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Solar energy has emerged as a vital renewable alternative to fossil fuels, enhancing environmental sustainability 
in response to the pressing need to reduce carbon emissions. However, the integration of solar power into 
the electrical grid faces challenges due to its unpredictable nature, as a result of solar energy production 
variability. This research presents an advanced Explainable Artificial Intelligence (XAI) framework to explicate 
machine learning models decision-making processes, thereby improving the predictability and management of 
solar energy distribution. The influence of critical parameters such as solar irradiance, module temperature, and 
ambient temperature on energy yield is studied using the Local Interpretable Model-Agnostic Explainer (LIME). 
Rigorous testing using four advanced regression models identified Random Forest Regressor as the superior 
model, with an R2 score of 0.9999 and a low Root Mean Square Error (RMSE) of 0.0061. Furthermore, Partial 
Dependency Plots (PDP) are used to emphasize the intricate dependencies and interactions among features in the 
dataset. The application of XAI techniques for solar power generation extends beyond explainability, addressing 
challenges due to various parameters in solar radiation pattern analysis, error estimation in solar performance, 
degradation of the battery function, and also provides interpretable insights for enhancing the lifespan of solar 
panels, contributing to advancements in sustainable energy technologies. The results of this study show how XAI 
has the potential to transform power system management (PSM) and strategic planning, propelling us toward a 
future of energy that is more resilient, efficient, and environmentally friendly.
1. Introduction

Over the past few years, India has embraced solar energy as a game-
changer in its journey towards a cleaner energy future. As solar energy 
expanded rapidly, it not only transformed India’s energy scene but also 
empowered rural communities by providing access to decentralized so-
lar technologies. This growing use of solar power has sparked social and 
economic progress at the village level, boosting job opportunities and 
improving living conditions across the country.

India’s solar industry is growing rapidly, especially in the area of 
grid-connected solar systems. Solar energy is now an important part of 
India’s energy plan, helping to meet the growing need for electricity and 
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make the country more energy secure. The government sees solar en-
ergy as crucial for India’s sustainable development and for diversifying 
the country’s energy sources.

Renewable energy sources, particularly solar energy, offers a viable 
and eco-friendly alternative to fossil fuels. Their widespread adoption 
brings numerous benefits, including vast production potential and a 
positive environmental impact, as highlighted by Zhao et al. (2016) 
[1], Hou et al. (2023) [2], Yang et al. (2023) [3] and Dincer et al. 
(2023) [4]. Furthermore, the enhancement of energy efficiency, which 
is a crucial aspect of modern energy systems, can be improved through 
precise forecasting of consumption patterns, as demonstrated by Liu et 
al. (2020) [5]. The integration of Artificial Intelligence (AI) into these 
Available online 19 March 2024
2090-4479/© 2024 THE AUTHORS. Published by Elsevier BV on behalf of Faculty o
BY license (http://creativecommons.org/licenses/by/4.0/).

(P.B. Bhuvanagiri), sanjeev.padma@usn.no (S. Padmanaban), S.Khan138@salford.u

https://doi.org/10.1016/j.asej.2024.102740
Received 28 August 2023; Received in revised form 19 December 2023; Accepted 4 
f Engineering, Ain Shams University. This is an open access article under the CC

k (S. Bhatia Khan).

March 2024

http://www.ScienceDirect.com/
https://www.sciencedirect.com
mailto:nallakaruppan.mk@vit.ac.in
mailto:nathanshankar465@gmail.com
mailto:prahalbhuvanagiri21@gmail.com
mailto:sanjeev.padma@usn.no
mailto:S.Khan138@salford.uk
https://doi.org/10.1016/j.asej.2024.102740
https://doi.org/10.1016/j.asej.2024.102740
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asej.2024.102740&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Ain Shams Engineering Journal 15 (2024) 102740M.K. Nallakaruppan, N. Shankar, P.B. Bhuvanagiri et al.

Fig. 1. Solar Power Generation and Distribution.
processes paves way to revolutionize the way we harness and manage 
solar power. The mechanisms of solar energy generation and distribu-
tion, essential for the understanding of this potential, are illustrated in 
Fig. 1.

Consumers struggle to determine the viability of solar energy as an 
investment due to the combined influence of changing climate patterns, 
in the panel installation locations and the impact these changes have 
on the panels’ performance. A potential solution to this issue would be 
constructing a solar map showing how much sun energy each place re-
ceives each year. However, the expense involved in creating these maps 
is costly, making them largely inaccessible. Many potential solar energy 
self-producers abandon their plants, because they lack the necessary 
instruments to assess the project’s technical and economic sustainabil-
ity. The XAI implementation has gained considerable traction in recent 
years and its implementation in forecasting Solar Power distribution 
hasn’t been explored before.

1.1. Challenges of integrating solar energy

Integrating solar energy into the electrical grid presents several chal-
lenges due to its inherent characteristics and the way the electrical 
system is traditionally structured. Here are some of the key challenges:

1. Intermittency and Variability: Solar energy is intermittent; it is only 
available during the daytime and varies with weather conditions, 
such as cloud cover. This variability can lead to mismatches be-
tween solar energy generation and electricity demand.

2. Storage: To manage the intermittency of solar power, energy stor-
age systems are necessary. These systems can be expensive and are 
still an evolving technology, especially for large-scale applications.

3. Grid Infrastructure: The current electrical grid is mostly designed 
for centralized power plants. Integrating solar energy, which is of-
ten generated in a distributed manner (e.g., rooftop solar panels), 
requires upgrades to the grid infrastructure to handle the bidirec-
tional flow of electricity.

4. Load Balancing: Grid operators must constantly balance supply and 
demand to maintain grid stability. The unpredictability of solar en-
2

ergy production makes this task more complex.
5. Power Quality: Solar energy integration can affect power quality in 
terms of voltage regulation, frequency stability, and harmonic dis-
tortion. Maintaining high power quality is essential for the proper 
functioning of electrical equipment.

6. Investment and Costs: The initial investment for solar infrastructure 
can be high. While costs have been decreasing, economic chal-
lenges still exist, including the need for incentives and subsidies 
to make solar projects viable.

7. Regulatory and Policy Issues: Regulatory frameworks and market 
structures may not be well-suited for accommodating renewable 
energy sources. Policies need to evolve to provide clear guidelines 
for integration and to incentivize investment in renewables and 
grid upgrades.

8. Scalability: As solar energy becomes a larger part of the energy mix, 
the challenges of integrating it into the electrical system increase. 
Grid operators must plan for scalability to ensure they can handle 
high levels of solar penetration.

9. Transmission and Distribution: Solar energy generation sites, par-
ticularly large-scale solar farms, may be located far from consump-
tion centers, requiring investment in transmission and distribution 
networks to transport the electricity where it is needed.

10. Cybersecurity and Control Systems: With increased integration of 
solar energy and the need for advanced control systems, the grid 
becomes more susceptible to cybersecurity threats. Robust protec-
tion mechanisms are necessary to safeguard the grid.

To address these challenges, advancements in technology, grid man-
agement practices, and supportive policies are essential. Solutions such 
as smart grid technologies, improved forecasting methods, demand re-
sponse programs, and enhanced grid storage capabilities are being de-
veloped to facilitate the integration of solar energy into the electrical 
system.

1.2. Contributions of the paper

• This study pioneers the application of XAI for the prediction of solar 
power distribution, offering a novel and cost-effective alternative to 

traditional solar mapping techniques. The approach is distinctive in 
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its ability to bypass the need for expensive solar irradiance maps 
while still providing reliable solar power output forecasts.

• The research addresses the prevalent issue of consumer uncertainty 
by delivering clear, interpretable explanations regarding the ex-
pected solar power distribution. It elucidates the quantity of power 
that can be anticipated for generation and distribution, thereby 
resolving consumer confusion and aiding in informed decision-
making.

• The paper contributes a detailed analysis of the various factors 
affecting solar power production and distribution. It provides an in-
depth understanding of how each parameter influences the overall 
solar power output, enhancing the transparency and accessibility 
of solar energy forecasts for potential investors and stakeholders.

• This research is unique in the solar power generation with realistic 
result on the Solar Power Yield. The local surrogate approximation 
with PDP provides detailed understanding on every data item and 
its significance about power generation.

• The important features are identified quantitatively and can be 
controlled in an efficient way for the enhancement of the power 
generation process.

• This provides the solution to the uncertainty of the machine learn-
ing models in the estimation of the demand of the power and the 
influence of the relevant parameters related to the solar power gen-
eration.

1.3. Organization of the paper

This paper is divided into seven parts. To begin, this study exempli-
fies earlier research efforts and outlines some significant contributions 
of these articles in Section 2. Section 3 discusses the work’s system con-
cept and architecture, as well as the dataset utilized and the mathemati-
cal modeling of the implementation. Section 4 examines the advantages 
of the current system and how XAI might help fill this research gap 
along with its advantages. Section 5 delves into the XAI’s findings. Sec-
tion 6 analyzes and discusses the acquired results. Finally, Section 7
contains the work’s conclusions.

2. Literature review

The landscape of solar energy forecasting has been evolving con-
stantly with the integration of Machine Learning (ML) and Deep Learn-
ing (DL) models. A variety of studies and research efforts have been 
contributed to this field, each offering a unique insight and advance-
ment.

Elsaraiti et al. (2022) [6] used Long Short-Term Memory (LSTM) 
networks and Multi-Layer Perceptron (MLP) architectures to predict so-
lar radiation. Their findings showed that these models can accurately 
predict solar radiation, making them valuable tools for improving solar 
energy predictions.

Vennila et al. (2022) [7] presented an ensemble approach that in-
tegrates multiple ML models to improve forecasting accuracy. This en-
semble model proved to be not only more accurate than individual ML 
models but also was more cost-effective, setting a new benchmark for 
solar prediction models.

Sudharshan et al. (2022) [8] highlighted the role of solar energy 
as a pillar of renewable energy sources and identified the unreliability 
of the traditional energy sources as a major hindrance. They proposed 
that hybrid and federated learning models could yield the most precise 
estimations of solar radiation patterns, surpassing conventional models 
that heavily rely on the complex mathematical computations.

Pombo et al. (2022) [9] discussed the integration of ML predictors 
into Photovoltaic (PV) system. They underscored the challenges associ-
ated with obtaining consistent outcomes from ML models, particularly 
in Renewable Energy Systems (RES), which often depended on datasets 
3

from specific locations or climate zones. Their findings suggested that 
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the best predictor can leverage the features of the proposed system, re-
gardless of the ML model employed.

Li et al. (2022) [10] have developed a unique technique that im-
proves the accuracy of solar energy predictions. They combined mul-
tiple DL models into a hybrid structure, which helps to reduce errors 
in forecasting photovoltaic (solar) energy production. This approach 
shows the potential for increasing the precision of solar energy fore-
casts.

Gumar et al. (2022) [11] conducted a comparison between three op-
timization algorithms, Genetic, Swarm, and Bee Colony, for improving 
the accuracy of solar energy forecasts using Artificial Neural Networks 
(ANNs). It was found that the Particle Swarm Optimization technique 
outperformed the others, achieving the highest accuracy of 99.71%. 
This highlights the effectiveness of Particle Swarm Optimization in op-
timizing solar energy prediction models.

Alkhayat et al. (2022) [12] developed the ENERGY model, which 
uses an automated approach to identify the most effective DL model for 
solar energy predictions. The model was trained on data from differ-
ent parts of the world, and it outperformed the conventional statistical 
methods in terms of accuracy. Specifically, it achieved an impressive 
accuracy of 81%.

Zazoum et al. (2022) [13] compared two algorithms for predicting 
solar output: Matern 5/2 Gaussian Process Regression (GPR) and cubic 
Support Vector Machine (SVM). Their research showed that GPR out-
performed SVM. GPR had lower Mean Squared Error (MSE) and Root 
Mean Square Error (RMSE) than SVM, indicating greater accuracy in 
solar output predictions.

Almaghrabi (2021) [14] proposed a cutting-edge approach for fore-
casting the next-day solar power generation based on the historical 
data. This technique utilizes a DL model called CNN-LSTM Encoder-
Decoder (CLED), which merges Convolutional Neural Networks (CNNs) 
with Long Short-Term Memory (LSTM) networks. Using datasets from 
Australia’s Energy Market Operator (AEMO), the CLED model achieved 
exceptional accuracy in predicting solar power generation. This study 
highlights the effectiveness of combining LSTM and CNN for predictive 
analysis in the renewable energy domain.

Zhou et al. (2021) [15] proposed a model that utilizes sensors con-
nected to the Internet of Things and advanced DL models like CNN and 
LSTM with clustering. This model enhances energy consumption predic-
tion with exceptional precision, surpassing other models in the study. 
The model’s accuracy is demonstrated by its low Root Mean Squared 
Error (RMSE) indicator.

Fara et al. (2021) [16] evaluated two methods for predicting the out-
put of solar panels: ARIMA (a statistical model) and ANN. They tested 
these models in Southern Romania to compare their performance and 
accuracy. This study helps to understand the strengths and weaknesses 
of the statistical and machine learning approaches for solar energy fore-
casting.

Konstantinou et al. (2021) [17] explored the use of Recurrent Neu-
ral Networks (RNNs), specifically stacked LSTM models, for predicting 
the generation of solar power. To determine the most effective model, 
they optimized its hyperparameters using k-fold cross-validation and 
selected the model with the best performance.

Alkhayat (2021) [18] provided a thorough study on DL models, in-
cluding CNN and RNN. They also covered how these models are used 
with techniques such as data decomposition, feature selection, and data 
correction. The review included a classification system based on key 
findings, as well as a critical evaluation of the current state of research 
in this area.

Shamshirband et al. (2019) [19] investigated approaches to mini-
mize negative impacts on solar energy systems. They applied DL meth-
ods, such as RNN, LSTM, and Gated Recurrent Unit (GRU), to enhance 
the forecast on accuracy. Their research revealed that RNN and LSTM 
models performed exceptionally well for analyzing time-series data.

Abdelhakim et al. (2016) [20] discussed an Energy Management 

System (EMS) for the efficient generation of clean energy with Micro 
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Table 1

Summary of Solar Energy Forecasting Studies with XAI Considerations.

Author(s) Year Focus Key Findings Disadvantages XAI to Address Disadvantages

Elsaraiti et al. [6] 2022 Predicting solar 
radiation using LSTM 
and MLP

Demonstrated the efficacy of deep 
learning algorithms in producing 
accurate solar radiation forecasts.

Limited discussion on 
computational resources and 
training times.

XAI tools can provide insights into 
model decisions, helping 
understand and optimize 
resource-intensive processes.

Vennila et al. [7] 2022 Ensemble 
machine-learning 
models for forecasting

Ensemble models were more 
accurate and cost-effective than 
individual ML models.

May require additional 
computational resources due to the 
combination of models.

XAI methods can enhance 
transparency, allowing 
stakeholders to understand the 
contributions of each model in the 
ensemble.

Sudharshan et al. [8] 2022 Role of solar energy and 
hybrid/federated 
learning models

Hybrid and federated learning 
models provide more precise solar 
radiation estimates than 
traditional models.

Complex implementation and 
potential communication 
challenges in federated learning.

XAI techniques can provide 
interpretability in complex models, 
aiding in understanding federated 
learning outcomes.

Pombo et al. [9] 2022 ML predictors in 
hardware models of PV 
systems

Best predictors are adaptable to 
different datasets and locations, 
enhancing consistency in 
outcomes.

Limited exploration of the impact 
of hardware constraints and 
real-time applicability.

XAI methods can shed light on the 
impact of hardware limitations, 
guiding the development of more 
efficient models.

Li et al. [10] 2022 Minimizing errors in 
photovoltaic prediction 
with hybrid neural 
networks

A novel approach that reconstructs 
deep neural network models to 
improve solar energy forecasts.

The hybrid approach may 
introduce additional complexity in 
model interpretation and tuning.

XAI tools can help in 
understanding the interactions 
between the components of hybrid 
models, aiding in effective tuning.

Gumar et al. [11] 2022 Optimization algorithms 
for ANN in solar 
prediction

Particle Swarm Optimization 
algorithm achieved the highest 
accuracy, indicating its 
effectiveness for solar forecasting.

The choice of optimization 
algorithm may be 
problem-dependent, and PSO 
might not always be the optimal 
choice.

XAI can provide insights into the 
decision-making process of 
optimization algorithms, aiding in 
selecting appropriate methods.

Alkhayat et al. [12] 2022 ENERGY model for 
auto-selective 
deep-learning model 
selection

Demonstrated superior accuracy 
with deep neural network-based 
models over traditional statistical 
methods.

The ENERGY model might be 
sensitive to the choice of 
hyperparameters and requires 
careful tuning.

XAI tools can help identify key 
hyperparameters and their impact 
on model performance, assisting in 
more effective tuning.
Grids (MG). Integrating EMS with forecasting techniques was found 
with enhanced performance of clean energy production.

Alamin et al. (2020) [21] created a model using an ANN to fore-
cast energy output in High-Concentrator Photovoltaic (HCPV) systems. 
Their Radial Basis Function Neural Network (RBFNN) model, swiftly 
predicts the energy output for short-term periods, accurately capturing 
the performance of Concentrator Phot Voltaic (CPV) systems.

Mellit et al. (2020) [22] examined numerous Artificial Intelligence 
(AI) methods and their effectiveness in predicting solar power gener-
ation. Their analysis highlighted the need for extensive, top-quality 
datasets. They also underlined the importance of preprocessing these 
datasets to address any missing data or incorrect values. Additionally, 
they emphasized the significance of taking into account external factors 
that influence solar power production, such as cloud cover variations. 
Combining AI techniques with traditional physics-based models was 
deemed a promising approach to enhance solar power forecasting accu-
racy.

Zhang et al. (2018) [23] proposed an ensemble method to predict 
how much solar power could be produced in a region during each 
hour of the upcoming day. They used information from three differ-
ent weather forecasting models to make their predictions. When they 
tested their method against the other base models, they found that 
their method, called Earth Declination Angle Change Limit Algorithm 
(EDAC), performed better than the others.

Collectively, these studies underscore the rapid advancements in so-
lar power forecasting methodologies, highlighting the potential of ML 
and DL techniques to provide accurate and reliable predictions for so-
lar energy generation. The state of the art research can be visualized in 
Table 1 and how the proposed research can improve the shortcomings 
from the existing work.

3. System model and architecture

This section presents the dataset description, system model, and pro-
4

posed system architecture described in the subsections.
3.1. Dataset description

The dataset central to this research was meticulously compiled from 
two distinct solar power plants in India, encompassing a period of 34 
days. The dataset is acquired from kaggle. At these facilities, power gen-
eration data is captured at a granular level, with individual inverters—
each connected to several strings of solar panels—recording output 
metrics. Complementing this, a suite of sensors deployed across the 
plants provides a holistic collection of environmental and operational 
variables at the plant level.

The dataset is structured to include 9 independent variables, which 
serve as predictors for the dependent variable, AC power output (Y). 
The independent variables encompass a range of factors that influence 
solar power generation:

• DC Power: The direct current output from the solar panels.
• Irradiation: The solar radiation intensity received by the panels.
• Ambient Temperature: The temperature of the surrounding envi-

ronment.
• Module Temperature: The temperature of the solar panel modules 

themselves.
• Date and Time: Timestamps associated with each data entry.
• Source Key: Unique identifiers for the individual inverters.
• Daily Yield: The total energy produced by the solar panels in a 

single day.
• Total Yield: The cumulative energy output of the solar panels over 

time.

This rich dataset comprises 67,699 instances allocated for training pur-
poses, alongside 3,260 instances set aside for testing the models. A 
notable feature of this dataset is the absence of any class imbalance 
or missing values, which often pose challenges in predictive modeling. 
Additionally, the ‘Source Key’ and ‘Date and Time’ variables have been 
transformed into numerical values through linear encoding techniques, 
thereby facilitating their use in regression analysis and machine learn-

ing algorithms.
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The careful curation and preprocessing of the dataset lay a robust 
foundation for the subsequent XAI techniques, ensuring that the in-
sights derived are both reliable and rooted in comprehensive empirical 
evidence.

3.2. System model

The first implementation of the proposed work is an estimation of 
the regression. Mathematically the regression is expressed as per the 
below Eqn. (1)

𝑌 = 𝑎𝑋 + 𝑏 (1)

where Y is the dependent and target variable and X are the indepen-
dent variables and b is the slope that connects both X and Y. a is the 
bias. Various underlying parameters determine the performance of the 
regression. They are R2 Score, Standard Deviation, Mean Squared Error 
(MSE), and Root Mean Squared Error (RMSE).

The R2 Score is expressed as per the Eqn. (2) and Eqn. (3).

𝑅2 𝑆𝑐𝑜𝑟𝑒 = 1 − 𝑆𝑢𝑚 𝑆𝑞𝑢𝑎𝑟𝑒 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛

𝑇 𝑜𝑡𝑎𝑙 𝑆𝑢𝑚 𝑜𝑓 𝑆𝑞𝑢𝑎𝑟𝑒𝑠
(2)

𝑅2𝑆𝑐𝑜𝑟𝑒 = 1 − (
∑

(𝑦𝑖 − �̄�𝑖)2∕(
∑

(𝑦𝑖 − �̄�)2 (3)

The MSE metrics of the regression are expressed as per the Eqn. (4).

𝑀𝑆𝐸 =
∑

(𝑌𝑖 − 𝑌𝑖)2∕𝑛 (4)

where Y𝑖 is the observed value and 𝑌𝑖 is target value of the specific data 
instance and n is total number of samples.

The RMSE metric for the regression is expressed as per the Eqn. (5).

𝑅𝑀𝑆𝐸 =
√
𝑀𝑆𝐸 =

√∑
(𝑌𝑖 − 𝑌𝑖)2∕𝑛 (5)

The variance metric of the regression is estimated as per the Eqn. (6).

𝜎2 =
𝑛∑

𝑖=1
(𝑌𝑖 − 𝑌 )2∕(𝑛− 1) (6)

In the regression, the proposed work selects the random forest model 
which can be mathematically expressed as a function of MSE as per the 
Eqn. (7).

𝑀𝑆𝐸 = 1∕𝑁(
𝑛∑

𝑖=1
(𝐹𝑖 − 𝑌𝑖)2 (7)

F𝑖 is value obtained in the specific data point, Y𝑖 is the value produced 
by the model and N is the total points of the data.

The Partial Dependency Plot is described for the Random Forest Re-
gression model as per the Eqn. (8) mentioned below.

𝑓𝑠(𝑥𝑠) =𝐸𝑥𝑐⌈(𝑓 (𝑥𝑠,𝑋𝐶 ))⌉ (8)

where 𝑓𝑠 is the training model and 𝑥𝑠 is the dependent features and the 
𝑋𝐶 are the remaining available features in the dataset.

Finally LIME model is providing the explanation for the regression 
model as per the Eqn. (9).

𝐸𝑥𝑝(𝑧) =𝑈 (𝑐, 𝑣, 𝜋𝑧) + 𝜃(𝑣) (9)

The value of 𝑣 belongs to the global model v where 𝑣 ∈ 𝑉 . The 𝑈
is the unfaithful measurement, 𝑐 is the variable defined as a complex 
function and 𝜋𝑧 is the distance vector of 𝑔 with its surrogate points. 
𝜃(𝑣) is a complex function of the model. The overall process flowchart, 
with various sequences of action is illustrated in Fig. 2.

3.3. XAI architectures and framework

The comprehensive workflow that underpins our XAI-driven ap-
5

proach for solar power prediction is illustrated in Fig. 3. The process 
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involves a series of well-defined steps that are carefully planned to im-
prove the accuracy of the model’s predictions by optimizing the input 
parameters.

Stage 1: initial model construction The initial phase involves construct-
ing a model that can predict how much solar energy will be produced. 
This model uses data collected directly from solar power plants, as well 
as other important factors that have been identified through literature 
review. By combining real-world data with well-established principles, 
the model provides a strong basis for making predictions.

Stage 2: XAI analysis After getting the model’s predictions, we use 
Explainable Artificial Intelligence (XAI) to figure out how the model 
makes decisions. By breaking down the model’s internal workings, XAI 
shows us how each input (variable) affects the output (predicted solar 
power output), allowing us to categorize the variables into two groups: 
those that exhibit a positive correlation and those with a negative cor-
relation to the predicted solar power output.

Stage 3: refinement of input variables The last step of this workflow is an 
ongoing process where the models predicting solar power are constantly 
being tested with all possible combinations of the variables that were 
identified as inputs. By carefully reviewing the effects of each group of 
variables, we can narrow down the input variables to only the ones that 
have the most impact. After being validated for their effectiveness using 
XAI analysis, this smaller group of variables is then used to make the 
predictive models more precise, resulting in solar power forecasts that 
are more accurate and reliable.

This structured approach, underpinned by XAI, not only makes the 
predictive models clearer but also helps us find the variables that have 
the greatest impact, thereby streamlining the prediction of solar power 
generation.

3.3.1. AI transparency using XAI architectures

In the pursuit of making AI systems more transparent, researchers 
have created Explainable Artificial Intelligence (XAI) frameworks. 
These frameworks help us understand how AI models make decisions, 
making them easier for humans to interpret. Here we delve into several 
XAI architectures that contribute to AI transparency:

• Deep Learning Architectures in XAI: DL models excel in providing 
dependable explanations in XAI systems, regardless of the scenario. 
The effectiveness of these explanations depends on the data qual-
ity, volume of data, and feature extraction methods used, as noted 
by [24]. Furthermore, the selection of hyperparameters plays a 
critical role in the various layers of DL architectures, with multi-
dimensional XAI classification providing a framework for under-
standing these complex systems [25].

• Model-Centric Approaches: Model-centric interpretation is a cor-
nerstone of AI transparency, ensuring that AI systems are devel-
oped with fairness, accountability, and clarity, as emphasized in 
[26]. By interpreting model outputs and accuracy, debugging is 
simplified, enabling the refinement of the AI system’s performance.

• Hybrid XAI Frameworks: Given that many decisions within XAI 
systems are too intricate to be explained by a single rationale, 
hybrid frameworks, which facilitate an interactive dialogue-based 
system, are essential. This approach allows for multiple explana-
tions, enhancing the social acceptance of the system’s decisions and 
ensuring comprehensive explanations for each action, as proposed 
in [27].

• Stochastic Models in XAI: Stochastic XAI models employ proba-
bilistic distributions to capture and convey uncertainties within the 
system. These models leverage random variables to represent po-
tential outcomes, providing a spectrum of possibilities rather than a 
singular prediction. This approach enriches the model’s forecasting 

capabilities and, when combined with explainable features, enables 
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XAI with Local Interpretable Model Agnostic Explainer

XAI with Partial Dependency Plots

Positive and Negative Impact towards the Target Prediction

Fig. 2. Flowchart for Solar Power Generation and Analysis.
users to understand and manage associated risks more effectively, 
as detailed in [28].

• Data Visualization Techniques: Data visualization plays a pivotal 
role in XAI by presenting interactive and intuitive representations 
of the decision-making process. As outlined in [29], it employs an 
iterative approach that enhances the perception, analysis, and com-
prehension of the inputs and outputs of XAI models. This technique 
elucidates the sequence of events triggering actions, aiding users in 
making informed decisions.

3.3.2. Validation and calibration using XAI frameworks

To foster trust and understanding in AI systems, several tools and 
frameworks have been developed to provide explanations for the deci-
sions made by these systems. Here we explore a selection of prominent 
6

XAI tools that contribute to AI transparency:
• AI Explainability 360 (AIX360) by IBM Research: The AIX360 
toolkit is an open-source suite developed by IBM Research, de-

signed to demystify AI decisions and build user trust. It prioritizes 
tasks based on risk factors and offers recommendations to enhance 
system adaptability for end-users. AIX360’s algorithms are crafted 
to help users grasp the underlying models and data-driving AI 
systems, thereby bolstering interpretability, transparency, and ac-

countability.

• Explain Like I’m 5 (ELI5): ELI5 is an explainability tool that distills 
complex models into simple, easily digestible explanations, akin to 
explaining a concept to a 5-year-old. As highlighted in [30], ELI5 
aids in debugging ML classifiers and offers clear explanations for 
their predictions. It allows users to inspect model parameters, un-
derstand feature importance, and elucidate individual predictions, 
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Fig. 3. Process flow for choosing XAI-based input variables for Solar Power prediction.
thereby enhancing the transparency and trustworthiness of AI sys-
tems.

• Local Interpretable Model-agnostic Explanations (LIME): LIME pro-
vides rapid and interpretable explanations for individual data sam-
ples and their predicted outcomes. According to [31], LIME oper-
ates under the assumption that a complex model behaves linearly 
at a local scale. It fits a simple model to approximate the global 
model’s behavior in a localized context, offering tailored explana-
tions for the complex model’s predictions in that specific scenario.

• SHapely Additive exPlanations (SHAP): The SHAP framework is 
a method that provides insights into the predictions made by ML 
models, ranging from basic models to more advanced DL and natu-
ral language processing (NLP) techniques. It uses a model-agnostic 
approach, meaning it can work with various models. SHAP relies 
on Shapley values from cooperative game theory to explain how 
different input features contribute to the model’s predictions as 
described in [31]. These values quantify the mean marginal con-
tribution of each feature across all possible combinations, ensuring 
equitable attribution of influence to the features based on their im-
pact on the model’s output.

• Skater: Skater is an open-source toolkit that explains the features 
learned by an XAI model by providing explanation for specific pre-
dictions (local explanations) and overall behavior of the model 
(global explanations). [32]. Skater utilizes a comprehensive frame-
7

work that enhances model interpretability. This framework enables 
users to readily understand and apply models in diverse situations. 
Skater leverages methods such as LIME and deep neural networks 
(DNNs) to provide insights into the characteristics of input data 
that influence the XAI model’s predictions.

• What-If Tool (WIT) by Google: Google’s WIT is a visual interface 
that makes it easier to study data and comprehend the results of 
XAI models. It can be smoothly incorporated into various plat-
forms and cloud services with minimal coding effort, as outlined 
in a study [33]. WIT is important for creating models, analyzing 
data, and checking models before and after training. It helps devel-
opers understand how models work and make better models.

These tools make AI systems easier to understand, giving people 
the ability to question, comprehend, and rely on decisions made by AI. 
Users can utilize these frameworks to understand the intricate processes 
that lead to AI predictions, ensuring the responsible and transparent use 
of AI systems.

4. Overview of the proposed solution

Integrating solar power and other renewable energy sources into 
the power grid is a complex task. The electrical grid is a highly intricate 
system, and adding renewable energy sources with their unpredictable 

nature makes it even harder to manage. The current grid infrastructure 
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has difficulty handling the variability of renewable energy, especially 
the fluctuations of solar power.

To address these challenges, it is crucial to create intelligent sys-
tems that can handle the integration of renewable energy sources into 
the grid and make them a significant part of electricity production. The 
proposed solution involves building a smart grid framework that incor-
porates cutting-edge predictive analytics, ML and XAI technologies.

This smart grid framework will be designed to:

1. Predict and Manage Variability: Utilize predictive models to fore-
cast changes in solar energy output and develop strategies to main-
tain power grid stability.

2. Optimize Energy Distribution: Implement algorithms to balance the 
supply of renewable energy with demand, minimizing waste.

3. Enhance Grid Resilience: Strengthen grid resilience against the un-
predictability of renewables through control systems that adapt to 
changing energy production levels.

4. Facilitate Renewable Integration: Streamline the integration pro-
cess of renewable energy sources to the grid, making it efficient 
and seamless.

5. Promote Transparency and Trust: Use XAI techniques to make the 
decision-making of intelligent systems more transparent. This will 
build trust between stakeholders and regulators by ensuring they 
understand how the systems work and make decisions.

The envisioned smart grid will not only enable the efficient integration 
of renewable energy but will also ensure that these clean energy sources 
become a major and reliable contributor to the global energy mix. The 
proposed solution represents a forward-thinking approach to modern-
izing the electric grid, aligning with the global imperative to transition 
towards sustainable and environmentally friendly energy systems.

4.1. Advantages of AI in solar power distribution

By integrating AI into solar energy distribution, we can massively 
improve how power grids operate. Sensors and grid devices gather enor-
mous amounts of data, which AI can analyze to find helpful information 
and make grid management better. Here are some key benefits of using 
AI in solar power distribution:

1. Intelligent Demand-Supply Balancing: AI-driven energy systems 
can monitor demand and supply in real-time. This allows energy 
companies to adjust electricity production to meet demand more 
precisely. By dynamically matching supply and demand, these sys-
tems minimize waste and prevent power outages.

2. Automated Power Management: Automated power management 
systems use AI to control high-energy devices like heaters and air 
conditioners. During times when power supply is low, these sys-
tems can automatically reduce the power used by these appliances. 
This helps in keeping the power grid stable and saves energy when 
demand is high.

3. Enhanced Energy Storage Utilization: The flow of energy supply 
can be strategically directed to the intelligent storage systems, 
leveraging AI to determine when to store surplus energy and re-
lease it back into the grid. This efficient management strengthens 
the resilience of the power grid and ensures a reliable energy sup-
ply.

4. Improved Renewable Integration: The deployment of smart sen-
sors, coupled with sophisticated AI models, enables prediction of 
electricity demand and weather patterns with greater accuracy. 
This advancement significantly improves the effectiveness of in-
tegrating renewable energy sources, such as solar energy, into the 
existing power grid.

5. Microgrid Management: Microgrids are important for managing 
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energy resources that are spread out. AI helps control these mi-
Ain Shams Engineering Journal 15 (2024) 102740

crogrids better. AI can solve problems with power quality, reduce 
congestion, and keep energy flowing smoothly.

6. Dynamic Grid Control: AI’s integration into grid management al-
lows for more advanced control, extending beyond just managing 
substations. With the ever-changing grid landscape, AI helps to op-
timize the system as new technologies and generation methods are 
added.

7. Safety, Efficiency, and Reliability: AI transcends its role in manag-
ing intermittent energy sources by optimizing the safety, efficiency, 
and reliability of the power grid. It enables businesses to analyze 
the consumption of data for understanding the usage patterns, iden-
tify inefficiencies and energy losses with continuous monitoring of 
the equipment health for preventive maintenance.

4.2. Advantages of XAI in solar power distribution

XAI plays a crucial role in making AI systems more reliable and 
trustworthy for solar power distribution. AI models are efficient and 
can make accurate predictions, but they often lack transparency, mak-
ing it difficult to understand how they make decisions. This is especially 
concerning in the energy sector, where reliable decision-making is es-
sential. XAI helps to overcome this issue by making AI systems more 
understandable and interpretable. By integrating XAI into solar power 
distribution, we can achieve the following benefits:

1. Enhanced Trust and Confidence: By making AI decision-making 
processes transparent, XAI builds trust among power system ex-
perts. These experts, with their deep knowledge and practical ex-
perience, can better understand how models make predictions. As 
a result, they are more likely to trust and use AI tools.

2. Facilitated Collaboration: XAI makes AI models easier to interpret, 
which fosters collaboration between data scientists and domain ex-
perts. This shared understanding enables them to work together to 
refine models and customize them for the unique challenges of the 
energy sector.

3. Improved Model Debugging and Validation: XAI provides insights 
into model behavior, making it easier to pinpoint and address er-
rors, biases, or inefficient elements. This results in more reliable 
and accurate predictions, which is vital for managing fluctuations 
in solar energy.

4. Risk Mitigation: In the energy sector, where outages can have se-
vere consequences, XAI equips operators with the knowledge to 
comprehend the rationale behind AI suggestions. This enables them 
to evaluate potential risks and make informed choices that ensures 
the uninterrupted operation of the grid.

5. Regulatory Compliance: Stricter transparency regulations for AI re-
quire solar power systems to be compliant. XAI ensures systems 
meet these standards, preventing legal and ethical concerns.

6. User Empowerment: XAI makes AI decision-making processes clear 
and accessible to all users. This understanding helps improve sys-
tem acceptance and alignment with goals and limits.

7. Adaptability and Future-proofing: XAI enables AI models to be ad-
justed to handle changing conditions and new technologies. This 
ensures that solar power systems remain comprehensible even as 
they evolve.

4.3. Disadvantages of XAI in solar power distribution

XAI brings advantages to solar power distribution, but it also has 
drawbacks that need to be addressed to fully utilize its benefits. Here 
are some of the main challenges related to deploying XAI in solar power 
distribution:

1. Performance-Transparency Trade-off: One of the most pronounced 

challenges in implementing XAI is balancing model performance 
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Fig. 4. Seaborn Visualization for Module Temperature vs Target.
with transparency. Complex models that offer high accuracy are 
often less interpretable, which poses a dilemma in power systems 
where both high performance and clear explanations are expected 
by the end-users.

2. Lack of Standardization: The field of XAI currently suffers from a 
lack of consensus on what constitutes explainability. Without uni-
versally accepted standards or definitions, different studies adopt 
varied approaches, such as emphasizing feature importance or re-
lying on visualization techniques. This inconsistency complicates 
the understanding and comparison of XAI methods.

3. Diverse User Requirements: The users of ML models and XAI in so-
lar power distribution are diverse, including consumers, power sys-
tem experts, energy policymakers, and AI researchers. Each group 
has different objectives and operates at varying levels of techni-
cal expertise, contributing to the challenge of establishing a clear 
standard for XAI.

4. Evaluating Explanation Quality: Another significant drawback is 
the absence of metrics to assess the quality of explanations pro-
vided by XAI approaches. While it would be beneficial to have a 
measure of “explainability,” such metrics should ideally provide a 
rating that reflects the accuracy and relevance of the explanations 
relative to the true underlying model dynamics.

5. Potential Overreliance on Explanations: Users may develop in-
creased trust in the explanations provided by XAI, which can be 
positive, but there is a risk that the models’ outputs may not al-
ways yield reliable advice. Over time, this overreliance could lead 
to complacency or misinterpretation of the AI’s capabilities, es-
pecially if the explanations are not fully aligned with the actual 
behavior of the system.

To fully utilize XAI in solar power distribution, challenges must be over-
come. Solutions include creating common guidelines, establishing reli-
able assessment methods, and improving XAI knowledge among users. 
By addressing these concerns, the energy industry can embrace XAI to 
improve model transparency while maintaining the high performance 
necessary for reliable and efficient solar power distribution.

4.4. Research gap

To address the challenges of XAI in solar power distribution, there 
are two main goals that need to be achieved. It is crucial to fulfill these 
goals to improve the understanding and usability of AI models in the 
energy industry. These goals include:

1. Traceability of Model Predictions: The first goal is to improve trans-
parency by establishing a clear connection between the input data 
and the model’s predictions. This includes exposing the model’s in-
ternal mechanisms, such as weights and biases, to understand how 
they affect the outputs. This technical aspect of interpretability in-
volves developing methods to break down complex models and 
reveal their inner workings. This transparency is crucial for validat-
ing predictions, improving the data, and enhancing the modeling 
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process.
2. Domain-Specific Knowledge Integration: The second objective of 
the framework is to include knowledge about the specific domain 
being addressed. This will involve identifying the key character-
istics and variables that most influence the model’s predictions. 
The aim is to generate a comprehensive body of evidence that 
can substantiate the model’s decisions, providing a cogent explana-
tion for its behavior. This involves translating the technical details 
of the model’s operation into a domain-relevant context that is 
accessible and meaningful to the stakeholders. By doing so, the 
explanations become not just technically accurate, but also contex-
tually relevant, facilitating better understanding and trust among 
users.

The research gap, therefore, lies in developing XAI systems that not 
only demystify the AI’s decision-making process but also contextualize 
these decisions within the specific domain of solar power distribution. 
This dual objective requires a concerted effort to integrate technical 
interpretability with domain expertise, ensuring that the explanations 
provided by XAI are both accurate and relevant to the energy sector. 
Filling this research gap will enable the deployment of AI models that 
are not only powerful and predictive but also transparent and trustwor-
thy, fostering confidence in their use for managing and optimizing solar 
energy systems.

5. Results

Declaration: All the images used in this paper are the original work 
not derived from any other source. The images used in this section are 
derived from the dataset using python google collab environment. These 
images are produced through the execution of our code for various re-
gression and XAI models.

The solar power system coupled with a power source is automated 
with AI and XAI. DC Power, Irradiation, Ambient Temperature, Mod-
ule Temperature, Date and Time, Source Key, Daily Yield and Total 
Yield are recorded in the database from the solar power source and 
storage. The levels of these parameters are periodically monitored and 
any deviation in the parameters is addressed then and there. The ex-
perimentation is based on the data acquired from the power sources as 
datasets. These datasets are cleaned, pre-processed, analyzed and split 
for training and testing separately. In the proposed work 70-30% train-
ing and testing data are split. Then the regression models are trained 
and tested with the dataset and the results are tabulated.

Experimentation of Solar distribution of AC power is evaluated 
through the regression analysis. Since the data are numeric, it is in-
feasible to apply the dataset for categorical classification. Hence the 
explainable models are developed based on the regression analysis, in 
the proposed implementation. In general, the regression analysis esti-
mates the correlation with the target attribute AC power, against the 
dependent attributes. Later these regression models are applied to esti-
mate the explainability and importance of features in the prediction of 
the target.

AI can provide data visualizations through boxes, histograms, and 

whisker plots using Sea-born Data Visualizer (SNS plot). From the 
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Table 2

Performance Comparison of Various Regression Models.

Model R2-Score Variance RMS Error

Linear Regression 0.99 0.99 0.007
Random Forest Regressor 0.9999 0.9999 0.0061
Gradient Boost Regressor 0.997 0.997 0.0062
Extra Gradient Boost Regressor 0.998 0.998 0.0062
dataset, the following histogram is produced to map the correla-
tion between the target AC power and module temperature shown in 
Fig. 4.

In this visualization, the exponential change of AC power concerning 
the module temperature is analyzed. Then there is no clarity about the 
contribution of the module temperature to the AC power. The regression 
models tend to define the relationship between them. In the proposed 
system we estimated the relationship between the AC power and other 
variables using the Linear Regression. This provided an accuracy level 
of around 99.9% with a variance score of 0.99. Rest of the models used 
in the proposed work are Random Forest, Gradient Boost, and Extra 
Gradient Boost Regressors. The results obtained from various models 
are represented in Table 2.

These models provide an accuracy of around 100% with a root-
mean-square error value of around 0.0061. The variations between 
these models are negligible, hence we prefer a Random Forest regres-
sor that can be explained by various explainability models such as LIME 
and SHAPELY values.

The first explainable model is the Partial Dependency Plot (PDP) 
which determines the numeric correlation between two features in a 
dataset and provides a visualization about how the variation of one 
feature is affecting the other. For example how the increase of ambient 
temperature can increase or decrease the output AC power.

The relationship between the total yield and the module temper-
ature is expressed in Fig. 5. This PDP plot uses the Random Forest 
regressor to provide an explanation. The figure shows the numerical 
increase of the total yield for the decrease of the module tempera-
ture. How the yield exponentially varies with the module temperature 
is quantitatively expressed in this plot.

The LIME model selects the features that are in a localized scope 
and explains how these features are interrelated. This also determines 
what features create a positive impact on the prediction and what fea-
ture has a negative impact on the prediction. This model can explain a 
specific instance in a dataset in such a way that, that particular instance 
is classified into a category or it provides a regression score based on 
the input feature weights and importance. The positive and negative 
feature estimation is shown in Fig. 6.

The DC power, total yield, and daily yield are the features that pro-
vide a positive impact to the regressor and if this value increases, then 
it increases the productivity of AC power. The ambient temperature and 
the module temperature are the features that provide a negative impact 
on the regressor since the increase of these features decreases the AC 
power productivity at the output. Thus the local explainer of the LIME 
provides the feature importance metric of the dependent variables and 
explains their impact on them for the prediction of the target ac power.

The last explainer discussed here is the extension of the local ex-
plainer of the LIME which is the notebook. This notebook explains as 
an independent record in the dataset, the threshold values for every 
feature, what are the weight importance of every feature, and if the 
threshold is breached, how much impact it creates on the regression 
process. The LIME notebook is presented in Fig. 7 & Fig. 8.

This notebook explainer provides the feature weights of every at-
tribute, explains whether they are positive or negative, and also how 
well they contribute to the prediction of the target variable. The feature 
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weights are represented in Table 3.
Table 3

Feature importance estimation using LIME 
Explainer.

Feature Weight Nature

DC Power 0.37 Positive
Data Yield 0.28 Positive
Total Yield 0.25 Positive
Irradiation 0.16 Positive
Ambient Temperature 0.07 Negative
Module Temperature 0.05 Negative

6. Discussion

6.1. Main findings of the proposed study

• This proposed work ensembles various regression models for the 
prediction of the target which is AC power and performs the ex-
plainability of the solar distribution. The study also employs AI 
and XAI techniques to interpret the importance and impact of dis-
tinctive features on the output. XAI derives the feature weights, 
signifies the importance of the input features in determining the 
output, and identifies the conditions that cause significant changes 
on the input side.

• The way an individual feature contributes to the output for lo-
cal perception can be analyzed by LIME and on the other hand 
for global perception, it can be analyzed by SHAPLEY values. The 
LIME explainer identifies the positive impact of features such as 
DC Power, Data Yield, Total Yield, and Irradiation, while Ambient 
Temperature and Module Temperature have a negative impact.

• The study also uses XAI techniques such as PDP, and LIME Note-
book to interpret the importance and impact of different features 
on the output.

• The observation that temperature has a negative impact on AC 
power production is also consistent with other works. The findings 
of the study highlight the significance of incorporating XAI meth-
ods to comprehend and interpret the connections among various 
input variables and the resulting output.

6.2. Implications

• The study demonstrates the effectiveness of Random Forest regres-
sors in predicting solar power output and the importance of XAI 
techniques in interpreting and understanding the relationships be-
tween different input features and output. The proposed work can 
provide valuable insights in enhancing the decision-making process 
and optimizing solar power generation and distribution systems.

• The identification of important features can enable better decision-
making and optimization of solar power generation and distribu-
tion systems. The use of XAI techniques can also improve trans-
parency and trust since it converts black box classification or re-
gression into the white box, therefore it explains how the classifi-
cation and regression are performed.

• Dominant and important features are identified and controlled with 
the support of XAI, that enhances the solar power generation.

• Life time of the solar power plant is improved with automated con-

trol and monitoring systems.
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Fig. 5. PDP plot explainer for the dependency estimation between Total Yield and Module Temperature.
Fig. 6. LIME Explainer with Positive and Negative Features.

6.3. Challenges and possible solutions of solar panel industry

The increasing popularity of solar panels has created a significant 
demand for their adoption. While many people acknowledge the envi-
ronmental benefits of solar panels, others are still hesitant to make the 
move owing to their perceived inefficiency. While panel efficiency has 
increased over time, it remains an issue that must be addressed.

Efficiency: Efficiency is a major challenge for the solar panel in-
dustry because most solar panels have an average efficiency rate of 
around 15-20 percent. While conventional silicon-based materials have 
traditionally been the primary component of solar panels, researchers 
have been investigating the usage of new materials such as perovskite. 
Perovskite has a crystal structure that enhances efficiency. Its high ab-
sorption capability surpasses that of traditional materials, enabling it to 
capture more sunlight. Additionally, multi-junction cells, consisting of 
multiple semiconductor layers with varying band gaps, offer potential 
improvements. By tailoring each layer to absorb specific wavelengths 
of the solar spectrum, these cells can convert a broader range of solar 
energy into electricity, outperforming conventional solar cell designs.

Cost: The high cost of solar panels remains an obstacle for the industry. 
Traditional energy sources, like coal and natural gas, are currently more 
affordable. One approach to address this cost concern is to enhance 
the manufacturing process. This could involve reducing the number of 
materials used and minimizing waste, leading to lower production ex-
penses. Additionally, employing innovative materials and technologies 
that boost efficiency can cut overall costs as fewer panels are required 
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to generate the same energy output.
Reliability: Given the challenges of harsh weather conditions like high 
winds and storms that solar panels face, their dependability is crucial. 
The industry needs to work towards enhancing their durability and 
safeguarding them from these conditions. Solutions like tempered glass 
and protective coatings can boost their resilience. Additionally, new in-
stallation methods, such as floating solar panels, can further improve 
reliability.

Regulation and Policy: To fully utilize solar energy’s potential, the 
industry and policymakers must collaborate to overcome challenges. 
Regulations and the complexity of installation can hinder people from 
adopting solar panels. Governments can stimulate adoption through tax 
breaks and other incentives. Establishing clear policies and streamlin-
ing regulations will make the installation process more accessible and 
encourage greater use of solar energy.

Scalability: The quantity of solar energy that can be produced and 
distributed has limits, making it difficult to meet the rising demand 
for clean and renewable energy. To foster the growth and widespread 
adoption of solar energy, and improving its scalability is essential. Fur-
thermore, to effectively incorporate solar energy into the power grid, 
the industry needs to focus on developing improved integration meth-
ods. This includes creating efficient systems for storing and distributing 
solar energy during periods of excess supply, as solar energy is not al-
ways available.

6.4. Advantages and disadvantages

6.4.1. Advantages

• Solar power generation is enhanced with Explainability and the 
end users are benefited.

• Uncertainty in the solar power production due to challenging 
weather conditions can be greatly supported by the XAI Explana-
tions.

• Error rates and interference can be easily monitored and controlled.
• Efficiency of the overall power generation is greatly improved.
• Variable Climate Conditions are also greatly predicted and sup-

ported By AI.

6.4.2. Disadvantages

• The cost of the management and interpretation is high for solar 
systems with XAI.

• Data privacy and confidentiality issues pertaining to solar data is 
inevitable.

• False alarms during the production sometimes yield unrealistic pre-
dictions with XAI.

• Data inconsistencies lead to lack of feature analysis, model evalua-

tion and explanation with XAI.
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Fig. 7. LIME notebook Explainer for an Instance with Positive and Negative correlation.
Fig. 8. LIME notebook Explainer for an Instance with Feature Weight impor-
tance.

7. Conclusions and future directions

Solar power production is a challenging task. Especially power 
drawn from solar radiation is influenced mainly by naturally con-
trolled attributes like wind pressure which acts against the gravity of 
panels, Irradiation, temperature etc. The next challenge is distribu-
tion. The power accumulated at grids and distribution of the power to 
both residential and industrial sectors requires meticulous processing 
and effort. The proposed work provides a solution for the distribu-
tion process which provides an alternative to human efforts through 
AI-based research analysis of the power distribution from the grid. The 
AI-supported model with a higher regression score of 0.9999, the ran-
dom forest is selected for explainability using applications like PDP and 
LIME. This work can be possibly applied to both domestic and industrial 
applications with the support of AI. The proposed work provides real-
time support with the explanation through LIME and SHAPELY in the 
local surrogacy, pertaining to every instance of the data in the dataset. 
The proposed work identifies the influential features for the solar power 
generation and handling these features to enhance and manage the so-
lar power production.

The proposed model provides the solution in the local surrogacy 
with LIME and PDP which provides detailed analysis for a local instance 
or a real-time data efficiently. To review power generation, a global sur-
rogate model such as SHAPELY can be used. The challenge in SHAPELY 
is that the variable data types and ranges of the data pertaining to the 
solar power generation could make the models non-interpretable for the 
global surrogacy. This could be addressed in the future work to enhance 
study on the global surrogates as well.

The Random Forest Regressor has an R2-score of 0.9999, showing 
that the model explains 99.99 percent of the variance in the data. This 
result depicts that the model has an excellent fit for the data and can ac-
curately predict the AC power output. The variance score is also 0.9999, 
which tells that the model is not over-fitting the data. The RMS error is 
0.0061, which is lower than that of the Linear Regression model.

The Gradient Boost Regressor has an R2-score of 0.997, which tells 
that the model can explain 99.7 percent of the variance in the data. 
The results show the better predictability of the output by the model. 
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The variance score is also 0.997, which suggests that the model is not 
over-fitting the data. The RMS error is 0.0062, which is slightly higher 
than that of the Random Forest Regressor.

The Extra Gradient Boost Regressor has an R2-score of 0.998, which 
shows that the model can explain 99.8 percent of the variance in the 
data. Results indicate higher rate of the accuracy for the target predic-
tion. The variance score is also 0.998, which suggests that the model is 
not over-fitting the data. The RMS error is 0.0062, which is the same 
as that of the Gradient Boost Regressor. Overall, the results suggest that 
the Random Forest Regressor is the best suited model for the explana-
tion in-terms of the efficiency and performance. Further works can be 
focused on the following applications but are not limited to,

• Application of the XAI for the solar radiation explanation
• Application of the XAI for the solar panel error parameter evalua-

tion
• Application of the XAI for the battery load and discharge control 

process
• Application of the XAI for error estimation on the smart grid and 

batteries

The purpose of the proposed work is to indicate the influence of the 
attributes in the estimation of the target AC power in smart grid-based 
solar distribution systems.
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