1 Apicomplexa micropore: history, function and formation

- 2
- 3 Jiong Yang¹, Shaojun Long², Geoff Hide³, Zhao-Rong Lun¹, De-Hua Lai^{1,*}
- 4 ¹MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol
- 5 and Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life
- 6 Sciences, Sun Yat-Sen University, Guangzhou 510275, P. R. China
- 7 ²National Animal Protozoa Laboratory and School of Veterinary Medicine, China Agricultural
- 8 University, Beijing 100193, P. R. China
- 9 ³Biomedical Research and Innovation Centre, School of Science, Engineering and
- 10 Environment, University of Salford, Salford M5 4WT, UK.
- 11 *Correspondence: laidehua@mail.sysu.edu.cn (D.-H. Lai)
- 12

13 Keywords: micropore; Apicomplexa; Kelch 13; EPS15; formation model

14

15 Abstract

- 16 The micropore, a mysterious structure found in apicomplexan species, was recently shown
- 17 to be essential for nutrient acquisition in *Plasmodium falciparum* and *Toxoplasma gondii*.
- 18 However, the differences between the micropores of these two parasites questions the
- 19 nature of a general apicomplexan micropore structure and whether the formation process
- 20 model from *Plasmodium* can be applied to other apicomplexans. We analyzed the literature
- 21 on different apicomplexan micropores and found that T. gondii probably harbors a more
- 22 representative micropore type than the more widely studied ones in *Plasmodium*. Using
- 23 recent knowledge of the Kelch 13 protein interactome and gene depletion phenotypes in the
- 24 T. gondii micropore, we propose a model of micropore formation. Thus enriching our wider
- 25 understanding of micropore protein function.
- 26

27 The discovery of the micropore

28	All known members of the Apicomplexa are parasitic with most of them (including
29	Plasmodium, Toxoplasma and Eimeria) being pathogens of human, domestic and aquatic
30	animals and responsible for causing severe public health problems and huge economic loss.
31	These organisms are eukaryotic with typical organelles such as the nucleus, the Golgi, the
32	mitochondrion, the endoplasmic reticulum, but also possess unique organelles such as the
33	apicoplast, the conoid and the rhoptries. Among the unique ones, a structure with a plasma
34	membrane invagination surrounded by electron dense rings (EDRs) which is located on a
35	pore within the inner membrane complex (IMC, see Glossary), was first reported in
36	sporozoites of <i>P. falciparum</i> and termed the "micropyle" [1] (Type I micropore, Fig. 1). This
37	was later found in both the bradyzoites and tachyzoites of T. gondii, and called "micropore",
38	based on its possible function as a feeding pore [2]. Subsequently, micropores with a similar
39	morphology were found in many sporozoa and related organisms, such as the dinoflagellates
40	Hematodinium and Colpodella [3-6].
41	Based on observations of uptake of host cytoplasm in the Plasmodium erythrocytic stages,
42	Aikawa et al. [7] recommended renaming the erythrocytic stage micropyle as the
43	"cytostome"[7]. Meanwhile, the older term "micropyle" was thought to be inaccurate, and
44	possibly misleading, and has been renamed as the micropore [7-10]. The term cytostome in
45	Apicomplexa is now restricted to describe the erythrocytic stage of <i>Plasmodium</i> parasites
46	only. In this paper, we suggest the use of micropore and classify "micropores" into two
47	distinct types. We describe the term "cytostome" as a specialized form present during the
48	erythrocytic stage of <i>Plasmodium</i> , which is identified by an invagination of the
49	parasitophorous vacuole membrane (PVM) without the limitations imposed by the IMC, as
50	Type II depicted in Figure 1).

52 Structure and type of micropore

53	In order to reveal any consensus characteristics of the micropore in typical members of the
54	Apicomplexa, we re-analyzed micropore morphology data from the literature, in the context
55	of a 18s-rRNA based phylogenetic tree (Figure 2). Data indicates that Plasmodium exhibits
56	stage-specific morphological conversion of the micropore (Figure 1 and 2). Interestingly,
57	however, the micropore (Type II) in the trophozoite of this parasite within the red blood cells
58	is well characterized with two layers of membrane invagination - the parasite plasma
59	membrane (PM) and the PVM. However, in the early stage of the trophozoite, the micropore
60	(Type II variant) of <i>Plasmodium</i> spp. may just begin to invaginate without the PVM
61	invagination[7]. As the <i>Plasmodium</i> develops into the merozoite in the vertebrate host or
62	sporozoite in the mosquito vector, the inner membrane complex (IMC) is formed, presenting
63	the micropore within the IMC pore with only an invaginated monolayer of the parasite
64	plasma membrane visible (Type I). <mark>At these stages, the size of the micropore has shrunk</mark>
64 65	plasma membrane visible (Type I). <mark>At these stages, the size of the micropore has shrunk</mark> (with sizes refering to both the diameter of EDRs "OD" and depth of invagination, see also
64 65 66	plasma membrane visible (Type I). At these stages, the size of the micropore has shrunk (with sizes refering to both the diameter of EDRs "OD" and depth of invagination, see also below).
64 65 66 67	plasma membrane visible (Type I). At these stages, the size of the micropore has shrunk (with sizes refering to both the diameter of EDRs "OD" and depth of invagination, see also below). In the order Piroplasmorida, which includes parasites such as <i>Babesia</i> and <i>Theileria</i> , the
64 65 66 67 68	plasma membrane visible (Type I). At these stages, the size of the micropore has shrunk (with sizes refering to both the diameter of EDRs "OD" and depth of invagination, see also below). In the order Piroplasmorida, which includes parasites such as <i>Babesia</i> and <i>Theileria</i> , the trophozoites reside inside erythrocytes and their micropores are similar to the ones found in
64 65 66 67 68 69	plasma membrane visible (Type I). At these stages, the size of the micropore has shrunk(with sizes refering to both the diameter of EDRs "OD" and depth of invagination, see alsobelow).In the order Piroplasmorida, which includes parasites such as Babesia and Theileria, thetrophozoites reside inside erythrocytes and their micropores are similar to the ones found inPlasmodium trophozoites [11, 12]. However, since the PVM in Babesia and Theileria is
64 65 66 67 68 69 70	plasma membrane visible (Type I). At these stages, the size of the micropore has shrunk(with sizes refering to both the diameter of EDRs "OD" and depth of invagination, see alsobelow).In the order Piroplasmorida, which includes parasites such as Babesia and Theileria, thetrophozoites reside inside erythrocytes and their micropores are similar to the ones found inPlasmodium trophozoites [11, 12]. However, since the PVM in Babesia and Theileria isdissolved soon after invasion, their micropores are the type II variant that lacks both the IMCC
64 65 66 67 68 69 70 71	plasma membrane visible (Type I). At these stages, the size of the micropore has shrunk(with sizes refering to both the diameter of EDRs "OD" and depth of invagination, see alsobelow);In the order Piroplasmorida, which includes parasites such as Babesia and Theileria, thetrophozoites reside inside erythrocytes and their micropores are similar to the ones found inPlasmodium trophozoites [11, 12]. However, since the PVM in Babesia and Theileria isdissolved soon after invasion, their micropores are the type II variant that lacks both the IMCCand PVM invagination [11-13]. When Babesia develops into sporozoites in the vector salivary
 64 65 66 67 68 69 70 71 72 	plasma membrane visible (Type I). At these stages, the size of the micropore has shrunk(with sizes refering to both the diameter of EDRs "OD" and depth of invagination, see alsobelow);In the order Piroplasmorida, which includes parasites such as Babesia and Theileria, thetrophozoites reside inside erythrocytes and their micropores are similar to the ones found inPlasmodium trophozoites [11, 12]. However, since the PVM in Babesia and Theileria isdissolved soon after invasion, their micropores are the type II variant that lacks both the IMCCand PVM invagination [11-13]. When Babesia develops into sporozoites in the vector salivaryglands, the micropore is also converted into a type I structure [14]. In the bovine parasite
 64 65 66 67 68 69 70 71 72 73 	plasma membrane visible (Type I). At these stages, the size of the micropore has shrunk(with sizes refering to both the diameter of EDRs "OD" and depth of invagination, see alsobelow).In the order Piroplasmorida, which includes parasites such as Babesia and Theileria, thetrophozoites reside inside erythrocytes and their micropores are similar to the ones found inPlasmodium trophozoites [11, 12]. However, since the PVM in Babesia and Theileria isdissolved soon after invasion, their micropores are the type II variant that lacks both the IMCCand PVM invagination [11-13]. When Babesia develops into sporozoites in the vector salivaryglands, the micropore is also converted into a type I structure [14]. In the bovine parasiteNeospora spp., type I micropores are observed [15].

75	micropores. For example, the tachyzoite of <i>T. gondii</i> , an active proliferating stage within
76	mammalian cells, normally harbors 1 to 2 type I micropores with a plasma membrane
77	invagination (like a cup of about 100 nm in diameter) within an IMC pore, surrounded by
78	two EDRs [16]. Therefore, we consider that the type I micropores are present in major
79	members of the Apicomplexa (Figure 2), while the type II micropores have, so far, only been
80	observed in the parasite stages found inside the erythrocytes. This is supported by observing
81	similar structures within avian <i>Plasmodium</i> species [7]. We propose that the type II
82	micropores, including the variants, are an adaptation to parasitism in the erythrocytes
83	where the parasite IMC is dissembled and enables the presence of an enlarged micropore,
84	resulting in the formation of the type II structure.
85	It is noteworthy that there are significant differences between the two types of micropores
86	in the Aconoidasida. 1) The IMC is only found in the type I but not in the type II, as the IMC
87	degrades at the ring stage, and is absent in the trophozoite and then is rebuilt in the
88	merozoite. 2) The type II may represent an active form of the micropore, as the trophozoite
89	engages with active uptake of host nutrients using 3 to 4 micropores per trophozoite [17],
90	while the type I may represent a less active form. 3) The depth of the EDRs in the
91	erythrocytic stage appears shallower and shaped like two dots in the longitudinal section of
92	the type I micropore rather than two sticks in the type II. This is not true, as they are actually
93	in similar shape and size (data from Figure 2 and schematic diagram in Figure 1).
94	Therefore, we consider that the Type I is the ubiquitous type of micropore in apicomplexans
95	both in terms of size and structure. In this case, the <i>T. gondii</i> micropore is the best
96	characterized model organelle, being more representative, for studying structure and
97	function.

99 The function of the micropore

100	It should be noted that the active uptake of host cytoplasm by the type II microspore or
101	cytostome of the <i>Plasmodium</i> parasite, is characterized by observations of the dense
102	materials from the red blood cell, accompanied by the invagination of the PVM [18].
103	However, in mature merozoites, this uptake probably ceases, invagination of the PVM
104	cannot be observed anymore and the size of the cytostome is reduced to nearly a size
105	comparable to the micropore type I size. Therefore, the size changes seem to be correlated
106	with the activity of the uptake function. Based on this, some studies proposed that the
107	micropore might be non-functional or dormant [7].
108	With the advances in electron microscopy, the discovery of clathrin-like bristle coat and
109	budding vesicles at the base of the micropore in <i>T. gondii</i> bradyzoites suggests that the
110	micropore is not quiescent but rather dynamic [16]. Using the electron tomography (ET)
111	data from Wan et al. [19], the budding vehicle was observed in the T. gondii tachyzoite,
112	supporting its potential role in endocytosis. This observation also implies that the
113	endocytosis occurring at the micropore may be receptor-mediated [16, 19]. 3D
114	reconstruction of micropores in the general state (Figure 3A) and undergoing endocytosis
115	(Figure 3B) highlights the significant differences between these two stages.
116	Another strong piece of evidence supporting the role of the micropore in endocytosis is the
117	presence of the Kelch 13 (K13) protein at the EDRs. K13 was initially identified as a gene
118	associated with artemisinin resistance in <i>P. falciparum</i> [20, 21]. Later, K13 was found to be
119	located in the EDRs of the cytostome [22] and, therefore, was suggested to have a function
120	related to endocytosis restriction in the ring stage [23]. Further studies on K13 in
121	Toxoplasma micropores using immuno-electron microscopy [19, 24] confirmed the

122 involvement of the micropore and the key role of protein K13 in endocytosis. Furthermore,

123	this is also supported by an imbalance in plasma membrane homeostasis. This is a secondary	
124	phenotype of defective endocytosis and is characterized by the accumulation of excess	
125	SAG1-positive plasma membranes in K13-depleted Toxoplasma [24]. Significantly,	
126	knockdown of K13 or its interacting proteins results in an abnormal morphology of the T.	
127	gondii micropore [19]. This was the first demonstration of a link between K13 and its	
128	interacting proteins as well as the micropore structure and function.	
129		
130	The protein components of the micropore in <i>Plasmodium</i> and <i>Toxoplasma</i> and potential	
131	mechanisms	
132	Although it has been 60 years since the discovery of the micropore, the components of	
133	micropore have been unknown until recently. As mentioned above, K13 is probably the first	
134	protein identified in the micropore. After the discovery of K13, other components of the	
135	complex were identified using the Bio-ID technique in <i>P. falciparum</i> [23], while a similar set	
136	of core proteins were also identified in Toxoplasma (Figure 4) (Wan et al., 2023; Koreny et	
137	al., 2023). These studies confirmed a shortlist of 4 conserved micropore proteins including	
138	K13, epidermal growth factor receptor substrate-15 (EPS15), ubiquitin binding protein-1	
139	(UBP1), dynamin related protein C (DrpC) and adaptor protein 2 (AP2). The precise	
140	biological characteristics and functions of these proteins requires further studies to confirm.	
141	K13 is the most famous protein, as it is related to the artemisinin resistance found in P.	
142	falciparum [20, 21], which was identified due to its functional nature in nutrient salvaging	
143	[23]. K13 probably works as an adaptor, as it contains a Kelch domain and a Broad complex	
144	Tramtrack Bric-a-brac/Pox virus Zinc finger (BTB/POZ) domain. Such domain-containing	
145	proteins have been shown to be involved in presenting proteins, due for degradation, to	
146	ubiquitination in other eukaryotes [25, 26], suggesting a potentially similar mechanism in	

this is also supported by an imbalance in plasma membrane homeostacis. This is a secondary

147 K13 function [27].

148	A second protein is UBP1, which acts as a key K13-interacting partner [19, 23, 24] and is also
149	related to the artemisinin resistance [28], contains a GTPase domain, which may hydrolyze
150	GTP to release C-terminal adducts of ubiquitin [27]. Such activity may help to de-
151	ubiquitinate nearby proteins, i.e. other micropore components. Since ubiquitination has role
152	in regulating endocytic recycling, UBP1 may promote endocytic recycling, a process which
153	has been proposed to occur in yeast [29].
154	The third protein, EPS15, may function as a scaffolding adaptor protein and contains two
155	EPS15 homology (EH) domains and a coiled-coil region. EPS15 in other eukaryotes has been
156	shown to bind ubiquitin [30], and play important roles in controlling endocytosis [31]. While
157	the EPS15 from other eukaryotes have a ubiquitin-interacting motif and an AP2 binding
158	domain [19], the apicomplexan EPS15 lacks both of them, suggesting possible differences in
159	EPS15 binding partners or degradation targets. However, the AP2 binding studies and the
160	ubiquitinated interactome shows that the apicomplexan EPS15 retains both activities [19,
161	24]. Therefore, either there are two divergent motifs/domains which remain to be
162	recognized or indirect interactions may be operating. Additional evidence lies in the
163	localization of the micropore at the boundaries of the IMC membrane plate sutures (ISCs) as
164	indicated by the ISC3 signals [24]. As components of the IMC (IMC1, IMC4, IMC10, IMC14,
165	GAPM2B and GAPM1a) and the sutures (ISC1) were found in both the micropore
166	interactome and the ubiquitination proteome of <i>Toxoplasma</i> [19, 24, 32], the activity of
167	EPS15 in ubiquitin-interactions would be expected. Additionally, the binding of AP2 may be
168	involved in the trafficking of the ubiquitin modified receptors and is involved both in
169	secretion and endocytosis, as found in other eukaryotes [30] [33].
170	The fourth protein, AP2 is consists of four subunits (α , β , μ , σ) and is responsible for the

Commented [A1]: Reviewer #1 suggested

171	endocytosis of cargoes from the cell surface [34]. Subunits μ and σ form a steric blockade
172	which is released when phosphorylated by the adaptor-associated kinase 1 [35], resulting in
173	the binding of $\boldsymbol{\mu}$ to cargo proteins and to phosphatidylinositol-4,5-bisphosphate in proximity
174	to the membrane [36]. Importantly, the subunit $\boldsymbol{\alpha}$ was found to interact with EPS15 in other
175	eukaryotes [37], suggesting a similar role in the Apicomplexa. Interestingly, results indicated
176	that the β subunit could interact with clathrin in other eukaryotes [38], while <code>Plasmodium</code>
177	experiments provided evidence of an interaction between AP2 β and clathrin [23]. However,
178	clathrin was thought not to be involved in <i>Toxoplasma</i> micropore function [23, 39]. To
179	resolve this discrepancy, we would like to clarify if $\mbox{AP2}\beta$ is also a shared subunit of AP2 and
180	Adaptor Protein 1 (AP1), and where the latter is located to the Golgi network, as this is the
181	common situation in many eukaryotes[34]. Thus, it is probable that AP1 is clathrin-
182	dependent in the Golgi network as in other eukaryotic organisms, while AP2 is micropore
183	specific and has lost the ability to bind clathrin. Since $\mbox{AP2}\beta$ is likely to be the subunit
184	corresponding to the clathrin-binding activity, it might have distinct versions due to, as yet
185	undetermined, alternative translation initiation or splicing. This explanation is supported by
186	the differences in localization of AP2 β compared with the other micropore proteins [19, 24].
187	The final protein, DrpC contains only a recognizable GTPase domain, but as an apicomplexan
188	specific form, it functions in vesicle trafficking and division in <i>T. gondii</i> [40]. It was suggested
189	that dynamin could act cooperatively with Bin-Amphiphysin-Rvs (BAR) domain proteins and
190	actin, and stimulate GTP-dependent membrane scission [41, 42]. For instance, in mice, actin-
191	nucleating proteins, actin and BAR domain proteins accumulate at the base of arrested
192	endocytic clathrin-coated pits, where they support the growth of dynamic long tubular
193	necks which are finally terminated by dynamin [43]. Such a situation has been partially
194	observed in Plasmodium, in which hemoglobin containing vacuoles required a dynamin-actir

195	system that localizes at the base of the micropore [44]. In Toxoplasma, electron tomography
196	revealed that DrpC exhibits a ring-like localization feature, close to the basal end of the
197	micropore [24], where the budding occurred [19]. Therefore, DrpC may also cooperate with
198	actin and BAR proteins as dynamin and is responsible for generating budding vesicles at the
199	base of the micropores and for pinching off vesicles, before transporting them to the
200	cytoplasm. However, two BAR domain proteins have been identified in Toxoplasma but
201	neither localized to the micropore [19], nor interacted with DrpC based on the interactome
202	studies [24]. Therefore, the involvement of the BAR domain protein in apicomplexan
203	micropore endocytosis remains questionable.
204	Using Plasmodium and Toxoplasma as queries, Supplementary Table S1 shows the identified
205	homologs across other apicomplexan and the relevant Phylum including Perkinsids,
206	Dinoflagellates and Ciliates based on the genome blast of the core micropore proteins
207	mentioned above. These molecular clues back up the notion that the micropore exists
208	broadly across the Apicomplexa. Also, it is reasonable to expect that Plasmodium, with two
209	types of micropore at the present, has more unique micropore proteins.
210	
211	Models for the formation of the micropore in <i>Plasmodium</i> and <i>Toxoplasma</i>
212	Over many years, several formation models have been proposed for the micropore. A
213	pioneering study by Volkmann et al. [45], proposed a tri-stage development scheme for the
214	Klossia helicina micropore based on morphological observations with limited resolution. In
215	the last two decades, two much clearer models from the cytostome studies in P. falciparum
216	trophozoites have been proposed which provide clues to the formation and workings of the
217	micropore (Figure 4). Model 1 suggests that the <i>Plasmodium</i> plasma membrane invagination
218	is the first stage of micropore formation, followed by the PVM, and then the emergence of

219	the EDRs which surround the neck of the invagination, resulting in the maturation of the
220	micropore [17]. Later, an updated model was proposed based on the evidence which
221	showed the emergence of independent EDRs prior to any membrane invagination [44].
222	However, these models of formation are solely reliant on TEM observations on normal cells
223	but unfortunately lack quantitative data. It might be ambiguous to judge these models based
224	on a rarely visualized structure since the observations might be captured at an intermediate
225	stage of the micropore formation. The stage at which the PM and PVM invagination occurs
226	(i.e. Figure 4B) has been considered as an organelle for pinocytosis, a process occurring
227	independently of the micropore development, as supported by Elliottet et al. [46]. However,
228	the main point of contention, between these models, is whether the invagination of the
229	plasma membrane is a transition state which occurs before formation of the EDRs of the
230	micropore or whether this is a new mechanism of endocytosis.
231	Despite the models of cytostome mentioned above, no model is available for the type I
232	micropore, yet. Based on recent knowledge of micropore components and structural
233	defects in micropore-associated protein-depleted parasites, we have managed to propose an
234	updated micropore formation model (Figure 5). Recently generated data from ourselves and
235	others suggests that the sequential key events should be as follows: first, the inner
236	membrane complex forms a pore (Figure 5A-B); second, the plasma membrane forms a
237	regular wine glass invagination inside the pore (Figure 5C); third, the formation of an EDRs
238	structure is completed (Figure 5D).
239	The evidence supporting this formation order relies on the TEM observations in parasites
240	depleted with K13 or EPS15. In parasites depleted with EPS15, cells with defective
241	<code>micropores(1)</code> (Figure 5) in which no pitting in the PM but abnormal pitting in the IMC

242 instead of a notch and no EDR were observed [19]. We may conclude that the notch in the

243	IMC is a prerequisite for PM invagination and EDRs formation. While the lack of an IMC pore
244	and the abnormal pitting in the IMC could be attributed to the failure of the membrane
245	invagination and EDRs formation, e.g. by related protein mis-positioning. Therefore, EPS15
246	may be involved in the process of opening the IMC pore. In-situ tagging fluorescence
247	microscopy revealed the possible localization of EPS15 as a ring decorating the IMC pore
248	[24]. Since IMC was not observed in the type II micropore[23], EPS15 depletion may not
249	result in similar phenotype.
250	When K13 is depleted, type (3) and (4) defective micropores were formed. These defective
251	micropores have a notched IMC but no EDR, with either no PM invagination, or an
252	abnormally enlarged PM invagination. These observations suggest K13 is a core component
253	of the micropore EDRs and this is supported by the interactome studies from Wan et al. [19]
254	and Koreny et al. [24]. Furthermore, the EDRs are required for stable PM invagination.
255	The knock-down of UBP1 results in defective micropores of type $\textcircled{2}$ with a larger opening
256	size of the micropore. This observation suggests that UBP1 may be responsible for restricting
257	the size of the PM invagination. It has been long known that yeast UBP1 contains
258	transmembrane domains [29], which is also true for Toxoplasma UBP1. The EDRs may form
259	during the initiation of the PM invagination, but might be torn apart if the PM invagination is
260	over extended. Fluorescence microscopy from Koreny et al. [24] also support our opinion
261	that UBP1 is located right next to the PM invagination. Since UBP1 depleted cells retain at
262	least a partial EDR, the integration of UBP1 in the EDRs may be a non-essential step.
263	The knock-down of proteophosphoglycan 1 (PPG1) results in about a 50% more chance of
264	observing micropores with normal morphology [19]. When conducting a detailed
265	comparison of morphology, we found that parasites depleted with PPG1 had micropores
266	that have an ~20% oversize in their outer diameter (~60% increased volume) than the ones

in the parental cells. Therefore, there is a higher chance of observation by TEM than
expected and PPG1 likely restricts the size of micropores. However, as the inner diameter of
the micropore remains unchanged, compared to the PM invagination, the PPG1 depletion
may result in a loose connection between two layers of the EDRs. This is supported by data
from Koreny *et al.* [24] that PPG1 (CGAR) locates near K13 at the IMC pore proximal to UBP1.

273 Concluding remarks

274	The micropore was first described in <i>Plasmodium</i> more than 60 years ago, and subsequently
275	in various species of apicomplexans. During their complex developmental stages, two types
276	of the micropores have been observed. Compared to the Plasmodium cytostome (type II
277	micropore), Toxoplasma hosts a type I micropore which has recently been demonstrated to
278	be a functional nutrient uptake organelle and is commonly found in other apicomplexan
279	members. Both types of micropores share a common set of protein components,
280	represented by key components K13 and EPS15. Based on EM and precise component
281	studies, our new knowledge on micropore will certainly enable us to better understanding of
282	its formation process. Obviously, more are needed to be be carried out on the new model
283	we proposed. Furthermore, important questions remain as to how these components
284	interact with each other and how these two types of micropore switch in the stage
285	development during the life-cycle and adapted endocytosis activity (see Outstanding
286	Questions). As a key tunnel of nutrient (and possibly drug) uptake, it is important to
287	illuminate the functioning of the micropore to guide us to new chemotherapeutic strategies.
288	
289	Acknowledgements

290 We thank Dr. Qinfen Zhang, Dr. Xudong Jia, Yinyin Li, Dong Chen, Hongmei Li for assistance

291	with election microscopy. Work is supported by the National Natural Science Foundation of
292	China (32270446 to D.H.L., and 32170470 to ZR.L.), Natural Sciences Foundation of
293	Guangdong Province (2022A1515011874 to DH.L.).
294	
295	Declaration of Interests
296	The authors declare no competing interests.
297	
298	References
299	1 Garnham, P.C., et al. (1961) Electron microsope studies of motile stages of malaria
300	parasites. II. The fine structure of the sporozoite of Laverania (Plasmodium) falcipara. Trans
301	R Soc Trop Med Hyg 55, 98-102
302	2 Garnham, P.C., et al. (1962) Fine structure of cystic form of Toxoplasma gondii. Br Med J 1,
303	83-84
304	3 Scholtyseck, E. and Mehlhorn, H. (1970) Ultrastructural study of characteristic organelles
305	(paired organelles, micronemes, micropores) of sporozoa and related organisms. Z
306	Parasitenkd 34, 97-127
307	4 Appleton, P.L. and Vickerman, K. (1996) Presence of apicomplexan-type micropores in a
308	parasitic dinoflagellate, Hematodinium sp. Parasitol Res 82, 279-282
309	5 Mylnikov, A.P. (2009) Ultrastructure and phylogeny of colpodellids (Colpodellida,
310	Alveolata). Biology Bulletin 36, 582-590
311	6 Valigurova, A., et al. (2015) Protococcidian Eleutheroschizon duboscqi, an unusual
312	apicomplexan interconnecting Gregarines and Cryptosporidia. PLoS One 10, e0125063
313	7 Aikawa, M., et al. (1966) The feeding mechanism of avian malarial parasites. J Cell Biol 28,
314	355-373

291 with electron microscopy. Work is supported by the National Natural Science Foundation of

- 315 8 Scholtyseck, E., et al. (1966) Fine structure of the macrogametes of Eimeria perforans, E.
- 316 stiedae, E. bovis, and E. auburnensis. J Parasitol 52, 975-987
- 317 9 Sheffield, H.G. and Hammond, D.M. (1966) Fine structure of first-generation merozoites of
- 318 Eimeria bovis. J Parasitol 52, 595-606
- 319 10 Vivier, E. and Henneré, E. (1965) Ultrastructure des stades végétatifs de la coccidie
- 320 Coelotropha durchoni. Protistologica 1, 89-104
- 321 11 Fawcett, D.W., et al. (1987) Ultrastructure of the intra-erythrocytic stage of Theileria
- 322 species from cattle and waterbuck. Tissue Cell 19, 643-655
- 323 12 M, G., et al. (2003) Ultrastructure of Babesia equi trophozoites isolated in Minas Gerais,
- 324 Brazil. Pesquisa Veterinária Brasileira 23
- 325 13 Sojka, D., et al. (2022) Babesia, Theileria, Plasmodium and hemoglobin. Microorganisms
- 326 10
- 327 14 Guimarães, A.M., et al. (1998) Ultrastructure of sporogony in Babesia equi in salivary
- 328 glands of adult female Boophilus microplus ticks. Parasitol Res 84, 69-74
- 329 15 Conrad, P.A., et al. (1993) In vitro isolation and characterization of a Neospora sp. from
- 330 aborted bovine foetuses. Parasitology 106 (Pt 3), 239-249
- 331 16 Nichols, B.A., et al. (1994) Endocytosis at the micropore of Toxoplasma gondii. Parasitol
- 332 Res 80, 91-98
- 17 Lazarus, M.D., et al. (2008) A new model for hemoglobin ingestion and transport by the
- 334 human malaria parasite Plasmodium falciparum. J Cell Sci 121, 1937-1949
- 335 18 Rudzinska, M.A., et al. (1965) Pinocytotic uptake and the digestion of hemoglobin in
- 336 malaria parasites. J Protozool 12, 563-576
- 337 19 Wan, W., et al. (2023) The Toxoplasma micropore mediates endocytosis for selective
- 338 nutrient salvage from host cell compartments. Nat Commun 14, 977

- 339 20 Ariey, F., et al. (2014) A molecular marker of artemisinin-resistant Plasmodium falciparum
- 340 malaria. Nature 505, 50-55
- 341 21 Straimer, J., et al. (2015) Drug resistance. K13-propeller mutations confer artemisinin
- 342 resistance in *Plasmodium falciparum* clinical isolates. *Science* 347, 428-431
- 343 22 Yang, T., et al. (2019) Decreased K13 abundance reduces hemoglobin catabolism and
- 344 proteotoxic stress, underpinning artemisinin resistance. Cell Rep 29, 2917-2928 e2915
- 345 23 Birnbaum, J., et al. (2020) A Kelch13-defined endocytosis pathway mediates artemisinin
- 346 resistance in malaria parasites. Science 367, 51-59
- 347 24 Koreny, L., et al. (2023) Stable endocytic structures navigate the complex pellicle of
- 348 apicomplexan parasites. Nat Commun 14, 2167
- 349 25 Furukawa, M., et al. (2003) Targeting of protein ubiquitination by BTB-Cullin 3-Roc1
- 350 ubiquitin ligases. Nat. Cell Biol. 5, 1001-1007
- 351 26 Adams, J., et al. (2000) The kelch repeat superfamily of proteins: propellers of cell
- 352 function. Trends Cell Biol. 10, 17-24
- 353 27 Xie, S.C., et al. (2020) K13, the cytostome, and artemisinin resistance. Trends Parasitol 36,
- 354 533-544
- 355 28 Henrici, R.C., et al. (2019) Modification of pfap2µ and pfubp1 markedly reduces ring-stage
- 356 susceptibility of Plasmodium falciparum to artemisinin in vitro. Antimicrob Agents
- 357 Chemother 64
- 358 29 Schmitz, C., et al. (2005) The deubiquitinating enzyme Ubp1 affects sorting of the ATP-
- 359 binding cassette-transporter Ste6 in the endocytic pathway. Mol Biol Cell 16, 1319-1329
- 360 30 Lin, A. and Man, H.Y. (2014) Endocytic adaptor epidermal growth factor receptor
- 361 substrate 15 (Eps15) is involved in the trafficking of ubiquitinated α -amino-3-hydroxy-5-
- 362 methyl-4-isoxazolepropionic acid receptors. J Biol Chem 289, 24652-24664

- 363 31 Mukhopadhyay, D. and Riezman, H. (2007) Proteasome-independent functions of
- 364 ubiquitin in endocytosis and signaling. Science 315, 201-205
- 365 32 Silmon de Monerri, N.C., et al. (2015) The Ubiquitin Proteome of Toxoplasma gondii
- 366 Reveals Roles for Protein Ubiquitination in Cell-Cycle Transitions. Cell Host Microbe 18, 621-
- 367 633
- 368 33 van Bergen En Henegouwen, P.M. (2009) Eps15: a multifunctional adaptor protein
- 369 regulating intracellular trafficking. Cell Commun Signal 7, 24
- 370 34 Robinson, M.S. (1992) Adaptins. Trends Cell Biol. 2, 293-297
- 371 35 Conner, S.D., et al. (2003) AAK1-mediated micro2 phosphorylation is stimulated by
- 372 assembled clathrin. Traffic 4, 885-890
- 373 36 Candiello, E., et al. (2017) Differential regulation of synaptic AP-2/clathrin vesicle
- 374 uncoating in synaptic plasticity. Sci Rep 7, 15781
- 375 37 Benmerah, A., et al. (1996) The ear of alpha-adaptin interacts with the COOH-terminal
- domain of the Eps 15 protein. J Biol Chem 271, 12111-12116
- 377 38 Gallusser, A. and Kirchhausen, T. (1993) The beta 1 and beta 2 subunits of the AP
- 378 complexes are the clathrin coat assembly components. Embo j 12, 5237-5244
- 379 39 Spielmann, T., et al. (2020) Endocytosis in Plasmodium and Toxoplasma Parasites. Trends
- 380 Parasitol 36, 520-532
- 381 40 Heredero-Bermejo, I., et al. (2019) TgDrpC, an atypical dynamin-related protein in
- 382 Toxoplasma gondii, is associated with vesicular transport factors and parasite division. Mol
- 383 Microbiol 111, 46-64
- 384 41 Chandrasekar, I., et al. (2014) Nonmuscle myosin II is a critical regulator of clathrin-
- 385 mediated endocytosis. Traffic 15, 418-432
- 386 42 Meinecke, M., et al. (2013) Cooperative recruitment of dynamin and

- 387 BIN/amphiphysin/Rvs (BAR) domain-containing proteins leads to GTP-dependent membrane
- 388 scission. J Biol Chem 288, 6651-6661
- 389 43 Ferguson, S.M., et al. (2009) Coordinated actions of actin and BAR proteins upstream of
- 390 dynamin at endocytic clathrin-coated pits. Dev Cell 17, 811-822
- 391 44 Milani, K.J., et al. (2015) Defining the morphology and mechanism of the hemoglobin
- 392 transport pathway in Plasmodium falciparum-infected erythrocytes. Eukaryot Cell 14, 415-
- 393 426
- 394 45 Volkmann, B. (1967) Vergleichend elektronenmikroskopische und lichtmikroskopische
- 395 Untersuchungen an verschiedenen Entwicklungsstadien von Klossia helicina (Coccidia,
- 396 Adeleidea). Parasitology Research 29, 159-208
- 397 46 Elliott, D.A. (2008) Four distinct pathways of hemoglobin uptake in the malaria parasite
- 398 Plasmodium falciparum.
- 399 47 Senaud, J. and Cerná, Z. (1969) [Ultrastructural study of merozoites and schizogony of the
- 400 coccidia (Eimeriina): Eimeria magna (Perard 1925) from the intestine of rabbits and E. tenella
- 401 (Railliet and Lucet, 1891) from the cecums of chickens]. J. Protozool. 16, 155-165
- 402 48 Schmidt, K., et al. (1967) Fine structure of the schizont and merozoite of Isospora sp.
- 403 (Sporozoa: Eimeriidae) parasitic in Gehyra variegata (Dumeril and Bibron, 1836) (Repitlia:
- 404 Gekkonidae). J Protozool 14, 602-608
- 405 49 Hammond, D.M., et al. (1969) Fine structural study of the microgametogenesis of Eimeria
- 406 auburnensis. Z Parasitenkd 33, 65-84
- 407 50 Mehlhorn, H., et al. (2009) Another African disease in Central Europa: besnoitiosis of
- 408 cattle. I. Light and electron microscopical study. Parasitol Res 104, 861-868
- 409 51 Sheffield, H.G. (1966) Electron microscope study of the proliferative form of Besnoitia
- 410 jellisoni. J Parasitol 52, 583-594

- 411 52 Stehbens, W.E. and Johnston, M.R. (1967) The ultrastructure of a haemogregarine
- 412 parasitic in Gehyra variegata (Duméril & Bibron, 1836). Parasitology 57, 251-261
- 413 53 Beyer, T., et al. (1983) Fine structure of the merozoite of a haemogregarine from the testis
- 414 of a lizard. Zeitschrift für Parasitenkunde 69, 439-445
- 415 54 Smith, T.G. and Desser, S.S. (1997) Ultrastructural features of the gametogenic and
- 416 sporogonic development of Hepatozoon sipedon (Apicomplexa: Adeleorina) The applicability
- 417 of ultrastructural data in differentiating among Hepatozoon species. Parasite 4, 141-151
- 418 55 Kovacikova, M., et al. (2019) Motility and cytoskeletal organisation in the archigregarine
- 419 Selenidium pygospionis (Apicomplexa): observations on native and experimentally affected
- 420 parasites. Parasitol Res 118, 2651-2667
- 421 56 GARNHAM, R.E.S.A.P.C.C. (1973) A comparative study on the ultrastructure of
- 422 Plasmodium.
- 423 57 Friedhoff, K. and Scholtyseck, E. (1968) [Fine structure of Babesia ovis (Piroplasmidea) in
- 424 Rhipicephalus bursa (Ixodoidea): transformation from spheroid to vermicule form]. Z.
- 425 Parasitenkd. 30, 347-359
- 426 58 Mehlhorn, H. and Shein, E. (1984) The piroplasms: life cycle and sexual stages. Adv
- 427 Parasitol 23, 37-103
- 428 59 Obornik, M., et al. (2011) Morphology and ultrastructure of multiple life cycle stages of
- 429 the photosynthetic relative of Apicomplexa, Chromera velia. Protist 162, 115-130
- 430 60 Portman, N., et al. (2014) Evidence of intraflagellar transport and apical complex
- 431 formation in a free-living relative of the Apicomplexa. Eukaryot Cell 13, 10-20
- 432
- 433 Figure legends
- 434 Figure 1. Two types of micropores are found in the life stages of *Plasmodium*, while only

435	type I micropores are found in Toxoplasma. There are type I micropores in the sporozoite
436	and merozoite stages and type II micropores in the trophozoite stage of Plasmodium
437	falciparum. Type I is characterized by the presence of electron dense rings (EDR) on an inner
438	membrane complex (IMC) pore and a plasma membrane (PM) invagination. The type II is
439	characterized by the additional invagination of the parasitophorous vacuole membrane
440	(PVM) but without the IMC. Note that in some cases, type II variants are observed, for
441	instance, when there is the dissolution of the PVM or where there are low uptake properties
442	at the early stage of infection. In these cases, only the plasma membrane invagination may
443	be present. A parameter diagram for morphonology data is also provided which can be used
444	in conjunction with Figure 2
445	
446	Figure 2. The morphonology data of the micropore in the members of the Apicomplexa.
447	Note: ID, inner diameter. OD, outer diameter. ED, electron dense ring depth, also see
448	diagram in Figure 1 to show the measurable features of the micropores. M, merozoite. T,
449	trophozoite. MaG, macrogametes. MiG, microgametocytes. CM, cyst merozoites. OS, oocyst

450 sporozoite. EM, Erythrocytic merozoite. ExM, Exo-erythrocytic merozoite. References: a, *E. i*451 data from [3]; b, *E. t* re-measured from [47]; c, *I.* s[3, 48]; d, *E.* a[3, 49]; e, *S.* t[3]; f, *T.* g; g, *B.*452 b[50]; h, *B. j*[51]; i, *K.* h[45]; j, *H.* s[52]; j *K.* s[53]; k, *H.* s[54]; I, *S.* p[55]; m, *S.* h[3]; n, *P.* f[17];
453 o, *P.* k[3]; p, *P.* v[56]; q, *B.* o[57]; r, *T.* a[58]; s, *T.* p[3]; t, *C.* v[59, 60].

454

455 Figure 3. Three-dimensional reconstruction models of the middle sections of the

456 micropores. The micropores were imaged and reconstructed using electron tomography. (A)
457 the micropore model in the general state. (B) the micropore model with a budding vesicle.

458 Green, pellicle. Orange and red, IMC. Yellow, dense ring. Bars, 100 nm. Adapted from [19].

460	Table S1. Conservation of possible micropore components in major apicomplexans and
461	relative organisms. Components of micropores in T. gondii and P. falciparum revealed by
462	Bio-ID and other techniques as indicated below. A, DiQ-BioID. B, TurboID. C, classical Bio-ID.
463	D, Fluorescence microscopy with endogenous GFP/mCherry-tagging. E, CLEM (correlative
464	light and electron microscopy). F, immuno-EM. G, STORM (stochastic optical reconstruction
465	microscopy). H, AID-TEM. I, IFA (Immuno-fluorescence assays). J, 3D-SIM (3D structured
466	illumination microscopy)
467	
468	Figure 4. Two models of type II micropore formation in Plasmodium. Model 1, the PM
469	invaginates first (A), the parasitophorous vacuole membrane (PVM) invaginates
470	subsequently (B), then the electron-dense rings (EDRs) surround the parasite plasma
471	membrane (PM) invagination (C). Model 2, the EDRs are located under the PM (D), then the
472	PM and PVM invaginates through the EDRs (E). Adapted from [17] and [44].
473	
474	Figure 5. The model of type I micropore formation and corresponding defects found in
475	micropore component defective Toxoplasma cells. A) Parasite plasma membrane (PM) and
476	inner membrane complex (IMC) that have not yet formed the micropore. B) a pore is formed
477	in IMC. C) PM invaginates inside the IMC pore. D) Electron-dense rings (EDRs) form between
478	the PM invagination and IMC. TEM of abnormal micropore in defective cells: (1), IMC pore
479	defects and PM is unable to invaginate, and no EDR, instead the IMC invaginates; $\textcircled{2}$, EDR
480	defects and PM invagination defects, with a clear IMC pore but no PM invagination, nor EDR;
481	(3), EDR defects, no EDR and no neck with expanding PM invagination; (4) , Opening defect
482	with large IMC pore and large EDRs;