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A B S T R A C T   

There is an increasing demand for efficient and precise plant disease detection methods that can 
quickly identify disease outbreaks. For this, researchers have developed various machine learning 
and image processing techniques. However, real-field images present challenges due to complex 
backgrounds, similarities between different disease symptoms, and the need to detect multiple 
diseases simultaneously. These obstacles hinder the development of a reliable classification 
model. The attention mechanisms emerge as a critical factor in enhancing the robustness of 
classification models by selectively focusing on relevant regions or features within infected re-
gions in an image. This paper provides details about various types of attention mechanisms and 
explores the utilization of these techniques for the machine learning solutions created by re-
searchers for image segmentation, feature extraction, object detection, and classification for 
efficient plant disease identification. Experiments are conducted on three models: MobileNetV2, 
EfficientNetV2, and ShuffleNetV2, to assess the effectiveness of attention modules. For this, 
Squeeze and Excitation layers, the Convolutional Block Attention Module, and transformer 
modules have been integrated into these models, and their performance has been evaluated using 
different metrics. The outcomes show that adding attention modules enhances the original 
models’ functionality.   
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1. Introduction 

The global agriculture industry is facing significant challenges due to economic, environmental, and demographic pressures. With 
the growing global population, increasing agricultural production is necessary. However, achieving this goal is not easy. In this 
context, India stands out as a prominent player in the agricultural sector. It holds the second position in the production of essential 
crops such as sugarcane, rice, cotton, wheat, fruits, tea, and vegetables. Furthermore, around 60 % of India’s workforce is employed in 
agriculture, contributing 17 % to the nation’s GDP (Gross domestic product). Despite these advantages, Indian agriculture struggles 
with low output, lagging behind that of other developing countries by 30-5%. This poses a significant challenge for the country. Factors 
such as pest and disease outbreaks, soil fertility deficiencies, insufficient water availability, and the impact of climate change are all 
responsible for the stagnation of agricultural productivity in India. Among these challenges, plant diseases, particularly fungal 
pathogens, emerge as a critical concern and a major limiting factor for crop yields [1]. To tackle the aforementioned challenges, the 
integration of machine learning and attention mechanisms holds great promise for effective plant disease identification. Machine 
learning (ML) and Deep Learning (DL) methods can be leveraged, to quickly and precisely identify agricultural diseases by analysing 
images of various plant components such as leaves, stems, flowers, and fruits. Among these components, leaves have become a widely 
adopted focal point for disease identification, as most disease symptoms prominently manifest on them. Accurately identifying plant 
diseases is difficult because real-field images often contain complex backgrounds, the potential for plant leaves to be obscured by other 
plant parts, and the occurrence of several diseases on a leaf picture. In this scenarios, the incorporation of machine learning algorithms 
featuring attention mechanisms becomes crucial in overcoming these obstacles and improving disease recognition accuracy. 

Attention mechanisms allow models to concentrate on particular segments of an image that are more informative for disease 
identification. By assigning different weights or attention scores to various parts of an image, these mechanisms enable the model to 
prioritize disease-related features and disregard irrelevant or misleading information. Selective attention has the potential to improve 
the precision of categorizing diseases, even when several diseases share similar symptoms. The attention mechanism draws inspiration 
from the way our biological systems function, as they prioritize unique characteristics when confronted with a lot of information. Since 
the advent of deep neural networks, several different application domains have made extensive use of attention mechanisms [2]. 

Attention mechanisms have proven successful across diverse fields like computer vision, speech recognition, and natural language 
processing. In the realm of computer vision, attention mechanisms play a crucial role by selectively focusing on relevant regions within 
an image, assisting networks to arrive at better decisions. The use of attention mechanisms has the potential to improve a variety of 
applications, including semantic segmentation, classification, object recognition, image captioning, 3D vision, and super resolution. 
The primary goal of this study is to investigate the various attention mechanisms that are used at different stages of identifying plant 
diseases and figure out how they help with feature extraction, which in turn makes disease recognition better. It is imperative to 
investigate the application of attention mechanisms in plant disease recognition, given their potential benefits in improving model 
performance and interpretability. This research attempts to provide a comprehensive analysis of attention mechanisms and how they 
affect different methods for identifying plant diseases. 

This study’s main contribution.  

• This work offers a comprehensive review of different attention mechanisms, categorizing them based on the input they consider, 
the level of granularity they operate on, and the methods used to calculate attention weights.  

• This study focuses on the diverse attention mechanisms employed by researchers to efficiently identify plant diseases. To the extent 
of our understanding, there is presently an absence of any other research investigation that specifically examines the attention 
mechanisms employed in plant disease detection.  

• This study provides an in-depth survey of research that utilizes attention mechanisms to improve the performance of various tasks 
like image segmentation, feature extraction, object detection, and classification that are involved in developing plant disease 
recognition systems.  

• This study presents a detailed specification of the type of network design, loss function, and deep learning framework used by 
researchers to create solutions for plant disease identification.  

• This work performs a comparative analysis to analyse the effect of attention mechanisms on DL models. Various attention 
mechanisms are integrated into state-of-the-art models, including ShuffleNetV2, EfficientNetV2, and MobileNetV2, to evaluate 
their effectiveness. 

This study is categorized into six sections, each serving a specific purpose. The initial section serves as an introduction, providing an 
overview of the main motivation and objectives of the study. Subsequently, in the second section, we discuss various attention 
mechanisms and their categorization. The third section explores different types of attentional mechanisms. In the fourth section, 
various studies proposed by researchers are examined, concentrating on leveraging attention mechanisms to improve the model’s 
performance for efficient plant disease identification. Additionally, the fifth section conducts a comparative analysis between three 
deep learning models, both with and without the various attention modules. A discussion about the future potential of these mech-
anisms and the remaining challenges associated with their utilization is given. The study conclusion is presented in Section 6. 

2. Related work 

This section includes the recent studies that have reviewed various attention mechanism. Study [3], conducted a thorough ex-
amination on attention mechanisms for computer vision task and categorized them based on their approach, encompassing temporal 
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attention, channel attention, branch attention, spatial attention, and various combinations of these methods. The main focus of this 
study was to categories attention approaches according to their data domain rather than their specific application area. 

The authors of [4], classified image super-resolution models into different categories based on their network design, such as re-
sidual, dense, convolution, attention, distillation, and extremely lightweight solutions. This study’s primary objective was to inves-
tigate lightweight approaches for image super-resolution that make use of deep learning techniques and attention mechanisms. This 
review serves as a valuable framework for our own study, as it provides us with a structured approach to follow. 

In [5], details about the attention mechanisms used with neural networks is given, exploring their origins and recent advancements. 
The researchers provide comprehensive insights into various variants of attention models, including transformer and self-attention. 
Study [6], conducted a comprehensive analysis of the attention mechanism in deep learning, encompassing its key methodologies, 
practical implementations, diverse applications, and potential avenues for future development. This paper also describes how attention 
models are used to improve performance and what application domains can benefit from attention mechanisms. 

Building upon this existing literature, our study contributes by categorizing attention mechanisms based on input nature, level of 
detail, and attention weight calculation method. A comprehensive examination of the attention mechanisms utilized in recent studies 
of plant disease identification for extracting relevant features at various stages, including segmentation, feature extraction, object 
identification, and classification, is done. This research conducted a comparative analysis by examining DL models, with or without 
attention modules to see the effectiveness of attention mechanisms on models. Furthermore, the paper addresses the current challenges 
of incorporating attention mechanisms into deep learning and explores potential future directions. It is worth noting that, to our 
knowledge, there is no existing literature review that delves as deeply into attention mechanisms for plant disease recognition, 
highlighting the significance of our study in advancing this field. 

3. Understanding attention mechanisms 

A significant advancement in deep learning, attention mechanisms revolutionize how models process information, enabling them 
to concentrate on specific features within a dataset. Modelled after human cognition, these mechanisms dynamically weigh various 
input components based on their importance, allowing the model to prioritize relevant information while disregarding irrelevant 
details. Notably, attention mechanisms are recognized for their ability to enhance model accuracy by focusing on essential information 
and filtering out noise. This capability is particularly advantageous in the context of plant disease identification, where precision is 
paramount. By selectively directing attention to specific regions or features within plant images, these mechanisms enable more 
precise and nuanced disease detection, resulting in more accurate diagnoses [7]. 

Moreover, attention mechanisms contribute to interpretability by highlighting which sections of an image are most influential in 
the classification process. This transparency provides valuable insights into how the model generates predictions, facilitating model 
validation and refinement. Additionally, attention mechanisms are highly adaptable and seamlessly integrate into a variety of deep 
learning architectures commonly used in plant disease detection, such as convolutional neural networks (CNNs) and Transformer 
models. This adaptability allows researchers to tailor models to specific task requirements and optimize performance across diverse 
datasets and plant species, underscoring their significance in advancing automated plant disease detection. 

These mechanisms are classified based on a variety of factors, including the type of information they receive, such as spatial 
attention, which focuses on specific areas of an image, or channel attention, which improves CNN feature representations by high-
lighting specific channels or feature maps in the input. Furthermore, the granularity at which attention mechanisms operate varies, 
with global attention considering the entire input and local attention focusing on specific regions of interest within the input. Attention 
mechanisms differ in the process used to calculate attention weights Self-attention mechanisms calculate attention scores by examining 
the correlations between every pair of elements in the feature map or input sequence, whereas cross-attention mechanisms compute 
attention scores among elements from different input sequences or modalities and then use these scores to weight the information 
shared between them. Understanding these categorizations allows researchers to effectively use attention mechanisms to improve the 
performance of DL models. This study focuses on categorizing and describing the characteristics of these attention mechanisms. 

3.1. Type of input considered 

3.1.1. Channel attention 
Attention mechanisms have distinct approaches tailored to different types of input considerations. One such method involves using 

Fig. 1. (a) Cam (b) SAM [11].  
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channel information as input for attention mechanisms. In this paradigm, attention mechanisms refine feature representations within 
Convolutional Neural Networks (CNNs) by emphasizing specific channels or feature maps that are deemed critical for the task at hand. 
An image is represented by three channels: R, G, and B, which represent the red, green, and blue intensity levels of each pixel in the 
image. Through convolutional operations, each channel generates new channels with distinct information. By assigning weights to 
each channel to indicate its relevance to key information, a higher weight signifies greater relevance, thereby highlighting the 
importance of that channel [8]. Channel attention module (CAM) look for interactions and dependencies among various feature 
representations across multiple channels. The “squeeze-and-excitation” approach by Ref. [9] is utilized in CAM. The “squeeze” process 
reduced the dimensions of feature maps to just a single value (i.e., channel descriptor) by applying average pooling or max pooling. 
Fig. 1 (a) depicts the CAM [10]. The input tensor is processed initially in the CAM by an adaptive average pooling layer. This layer 
reduces the input tensor’s spatial dimensions to 1x1 while keeping the channel dimension. The output is subsequently sent to a linear 
layer, which decrease the channel dimension by a predetermined reduction ratio. The rectified linear unit (ReLU) activation function is 
used for bringing nonlinearity into the network. Following that, another linear transformation is applied to restore the original channel 
dimension. To confine values within the range of 0–1, the sigmoid activation function is utilized, producing channel attention weights. 
These weights are then multiplied element by element with the input tensor so as to emphasize or minimize the importance of in-
dividual channels. 

The Shuffle Attention technique focuses on channel-wise attention, which involves dividing input channels into groups and 
creating attention maps to highlight relevant aspects within each group. Shuffle attention initially splits the input feature map into 
several groups and simultaneously processes the sub-features within each group. Sub-features are combined, the outcomes from both 
branches are concatenated, and a channel shuffle operation makes it easier for various sub-features to communicate with one another. 
It has demonstrated improved performance in tasks like as instance segmentation, and object identification by including proposed 
shuffle attention module into different CNN models [12]. 

3.1.2. Spatial attention 
The spatial attention technique prioritizes spatial information for feature enhancement and can be applied at various scales, 

allowing the model to focus on both detailed information and broader contextual areas. By adaptively attending to different region of 
the input, the model can understand variations in scale, and appearance, leading to improved performance on visual tasks. As pre-
sented in Fig. 1 (b), the first step in the spatial attention module (SAM) [10] includes processing the input tensor via separate max 
pooling and min pooling operations along the channel dimension. The max pooling operation identifies the maximum values across 
channels, while the min pooling operation identifies the minimum values. These outcomes are then combined along the channel 
dimension, resulting in a tensor comprising two channels. Subsequently, a 2D convolution operation is employed to manipulate the 
tensor and generate a single-channel output. Following that, the sigmoid activation function is employed to compress the values 
between 0 and 1. These values represent the spatial attention weights, which measure the importance of specific spatial regions. 
Finally, the attention weights are element-wise multiplied with the input tensor, emphasizing or downplaying specific spatial regions 
based on their relevance. 

The term “soft attention” or “soft attention mechanism” refers to one particular type of spatial attention mechanism. In this 
approach, model takes a feature map as input, and generates attention weights for each spatial point. The attention weights represent 
the significance or relevance of each regions, allowing the model to emphasize or de-emphasize certain regions during computation. 
Soft attention is introduced by Ref. [13]. The soft attention mechanism employed an independent neural network module to produce 
attention weights. These weights were subsequently utilized to calculate a weighted sum of image features. By training the model, the 
attention weights were learned, enabling automatic identification of the most pertinent image regions for generating precise and 
meaningful captions. 

Coordinate attention is a type of spatial attention mechanism. Unlike typical channel attention mechanisms such as SENet [9], 
which only capture inter-channel information, coordinate attention includes spatial information as well as channel interactions. This 
technique captures long-range dependency along one spatial dimension while keeping precise positioning information along the other 
[14]. 

3.1.3. Mixed attention 
The mixed attention mechanism refers to a type of attention mechanism that combines different attention mechanisms or com-

ponents within a neural network model. It involves the integration of multiple sources of information obtained from utilizing diverse 
attention mechanisms, such as spatial attention, channel attention, or other variants, for enhancing the model’s ability to collect 

Fig. 2. CBAM module.  

S. Duhan et al.                                                                                                                                                                                                         



Heliyon 10 (2024) e29802

5

diverse information. The attention weights were learned during the training process. In Ref. [15], Dual Attention Network (DAN) is 
proposed which combine channel and spatial attention mechanism for scene segmentation. In Ref. [10], Convolutional Block Attention 
Module (CBAM) is proposed which contain two sub modules CAM and SAM as shown in Fig. 2. For better feature refinement, CBAM 
can be incorporated into any CNN architecture because of their lightweight structure. 

3.2. Method of computing attention weights 

3.2.1. Self attention 
Various attention mechanisms use different approaches to calculate attention weights, which are adapted to their specific purposes 

and input characteristics. Self-attention mechanisms, for example, compute attention weights by examining the associations between 
each pair of components in an input sequence or feature map. The self-attention mechanism enables interaction between elements of 
input ("self”) and establishes the level of attention that should be given to each element. The resulting outputs are a combination of 
these interactions and corresponding attention scores. By assigning attention weights to each pixel or region in the self-attention 
layers, the model may dynamically learn to emphasize the most relevant features of the input images. This feature allows the 
model to focus on locations having the most relevant information for discriminating between healthy and unhealthy plants. 

3.2.2. Cross attention 
In deep learning systems, cross-attention, often referred to as cross-modal attention or inter-attention, is a method that facilitates 

communication and interaction across several modalities or representations within a model. With cross-attention, a model can analyse 
data from one sequence or modality while attending to aspects from another, in contrast to self-attention, which concentrates on 
capturing dependencies inside a single sequence or feature set. When dealing with tasks that involve pairs of sequences, like machine 
translation, this variation of attention is very helpful since it helps the model identify the links between elements in various sequences 
[16]. A dual-branch transformer model named CrossVit is proposed in Ref. [17], for multi-scale feature learning in image classification. 
In order to maintain linear computing cost while enabling effective information flow between small-patch and large-patch tokens, 
cross-attention is utilized as an effective fusion technique. Cross attention is used in the U-Transformer network [18] for medical image 
segmentation to improve the capacity of the U-Net decoder to recover spatial information from skip connections. Cross-attention is 
used to filter out noisy or unnecessary regions from the skip connection features, so that the model can concentrate on semantically rich 
areas for precise segmentation. 

3.2.3. Transformer based attention 
In 2017, study [11] achieved a significant advancement with the creation of a ground-breaking neural network known as the 

“Transformer.” The Transformer, which was first created for NLP tasks, revealed to the world the amazing powers of self-attention 
processes. By utilizing self-attention, this design enables models to process sequences in parallel, effectively capturing long-range 
dependencies. The transformer model follows an encoder-decoder architecture, where multiple encoders and decoders are stacked 
(as represented by Nx in Fig. 3). This stacking implies that the outcome of one encoder becomes the input for the subsequent encoder, 
and similarly, the outcome of one decoder becomes the input for the adjacent decoder [19]. According to this approach, the encoder 
receives a series of symbols as input, and the decoder produces a series of symbols, one element at a time, as the output [11]. The 
transformer model relies mainly on the attention function to produce output, it maps a query and a set of key-value pairs. 

Fig. 3. Transformer architecture [11].  
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Specifically, the attention method works on a set of queries that are arranged in a matrix Q. Similarly, the values and keys are 
organized into matrices V and K, respectively. The resulting matrix of outputs is computed through a specific process as shown in Eq. 
(1): 

Attention(Q,K,V)=VSoftmax
(
QKT

√dk

)

(1)  

Where, dk is keys of dimensions. 

3.2.4. Multi-head attention 
Multi-head attention, as seen in Fig. 4, allows the model to collectively focus on input from distinct representation subspaces and 

positions. In Ref. [11], researchers begin by applying a linear transformation to the input matrices Q, K, and V, then compute attention 
as in Eq. (2): 

Attention
(
wQQ,WKK,WVV

)
=WVVSof tmax

(
WQQWKKT

̅̅̅̅̅
dk

√

)

(2)  

Where, WK , WQ , WV are all learnable parameters. In multi-head attention, linear transformation is applied to the matrices and 
perform attention on number of heads and then these heads are concatenated and then linear transformation is applied again as shown 
in Eqs. (3) and (4): 

MultiHead(Q,K,V)=Concat(head1, head2,…headi)wo (3)  

Where, 

headi =Attention
(
QWQ

i ,KWK
i ,VWV

i

)
(4) 

Transformer-based attention employs self-attention and multi-head attention to handle input sequences. In the transformer ar-
chitecture, a self-attention layer first process the input sequence, then a feed-forward network, and finally another self-attention layer. 
This sequence of layers is repeated multiple times, with residual connections and layer normalization applied between each layer. 
Transformer-based attention has been shown to be highly effective in modelling sequential and spatial dependencies in natural lan-
guage and computer vision tasks [19]. 

In summary, self-attention serves as a foundational element within multi-head attention, which in turn functions as a critical 

Fig. 4. Multi-Head Attention [11].  
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component in the overall transformer-based attention mechanism. Some common transformer-based attention variants used in 
computer vision are: Vision Transformer (ViT) [20], Data-efficient Image Transformers (DeiT) [21], Swin Transformer [22], 
Pooling-based Vision Transformer (PiT) [23], and DEtection TRansformer (DETR) [24]. 

3.3. Level of granularity 

Attention mechanisms work at multiple levels of granularity, allowing models to concentrate on different sections of the input data 
according to their specific needs. On a broader scale, attention processes can be categorized according to the amount of information 
they consider. Global attention techniques allow models to focus on every element in an input sequence or feature map. Local attention 
mechanisms, on the other hand, concentrate on particular areas or portions of the information, enabling more tailored processing 
while also lowering computing complexity. To improve discriminative features for classification, the Squeeze-and-Excitation Network 
(SENet) [9] for instance, uses global attention to recalibrate feature maps over the entire image based on channel-wise relationships 
[25]. 

3.3.1. Multi-scale attention 
Multi-scale attention refers to the model’s capacity to pay attention to and capture information at multiple scales or levels of detail 

within an input. This is typically achieved by incorporating mechanisms that can aggregate features from different scales, such as using 
dilated convolutions, feature pyramid networks [26], or pyramid pooling modules [27]. The aim is to enable the model to grasp 
detailed as well as comprehensive contextual information, thereby enhancing its understanding of the input across various levels and 
scales. Example of multi-scale attention models are: Non-local Neural Networks [28], Deep Layer Aggregation (DLA) [29], Scale-Aware 
Trident Network [30], and Path Aggregation Network (PANet) [31]. 

In conclusion, attention mechanisms provide an adaptable framework for deep learning feature representation. Attention processes 
help models extract meaningful information and increase performance across a variety of tasks by carefully directing focus to key 
components within the input data. Importantly, various attention mechanisms are tailored to specific areas of data processing, with 
each providing distinct benefits based on the task requirements. However, it is important to note that attention processes are not 
mutually exclusive; rather, they can complement one another when utilized alone or in combination. For example, a task may benefit 
from the simultaneous use of global and local attention mechanisms to collect both global patterns and specific details within the data. 
This adaptability demonstrates attention mechanisms’ versatility and usefulness in resolving a variety of machine learning problems in 
addition to their importance as a key tool in increasing model capabilities. 

4. Attention mechanisms in plant disease identification 

To create an automated system for identifying plant diseases, various stages must be undertaken, as depicted in Fig. 5. The initial 
stage involves capturing images of plants from real fields. While diseases can occur in various plant parts, such as roots, stems, or 
leaves, leaf images are commonly used for disease identification since most visible symptoms appear on leaves. Once the images are 
obtained, the subsequent stage involves image pre-processing. This entails resizing the images to suit the model’s requirements and 
applying denoising techniques to eliminate distortions. Furthermore, image augmentation techniques like scaling, flipping, rotation, 
translation, cropping, and deep learning augmentation methods such as GANs are employed to augment the dataset, for better training 
of the data-hungry ML model. 

In the third stage, image segmentation is performed to identify regions of interest (ROIs) where infected areas are present in the 
image. Subsequently, in the fourth stage, feature extraction techniques are applied to extract relevant features from the images, which 
facilitate the ML model in identifying diseased or healthy regions. The final stage involves classification, where the disease class 
affecting the plant leaf is determined. The output obtain from this stage is the probability values associated with different types of 
diseases that could be present on the plant leaf. To enhance the plant disease identification system, attention mechanisms are inte-
grated into the segmentation, feature extraction, object detection, and classification phases. This enables the models to allocate more 
attention or resources to crucial regions of an image while reducing emphasis on less relevant regions. This section focuses on the 
techniques and models proposed by researchers that utilize attention mechanisms to develop solutions for plant disease detection and 
classification. Detailed information regarding pre-processing, augmentation, segmentation, and classification techniques employed in 
recent studies, as well as the frameworks utilized and the achieved accuracy, can be found in Table 1, which provides a comprehensive 
summary of various plant disease recognition studies. 

Attention mechanisms, known for their versatility, provide crucial support at several phases of plant disease identification. In 
image segmentation tasks, mechanisms such as spatial attention or multi-scale attention that target specific regions of interest within 

Fig. 5. Steps involves in plant disease identification.  
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plant images, allowing for more exact demarcation of diseased areas. In the context of feature extraction, self-attention mechanisms 
prove particularly effective at identifying complex patterns and correlations in the data, which makes it easier to extract distinguishing 
traits linked to distinct diseases. In object detection, both channel and spatial attention mechanisms are essential because they direct 
focus to disease-related anomalies and allow for the identification of affected areas within complex plant leaf images. Finally, in the 
classification step, mechanisms like as global attention can be used to emphasize informative portions of the image, resulting in more 
accurate disease classification based on visual characteristics. By leveraging on these various attention mechanisms at different phases, 
systems for identifying plant diseases can attain enhanced precision, resilience, and effectiveness, thereby making a substantial 
contribution to the advancement of agricultural sustainability and crop management. 

In this study, various techniques proposed by researchers are reviewed, which utilize attention mechanisms to enhance different 
aspects of plant disease identification, including segmentation, feature extraction, classification, and object detection. Throughout the 
analysis, a spectrum of approaches is observed, ranging from the direct incorporation of existing attention mechanisms to innovative 
modifications tailored to specific plant disease identification tasks. Fig. 6 is presented to offer a succinct overview of the studies 
included in the analysis. This figure categorizes the techniques based on the stages of the plant disease identification process they 

Fig. 6. Diagrammatic representation of various attention mechanism along with the studies that employ these mechanisms  
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Fig. 7. Network design of studies that focus on image segmentation utilizing attention mechanisms (a) Improved DeeplabV3+ Network; (b) 
AWUNet; (c) ResNet50-PAB; (d) YOLACT++; (e) HMASS; (f) DS-DETR; (g) New-CA 
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target, facilitating a detailed examination of the attention mechanisms employed across segmentation, feature extraction, classifica-
tion, and object detection. By scrutinizing Fig. 6, readers can discern the specific attention mechanisms utilized to enhance seg-
mentation processes, improve feature extraction, refine classification accuracy, and enhance object detection in plant disease 
identification scenarios. 

In this section, we delve into the intricacies of attention mechanisms utilized by researchers to enhance various facets of plant 
disease identification. Our focus lies predominantly on elucidating the methodologies where attention mechanisms are harnessed to 
bolster different tasks inherent in this domain. The ensuing figure, presented within this section, serves as a comprehensive guide, 
delineating the strategic integration of these mechanisms within the model architecture and delineating the specific attention modules 
employed. Through this detailed analysis, we aim to provide clarity on the nuanced applications of attention mechanisms, shedding 
light on their pivotal role in advancing the field of plant disease identification. 

4.1. Leveraging attention mechanisms for image segmentation 

Image segmentation is the task of dividing an image into semantically relevant areas. Attention mechanisms have evolved as an 
efficient strategy for improving image segmentation performance because they selectively focus on important image features. In recent 
studies, several attention processes have been used to extract relevant characteristics and improve segmentation task performance. In 
recent studies, various attention mechanisms have been utilized to extract relevant features that improve the performance of seg-
mentation tasks. Some of these studies in the area of plant disease identification are discussed in this section. 

4.1.1. Improved DeeplabV3+ network 
For better image segmentation, [32], suggested an improved DeeplabV3+ network. The encoder component, shown in Fig. 7 (a), 

employs MobileNetV2 [33] as the primary network for feature extraction instead of Xception network, which minimises computation 
and enhances speed. To handle sub-features, the shuffle attention module is utilized, while Atrous Spatial Pyramid Pooling (ASPP) [34] 
is used to fuse image context information to obtain high-level information and pass it to the decoder section. In the decoder, CBAM [10] 
is incorporated to enhance segmentation accuracy. Furthermore, to assign different weights for background and disease spots, a 
weighted loss function is utilized to ensure differential treatment during the training process, which is specified in Eq. (5): 

L= −
1
N

∑N

i=1

∑C

j=1
Wjti

jIn

(
yi

j

)
(5) 

Here, total pixel count is denoted by N, and total number of categories by C, i is the index representing a specific training pixel, j is 
the index denoting the class of that training pixel, true disease spot category of the ith training pixel’s annotation is denoted by ti

j , and yi
j 

is the predicted disease spot category for the ith training pixel. Additionally, Wj is a weight parameter for category j, calculated as, (N− Nj)

N 
where Nj represents the pixel count for category j. 

4.1.2. AWUNet 
Study [35], introduced AWUNet (Attention-gated Wavelet pooled UNet) is a unique variant of the U-Net architecture [18] that 

integrates wavelet pooling and attention-gated skip connections. Attention gate module utilized in study is shown in Fig. 7 (b). 
Attention gate module and remodel skip connections is used to decrease the dimension of the feature map, wavelet pooling is used in 
between convolution layers instead of max pooling. AWUNet model integrates global and local information from both encoder and 
decoder paths, leveraging learned attention weights to focus on salient features for improved semantic segmentation. The suggested 
approach was evaluated against various deep learning techniques including U-Net [18], Visual Geometry Group (VGG) [36], and 
ResNet [37]. Mean Square Propagation (RMSPROP) optimizes the weights of the AWUNET model, and Lecun Normal is used for the 
kernel initializer. 

4.1.3. ResNet50 + PAB 
A novel lightweight position attention block (PAB) as shown in Fig. 7 (c) is proposed in Ref. [38] that breaks channel attention into 

one-dimensional feature encoding. The PAB can capture long-range dependencies along one spatial direction while keeping precise 
position information along the other by reducing global pooling into direction-specific encoding procedures. PAB can be embedded in 
existing networks such as MobileNet [39], VGG [36], and ResNet [37]. The generalization ability of the position attention block was 
tested by using object detection models like YOLOv3 [40], YOLOv5 [41], and semantic segmentation models like Mask RCNN [42]. 

4.1.4. YOLACT++

For better segmentation and detection of diseased spots, YOLACT++ with the attention module is proposed in Ref. [43] The 
suggested model has five components: In the initial stage, ResNet101 [37] is used as a feature extraction network, and in the second 
stage, the CBAM attention module [10] is used. In the third stage, the Feature Pyramid Network (FPN) architecture [26] is utilized to 
get the feature maps, which are fed into the second CBAM as showcase in Fig. 7 (d). The fourth stage involves a segmentation network 
that utilizes a prediction head structure to enhance the speed of segmentation. The network receives five feature maps as input and 
accomplishes three objectives: predicting target classification, bounding box, and mask coefficients. Other components of the seg-
mentation network utilize Protonet to generate prototype masks that match the original image’s size. The final step involves image 
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post-processing, which includes thresholding, cropping, and fast mask re-scoring. 

4.1.5. HMASS 
For analyse grape foliar disease infection across multiple scales, the hierarchical multi-scale attention for semantic segmentation 

(HMASS) network [44] was used in Ref. [45] which uses a series of stereo images captured using a utility task vehicle (UTV) in the 
field. The proposed solution consists of four primary components: disease infection segmentation, canopy segmentation, image overlap 
removal, and infection severity estimation, as depicted in Fig. 7 (e). Canopy segmentation involved utilizing colour filtering techniques 
to generate canopy masks in the images. The module responsible for identifying and removing overlapping regions between successive 
photographs made use of depth and GPS data. The stereo semi-global block matching (StereoSGBM) approach is used to obtain depth 
data. Finally, the ratio of infected areas to canopy areas in non-repetitive picture regions was calculated to assess the severity of disease 
infections. 

4.1.6. DS-DETR 
Authors of [46], proposed the Disease Segmentation Detection Transformer (DS-DETR) for enhancing the convergence speed, and 

to minimize the training epochs required, an unsupervised pretrained UP-DETR model [24] is proposed. In the DS-DSTR model, to get 
the feature sequence vectors, ResNet50 is used, as depicted in Fig. 7 (f). Feature extracted are fed into the transformer; in the encoder 
phase of the transformer, improved Relative Position Encoding is utilized to give more attention to local features; and in the decoder 
phase of the transformer, the Spatially Modulate Co-attention (SMCA) module [47] is employed to extract features from various spatial 
positions. Results from the decoder phase are inputted into the mask prediction heads (MPH) to accomplish pixel-level segmentation of 
the identified targets. 

4.1.7. New-CA 
To address the issue of disease recognition in a complex background conditions study [48], use GrabCut algorithm to process the 

real field image and make the background black so that a similarity can be established between real time and the images used for 
training the model. A new coordinate attention (CA) block is proposed, as shown in Fig. 7 (g) that obtains long-range dependencies 
along two spatial directions and along channel directions as well, instead of CA that obtains information along H- and W-directions 
only. Additionally, channel pruning is used to reduce the size of the model, and fine-tuning is performed to account for the performance 
of the model after pruning. With the new CA, ResNet50 [37] and GhostNet [49] both perform well in terms of minimising the error and 
shrinking the model size. 

Attention mechanisms allow the model to concentrate on important regions of the input image, enhancing image segmentation by 
accurately identifying objects and boundaries. They facilitate the selection of valuable features from different spatial locations, 
capturing intricate details in scenarios with diverse object scales, shapes, or appearances. However, the integration of attention 
mechanisms may lead to increased memory usage and longer inference times, particularly in resource-intensive or time-critical 
applications. 

4.2. Leveraging attention mechanisms for feature extraction 

Feature extraction refers to the process of obtaining meaningful and informative representations, also known as features, from raw 
input data. In the context of computer vision, feature extraction typically involves transforming images or image patches into lower- 
dimensional representations that capture relevant visual information. The utilization of attention mechanisms enhances the 
discriminative capability of the model, allowing it to prioritize informative regions or features. This is particularly advantageous for 
tasks that necessitate precise discrimination, such as object recognition or fine-grained classification. Studies that utilized various 
attention mechanisms for extracting relevant features are discussed here. 

4.2.1. SE-ResNet50 
A multi-scale CNN with residual blocks and Squeeze and Excitation (SE) module was introduced by Ref. [50] as shown in Fig. 8 (a) 

to identify tomato leaf diseases. The SE module recalibrates features by weighting feature channels by relevance. This recalibration 
approach improves the model’s ability to extract complicated disease features by enhancing effective feature channels and reducing 
invalid ones. The SE module is directly integrated with the ResNet-50 architecture. This integration guarantees that the SE module 
works seamlessly with ResNet-50’s existing layers, improving its feature extraction capabilities. 

4.2.2. RIC-Net 
To reduce trainable parameters, RI-Block is proposed in Ref. [51] by merging the Inception structure with the residuals network. 

For accurate feature extraction, the CBAM module is introduced. Improvements are introduced in CBAM. In CAM, shared MLP’s 
operations were initially replaced with two one-dimensional convolutions. Furthermore, a weighted operation was introduced to 
emphasize the significance of lesions. A fully trained RIC-Net model was then made available online to enable the real-time detection of 
plant diseases, as shown in Fig. 8 (b). 

Fig. 8. Network design of studies that focus on feature extraction utilizing attention mechanisms (a) SE-ResNet50; (b) RIC-Net; (c) EfficientNetB0 +
CBAM; (d) AB-SE-DenseNet-3; (e) ADCLR; (f) D121-MFA; (g) AT-AlexNet; (h) IBSA_Net; (i) DBNet; (j) MSFM; (k) SEViT; (l) SC-CAN 
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4.2.3. EfficientNetB0+CBAM 
To emphasize significant local regions and extract more distinctive features from the output feature map of a CNN, [52], employed 

the CBAM module, as depicted in Fig. 8 (c). The effectiveness of CBAM was demonstrated using pre-trained CNN models such as, 
MobileNetV2 [33], VGG19, ResNet50 [37], EfficientNetB0 [53], and InceptionV3 [54]. EfficientNetB0+CBAM has outperformed the 
original EfficientNetB0 model by giving the best accuracy. 

4.2.4. AB-SE-DenseNet 
Study [55], propose an AB-SE-DenseNet model in which a DenseNet model [56] embedded with an SE module is used to extract 

useful features from global information and the AdaBound algorithm is used to accelerate model fitting and enhance the generalisation 
capability of the model. This study developed three different SE-DensetNet-1, SE-DensetNet-2, and SE-DensetNet-3 models that differ 
in how SE modules are embedded in the network. The SE-DensetNet-3 models, depicted in Fig. 8 (d), outperform other models by 
incorporating the SE module in both the transition layer and the dense block of DenseNet simultaneously. 

4.2.5. ADCLR 
The authors of study [57] proposed attention-based dilated CNN logistic regression (ADCLR) as illustrated in Fig. 8 (e). For image 

pre-processing, colour space conversion is used to extract brightness and saturation levels, and normalization is used to reduce 
computation complexity. In order to address the issue of imbalanced data, synthetic images are created through the utilization of a 
technique known as Conditional Generative Adversarial Network (CGAN) [58]. In this paper, a new feature extraction approach is 
developed that uses dilated CNN with hierarchical attention mechanisms (HAM). Multiple hidden layers are used in dilated CNN for 
efficient learning of discriminatory features. And in the last for classification task, a logistic regression model was used. 

4.2.6. D121-MFA 
The model proposed in Ref. [59] consists of four modules: First, to extract input image features, DenseNet121 [56] is used. Sec-

ondly, to obtain local and global features, a multi-granularity feature aggregation module (MFA) is developed that consists of two 
components: picture-level feature self-attention (P-FSA), which enables the extraction of discriminative features from various disease 
regions, and block-level feature self-attention (B-FSA), which improves the model’s capacity to recognise the traits of various crop 
species. The MFA module collectively improves the feature aggregation process by incorporating attention mechanisms at different 
levels of granularity. Thirdly, to capture spatial geometric relationships between feature blocks, sequential spatial reasoning (SSR) is 
introduced, and in the last step, a classical classification head is used to categorize plant diseases as shown in Fig. 8 (f). 

4.2.7. AT-AlexNet 
To improve model feature extraction capability and minimize information, [60], introduced a modified version of the AlexNet 

network [61] integrated with a sampling attention module, depicted in Fig. 8 (g). As a means of augmenting the network’s non-linear 
expression capability, the Mish activation function is employed in place of ReLU. This substitution leads to a notable 0.65 % 
improvement in the model’s recognition accuracy. Group convolution (GC) is utilized to decrease the trainable parameters and in-
crease the diagonal correlation between the convolution kernels of adjacent layers. 

4.2.8. IBSA_Net 
The authors [62], proposed the IBSA_Net model, which consists of IBMax_block, in which to reduce the number of parameters, an 

inverted bottleneck structure is used with batch normalization, and a MaxPool layer is also used in between ConvBN blocks, which are 
added to enhance the model’s stability. To improve the capacity structure of the suggested model to obtain spatial location, the shuffle 
attention (SA) module is added together with residual and the GELU activation function, which is named IBSA_block. In the IBSA_Net 
model, as shown in Fig. 8 (h), there is the utilization of three IBSA_Blocks, with channel up-convolution (UPconv) employed between 
these modules. In the final block, global average pooling is applied to extract relevant information, followed by the FC layer. 

4.2.9. DBNet 
The dual-branch network (DBNet) model suggested in Ref. [63] which consists of a multiscale joint branch (MS) and a 

multi-dimensional attention branch (DA) as illustrated in Fig. 8 (i). Both of the branch use VGG-16 as their backbone network. MS uses 
dilated convolution and asymmetric convolution kernels to obtain various receptive fields in parallel, which is useful when lesion 
information in images is scattered. To get information about the exact lesion location in the image, a novel attention mechanism called 
DA is utilized. In the DBNet, output obtained from the MS and DA branches is concatenated, and then the FC layer is introduced to get 
the output. 

4.2.10. MSFM 
In [64], a lightweight multi-scale fusion model (MSFM) that contain EfficientNet-B6 [53] as the base network is introduced. The 

pre-trained network incorporates CBAM prior to each regularization stage to improve the model’s capacity to choose features. A 
multi-scale fusion module is used to extract precise colour, texture, and context information from the image. CBAM is originally used in 
this module, as illustrated in Fig. 8 (j), to enhance the properties of tiny lesion information by learning relevant features. Then, dilated 
convolutions with various expansion rates are used to extract features. 
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Fig. 9. Network design of studies that focus on object detection utilizing attention mechanisms (a) YOLOv5s-CMS; (b) GSEYOLOX-s; (c) TSBA- 
YOLO; (d) ICM-ODM; (e) CTR_YOLOv5n; (f) YOLOv5s-CA 
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4.2.11. SEViT 
A squeeze-and-excitation vision transformer (SEViT) model was developed in Ref. [65] for efficient detection of fine-grained and 

large-scale disease symptoms in plants and contains two modules. The first module is the pre-processing network, in which the 
ResNet101 model [37] is improved by embedded the SE module, which enhances disease features. The second module is the pretrained 
ViT model [20], which takes enhanced expression input from SE-ResNet101 and produces disease probability as illustrated in Fig. 8 
(k). The developed model’s limitations include large model parameters and a deep network. The severity level of the disease cannot be 
predicted; only the disease can be classified. 

4.2.12. SC-CAN 
In [66], the Spectral Convolution and Channel Attention Network (SC-CAN) to distinguish between the spectral responses of 

stressed and healthy crops is introduced. The input to this network is given in the form of a sequence of spectral bands. To address the 
issue of class imbalance, the Synthetic Minority Oversampling Technique (SMOTE) is used to increase the sample size of the minority 
class. The SC-CAN comprises two components: the first is the spectral convolution module, which, to increase the receptive field, 
utilizes a dilated convolution layer with residual connections. This enables the extraction of global features even in shallow networks. 
The second module is the channel attention module, which takes refined feature maps obtained from dilated convolution layer as input 
and compute inter-channel relationships, as illustrated in Fig. 8 (l). 

Attention mechanisms can be incorporated into various neural network architectures, such as recurrent neural networks (RNNs) 
and CNNs. They can complement existing architectures and improve their feature extraction capabilities. While embedding attention 
mechanisms improves feature extraction performance, they can make the interpretability of the learned features more challenging. 
Understanding which specific regions or features contribute to the model’s decisions becomes more complex due to the attention 
mechanism’s non-linear and implicit nature. 

4.3. Leveraging attention mechanisms for object detection 

Object detection is the process of identifying and locating objects in an image. However, this task can be quite difficult due to 
differences in how objects look, their size, and when they are partially obstructed. To tackle these challenges, attention mechanisms 
are employed in object detection models. The utilization of these mechanisms allows models to concentrate on the pertinent aspects of 
an image, adjust to objects with varying sizes, integrate contextual details, optimize resource allocation, and effectively manage 
complex scenes. By utilizing attention mechanisms, the models can significantly enhance their accuracy in detecting and localizing 
objects in complex visual environments. Below are a few examples of models that have been created by researchers, leveraging 
attention mechanisms to enhance the ability to identify diseases. 

4.3.1. YOLOv5s-CMS 
For detecting the root-knot nematode in cucumber plants, [67], used YOLOv5s [41] deep learning model. And to produce anchor 

boxes, k-means++ clustering algorithm was utilized. To identify key regions and capture distinguishable features from a small target, 
the dual attention mechanism CBAM and coordinated attention (CA) is embedded in the backbone of YOLOv5s as illustrated in Fig. 9 
(a). The proposed model detects the affected region with a 3.1 % increase in mean average precision in comparison to the original 
model. 

4.3.2. GSEYOLOX-s 
To determine the level of severity of Fusarium head blight (FHB) in wheat, [68], proposed a novel, lightweight model named 

GSEYOLOX-s. The proposed model is an improvement over YOLOX-s model. In the suggested model, a simple, parameter-free attention 
module (SimAM) [69] is included after the CSPDarknet backbone network of the original model so that the model concentrates on 
crucial components without increasing trainable parameters, and after the FPN [26] and PAN [31] structures, a G-head module is 
introduced to simplify the redundancy problem of feature maps to reduce complexity and increase speed as shown in Fig. 9 (b). In place 
of the IoU loss, the Efficient Intersection over Union (EIoU) Loss function is utilized to achieve a more precise localization of the disease 
area. GSEYOLOX-s reduces the parameters to 0.88 MB and increases the mean average precision (mAPa) to 2.52 % from the original 
YOLOX-s model. 

4.3.3. TSBA-YOLO 
The TSBA-YOLO model is proposed in Ref. [70] to extract global information to find out about tea diseases that are spread across 

entire areas of leaves and to effectively detect small spots of disease. To increase global receptive field of the model, the transformer’s 
self-attention mechanism is integrated into the backbone of YOLOv5, as depicted in Fig. 9 (c). For effective fusion of multiscale 
features, BiPEN is employed. A shuffle attention mechanism is added to the neck of YOLOv5 to improve the model’s capacity to 
recognise disease features and express semantic information. The detection head of YOLOv5 is substituted with the proposed adap-
tively spatial feature fusion (ASFF) detection head, which facilitates the removal of irrelevant information and enables efficient fusion 
of disease-related details at different scales. 

4.3.4. ICM-ODM 
To identify disease symptoms severity, the solution proposed in Ref. [71] consists of two modules: image captioning and object 

detection as shown in Fig. 9 (d). Image captioning is used to generate sentences that contain information about the disease associated 
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with visible symptoms and its severity level. The Image Captioning Model (ICM) uses the pretrained InceptionV3 [54] model as an 
encoder for feature extraction, and Transformer is used as a decoder for generating caption sentences from features extracted from the 
encoder. For detecting the infected area and displaying the bounding box around the infected area, YOLOv5 object detection model 
(ODM) is used. Leaf images are provided simultaneously to both models, and the output image contains a boundary box with sentences 
that provide information about disease type, symptoms, and degree of damage. The limitation of the proposed model is that ODM 
performance is very poor. 

4.3.5. CTR_YOLOv5n 
To enhance the efficiency of maize disease detection, the CTR_YOLOv5n model is proposed in Ref. [72], which embed the Coor-

dinate Attention (CA) and the detection head of Swin Transformer (STR) into YOLOv5n. This modification increases the model’s 
accuracy by 2.8 % compared to the original version. The YOLOv5n object detection model is chosen for its compact size and fast 
recognition speed. CA mechanism is introduced to the YOLOv5n backbone network to improve focus on smaller pixel blocks, where 

Fig. 10. Network design of studies that focus on image classification utilizing attention mechanisms (a) CD- MobileNetV3; (b) Vit (Model 4); (c) 
CST; (d) ADSNN-BO; (e) EOS-3D-DCNN; (f) ResNet50-CBAM (SVM) 

S. Duhan et al.                                                                                                                                                                                                         



Heliyon10(2024)e29802

17

Table 1 
An overview of recent studies utilizing attention mechanisms for plant disease identification.  

Reference Method Network 
Design 

Loss Function Pre-Processing Framework Dataset & Accuracy Performance 
Metrics & 
Results 

Keywords 

[32] DeepLabV3 +
(MobileNetV2 + CBAM +
Shuffle Attention + ASPP) 

Segmentation Weighted Loss Labelme Annotation Tool: To Label 
the spot at pixel level. 
Albumentations Data Augmentation 
Library: For Brightness Adjustments, 
Cropping, Flipping, Shifting 

PyTorch On Field - Sweetgum Leaf Spot 
Dataset (SLSD): 

Accuracy: 94.5 
% 

Mixed Attention 

[35] Unet + Wavelet Pooling +
Attention Gate Module 

Segmentation Dice Loss – – On Field -CWFID (Crop Weed 
Field Image Dataset) 

IoU: 94.81 % CNN 

[38] Resnet50 + PAB Segmentation – Random Brightness Level, Random 
Rotation, Flipping, Hue, Contrast, 
Saturation Adjustment 

PyTorch Wheat Dataset –Real Field Images Accuracy: 96.4 
% 

CNN 

[43] Resnet101 + CBAM + FPN 
+ Segmentation Network 
(Protonet Branch And The 
Prediction Head Branch) 

Segmentation Cross-Entropy 
Loss + Smooth L1 
Loss 

Random Cropping, Random Contrast, 
Photometric Distortion, Flipping, 
Random Rotation 

PyTorch Maize Disease Dataset – Publicly 
Available 

Precision: 98.7 
% 
Mean IoU 
(mIoU): 84.9 % 

Residual 
Networks 

[45] Resnet50 + FCN Segmentation Cross-Entropy 
Loss 

RGB To HSV Colour Space 
Conversion 

PyTorch Grape Downy Mildew (DM) and 
Powdery Mildew (PM) Images 
-Real Field Images 

mIoU: 84.% 
(DM), 
74 % (PM) 

Hierarchical 
Multiscale 
Attention 

[46] Resnet50 + Transformer +
MLP + MPH 

Segmentation – Horizontal and Vertical Flipping, 
Rotations, Resizing, Normalizations, 
Segmentation: Copy-Paste Method 

PyTorch Tomato leaf Disease Segmentation 
Dataset (TDSD) 

Accuracy: 96.40 
% 

Coordinated 
Attention 

[48] Grapcut + Resnet50 + New- 
CA, Ghostnet + New-CA 

Segmentation L1 Norm Random Flipping, Random Rotation, 
Affine Transformation 

PyTorch Plant Disease Dataset Top-1 err(%): 
12.55 % 

CNN With 
Channel Pruning 

[50] Resnet50 + SE Module Feature 
Extraction 

– Rotation, Zooming, Noise Addition, 
Colour Jitter 

PyTorch Tomato leaf PlantVillage Dataset Accuracy: 96.81 
% 

Residual Network 

[51] Inception + RI-Block +
CBAM 

Feature 
Extraction 

Cross-Entropy 
Loss 

Random Rotation, Random 
Horizontal and Vertical Offsets, 
Cross-Cutting Transformation, 
Random Scaling, Flipping 

TensorFlow Potato, Corn, Tomato 
-Plantvillage Dataset 

Accuracy: 
99.55 % 

Residual Network 

[52] Pre-Trained CNN (Resnet50, 
Inceptionv3, VGG19, 
Mobilenetv2, 
Efficientnetb0) + CBAM 

Feature 
Extraction 

Softmax-Loss – Keras Diamos Plant Dataset – Publicly 
Available 

Accuracy: 
86.89 % 

Pre-Trained CNN 

[55] Densenet + SE Module +
Adabound Optimization 
Algorithm 

Feature 
Extraction 

Cross-Entropy 
Loss 

Random Brightness Level, Viewing 
Angles, Colours and Horizontal 
Inversion 

PyTorch Rice Disease Dataset – Publicly 
Available 

Accuracy: 
99.4 % 

Deep Dense 
Network 

[57] Dilated CNN + HAM +
Logistic Regression 

Feature 
Extraction 

Categorical Cross- 
Entropy Loss 

Colour Space Conversion, Bilateral 
Filtering 
Data Augmentation: CGAN 
Segmentation: Otsu’s Thresholding 

– Tomato Disease - Plantvillage 
Dataset 

96.6 % Dilated CNN 

[59] Densenet121 + MFA + SSA Feature 
Extraction  

Random Clipping, Random Zooming, 
Horizontal Flipping, Random 
Rotation 

TensorFlow PDR2018, FGVC8, And PlantDoc 
Datasets – Publicly Available 

Accuracy: 
88.32 % 
(PDR2018), 
89.95 % 
(FGVC8), 
89.75 % 
(PlantDoc) 

Multi-Granularity 
Feature 
Aggrigation 

(continued on next page) 
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Table 1 (continued ) 

Reference Method Network 
Design 

Loss Function Pre-Processing Framework Dataset & Accuracy Performance 
Metrics & 
Results 

Keywords 

[60] Alexnet + Down Sampling 
Attention Module + Miss 
Activation Function 

Feature 
Extraction 

Binary Cross- 
Entropy Loss 

Random Rotation, Horizontal Flip, 
Horizontal and Vertical Shift, 
Random Shear, Zoom 

Keras Corn Disease Dataset- Real Field 
Images 

Accuracy: 
99.35 % 

Group 
Convolution 

[62] Inverted Bottleneck Module 
(With Maxpool) + Shuffle 
Attention Module 

Feature 
Extraction 

Cross-Entropy 
Loss 

Rotation, Cropping, Flipping, Scaling – PlantDoc++ Dataset – Publicly 
Available 

Accuracy: 
94.6 % 

Residual Network 

[63] MS Branch (Atrous 
Convolution) + DA Branch 
(SE-Module) 

Feature 
Extraction 

Cross-Entropy 
Loss 

– Paddle Apple Leaf Disease Dataset – 
Publicly Available 

Accuracy: 
96.66 % 

Dual Branch CNN 

[64] Efficientnetb6 + CBAM +
MSF Module 

Feature 
Extraction 

Focal Loss Image Reverse, Increasing and 
Decreasing in Brightness level, 
Horizontal Flipping 

PyTorch Cassava Leaf Disease Dataset- 
Publicly Available 

Accuracy: 
88.1 % 

Diluted 
Convolution 

[65] Resnet101 + SE Module +
Vit 

Feature 
Extraction 

Cross-Entropy 
Loss 

Blurring, Rotation, Noise Addition, 
Change Brightness, and Darkness 
level 

PyTorch Python Crawler Tool To Collect 
Data From Web 

Accuracy: 
88.34 % 

CNN 

[66] Spectral Convolution +
Channel Attention Module 

Feature 
Extraction 

– – – Fusarium Dataset – Real Field Accuracy: 
82.78 % 

Dilated 
Convolution With 
Residual 
Connections 

[67] Yolov5s + CBAM + CA + K- 
Means 

Object 
Detection 

SIoU Loss Random Rotation, Random Colour 
Adjustment, Random Brightness 
Adjustment, Random Contrast 
Adjustment 

PyTorch Cucumber Root-Knot Nematode 
Image Dataset - Real Field Images 

Mean Average 
Precision 
(mAP): 
94.8 % 

Dual Attention 
Mechanism 

[68] YOLOX-S + Simam + G- 
Head 

Object 
Detection 

Efficient 
Intersection over 
Union (EIoU) loss 

LabelImg: To Manually Label Image 
Data Enhancement - MixUp and 
Mosaic Method 

PyTorch Fusarium Head Blight Severity 
Grading Dataset – Real Field 
Images 

mAP: 99.23 % Ghost 
Convolution 

[70] Yolov5 + Transformer +
Bifpn + Shuffle Attention 
Module + ASFF 

Object 
Detection 

SIoU Loss: For 
Bounding Box, 
Binary Cross- 
Entropy Loss: For 
Class Probability 

Rotation, Colour Dithering, Random 
Erasing, Image Translation, Mirror 
Flip 

PyTorch Tea Disease Dataset- Real Field 
Images 

mAP@0.5: 
85.35 % 

Multiscale 
Feature Fusion 

[71] Inceptionv3 + Transformer 
+ Yolov5 

Object 
Detection 

Sparse Category 
Cross-Entropy 
Loss 

Linear Contrast, Vertical Flip, 
Horizontal Flip, Superpixed, 
Sharpening, Grayscale Conversion, 
Embossing, Affine transformation 

– Crop Image Dataset – Publicly 
Available 

BLEU Score: 
64.96 %(ICM) 
mAP50: 0.382 
(ODM) 

Pretrained CNN 

[72] Yolov5n + CA + Swin 
Transformer 

Object 
Detection  

Image Annotation Tool: Make Sense 
AI 
Augmentation: Changing Colour 
Brightness, Hue Saturation, 
Cropping, Scaling, Rotation, Noise 
Addition, and Mosaic Method 

PyTorch Maize Leaf Dataset -PlantVillage 
Dataset 

mAP: 
95.2 % 

CNN 

[73] Yolov5s + CA Object 
Detection 

GIoU Loss Cut and Paste Technique, Resizing, 
Rotation 

PyTorch Blueberry Disease Inages-Real- 
Fields Images 

Precision: 
96.30 % 

Feature Pyramid 
Network 

[75] MobileNetV3-Large + ECA 
+ Digconv 

Image 
Classification 

Bias Loss Mirror Transformation, Horizontal 
Flipping, Blurring, Noise, Clipping  

Corn Leaf Disease Datasets – 
Publicly Available 

Accuracy: 
98.23 % 

Dilated 
Convolution 

[76] Convolution Block + Vision 
Transformer 

Image 
Classification 

– – Keras PlantVillage Dataset, Wheat Rust 
Classification Dataset, And Rice 
Leaf Disease Dataset  

Hybrid Models 

(continued on next page) 
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Table 1 (continued ) 

Reference Method Network 
Design 

Loss Function Pre-Processing Framework Dataset & Accuracy Performance 
Metrics & 
Results 

Keywords 

[77] Convolution + Swin- 
Transformer 

Image 
Classification 

Cross-Entropy 
Loss with Label 
Smoothing 

Random Horizontal and Vertical 
Flipping, Bilinear Interpolation - To 
Adjust the Image Size 

PyTorch Potato Disease Leaf Dataset 
(PDLD), Tomato Images (Plant 
Village), Banana Leaf Disease 
Images (BLDI), And Cucumber 
Plant Diseases Dataset (CPDD), 

Accuracy: 
97.5 % (PDLD), 
98.2 % 
(Tomato), 
92.2 % (BLDI), 
90.9 % (CPDD) 

Vision 
Transformer 

[78] MobileNet + Multi-Head 
Attention + Bayesian 
Optimization 

Image 
Classification 

– Otsu’s Thresholding, Morphology, 
Cropping 

TensorFlow Rice Image Dataset – Publicly 
Available 

Accuracy: 
94.65 % 

Depthwise 
Convolution 

[79] 3DCNN + EOS + CAA Image 
Classification 

Binary Cross- 
Entropy Loss 

Image Enhancement, Noise 
Reduction, Scaling, Colour Space 
Transformation 

Keras Corn Leaf Disease Dataset 
-Plantvillage Dataset and PlanDoc 

Accuracy: 
98 % 

Feed Forward 
Neural Network 

[81] Resnet50-CBAM + SVM Image 
Classification 

First Stage 
Training - 
Categorical Cross- 
Entropy Loss 
Second Stage 
Training-Squared 
Hinge Loss 

Data Augmentation - Random 
Rotation, Random Horizontal Shift, 
Random Vertical Shift, Horizontal 
and Vertical Flipping, Zooming, RGB 
To BGR Conversion 
Images are Categorized using One- 
Hot Encoding 

– Tomato Leaf Disease Dataset - 
Plantvillage Dataset 

Accuracy: 
97.2 % 

Residual Blocks  
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disease spots only occupy a few pixels in the image. For improving the model’s capability in extracting global information, the C3 
structure is replaced with the C3STR structure by incorporating the Swin Transformer into a larger detection head, as illustrated in 
Fig. 9 (e). 

4.3.6. YOLOv5s-CA 
In order to accurately detect Mummy Berry diseases, [73], introduced the YOLOv5s-CA model. This model incorporates the Co-

ordinated Attention into the backbone of YOLOv5s [41], allowing it to concentrate on visual features related to the disease and amplify 
the importance of relevant features. This enhancement significantly improves the model’s ability to detect diseases, as depicted in 
Fig. 9 (f). To effectively train the proposed model, the cut-and-paste data augmentation method [74] is employed, which involves 
creating synthetic images. Additionally, to enhance the localization and bounding box-regression performance of the proposed model 
when identifying infected areas amidst complex backgrounds, the General Intersection over Union (GIoU) loss function is used. 

In object detection, attention mechanisms play a crucial role in considering contextual information for accurate detection. These 
mechanisms allow the model to focus on relevant regions surrounding an object, helping it gain a better understanding of the object’s 
context and make more informed predictions. By selectively attending to these image regions, the model can emphasize discriminative 
features, resulting in more precise bounding box predictions. One potential concern with attention mechanisms is their tendency to 
overly rely on specific regions or features, potentially causing the model to disregard important cues in other parts of the image. To 
address this, it is essential to strike a balance between the attention mechanism’s contribution and other components of the object 
detection model. 

4.4. Leveraging attention mechanisms for image classification 

Image classification refers to the task of assigning a label or category to an input image. The objective is to create models that can 
accurately categorize images into predetermined categories. To tackle challenges such as variations in scale, viewpoint, or occlusion, 
attention mechanisms can be employed. Following are a few models that researchers have recently developed, incorporating attention 
mechanisms to achieve precise classification of plant diseases. 

4.4.1. CD-Mobilenetv3 
In [75], a CD-Mobilenetv3 model is proposed that uses dilated convolution (Digconv) to broaden the receptive field to ensure that 

convolution may gather more data and keep its learning attention on samples with special features. To decrease parameters while 
increasing accuracy, Efficient Channel Attention (ECA) is used in place of the SEs module [9]. Also, to introduce shallow features and to 
utilize in-depth and local features, cross-layer connections between Mobile modules are introduced as shown in Fig. 10 (a). 

4.4.2. ViT 
The authors of study [76], suggested a novel vision transformer (ViT) to compare it with CNN for these eight models are proposed 

Fig. 11. Structure of attention fused model (a) ShuffleNetV2 (b) EfficientNetv2 (c) MobileNetv2  
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that include a combination of four blocks, and each block contains a transformer block, a CNN block, or a combination of these two. 
The first block contains only CNN blocks, the second block contains only Transformer blocks, the third block contains one CNN block, 
then a Transformer block follows, and the fourth block contains a Transformer block followed by a CNN block. These eight models 
were evaluated on three datasets. In every scenario, the ViT model, when trained from the beginning, outperforms CNN or hybrid 
models in terms of accuracy. Despite having fewer parameters, the proposed ViT model utilizes attention blocks which are relatively 
slower compared to convolutional blocks. Model 4, shown in Fig. 10 (b), is made entirely of transformer blocks and has the highest 
recall, f1-score, and precision. 

4.4.3. CST 
In [77], a Convolutional Swin Transformer (CST) model is introduced, to identify diseases and assess their severity. This model is 

built upon the Swin Transformer [22]. Three variants of the model (small, large, and base) have been developed, which differ in the 
way STR blocks are employed in each step and the number of channels utilized. To obtain the image feature map, a convolution block is 
incorporated within the Swin transformer, allowing the feature map to be inputted into the network for learning, represented in Fig. 10 
(c). This modification seeks to improve the model’s accuracy and robustness. To address the issues of overfitting and overconfidence, 
the model incorporates the label smoothing regularization technique. The label smoothing cross-entropy is expressed in Eqs (6) and 
(7): 

L= −
1
N

∑N

i=1
yLS

k ln(pi) (6)  

Where, 

yLS
k = yk(1 − α) + α/K (7) 

Here, Eq. (7) presents a mathematical depiction of label smoothing. In the equation, where yk represents the one-hot encoded 
representation of a sample i. K denote total number of label categories, α represents a small number (specifically 0.1 in this study), and 
pi represents the probability that sample i belongs to the positive class. 

4.4.4. ADSNN-BO 
In [78], a novel model called Attention-based Depthwise Separable Deep Neural Network (ADSNN-BO) is proposed, depicted in 

Fig. 10 (d). They incorporated an attention layer into the MobileNet model [39], and to optimize the parameters, Bayesian optimi-
zation was employed. Using a filter visualization technique, the effectiveness of the suggested approach was tested and compared to 
existing deep learning model, allowing for detailed analysis and comparison. 

4.4.5. EOS-3D-CNN 
In [79], a new and innovative approach called the 3D-dense convolutional neural network (3D-DCNN) is introduced for accurately 

predicting corn disease. They employed the Ebola Optimization Search (EOS) algorithm to determine optimal weights, reduce overall 
error, and increase accuracy. The VGG16 [36] design is used as the base design for a 3D network. Ten 3D convolution layers are used, 
which employ a parametric rectified linear unit (PReLU). The model utilizes two Context-Aware Attention (CAA) [80] blocks, depicted 
in Fig. 10 (e), to capture information at different scales. 

Table 2 
Classification results of attention-fused model considered.  

Model Accuracy Precision Recall F1- 
Score 

Parameters Impact on accuracy due addition of attention 
mechanism 

Parameters 
Added 

MobileNetV2 99.57 % 99.58 % 99.57 % 99.57 % 2,273,831 – – 
SE_ MobileNetV2 99.75 % 99.75 % 99.75 

% 
99.75 
% 

2,273,993 +0.18 % 162 

CBAM_ MobileNetV2 98.71 % 98.82 % 98.71 % 9.872 % 2,284,247 − 0.86 % 10,416 
SA_ MobileNetV2 99.70 % 99.70 % 99.70 % 99.7 % 2,273,855 +0.13 % 24 
EfficientNetV2 99.70 % 99.72 % 99.70 % 99.69 % 20,227,447 – – 
SE_ EfficientNetV2 99.88 % 99.88 % 99.88 % 99.88 % 20,227,520 -+0.18 % 73 
CBAM_ 

EfficientNetV2 
99.38 % 99.42 % 99.38 % 99.38 % 20,237,863 − 0.32 % 10,343 

SA_ EfficientNetV2 99.96 % 99.96 % 99.96 
% 

99.96 
% 

20,227,465 +0.26 % 18 

ShuffleNetV2 98.67 % 98.33 % 98.67 % 98.44 % 1,293,579 –  
SE_ShuffleNetV2 99.85 % 99.85 % 99.85 % 99.85 % 1,293,652 +1.18 % 73 
CBAM_ShuffleNetV2 99.18 % 99.29 % 99.18 % 99.21 % 1,303,995 +0.51 % 10,416 
SA_ShuffleNetV2 99.91 % 99.91 % 99.91 

% 
99.91 
% 

1,293,597 +1.24 % 18  
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4.4.6. ResNet50-CBAM (SVM) 
Support vector machines (SVM) is utilized in place of FC network layers to connect to the CNN model in Ref. [81], which also 

included CBAM for feature extraction as illustrated in Fig. 10 (f). During the second round of training, the base layers of the network 
are kept “frozen” to minimize trainable parameters after the model has been initially learned from scratch. 

Attention mechanisms in image classification have changed the field by improving several aspects of the process. Attention 
mechanisms enhance object distinction by selectively focusing on particular areas or features within an image, allowing classifiers to 
more accurately distinguish between objects even in cluttered or complicated scenes. Furthermore, these mechanisms enable more 
efficient feature selection, enabling models to ignore noisy or irrelevant input and prioritize pertinent data. 

Table 1 gives an overview of recent studies that developed techniques that utilized attention mechanisms for creating plant disease 
identification solutions. 

5. Comparative evaluation 

This section presents a comparative study examining the impact of integrating attention modules, such as the SE module [9], CBAM 
[10], and Shuffle attention [12] modules, into state-of-the-art DL m++odels like ShuffleNetV2 [82], EfficientNetV2 [83], and 
MobileNetV2 [33]. Our goal is to assess how these modules affect factors such as model performance, efficiency, and parameter count. 
To achieve this, we’ve developed attention-fused versions of ShuffleNetV2, EfficientNetV2, and MobileNetV2 models. Initially, an 
attention module is added after the first convolution layer in each model to enhance the features passed on to subsequent layers. The 
attention module depicted in Fig. 11 represents the location where various attention mechanisms are applied in the models. Fig. 11 (a) 
displays the attention-fused ShuffleNetV2 model; the attention-fused EfficientNetV2 model is depicted in Fig. 11 (b); and the 
attention-fused MobileNetV2 model is presented in Fig. 11 (c). 

5.1. Material and methods 

This comparative study utilizes a publicly available dataset [84] comprising 55,636 images and 5850 augmented images that have 
been created by performing tasks such as image flipping, scaling transformations, gamma correction, noise injection, rotation, and PCA 
colour augmentation. The dataset selection was based on its inclusion of images representing 26 diseases across 14 distinct crop 

Fig. 12. (a) training accuracy; (b) validation accuracy; (c) training loss; and (d) validation loss curves plotted over epochs during the MobileNetV2 
and attention-fused MobileNetV2 model training process 
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species, facilitating comprehensive testing to assess the model’s generalizability across diverse classes. The images were captured 
under controlled conditions with a consistent background and resized to dimensions of 224x224 pixels. The dataset is organized into 
39 classes, each corresponding to a specific disease, as outlined in Table 2. To accommodate various deep learning models, additional 
image pre-processing techniques, such as resizing, are applied. The dataset was divided into three groups: training, validation, and 
testing, with ratios of 0.8, 0.1, and 0.1, respectively. As a result, 49,188 photos are used for the training set, 6149 for the validation set, 
and 6149 for the testing set. 

5.2. Experiment setup 

Most studies in Section 4 and Table 1 used PyTorch, an open-source deep-learning framework popular in research. This study 
utilized pretrained deep learning models, MobileNetV2, ShuffleNetV2, and EfficientNetV2 models, for comparative analysis. More 
information and code can be found in Ref. [85]. The experiments were carried out on an NVIDIA GeForce GPU with Driver Version 
525.105.17 and CUDA Version 12.0. The GPU’s memory capacity was 12,288 MB. The deep learning models used for analysis were 

Fig. 13. GradCAM visualization of MobileNetV2 for various attention fused models (a) Original Image; (b) MobileNetV2 [33]; (c) CBAM_Mobi-
leNetV2; (d) SENet_MobileNetV2; (e) SA_MobileNetV2 model 

Fig. 14. (a) training accuracy; (b) validation accuracy; (c) training loss; and (d) validation loss curves plotted over epochs during the MobileNetV2 
and attention-fused EfficientNetV2 model training process 
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pretrained on the ImageNet dataset. The models in our experiment were trained for 15 epochs using a batch size of 32. The ADAM 
optimizer with an initial learning rate of 0.001 was utilized, and the CrossEntropyLoss function served as the loss function. Addi-
tionally, a learning rate decay of 10 % was implemented every 5 epochs to enhance the efficiency of the training process. 

5.3. Evaluation metrics 

Several criteria are taken into account in order to evaluate the models’ performance, including accuracy, precision, recall, and F1 
score. These indicators are essential for assessing a model’s quality. The degree to which the predicted and actual values agree is known 
as accuracy as shown in Eq. (8). The ratio of true positives to all of the model’s positive predictions is known as precision which is given 
in Eq. (9). Recall measures the ratio of true positives to positive samples in the dataset as depicted in Eq. (10). The F1 score sheds light 
on the model’s capacity to recognise positive samples by combining precision and recall as given in Eq. (11). True Positive (TP), False 
Positive (FP), True Negative (TN), and False Negative (FN) values are used to calculate evaluation metrics, as explained below: 

Accuracy=
TP+ TN

TP+ FP+ TN + FN
(8)  

Precision=
TP

TP + FP
(9)  

Recall=
TP

TP+ FN
(10)  

F1 Score= 2
Precision ∗ Recall
Precision+ Recall

(11)  

5.4. Results and discussion 

The integration of attention processes into deep learning models has resulted in significant increases in model performance across a 

Fig. 15. (a) training accuracy; (b) validation accuracy; (c) training loss; and (d) validation loss curves plotted over epochs during the MobileNetV2 
and attention-fused ShuffleNetV2 model training process 
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variety of metrics. Table 2 includes the testing results obtained and compares the performance metrics of various models before and 
after adding attention techniques such as SENet (SE), CBAM, and Shuffle Attention (SA). 

Fig. 12 provides a comprehensive overview of the training and validation results of both the standard and attention-fused Mobi-
leNetV2 deep learning models, encompassing training accuracy (Fig. 12(a)), validation accuracy (Fig. 12(b)), training loss (Fig. 12(c)), 
and validation loss (Fig. 12(d)) curves plotted over epochs during the model training process. Based on training and validation data, 
the MobileNetV2 models’ behavior indicates several important trends. Training loss continuously decreases over epochs in all models, 
suggesting efficient learning processes. Training accuracy increases gradually, with SENet_MobileNetV2 and MobileNetV2 getting 
close to perfect accuracy. MobileNetV2, CBAM_MobileNetV2, and SENet_MobileNetV2 all show declining validation loss in terms of 
validation metrics, indicating strong generalization capabilities. As a result, their validation accuracy rates continue to be high, 
suggesting reliable efficacy on unseen data. SA_MobileNetV2, on the other hand, exhibits variations in both training and validation 
loss, which may indicate instability or problems with over-fitting. Though SA_MobileNetV2’s overall accuracy is not as high as that of 
other models, it still achieves acceptable validation accuracy. While SA_MobileNetV2 displays certain issues that may call for more 
research and optimization, MobileNetV2, CBAM_MobileNetV2, and SENet_MobileNetV2 generally show more reliable and efficient 
behavior in training and validation. As given Table 1, addition of the SE module to MobileNetV2 resulted in a 0.18 % gain in accuracy, 
precision, recall, and F1-score with only 162 parameters introduced. However, including CBAM resulted in a 0.86 % drop in accuracy 
while increasing 10,416 parameters. The reason for this decrease could be the placement of CBAM in MobileNetv2. In contrast, SA 
implementation in MobileNetV2 improved accuracy by 0.13 % with only 24 parameters added. 

The focus areas of the models within the images were visualized using GradCAM (Gradient-weighted Class Activation Mapping) 
following 15 epochs of training. Fig. 13 displays the visual representation of regions within the images where MobileNetV2, 
CBAM_MobileNetV2, SENet_MobileNetV2, and SA_MobileNetV2 directed their attention. The original image is depicted in Fig. 13(a), 
while the GradCAM visualization results for MobileNetV2, CBAM_MobileNetV2, SENet_MobileNetV2, and SA_MobileNetV2 are shown 
in Fig. 13(b), (c), 13(d), and 13(e) respectively. The most discriminative regions that influenced the models’ classification decisions are 
highlighted by this visualization technique. These attention maps can be analyzed to see how each model focused on particular 
patterns or features of the objects that were important for proper classification. This understanding of the focus areas of the models 
helps to clarify how they make decisions and shows how well attention mechanisms work to improve object recognition and classi-
fication performance. 

Fig. 14 illustrates the training and validation outcomes of both the standard and attention-enhanced EfficientNetV2 model. This 
encompasses the depiction of training accuracy (Fig. 14(a)), validation accuracy (Fig. 14(b)), as well as the presentation of training loss 
(Fig. 14(c)), and validation loss (Fig. 14(d)) curves plotted across epochs throughout the model training phase. As observe, all models 
as depicted in Fig. 14 (a) shows effective learning during training, SENet_EfficientNetV2 stands out for its strong convergence and 
performance in both training and validation. However, further investigation may be needed to address the fluctuations observed in 
validation loss for some models, particularly SENet_EfficientNetV2 and SA_EfficientNetV2. Incorporating the SE module into Effi-
cientNetV2 resulted in a 0.18 % increase in accuracy, along with 73 more parameters. However, CBAM integration resulted in a 0.32 % 
drop in accuracy, with 10,343 parameters added. In contrast, SA implementation increased accuracy by 0.26 % with only 18 pa-
rameters introduced. 

Fig. 15 demonstrates the training and validation results for both standard and attention-enhanced ShuffleNetV2 deep learning 
architectures. This includes visualizations of training accuracy (Fig. 15 (a)), validation accuracy (Fig. 15 (b)), along with represen-
tations of training loss (Fig. 15 (c)) and validation loss (Fig. 15 (d)) curves plotted across epochs during the model training phase. As 
evident from Fig. 15 (a), higher training accuracies are achieved by incorporating attention mechanisms, as demonstrated by the 
CBAM_ShuffleNetV2, SENet_ShuffleNetV2, and SA_ShuffleNetV2 models. This improvement is especially noticeable in later epochs, 
demonstrating the effectiveness of attention mechanisms in capturing and emphasizing key features during training. The addition of 
the SE module to ShuffleNetV2 resulted in a remarkable 1.18 % boost in accuracy, along with 73 extra parameters. Similarly, CBAM 
integration improved accuracy by 0.51 % while adding 10,416 parameters. SA implementation in ShuffleNetV2 resulted in a 1.24 % 
boost in accuracy while adding only 18 parameters. 

Fig. 16. Comparison of model performance on testing data  
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Overall, these results show that attention processes can help models do better across a number of deep learning architectures when 
it comes to diagnosing plant diseases. The minor increase in parameters associated with attention mechanism integration shows that 
the performance benefits outweigh the marginal increase in computational complexity. As a result, attention mechanisms offer a viable 
option for increasing the efficacy of deep learning models in plant disease recognition. Fig. 16 provides a visual representation of how 
each model performs in terms of overall accuracy, precision, recall, and F1 score matrices. 

After comparative evaluation, it is clear that adding attention modules to deep learning models brings numerous benefits. By 
leveraging these mechanisms, models can specifically concentrate on relevant data effectively capturing long-range dependencies and 
contextual information from different positions. However, it is worth mentioning that the incorporation of attention mechanisms could 
pose problems in terms of increased computational complexity, higher memory requirements, and additional overhead to the overall 
process. 

Despite encountering challenges, attention modules offer significant advantages in advancing deep learning models’ capabilities. 
They are essential in disease identification, serving as a cornerstone for researchers striving for transparency, robustness, and inter-
pretability. The significance of attention is multifaceted. Firstly, it enhances accuracy by enabling models to focus on relevant regions 
within data, thus improving diagnostic outcomes crucial for reliable disease identification across domains. Secondly, attention 
mechanisms provide interpretability by generating visual attention maps, offering insights into the model’s decision-making process 
and building trust among users [86]. These attention maps elucidate which regions the model prioritizes, enhancing confidence in its 
diagnostic abilities. Moreover, attention aids in localizing disease features, facilitating the identification of disease-specific patterns 
vital for accurate diagnosis, especially in complex disease manifestations. Additionally, integrating attention with other data sources, 
like sensor data alongside images, holds promise for further improving disease identification accuracy. By leveraging multiple mo-
dalities of information, attention-based models can better understand complex disease states, leading to more accurate and 
comprehensive diagnoses. Furthermore, pre-trained attention mechanisms exhibit transferability, allowing adaptation to new tasks 
and proving essential for effectively addressing emerging diseases. 

5.5. Challenges and future scope 

Leveraging attention mechanisms offers opportunities and challenges for the field of plant disease identification. Creating a uni-
versal attention mechanism that has the ability to handle a variety of tasks without the need for task-specific designs is a significant 
challenge for future research. In order to streamline model design and enhance model performance across a range of scenarios, it may 
be possible to combine several attention mechanisms into a single attention block. Currently, different tasks require different attention 
mechanisms. For instance, while spatial attention is necessary for tasks like object detection and semantic segmentation, channel 
attention is required for image classification [3,87]. 

Even though attention mechanisms work well, they are frequently difficult to interpret, making it difficult to determine which areas 
of the image the model concentrates on in order to identify a disease. In agricultural contexts, developing interpretable attention 
mechanisms is critical to establishing model validity and fostering trust. Developing techniques to visualize and interpret attention 
maps could help explain attention mechanisms better and provide important insights into how the model makes decisions. Trans-
parency in the model could be improved by investigating methods for producing clear visualizations that highlight regions of interest 
that the model identified during the disease identification process. 

Furthermore, further study is necessary to completely comprehend the interactions between pre-training and attention mecha-
nisms, even though attention-based models offer task transferability and adaptability to novel inputs. Integrating attention mecha-
nisms with multimodal data sources, such as including sensor data alongside images, could improve disease detection [88,89]. 
Exploring effective applications of attention across different modalities might lead to more robust identification systems. 

Attention mechanisms also find applications in microbiological image analysis. Microscopic images often contain intricate 
structures, such as bacterial colonies or cellular arrangements. By localizing these features, attention helps identify disease-related 
patterns. Additionally, to enhance segmentation capabilities, integrating context-aware attention mechanisms, could be beneficial 
[90]. In histopathology, images reveal spatial patterns linked to tissue morphology, cellular organization, and disease pathology. 
Utilizing attention mechanisms enables the identification and characterization of these patterns, facilitating the classification of 
various tissue types and disease states. Studies [91,92] can be benefit from Hierarchical Attention Networks (HANs) [93] that are 
proposed to attend to features at different levels of abstraction, allowing the model to leverage both local and global contextual in-
formation. Furthermore, in a recent study [94], various attention mechanisms like SimAM [69], ECA, and SE modules [9] were 
employed to direct the model’s focus towards relevant features while suppressing irrelevant information. Although these mechanisms 
were applied separately in each channel, exploring fusion techniques to combine their strengths could lead to more robust feature 
extraction. 

6. Conclusion 

This study provides a thorough overview of attention mechanisms in the context of plant disease identification, emphasizing their 
importance in improving feature extraction and model performance. By categorizing and analysing various attention mechanisms, we 
discovered promising avenues for future research in this area. Investigating attention mechanisms at various stages of disease 
recognition provides important information for enhancing the interpretability and efficacy of models. 

An experiment was conducted on three state-of-the-art deep learning models that incorporate attention layers to evaluate their 
effectiveness in identifying leaf diseases. The aim was to assess both the efficacy and challenges associated with integrating attention 
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mechanisms into these models. 
Our findings reveal that EfficientNetV2 with the SA module surpasses all other models in terms of precision, f1-score, accuracy, and 

recall. However, when considering factors such as the number of trainable parameters and memory requirements, ShuffleNetV2 with 
the SA module, which achieves the second highest performance in all metrics, is better suited for mobile and embedded applications. 
While attention mechanisms enhance the performance of deep learning models, they also introduce computational complexity and 
require careful hyper parameter tuning. Furthermore, they may have limitations in generalization. Therefore, it is crucial to consider 
the specific requirements, computational resources, and interpretability needs of the image classification task when deciding whether 
to incorporate attention mechanisms. The models considered in the comparative study are able to achieve high performance because 
the dataset used contains images taken against a similar background, which shows little variability. Models performance may degrade 
when tested in real-field conditions. To promote advancements in this field, future research endeavours should aim to gather extensive 
and varied datasets that are widely distributed, encouraging exploration and innovation. Future research should prioritize the 
development of a solution that utilizes attention mechanisms without augmenting computational complexity, which can be achieved 
by employing shallow networks. Data augmentation techniques, such as GANs, can also be incorporated into the solution as they 
provide solutions for class imbalance and insufficient dataset problems. Since crop leaves are the subject of the majority of studies, it is 
important to take other plant components such the stem, flower, and root into account. As global warming intensifies, researchers 
should focus more on disease recognition in trees to safeguard their protection. In fields like microbiological analysis, attention 
mechanisms play a crucial role in dissecting complex structures like bacterial colonies, thereby aiding in comprehensive disease 
assessment. Finally, attention extends its utility beyond disease identification, finding applications in diverse areas such as drug 
discovery, personalized medicine, and genomics, underscoring its versatility and importance in advancing healthcare research and 
practice. 
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