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ABSTRACT: Non-Newtonian nanofluids offer significant advantages in thermal enhancement in a 

variety of applications including in numerous areas of engineering including solar collectors and 

nano-coating manufacturing processes. When combined with porous media, yet further benefits can 

be gained in for example flow and heat transfer manipulation in nano-rheological coating extrusion. 

Motivated by exploring this industrial application, to furnish a deeper understanding of the 

rheological and nanoscale effects of such fluids in porous media, we examine the steady two 

dimensional (2-D) laminar buoyancy-driven boundary layer flow of power-law nanofluids along 

vertically upward surface adjacent to an isotropic Darcian porous filtration medium. Buongiorno’s 

two-component nanofluid model is deployed. Scaling group transformations followed by dimensional 

analysis is used to developed group invariants and hence the primitive conservation equations for 

momentum, heat and NVF are transformed from partial differential equations into ordinary 

differential equations with associated wall and free stream boundary conditions. The reduced 

nonlinear boundary value problem has been solved computationally with the stable, rapidly 

convergent Runge-Kutta-Fehlberg fourth-fifth order numerical method available in the symbolic 

platform, Maple 18. Verification of the methodology with earlier Blottner finite difference 

computations in the literature for the special case of Nc = Nd = 0 is included.  It is found that the 

reduced Nusselt number increases with convective-conduction parameter, Nc, while it is suppressed 

with increasing power-law index, n, and thermophoresis parameter, Nt.  The reduced Sherwood 

number is enhanced with Lewis number, Le and convective-diffusion parameter, Nd whereas it is 

substantially depleted with increasing power-law index, n. Strong boundary layer flow acceleration is 

induced with higher Nc values. Temperature is also strongly boosted with an elevation in power-law 

index and both convection-conduction Nc and convection-diffusion Nd parameters. Dilatant i. e. 

shear-thickening nanofluids (n > 1) are observed to achieve the best thermal enhancement. The 

novelty of the current work is the rigorous analysis of different rheological and wall heating and 

nanoparticle volume fraction effects on nano-polymer coating flows which significantly extends 

existing studies. 
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1.  INTRODUCTION 

      Nanofluid dynamics has rapidly evolved into a substantial sub-area of thermofluid 

mechanics, stimulated by an astonishing range of applications. A nanofluid is defined as a 

viscous fluid containing nanoparticles with dimensions of around 100 nm. These fluids, 

introduced by Choi [1], have achieved improved thermophysical properties including thermal 

diffusivity, kinematic viscosity, heat, and nanoparticle volume fraction gradient at the wall 

significantly elevating the performance of traditional carrier fluids (e. g. oil, water etc). 

Recently nanofluids have been deployed in medical engineering [2-5], rocket propulsion [6], 

astronautical heat pipes [7], solar collectors [8], thermosyphons [9] and micro-channels [10], 

to quote only a few applications. Extensive studies of both Newtonian and non-Newtonian 

nanofluids in porous environment reported in the literature owing to relevance in materials 

processing and biotechnology. Ellahi et al. [11] studied non-Newtonian nanofluids 

applications in for example polymer melts.  Many rheological models have been used for 

nanofluids and many numerical techniques employed to solve the boundary value problems 

formulated. Empirical studies have also been reported. Nield [12] considered analytically the 

onset of thermal convection in a porous medium saturated with power-law nanofluids. Hojjat 

et al. [13] conducted detailed experiments on aluminium, copper, and titanium oxide 

nanoparticles in an aqueous mixer of carboxymethyl cellulose, observing pseudoplastic 

(shear-thinning) rheological behaviour. They derived a novel correlation for heat transfer 

rates as function of power-law index, Reynolds and Prandtl numbers. Rana et al. [14] applied 

a variational finite element method to study deformation effects in nonlinear viscoelastic 

nanofluid flow as a simulation of nano-polymer manufacturing extrusion dynamics. They 

observed that viscoelasticity enhances thermal diffusion in such flows. Rashad et al. [15] 

applied an efficient numerical method (Keller’s implicit difference box method) to 

investigate wall mass flux effects on nanofluid power-law transport in porous media. Sheu et 

al. [16] examined the hydrodynamic stability of convective flow of Oldroyd-B viscoelastic 

nanofluid. Chand and Rana [17] used the Rivlin Ericksen differential fluid model to simulate 

the impacts of kinematics viscoelasticity on the stability of rheological nanofluid flow. 
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Multi-physical transport in porous media has also advanced into a considerable sub-discipline 

of fluid mechanics over the last couple of decades. An outstanding review of progress in this 

field has been provided by Kaviany [18] in which combined modes of thermal transport have 

also been addressed i.e., conduction, convection, and radiation, in addition to viscous 

percolation fluid dynamics. Porous media flow modeling continues to stimulate interest in the 

21st century owing to ever-growing needs in manufacturing (filtration) systems, energy 

optimization, biotechnological liquid processing (linctuses, creams, lubricants), drying and 

chemical engineering fluidized bed technologies. The many methodologies for simulating 

porous media flows have been lucidly summarized by Adler and Brenner [19] and include 

geometric models, spatially periodic porous media models, volume averaging, reconstructed 

porous media and drag force models. Further applications of porous media transport 

phenomena include combustion systems [20], electro-conductive polymer processing [21], 

paint and colloid fabrication [22] and geophysics [23]. Many non-Newtonian models have 

been explored in recent years for flow in such diverse areas. We mention here Eringen micro-

morphic fluids [24, 25], Stokesian couple stress (polar) fluids [26], empirical rheological 

foam models [27], upper-convected Maxwell (UCM) models [28], and memory fluids [29]. 

These studies have employed and/or extended the fundamental Darcy drag-force approach 

popularized by Cheng and Minkowycz [30] which is valid for low Reynolds number, 

viscous-dominated flows. In recent years the range of non-Newtonian models deployed has 

been considerably widened to simulate characteristics of different working fluids ranging 

more accurately from crude oils to physiological liquids. Interesting communications include 

Mahmoud [31] who used an Ostwald-deWaele power-law model to simulate polymer heat 

transfer from a cone. Tripathi and Bég [32] employed a magnetic-polar model for gastric 

flow control simulations. Bég et al. [33] used the Nakamura-Sawada bi-viscosity rheological 

model to study targeted drug transport in tissue. Further models successfully utilized models 

include Reiner-Rivlin second grade viscoelastic fluids [34], Reiner-Rivlin-Fosdick third 

grade liquids [35], electromagnetic micropolar biofluids [36], Walters-B elastoviscous fluids 

[37], Bingham plastics (yield stress models) [38], fractional Maxwell fluids [39] and Marble-

Drew fluid-particle suspension models [40]. All these models allow the construction of 

robust boundary value problems which can be tackled analytically or numerically. The 

success of the Nield-Kuznetsov Newtonian nanofluid model [41], which itself is an extension 

of the now classical Cheng-Minkowycz boundary layer problem [30] has naturally 

encouraged generalizations to non-Newtonian nanofluid models in porous (permeable) 

media.  
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Based on the literature stated above, it is evident that no research has been thus far conducted 

on the coating boundary layer flow of power law nanofluids in a movable free stream over a 

non-iso-concentration substrate surface embedded in a saturated Darcian medium, 

considering both thermal and nanoparticle volume fraction (NVF) convective wall boundary 

conditions. Hence the objective of the present paper is to analyse flow, heat transfer and NVF   

transfer behaviour of relevance to wall characteristics. This regime is important in nano-

polymer coating manufacture. The present article deploys Lie algebra group scaling 

transformations to generate a well-posed nonlinear boundary value problem. MAPLE 18 

shooting quadrature is deployed to achieve robust numerical solutions.  The influence of 

emerging thermophysical parameters on the velocity, temperature and NVF distributions is 

visualized graphically and key connections to implications for nano-polymer coating systems 

are explained. Validation with previous studies neglecting convective wall heating is also 

included and future pathways.  

2.  MATHEMATICAL NANO-POLYMER COATING FLOW MODEL  

In the present study we examine coating boundary layer flow of power law nanofluids in a 

movable free stream over a non-iso-concentration substrate surface embedded in a saturated 

Darcian medium, considering both thermal and nanoparticle volume fraction (NVF) 

convective wall boundary conditions. The physical model in a rectangular coordinate system 

reference frame is depicted in Fig. 1. The following assumptions are made:  

i.  The is incompressible time-independent laminar rheological nanofluid flow. 

ii.  The porous media is isotropic and homogenous. 

iii.  The Darcy law is utilized which is valid for low Reynolds numbers up to 

approximately 10. 

iv.  The Ostwald-DeWaele power-law non-Newtonian model is adopted. 

v.  Thermophysical properties are constant. 

vi.  The wall boundary follows convective boundary condition. 

vii.  The Buongiorno nanoscale model is implemented which features thermophoretic 

body force and Brownian dynamics. 

viii. Nanofluid properties are assumed invariant except density. 

ix.  Boussinesq approximation is adopted. 

 

The Darcy velocity components are symbolised as u  and v , respectively. Tortuosity, 

dispersion, and stratification effects are ignored for the porous medium. is deployed for 
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rheological features of the nanofluid. This model, although simple, successfully captures the 

shear-thinning (pseudoplastic) or shear-thickening (dilatant) features exhibited by different 

nanofluid suspensions.  

 

Fig.1. Physical model for nano-polymer coating of a substrate  

 

The nano-polymer is a dilute suspension. The nanofluid in the far field (edge of boundary 

layer) moves with a with a uniform free stream velocity, u
. Hot nanofluid in the coating is 

at temperature, fT at the wall (substrate) and produces a thermal convection coefficient, .fh
 

Similarly, NVF fC , exceeds the volume fraction at the wall, wC , which yields  a NVF 

coefficient, .mh
 
Temperature wT  and  NVF wC  at the wall are in excess of the ambient 

valuesT , C  respectively.  Free convective flow is permitted to happen between the 

substrate surface and the nanofluid coating. Based on the above assumptions, the primitive 

conservation equations for mass, momentum, and NVF, following [Gorla and Chamkha 43] 

and extending take the form: 

 
 

0,
u v

x y

 
+ =

 
                                                                                                                       (1) 

( ) ( )1
,

n
p f of o

gKC g Ku T C

y K y K y

  


−−  
= −

  
                                                              (2)
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2
,T

B

DT T T T C T
u v D

x y y y y T y
 



        
+ = + +   

         

                                                          (3) 

2 2

2 2
,T

B

DC C C T
u v D

x y y T y

    
+ = +  

    
                                                                                      (4) 

Here 
( )

( )
p

f

C

C





=  : (ratio of nanoparticles heat capacity to base fluid heat capacity) and 

( )
f

k

C



=  (thermal diffusivity). Following Aziz [42], the wall and free stream boundary 

conditions are:  

( )( ) ( )( )

1

0, , , 0,

 
, , .

f f w B m f w

n

T C
v k h x T T D h x C C at y

y y

Ra
u u T T C C as y

L


  

 
= − = − − = − =

 

= = → → →

        (5) 

In the momentum eqn. (2), the power-law rheological index for the nanofluid controls the 

nature of the fluid rheology. When n=1 we recover Newtonian fluid for which the dynamic 

viscosity μ = K. This version of the present model agrees exactly with the earlier study of 

Gorla and Chamkha [43]. For n<1 the model signifies shear-thinning fluids (pseudoplastic) 

and for n>1 the model signifies shear thickening fluids (dilatant). Chen et al. [44] have 

described in detail the practical nature of nanofluids exhibiting these characteristics. Their 

experiments have demonstrated that shear-thinning performance of nanofluids is a function 

of the effective particle concentration, the shear rate range, and the viscosity of the carrier 

liquid (e. g. water, ethylene glycol etc). They have further identified that for pseudoplastic 

fluids, the shear rate is reduced with rising volume fraction, aggregate size, or base fluid 

viscosity. In the present simulations, we shall address these findings and further consider 

dilatancy behaviour. 

 

2.1. Non-dimensional version of nanofluid transport model 
 

Let us introduce rescaled variables as defined below:  
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1

2
1 1

2

, , , , , ,n

f fn n

T T C Cx y Lu Lv
x y Ra u v

L L T T C C
Ra Ra

 

 

 

 

− −
= = = = = =

− −
 
      

          (6) 

Furthermore, a dimensional stream function, , given below is applied:

 

,u v
y x

  
= = −
 

                                                                                                             (7) 

Introduction of the non-dimensional variables (6) and Eqn. (7) into Eqns. (2)-(5) eliminates 

the streamwise similarity variable and generates the following three coupled nonlinear 

boundary layer equations for momentum, energy, and concentration: 

                                                                             

        (8) 

 

22

2
,Nb Nt

y x x y y y y y

               
− = + +  

        
                                                                  (9)

 

2 2

2 2

1 1
,

Nt

y x x y Le y Nb Le y

          
− = +

                                                                                 (10) 

The boundary conditions (5) transform to:

  

( )
( )

( )
( )1 1

2 2

0, 1 , 1  0,

1, 0, 0 .

f m

n n
B

h x L h x L
at y

x y y
kRa D Ra

as y
y

  
 


 

− −  
= = − = − =

  


→ → → →



                       (11) 

The mass conservation Eqn. (1) is satisfied automatically. The thermophysical control 

parameters featured in Eqns. (8)-(10) i. e. Nr, Nb, Nt, Ra and Le signify the buoyancy ratio, 

the Brownian motion parameter, thermophoresis parameter, porous medium Rayleigh 

number and Lewis number, respectively. These parameters take the following mathematical 

definitions: 

1 2

2
0,

n

n Nr
y y y y

   
−

    
− + = 

    
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Inspection of Eqn. (12) reveals that the only dimensionless hydrodynamic number featuring 

the power-law rheological index n is the porous medium Rayleigh number, Ra. However, n 

does feature in the nonlinear stream function gradient term in Eqn. (8) and furthermore arises 

in the denominators in the wall temperature and nanoparticle volume fraction wall convective 

conditions, specified in eqn. (11). 

2.2 Symmetry analysis   

The non-dimensional boundary value problem although significantly simpler than the 

primitive boundary layer equations, still may be further simplified. Invariant transformations 

of the dimensionless transport equations can be established. These are achievable via a 

spectrum of techniques such as separation of variables. In the present study we elect to 

employ a more comprehensive strategy based on the Lie group algebraic method.  This 

approach is very attractive for nonlinear partial differential equations, as studied in the 

present article. The most important Lie groups are the three families of “classical groups”. 

Extensive details of these methods are documented in Seshadri and Na [45] and Ibragimov 

[46]. Lie group scaling has emerged as a powerful technique in recent years in multi-physical 

fluid dynamics and thermophysics. Recent applications of this method include theoretical 

studies of heat generating nanofluid gels [47], turbulent boundary layer scaling [48], reactive 

flows [49], premixed combustion flows [50], nanofluid flow in porous media [51] and 

magnetohydrodynamic flows [52]. Following Aziz et al. [53], we use the following 

transformations. 

 

3 5 6 71 2 4* * * * * * *: , , , , , , ,f f m mx xe y ye e e e h h e h h e
                = = = = = = =

   (13)             

Here , 1…7 are constants with at least one non-zero value. Transformations applied to 

Eqn. (13) converts: 

( )the coordinates ,  ,  ,  ,  ,  ,f mx y h h  
 
to ( )* * * * * * *,  ,  ,  ,  ,  ,f mx y h h   .   

( )( )
( )( )

( ) ( )
( )

( ) ( )
( )

( ) ( )

, , ,
1

1  
, .o

B f T fp f f p p

f f f f

n

f o f

n

B

C D C C C D T TC C
Nr Nb Nt

C C TT T

C g K T T L
Ra Le

D

  

     

  







 

 

 

− −− −
= = =

− −

− −
= =
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The equations will be invariant if the structural form of transformation before and after is the 

same ([45, 46, 47, 49-53]). The equations (11) will be invariant if: 

5 4 1 2 3 2 6 7 20, 2 , , .        = = = = = = −
                                                (14) 

2.3. Absolute Invariants 
 

Proceeding with the analysis, the transformations in Eqn. (13) become:
 

2 2 2 2 22* * * * * * *:  , , , , , , .f f m mx xe y ye e h h e h h e            − − = = = = = = =
(15) 

With the values of i , the transformations can be readily expanded using Taylor series.  

Subsequently characteristic equations are applied and solved to derive the similarity 

transformations. 

2

2 2 2 2 2

1 1 1 1 1
, 0.

2 0 0

f m

f m

dh dhdx dy d d d

x y h h

  


     
= = = = = = 

− −

                              

 (16) 

Solving (16), we get the following absolute invariants: 

 

( ) ( )
1

2
1 1 1

2 2 2

1 1
 , ( ), ( ), ( ),  ,  f f m m oo

y
x f h h h h

x x x

        = = = = = =

             

(17) 

Here ( )f o
h ,

 
( )m o
h  are constant heat, mass transfer coefficient and 

 
η  denotes the similarity 

variable.  

2.4. Self-Similar Transport Equations 

Introducing Eq. (17) into Eqns. (8)-(11), we arrive at:  

                                                                                              (18) 

                                                                              (19) 

                                  
 
             

(20)
 

 

The finalized version of the boundary conditions (11) emerges as:  

( 1) '   ' 0,nnf f Nr −  − + =

(2)1
''  '  '  '  '  0,

2
f Nb Nt    + + + =

1
'' '' ' 0,

2

Nt
Lef

Nb
  + + =
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   f(0) 0,θ '(0) Nc 1 θ(0) ,φ '(0) Nd 1 φ(0) , f ( ) 1 θ( ) φ( ) 0.= = − − = − −  − =  =  =

     

      (21) 

Here ( )
1

2/ n
f o

Nc h L k Ra=  is the convection-conduction parameter while 

( )
1

2/ n
m Bo

Nd h L D Ra=  is the convection-diffusion parameter. Note that for a Newtonian 

fluid (n = 1) flowing along an isothermal and iso-solutal substrate ( ,Nc → Nd → ) in 

the quiescent free stream, the present generalized model retracts to exactly the model studied 

by Gorla and Chamkha [43]. Further, for a stationary free stream in the absence of nanofluid 

parameters, and for
 

,Nc → Nd →  the current model contracts to exactly that studied 

earlier by Chen and Chen [54]. In practical applications relevant to materials processing and 

energy systems, the principal wall gradient characteristics of physical interest are the local 

Nusselt number ( xNu  ) i.e. dimensionless heat transfer rate to the substrate from the coating 

flow and local Sherwood number ( xSh  ) i.e. dimensionless nanoparticle species transfer rate 

to the substrate from the coating boundary layer flow, which may be defined, respectively as: 

( ) ( )
0 0

, .x x

w wy y

x T x C
Nu Sh

T T y C C y = =

   −  − 
= =   

−  −    
                                          

        (22) 

Using Eqns. (6) and (17), we obtain: 

1 1

2 2'(0), '(0).n n
x x x xRa Nu Ra Sh 
− −

= − = −

                                                               

        (23) 

where ( )1 /
o

n n n

x f oRa C g K TL x K  = − 

 

is the local Rayleigh number. According to  

Nield and Kuznetsov [41], the reduced local Nusselt number and reduced local Sherwood 

number can be represented as follows: 

1/2 '(0)n

x xNur Ra Nu −= = − ,
1/2 '(0)n

x xShr Ra Sh −= = −                                                 (24) 

 

3.  NUMERICAL SIMULATION AND VALIDATION  

The set of self-similar coupled nonlinear ordinary differential boundary layer eqns. Eqns. 

(18) - (20) subject to the prescribed boundary conditions (21) have been solved 

computationally using the Runge-Kutta-Fehlberg fourth-fifth order numerical technique 
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available in the symbolic software Maple 18.  MAPLE 18 is an excellent symbolic software 

with many libraries of built in ready-to-use numerical solvers for ordinary and partial 

differential problems. This approach allows very accurate estimation of the stream function, 

temperature, and nanoparticle concentration functions. The appropriate velocity is then 

computed in a sub-iteration loop. This approach has been extensively implemented recently 

in many applications including oxygen diffusion in capillaries [55] and spin coating of 

aerospace components [56]. The robustness and stability of this numerical method is 

therefore well established- it is highly adaptive since it adjusts the quantity and location of 

grid points during iteration and thereby constrains the local error within acceptable specified 

bounds. Many different wall boundary conditions which arise nano-materials coating process 

fluid dynamics can be easily accommodated. The stepping formulae although designed for 

nonlinear problems, are even more efficient for any order of linear differential equation and 

are summarized below [56]: 

( )0 , ,i ik f x y=                 (25) 

1 0

1 1
, ,

4 4
i ik f x h y hk

 
= + + 

 
            (26) 

2 0 1

3 3 9
, ,

8 32 32
i ik f x h y k k h

  
= + + +  

  
           (27) 

3 0 1 2

12 1932 7200 7296
, ,

13 2197 2197 2197
i ik f x h y k k k h

  
= + + − +  

  
            (28) 

4 0 1 2 3

439 3860 845
, 8 ,

216 513 4104
i ik f x h y k k k k h

  
= + + − + −  

  
             (29) 

5 0 1 2 3 4

1 8 3544 1859 11
, 2 ,

2 27 2565 4101 40
i ik f x h y k k k k k h

  
= + + − + − + −  

  
          (30) 

1 0 2 3 4

25 1408 2197 1
,

216 2565 4101 5
i iy y k k k k h+

 
= + + + − 

 
                 (31) 

1 0 2 3 4 5

16 6656 28561 9 2
.

135 12825 56430 50 55
i iz z k k k k k h+

 
= + + + − + 

 
            (32) 

Here 𝑦 denotes the fourth order Runge-Kutta phase and 𝑧 is the fifth order Runge-Kutta 

phase. An estimate of the error is achieved by subtracting the two values obtained. If the 
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error exceeds a specified threshold, the results can be re-calculated using a smaller step size. 

The approach to estimating the new step size is shown below: 

1
4

1 1

.
2

old
new old

i i

h
h h

z y



+ +

 
=   − 

                (33) 

The free stream conditions in (21) have been substituted by a finite value of 5 for the 

transverse similarity variable, max  .  The choice of max   confirms that all simulated results 

meet the potential boundary conditions asymptotically. This issue has been emphasized in the 

context of power-law non-Newtonian flows by Denier and Dabrowski [57]. For dilatant 

nanofluids (n > 1) it is imperative that shooting solutions obey the correct form of asymptotic 

fall in the free stream. The local rate of heat transfer and nanoparticles volume fraction mass 

transfer rate are, respectively, measured by Nur and Shr. To verify the correctness of the 

numerical method, we have benchmarked special cases of the generalized model here with 

Chen and Chen [54] and Gorla and Chamkha [43]. The comparisons are provided in Tables 

1-3.   

Table 1 Evaluation of '(0)−  for various n. 

n Chen and Chen [54] 

'(0)−  

Our results 

'(0)−  

0.5 0.3768 0.37684 

0.8 0.4838 0.48389 

1.0 0.4437 0.44366 

1.5 0.4752 0.47518 

2.0 0.4938 0.49377 

 

Table 2: Comparison of '(0)−  and '(0)−  when Nc Nd= → , n=1, Nb=0.3, Nt=0.1, 

Le=10. 

 '(0)−  '(0)−  
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Nr Gorla and Chamkha [43] Our results  

 

Gorla and Chamkha [43] Our 

results  

 

0.1 0.3297846 

 

0.3294 

 

1.619866 

 

1.6178 

 

0.2 0.3227547 

 

0.3221 

 

1.556346 

 

1.5543 

 

0.3 0.3149958 

 

0.3144 

 

1.489373 

 

1.4878 

 

0.4 0.3072273 

 

0.3063 

 

1.419391 

 

1.4178 

 

0.5 0.2980915 0.2976 1.344729 1.3435 

 

Table 3: Comparison of '(0)−  and '(0)−  when Nc Nd= → , n=1, Nt=0.1, Nr=0.5, 

Le=10. 

 '(0)−  '(0)−  

Nb Gorla and Chamkha [43] Present results  

 

 

Gorla and Chamkha [43] Present results  

 
0.1 0.3437461 

 

0.3432 

 

1.260950 

 

1.2599 

 

0.2 0.3210715 

 

0.3208 

 

1.321422 

 

1.3200 

 

0.3 0.2980915 

 

0.2977 

 

1.344729 

 

1.3434 

 

0.4 0.2761186 

 

0.2757 

 

1.359024 

 

1.3574 

 

0.5 0.2547152 0.2549 1.369532 1.3675 

 

Excellent agreement between our results and published paper are found (Tables 2 and 3).  

These confirm the validity of the present MAPLE 18 methodology deployed. Note that 

comparisons are done for the case of quiescent free stream and for non-isothermal and non-

solute plate conditions. It is important also to stress the need for a nanoparticle volume 

fraction convective boundary condition. While temperature convective conditions have been 

studied rigorously, the use of a mass convective condition has received less attention. This 

type of condition is important in certain biotechnological polymer flows and materials 

processing, as elaborated by Datta [58].   
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4.  NUMERICAL RESULTS AND DISCUSSION 

Detailed MAPLE 18 solutions have been plotted graphically to elucidate the impact of all 

key thermophysical parameters in Figs. 2-18, on the key flow characteristics i. e. velocity, 

temperature and nanoparticle volume fraction (concentration).   

 
 

Fig.2. Effect of Nb on velocity with n. 

 

 
Fig.3. Effect of Nt on velocity profiles with n. 
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Fig.4. Effect of Nd on velocity with n. 

 

 
Fig.5. Effect of Nc on velocity with n. 
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Fig.6. Effect of Le, Nr on velocity. 

 
Fig.7. Effect of Nr and n on temperature. 
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Fig. 8. Effect of Nt and n on temperature. 

 
Fig.9. Effect of Nd and n on temperature. 
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Fig.10. Effect of Nc and n on temperature. 
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Fig.11. Effect of Le and n on temperature. 

 

Fig.12. Effect of Nb and n on concentration. 
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Fig.13. Effect of Nt and n on nanoparticle volume fraction. 

 

 

Fig.14. Effect of Nd and n on nanoparticle volume fraction. 

 

 

Fig.15. Effect of Nc and n on nanoparticle volume fraction. 
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Fig.16. Effect of Le and Nr on nanoparticle volume fraction. 

 

Fig.17. Effect of Nt, n and Nc on reduced Nusselt number. 
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Fig.18. Effect of Nd, n and Le on reduced Sherwood number. 

Excellent correlation is achieved between the MAPLE18 shooting solutions and the Chen 

and Chen [54] solutions which were obtained with a lower order shooting method. The 

present model reduces exactly to that of Chen and Chen by setting Nc = Nd →, Nt→0, 

Nb→0, and when nanoscale effects are negated i. e. nanoparticle volume fraction equation is 

discarded. Wall temperature gradients are observed to be significantly enhanced with a rise in 

n. Much higher temperature gradients are generated for dilatant fluids (n>1) as compared 

with pseudoplastic fluids. Therefore, even without nanoscale effects, dilatant fluids 

demonstrate improved thermal transport at the wall (substrate surface). Table 2 shows also 

that the present MAPLE18 computations concur well with the Blottner finite difference 

solutions for Newtonian nanofluid (n = 1) of Gorla and Chamkha [43] for a wide range of 

buoyancy ratios (Nr) in the absence of convective boundaries. Both heat and nanoparticle 

volume fraction gradient are found to be reduced with enhancing buoyancy ratio. 

Furthermore, in Table 3, again very good agreement is demonstrated with the solutions of 

Gorla and Chamkha [43] with various Brownian motion (Nb) parameters. Temperature 

gradient is found to fall with rising Nb values whereas nanoparticle volume fraction gradient 

is strongly increased. An increment in Nb values in the Buongiorno model corresponds to 

smaller diameter nanoparticles which assist in species diffusion. This is important in actual 

fabrication of nanopolymers since the size of nanoparticles can be used to manipulate 

Brownian diffusion and hence the organization of nanoparticles throughout the coating. 
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4.1 Dimensionless Velocity Behaviour  

Figures 2-6 demonstrate the influence of n, Nb, Nt, Nd, Nc and Le on the velocity.  Note that 

Nc is essentially a thermal Biot number (ratio of the internal to boundary layer thermal 

resistance). In case of the nonappearance of Nc will lead to the left-face of the plate with the 

hot fluid to become completely insulated and the internal thermal resistance would be high. 

So, negligible amount of temperature gradient to the cold fluid on the right-face will occur. 

The convection-diffusion parameter Nd is similarly efficiently a solutal Biot number.  It is 

apparent from Figures 2-3 that Nb and Nt increase the velocity for both pseudoplastic and 

dilatant nanofluids; however, velocity is markedly greater for the pseudoplastic case since 

viscosity of the nanofluid is lower, as noted in [59]-[61]. Increasing Brownian motion effect 

is therefore beneficial to the boundary layer flow and accelerates it. Increasing 

thermophoretic effect, corresponding to enhanced particle deposition towards onto the 

vertical plate, is found to enhance momentum diffusion and accelerate the flow. Figure 4 

shows that with increasing convection-diffusion parameter, Nd, velocity for pseudoplastic 

nanofluids (n < 1) whereas the contrary behaviour is induced in dilatant fluids (n > 1). In the 

latter case, the flow is enhanced since with increasing the solutal Biot number i. e. Nd, there 

is an accompanying decrease in plate thermal resistance. Furthermore, stronger buoyancy 

forces are induced with greater convective-diffusion effect at the wall (plate) which 

encourage momentum development. Figure 6 displays the consequence of Lewis number 

(Le) on velocity for assisting/opposite buoyancies. Lewis number arises in the nanoparticle 

volume fraction (species) boundary layer eqn. (20). Lower Le values indicate a higher 

nanoparticle species diffusivity and a lower thermal diffusivity. For Le = 1, both diffusivities 

are equal. For Le < 1, species diffusion rate exceeds thermal diffusion rate, and vice versa for 

Le >1. Here we examine the case for Le > 1. There is a important decrease in nanofluid 

velocity with increasing Lewis number, for the buoyancy-opposed scenario (Nr = -1). The 

buoyancy force is featured in eqn. (18), +Nr/, effectively coupling the momentum field to 

both the thermal and nanoparticle volume fraction fields, since Nr as defined in eqn. (12) 

expresses the ratio of species buoyancy force to thermal buoyancy force. For Nr <0, the flow 

will therefore be accelerated, whereas for Nr > 0 it will be decelerated. This is a classical 

result documented in numerous investigations, including Kaviany [18].  

 

4.2 Dimensionless Temperature Behaviour  
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Figures. 7-11 illustrate the impact of the temperature field to variation in power law index n , 

Brownian motion Nb, thermophoresis Nt, Nd, Nc, Le, and Nr. Increasing Nb (fig. 7) increases 

the temperature for dilatant nanofluids whereas it decreases it for pseudoplastic nanofluids. 

Clearly there is a connection between the viscosity of the nanofluid and the influence of 

Brownian motion. Chen et al. [44] have indicated that particle aggregate size, associated with 

Brownian motion, is influenced by the viscosity of the base fluid. For higher viscosity fluids 

(n = 1.5 i.e., dilatant) thermal diffusion is enhanced and temperatures seem to be higher; the 

reverse is evident for pseudoplastic fluids. There is a more consistent response in temperature 

field however with increasing thermophoresis parameter, Nt and convection-diffusion 

parameter (nanoparticle volume fraction boundary parameter), ( )
1

2/ n
m Bo

Nd h L D Ra= , as 

observed in figures 8-9. In both cases temperature is increased, and thermal boundary layer 

thickness will also be enhanced. It is evident that dilatant nanofluids attain improved 

temperatures than pseudoplastic nanofluids which implies that in thermal management 

control, pseudoplastic nanopolymers achieve better cooling properties. Figure 10 indicates 

that with a rise in ( )
1

2/ n
f o

Nc h L k Ra=  which induces a decrease in thermal resistance of the 

plate, convective heat transfer to the fluid on the right-hand side of the plate is elevated. This 

will generate an escalation in temperatures; however, the pseudoplastic nanofluid again 

achieves lower temperatures than the dilatant nanofluid. The patterns observed in figure 10 

show a strong agreement with the previous studies of for example, Khan and Gorla [62]. 

Figure 11 illustrates that for pseudoplastic fluids (n = 0.5), temperature is reduced with rising 

Lewis number, Le, for aiding buoyancy (Nr = 1). This behaviour is attributable to a reduction 

in nanoparticles volume fractions since the nanoparticles volume fraction distribution is 

determined by temperature distribution. The opposite trend of temperature is witnessed in the 

case of opposing buoyancy (Nr = -1).  

 

4.3 Dimensionless nanoparticle volume fraction (concentration) behaviour 

Figures 12-16 depict the influence of n , Nb, Nt, Nd, Nc, Le, and Nr, on the nanoparticle 

volume fraction are shown in.  Increasing Nb serves to depress the concentration for dilatant 

nanofluids and pseudoplastic nanofluids (Figure 12), and magnitudes are higher for the 

former (n >1).  Concentration increases with an increase in Nt, Nd and Nc for both 

pseudoplastic and dilatant nanofluids, as revealed by Figures 13-15. In all cases, it is found 

that as with temperatures, nanoparticle volume fractions (concentrations) for dilatant 
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nanofluids are always more than those for pseudoplastic nanofluids which has a significant 

impact on the degree to which doping with homogeneity can be achieved in real nano-

polymer manufacturing. Figure 16 indicates that nanoparticle volume fraction is suppressed 

with increasing Lewis number for aiding buoyancy. The reason behind it, is that for a carrier 

fluid of given viscosity, the tiny value of the Brownian diffusion coefficient causes the 

nanoparticles concentration to decrease. These results again demonstrate good correlation 

with Gorla and Chamka [43].   

 

4.4 Effects of the parameters on the heat and mass transfer rates 

Figure 17 displays the consequence of Nt, Nc on the reduced Nusselt number Shr for both 

pseudoplastic and dilatant nanofluids. It is found that Shr decreases with the thermophoresis 

parameter whereas they are boosted with the convection-conduction parameter.  It is also 

found that the gradient of heat transfer of pseudoplastic nanofluid are greater in magnitude 

than the dilatant nanofluid. Finally, figure 18 illustrations the effect of the Lewis number 

(Le) and convection-diffusion parameter (Nd) on the reduced Sherwood number for 

pseudoplastic and dilatant nanofluids. The nanoparticle volume fraction gradient rises with 

both Lewis number and convection-diffusion parameter. The nanoparticle volume fraction 

gradient of pseudoplastic nanofluids are also higher than those for the dilatant nanofluid. 

This implies that in nano-coating polymer flows enhanced mass transfer gradients can be 

produced more effectively with pseudoplastic nanofluid behaviour rather than with dilatant 

(shear thickening behaviour). In other words, nanoparticle diffusion effects, which will 

control the distribution of nanoparticles embedded in polymers can be manipulated 

effectively with the rheology of the nanopolymer. This in turn will influence the final 

constitution of the nanopolymer and bespoke designs may be fabricated for different 

industrial applications.  

 

5.  CONCLUSIONS 

A detailed theoretical and computational investigation of the steady two-dimensional free 

convective non-Newtonian nanofluid coating boundary layer flow along a plate located in a 

saturated isotropic Darcy environment.  Appropriate scaling transformations is employed to 

derive the set of coordinate transformations and hence use them to find similar nonlinear 

boundary value problem before being solved by Maple 18 shooting quadrature method. 
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Excellent validation of computations with previous studies for special cases has been 

achieved. The principal observations from the present simulations can be summarized as 

follows: 

• Temperature and nanoparticle volume fraction convective wall conditions with 

Brownian diffusion and thermophoresis in nanofluid coating flows have a 

considerable effect on the flow field and, hence on the heat and nanoparticle volume 

fraction gradient.   

• Velocity, temperature, concentration as well as reduced nanoparticle (volume 

fraction) mass transfer rates increase with convective-diffusion parameter (solutal 

Biot number), Nd. 

• Nusselt number increases with convective-conduction parameter, Nc, although it is 

suppressed with increasing power-law index, n, and thermophoresis parameter, Nt.  

• Nanoparticle volume fraction rates are enhanced with Lewis number, Le and 

convective-diffusion parameter, Nd whereas they are substantially depleted with 

increasing power-law index, n. 

• Velocity is reduced whereas temperature and nanoparticle volume fraction 

(concentration) are all elevated with n. 

• Velocity, temperature, and nanoparticles volume fraction are all enhanced with 

convection-conduction parameter, Nc. 

• Velocity is augmented whereas temperature is reduced with the rise in Lewis number, 

Le, for the buoyancy-assisted case (Nr >0). Furthermore, nanoparticle volume fraction 

decreases with Le for both aiding and opposing flow (Nr <0) cases. 

 

The present paper can be extended to consider other non-Newtonian models (e.g. Oldroyd-B, 

micropolar, second and third grade Reiner-Rivlin differential viscoelastic models, micropolar 

fluid) for nanofluids. These formulations are under consideration and efforts in these 

directions will be communicated soon. Additionally future pathways may examine 

Williamson nanofluid rheology [63] and also consider alternative nanoscale models e.g. 

Tiwari-Das which enable an actual study of different metallic nanoparticles (copper, alumina) 

and also carbon nanotubes [64], ZnO-SAE50 nano-lubricants [65], magnetic nanoparticles 

[66, 67] viscoplastic nanofluids [68], Eyring-Powell nanofluids [69] and time-dependent  

nano-polymers [70].  
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