biomass, moonlight, and their interaction on activity for 568 

each bat species and habitat type. The third heatmap (C) depicts significant results of a 569 

GLMM on the effects of owl calls, moonlight and their interaction on activity for each 570 

bat species and habitat type. The colour gradient indicates the magnitude of a 571 

predictor’s estimate for individual response variables. Blue boxes indicate significant 572 



negative effects, red boxes indicate significant positive effects and grey boxes indicate 573 

lack of statistical significance. ‘*’ P ≤ 0.05, ‘**’ P < 0.01 and ‘***’ P < 0.001. 574 

 575 

Fig. 4.  Hourly activity of aerial insectivorous bat species in each habitat type 576 

(continuous, fragments and secondary forest) on control nights (without sound) and 577 

nights with owl calls. Black bars denote control nights, grey bars depict nights with owl 578 

calls. The solid bar is the average activity, and the dotted line is the standard deviation 579 

of activity. ‘*’ indicates a significant difference between the treatments based on 580 

Kolgomorov-Smirnov 2-sample tests (P ≤ 0.05).   581 
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