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ABSTRACT
This study focuses on addressing computational limits in smartphones by proposing an
efficient authentication model that enables implicit authentication without requiring
additional hardware and incurring less computational cost. The research explores
various wrapper feature selection strategies and classifiers to enhance authentication
accuracy while considering smartphone limitations such as hardware constraints,
battery life, and memory size. However, the available dataset is small; thus, it cannot
support a general conclusion. In this article, a novel implicit authentication model for
smartphone users is proposed to address the one-against-all classification problem in
smartphone authentication. This model depends on the integration of the conditional
tabular generative adversarial network (CTGAN) to generate synthetic data to address
the imbalanced dataset and a new proposed feature selection technique based on the
WhaleOptimizationAlgorithm (WOA). Themodelwas evaluated using a public dataset
(RHU touch mobile keystroke dataset), and the results showed that the WOA with
the random forest (RF) classifier achieved the best reduction rate compared to the
Harris Hawks Optimization (HHO) algorithm. Additionally, its classification accuracy
was found to be the best in mobile user authentication from their touch behavior
data. WOA-RF achieved an average accuracy of 99.62 ± 0.40% with a reduction
rate averaging 87.85% across ten users, demonstrating its effectiveness in smartphone
authentication.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Mobile and Ubiquitous
Computing, Neural Networks
Keywords Smartphone authentication, Generative adversarial network (GAN),
Whale optimization algorithm (WOA), Random forest, Feature selection

INTRODUCTION
Smartphones have become a fundamental aspect of individuals’ personal and professional
lives (Van Deursen et al., 2015). Mobile phones are no longer limited to two-way
conversations. They serve as digital cameras, navigation tools, web browsers, personalized
assistants, and host various useful applications, includingmobile banking and e-commerce.
Consequently, numerous applications, such as social networks, online gambling, emails,
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and electronic payments, are at risk. For instance, the European Union implemented the
online Payment Services Directive (PSD2—DSP2) as of September 14, 2019. The directive
aims to enhance security while providing customers with practical options. This inclination
is pervasive across all digital services (Gernot & Rosenberger, 2024).

The security options provided by the hardware and operating systems of smartphone
devices play a crucial role in users’ choices for securing them. Common security measures
include PINs, passwords, fingerprints, and facial recognition. However, these static
authentication methods are susceptible to various attacks such as side-channel, dictionary,
guessing, and spoofing attacks. Notably, the device remains vulnerable to unauthorized
access when unlocked, posing a potential risk to all stored data (Cariello et al., 2024). To
address this vulnerability, continuous authentication is recommended.

Research conducted in recent years has explored the feasibility of continuous identity
authentication. Continuous identity authentication verifies users’ identities throughout
the session activity, actively identifying abnormal or harmful behavior. This approach
complements traditional static authentication methods, enhancing overall system security.
Behavioral aspects, particularly keystroke dynamics, serve as a means of continuous
identity authentication. Keystroke dynamics analyze patterns such as time and rhythm,
uniquely identifying individual users based on their keyboard interaction (Yang et al.,
2023). Importantly, the implementation of keystroke dynamics verification systems is cost-
effective as it requires no additional hardware (Stragapede et al., 2023). Several studies (Yang
et al., 2023; El-Soud et al., 2021; Almazroi & Eltoukhy, 2023; Progonov, Prokhorchuk &
Oliynyk, 2020) have proposed behavioral biometrics-based authentication for continuous
smartphone users.

Feature selection is employed to discern significant features from inconsequential
features within a predetermined feature collection (Hamed & Mohamed, 2023; Hamed
& Nassar, 2021; Ablel-Rheem et al., 2020). Feature selection aims to minimize the
size of high-dimensional classification issues while improving prediction accuracy in
classification problems (Sağbaş & Ballı, 2024). In practical scenarios, data representation
often encompasses numerous aspects, some of which may be non-essential. This leads to a
scenario in which certain characteristics assume the roles of others. Conversely, the crucial
characteristics have a significant impact on the outcome, providing valuable information
that might be diminished if any element is eliminated (Almomani, 2020). Determining the
essential set of characteristics is a challenging and computationally expensive undertaking.
Metaheuristics have emerged as a powerful and reliable approach for handling a wide
range of optimization issues in recent years (Tahoun et al., 2020). Metaheuristics have
demonstrated superior performance compared to existing algorithms due to their ability
to bypass the need for analyzing the entire search space.

Mobile continuous authentication models typically employ feature selection to
enhance the accuracy of machine learning-based biometric authentication for smartphone
users (Hamed & Nassar, 2021). The literature also emphasizes the use of bioinspired feature
extraction algorithms such as Grey Wolf Optimization (GWO) (Almazroi & Eltoukhy,
2023), Particle Swarm Optimization (PSO) (Rostami et al., 2020), Whale Optimization
Algorithm (WOA) (Mirjalili & Lewis, 2016), Harris Hawks Optimization (HHO)
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(Heidari et al., 2019), and Bayesian Optimization Algorithm (BOA) (Yang, Liu & Wen,
2024). However, to the authors’ knowledge, bioinspired feature selection for the one-
against-all classification problem in smartphone authentication has not been addressed.

This study aims to address the computational limits of smartphones and proposes an
efficient authenticationmechanism that offers implicit authentication for smartphone users
without requiring additional hardware. To achieve this goal, we explored various wrapper
feature selection strategies and classifiers that could enhance authentication accuracy while
taking into consideration the computational limitations of smartphones, including limited
hardware, battery life, and memory size. The investigation utilized a public dataset on user
behavior (El-Abed, Dafer & El Khayat, 2014), specifically focusing on keystrokes of touch
screens. The following is a list of the principal contributions of this work:

• Proposing a novel implicit authentication model for smartphone users, addressing the
one-against-all classification problem in smartphone authentication. This was achieved
using the CTGAN algorithm and a newly proposed WOA-based feature selection
technique. To the best of the author’s knowledge, this approach has not been previously
employed within the research field of mobile authentication.
• Thoroughly evaluating the efficacy of two wrapper feature selection strategies (WOA
and HHO) on the implicit authentication method’s performance. This was done using
different types of performance metrics to ensure the effectiveness of this model. These
metrics include accuracy, precision, recall, F-measure, and Kappa. Using these metrics,
it was shown that our proposed model was comprehensively evaluated from different
aspects to prove its effectiveness and quality.
• Using a conditional tabular generative adversarial network (CTGAN) to generate
synthetic data based on actual data. To overcome the imbalance problem between
selected users’ data and other users’ data and to augment the small size of the original
data. The quality of the CTGAN-generated data was evaluated using several metrics:
Quality Score, Column Shapes, and Column Pair Trends of the generated data.

RELATED WORK
Over the past several decades, smartphone authentication has predominantly relied on
a knowledge-based authentication mechanism, wherein users are required to possess
knowledge (e.g., password) about a certain entity. Nevertheless, scholarly investigations
have indicated that the implementation of this approach on mobile devices presents
several barriers, including inadequate security measures and a deficiency in user-
friendliness (Stylios et al., 2021). Numerous research has been undertaken in recent years
to address these barriers. This section will provide an overview of the relevant literature on
smartphone authentication. The focus will be placed on the use of bioinspired algorithms
in the selection of optimal characteristics for mobile authentication techniques, and
the subsequent enhancements in time complexity and authentication accuracy achieved
through their implementation.
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Behavioral biometrics-based authentication for smartphone users
Stylios et al. (2016) conducted a study on continuous authentication and behavioral
biometrics systems specifically designed for mobile devices. They provide a classification
of behavioral biometric approaches and offer a comprehensive explanation of the
authentication process for mobile devices. The literature was critically discussed, and
a summary of the lessons learned and research difficulties was presented. Using different
machine learning algorithms, Nader et al. (2015) proposed a fusion authentication
technique that incorporates two forms of authentication, namely implicit authentication
and continuous authentication, in response to the growing tendency to safeguard
smartphones through user authentication. For the experiment, a range of features were
extracted from the interactions that participants had with Android cellphones. The findings
indicated that PSO-Radial Basis Function Network (RBFN) offers superior performance in
the context of user authentication. PSO-RBFN yields an average error rate (ER) of 1.9%.

In their study, the authors of El-Soud et al. (2021) introduced a novel approach to
mobile phone authentication, utilising an implicit authentication method. They have also
developed themethodology in such away that it does not require any further expenditure on
supplementary hardware resources. The researchers reached the conclusion that employing
a filter-based strategy represents the most effective approach for extracting features in an
inferred authentication system.

The work proposed in Tharwat et al. (2019) utilizes mobile-based touch mobile phone
keyboard dynamics to address the challenge of personal identity. The suggested method
comprises two primary stages: feature selection and categorization. The genetic algorithm
(GA) is employed to select the most significant features. Additionally, the Bagging classifier
uses the chosen features to identify individuals by comparing the features of the unknown
individual with the labeled features. The final decision is made by fusing the outputs of
each Bagging classifier. The work proposed in Almazroi & Eltoukhy (2023) automatically
authenticates users based on their touch behavior by combining a random forest (RF)
classifier with the GWO, which is used as a feature selection strategy. The initial step
involves selecting the most important features, and the random forest classifier is then
utilized to determine which user is using the smartphone. Their method was evaluated
using a publicly accessible benchmark dataset from RHU (El-Abed, Dafer & El Khayat,
2014), resulting in an accuracy of 97.89%.

In Yang et al. (2023), the authors presented dual attention networks with pre-trained
models for content and keystrokes for continuous authentication. The model considers
the user’s entry of ‘‘text’’ while pressing keys as a valuable asset, in addition to the more
traditional aspects of keystroke dynamics. Specifically, it captures textual aspects using
the popular pre-trained model named Robustly Optimized BERT Pretraining (RoBERTa).
Next, it runs both traditional and textual features through their suggested dual attention
networks. These features are combined by their networks to obtain final representations.
The model is tested using two datasets named Clarkson II (Murphy et al., 2017) and
Buffalo (Sun, Ceker & Upadhyaya, 2016).

The work proposed in Al-Saraireh & AlJa’afreh (2023) integrates free text-based
keystroke dynamics (KD) or swipe dynamics (SD) to propose an enhanced smartphone
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Table 1 A summary of the related work.

Study # users Feature selection - classifier Dataset Performance

Nader et al. (2015) 20 PSO - RBFN Original Dataset Avg. ER= 1.9%
El-Soud et al. (2021) 51 Rank - RF RHU El-Abed, Dafer & El Khayat (2014) Acc.= 97.80%
Tharwat et al. (2019) 51 GA - Bagging RHU El-Abed, Dafer & El Khayat (2014) Acc.= 83.8%
Almazroi & Eltoukhy (2023) 51 GWO - RF RHU El-Abed, Dafer & El Khayat (2014) Acc.= 97.89%
Yang et al. (2023) 103 RoBERTa - CKDAN Clarkson IIMurphy et al. (2017) EER= 6.47%

148 Buffalo Sun, Ceker & Upadhyaya (2016) EER= 3.49%
Al-Saraireh & AlJa’afreh (2023) 56 CBA and IR - RF BB-MAS Belman et al. (2019) Acc.= 99.98%
Tse & Hung (2022) 31 RNN / late fusion Private Dataset Acc.= 95.29%
AbdelRaouf et al. (2023) 51 CNN - CatBoost CMU Killourhy & Maxion (2009) Acc.= 99.95%

continuous authentication model. The KD and SD raw data are initially obtained by
the model from the BB-MAS dataset (Belman et al., 2019), respectively. Appropriate
pre-processing and feature extraction techniques are then applied. To obtain the optimal
subset feature form KD raw data, the most effective features are chosen utilizing the
correlation-based analysis (CBA) feature selection approach. Conversely, the identical
procedures are applied for the SD raw data, with the exception of the feature selection
method, which employs the importance ranking (IR) feature selection approach as it yields
the best outcomes. To test the feature-level fusion stage, the selected features from the KD
and SD are concatenated and applied to the RF classifier. The model’s performance showed
an accuracy of 99.98% and the lowest equal error rate (EER) rate of 0.02% in multi-class
classification.

Tse & Hung (2022) established and incorporated a trajectory model for keystroke
dynamics into the behavioral biometric model, in addition to using spatial, temporal,
and swiping features. The trajectory model utilized more information connected to the
keystroke behavioral pattern than othermodels, making it harder to pretend to be a genuine
user. A weighted product rule, in conjunction with a late fusion method, was used to merge
all four feature categories. The final classification outcome was obtained by combining the
classifier’s outputs for each feature. This was achieved by independently feeding each of the
four feature models into different recurrent neural networks (RNNs). The results of the
experiment showed that biometric models that employ the trajectory model have higher
security because they incorporate more elements that describe user behavior.

AbdelRaouf et al. (2023) developed an optimized convolutional neural network that
utilizes quantile transformation and data synthesis to extract improved features and
enhance accuracy. They proposed an approach for the training and testing stages that
also employs ensemble learning techniques. Additionally, the model was evaluated using a
publicly accessible benchmark dataset from Carnegie Mellon University (CMU) (Killourhy
& Maxion, 2009), resulting in an average accuracy of 99.95%, an EER of 0.65%, and an
area under the curve(AUC) of 99.99%. Table 1 summarizes the related work.
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Bio-inspired-based methods for feature selection
Various bioinspired algorithms have been utilized for solving the feature selection problem
in many applications. The authors in reference (Hraiba, Touil & Mousrij, 2020) introduced
an enhanced version of the binary grey wolf optimizer (IGWO) as ameans of improving the
feature selection technique. The outcomes of the study indicate that the IGWO algorithm
possesses the ability to conduct global searches effectively and efficiently. Consequently,
it is deemed appropriate for the purpose of conducting reliability analysis in the field of
engineering. In their work, Chantar et al. (2020) introduced an improved version of the
binary grey wolf optimizer which was then used to test its impact on feature selection
using various machine learning approaches, including decision trees (DT), K-nearest
neighbour (KNN), naive Bayes (NB), and support vector machine (SVM) classifiers. The
findings demonstrate a notable improvement in feature selection when employing the
improved grey wolf optimizer in conjunction with the SVM classifier. In their study,
Tahoun et al. (2020) employed the grey wolf optimizer as feature selection technique for
features extracted fromwavelet and curvelet sub-bands in order to facilitate mammography
classification. The findings indicate that the utilization of binary grey wolf optimization
effectively extracts the most optimal characteristics.

Moradi & Gholampour (2016) proposed a novel approach for addressing the feature
selection problem by integrating filter and wrapper techniques. Their method utilizes a
PSO algorithm to achieve efficient feature selection aiming to locate the optimal subset of
features that are both non-redundant and statistically significant. The strategy employed in
their study is based on using PSO to address numerical and medicinal applications using a
single-objective approach. Furthermore, Rostami et al. (2020) integrated graph theory and
PSO as a means of solving the feature selection problem inside medical applications, with
the aim of enhancing diagnostic accuracy. The researchers employed the node centrality
criterion to provide a novel approach for initializing the particles of the PSO algorithm.
By employing a multi-objective fitness function, the researchers successfully partitioned
the characteristics into two distinct sets. The first set comprises features that exhibit the
least similarity to each other, while the second set consists of traits that are most pertinent
to the target class. By utilizing these two distinct categories of features, it is possible
to effectively diagnose an illness. The authors of Al-Tashi et al. (2019) suggest using a
combination of two bioinspired optimization techniques, binary grey wolf and particle
swarm optimization, for feature selection. The results of the experiments suggest that the
combined algorithm performed better than the alternative strategies, specifically the binary
grey wolf optimization, the binary particle swarm optimization, and the binary genetic
algorithm.

In Sharawi, Zawbaa & Emary (2017), the researchers usedWOA algorithm for wrapper-
based feature selection approach. Using the classification accuracy as a single objective
function, the proposed approach was able to determine the optimal feature subset for
classification accuracy. This strategy was utilized to keep as few features as possible from
the data set while maintaining the highest level of accuracy feasible. In Nematzadeh et al.
(2019), the authors proposed wrapper-based feature selection method using the WOA
algorithm and the simulated annealing technique is created for the purpose of feature
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selection and optimization. Incorporating the simulated annealing helped in improving
the exploitation in the feature selection process by looking for the most promising regions
identified by the WOA algorithm. On high-dimensional medical datasets, Nematzadeh
et al. (2019) developed a frequency-based filter feature selection approach based on the
whale algorithm. The WOA is used in conjunction with a filter criterion to eliminate
the features that aren’t significant in this procedure. After then, the reminder features
are prioritized based on another filtering process, called mutual congestion, which is
used to rank the features. In Awad, Ali & Gaber (2020), butterfly optimization algorithm
(BOA) was combined with chaotic maps to build a new feature selection technique
(CBOA) to enhance diversity and mitigate the risk of being trapped in local minima. The
performance evaluation of the proposed CBOA was carried out, pitting CBOA against six
other meta-heuristic algorithms. The findings indicate that the utilization of chaotic maps
in the standard BOA can enhance its performance, resulting in increased accuracy by a
significant margin.

From the given literature above, a few observations can be noticed. A range of mobile
device authentication approaches have been suggested, with a notable focus on the use of
machine learning algorithms and biometric characteristics for the purpose of smartphone
users’ authentication. In addition, the literature has emphasised the significance of
employing bioinspired algorithms (GWO, PSO,WOA, and BOA) for the purpose of feature
selection. However, there was no work addressing the feature selection using bioinspired
techniques for the one-against-all classification problem in the smartphone authentication.
To the best of the author’s knowledge, this approach has not been previously employed
within the research field of mobile authentication.

ONE-AGAINST-ALL AUTHENTICATION (ONE3A) MODEL
The proposed model, ONE3A, given in Algorithm 1, aims to determine whether a
user is legitimate or illegitimate for smartphones. It offers an effective authentication
approach, providing implicit authentication for smartphone userswhile avoiding additional
costs associated with specialized hardware and addressing the computational limits of
smartphones. As depicted in Fig. 1, it consists of four steps: 1-data pre-processing, 2- data
splitting, generation, and random selection of illegitimate users, 3- feature selection, and
4- finally, a classification step that is used to determine whether the user is legitimate or
illegitimate. These steps are discussed and explained in detail in the following subsections.

Data pre-processing
Data pre-processing is the initial stage of machine learning, during which the data is
encoded to put it in a format that allows the computer to analyze or understand it rapidly.
The most significant factor influencing classfication algorithm’s ability to perform well
in generalization is data pre-processing. Pre-processing is crucial to model construction;
estimates suggest that it can account for 50% to 80% of the whole classification process.
Enhancing the quality of the data is also necessary for increased performance (Maharana,
Mondal & Nemade, 2022). Therefore, datasets must undergo essential data pre-processing
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Data Preprocessing

Divide dataset into
two categories

Specific user data,
Ui

Other user data
∀U j, j ̸= i, and 1 ≤ j ≤ N

Generate M Ui
instance using CTGAN

Select randomly
L instance

Data splitting training
and testing (80 : 20)

Features selection

Classification

legitimate or illegitimate
user

Dataset

Figure 1. The architecture of the proposed Model.

2/2

Figure 1 The architecture of the proposed (ONE3A) model.
Full-size DOI: 10.7717/peerjcs.2001/fig-1
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Algorithm 1 One-against-all authentication algorithms (ONE3A)
Input: U // Authentication dataset
Output: legitimate or illegitimate user
1: load dataset (U )
2: Data pre-processing (e.g., remove null values)
3: Split data into two classes legitimate user (LU) and illegitimate users (IU)
4: Ulu = GenerateM instance for (LU) using CTGAN
5: Uiu = Select randomly L instance from (IU) data
6: Merge the data of Ulu and Uiu in to one dataset U
7: Split data into train (Utrain) and test (Utest )
8: Perform the feature selection using optimization algorithms
9: Build the classification model using selected features
10: Validate and test the generated model

steps, including the removal of null values. In optimization and machine learning models,
the presence of null values can produce issues, such as diminished prediction accuracy or
model failure (Hosea, 2021).

Data splitting, generation and selection
Data splitting is a crucial step in the proposed algorithm, involving the division of the
dataset into two classes: legitimate or illegitimate user. Let N represent the total number of
users, where N equals 51. The dataset is then divided into two classes, denoted as C1 and
C2. The first class, denoted as C1, comprises a specific user data represented by Ui, where
the specific user is U1 with a sample count (l1) of 18. The second class, C2, includes data
from other users, denoted as Uj , where j ranges from 2 to 51. The sample count for this
class (l2) is calculated as 954−18= 936, where 936 is the number of samples for all users.
It is evident that an imbalance exists between l1 and l2. Consequently, data generation is
applied to C1, while data selection is applied to C2 as follow:{

Ui, 1≤ i≤N
∀Uj, j 6= i and 1≤ j ≤N .

(1)

Generative adversarial network (GAN) with the capability to generate synthetic data
based on actual data. One of the advantages of using GAN is its ability to create synthetic
data while preserving the correlations between various columns in the real data. Another
benefit is its quick data generation, as the time complexity is not dependent on the number
of rows in the real data. Additionally, its simplicity of operation, with the ability to be
turned on and off with a single input, adds to its ease of use (Xu et al., 2019).

In this study, CTGAN is utilized for generating C1 data 20 times. Consequently, the
number of samples in C1 (L1) becomes 21 times the original samples. For example, if
the number of samples for U1 (L1) is 18, the total number of generated data samples is
18×20= 360, plus the number of actual data samples (18), resulting in a total of 378
samples.

M (generated data)= 20∗ l1 (2)
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Table 2 Data splitting, generation and selection example.

Class 1 (C1) Class 2 (C2) Used Dataset

Data generation Randomly selection Total sample

Ui l1 M L L 2*L

1 18 360 378 378 756
6 21 420 441 441 882
8 15 300 315 315 630
9 20 400 420 420 840
11 20 400 420 420 840
12 16 320 336 336 672
14 22 440 462 462 924
26 19 380 399 399 798
46 17 340 357 357 714
49 18 360 378 378 756

L=M (generated data)+ l1(actual data) (3)

L= 21∗ l1. (4)

For fairness, we randomly select L samples from class two (C2) samples (l2). Therefore,
the total length for the used dataset is equal to 2×L. Table 2 shows examples for data
from 10 users. It is important to note that each row in Table 2 represents an independent
experiment from the other rows. We apply the following steps (e.g., feature selection,
classification, and performance evaluation) to each row separately.

Feature selection
In the data classification process, feature selection plays a crucial role. Given that datasets
often include a multitude of features, not all of them are necessarily significant. Failure to
address this can adversely affect the classification procedure. Therefore, feature selection
becomes a vital stage in establishing an effective system, as emphasized in prior research
(El-Soud et al., 2021). The objective of this research is to devise a reliable smartphone user
authentication method. Unnecessary features in this authentication method can impact its
accuracy rate and/or processing time, underscoring the importance of thoughtful feature
selection.

One of the most intriguing metaheuristic optimization algorithms for feature selection
is swarm intelligence (SI), with its conceptual roots dating back to 1993 (Beni & Wang,
1993). SI algorithms draw inspiration from the collective behavior observed in natural
flocks, colonies, and herds. Noteworthy advantages of SI algorithms include their ability to
track information about the search space during iteration, unlike evolutionary algorithms
(EAs), which may discard knowledge from previous generations. SI algorithms often retain
the most recent optimal solution in memory, and they typically require minor adjustments
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to fewer variables. Moreover, SI algorithms are known for their ease of implementation
(Mirjalili, Mirjalili & Lewis, 2014). In this study, we leverage two prominent SI algorithms,
WOA and HHO, both recognized for their effectiveness in feature selection.

TheWOA, developed byMirjalili & Lewis (2016), draws inspiration from the bubble-net
feeding behavior observed in humpback whales during foraging. Humpback whales employ
a bubble net to catch prey, allowing them to hunt near the surface. In this process, the
whales swim in a ‘6’-shaped manner, creating a net to trap their prey. The WOA mimics
this behavior through two key phases: the exploitation phase, characterized by a spiral
bubble-net attack tactic to encircle a target, and the exploration phase, involving the search
for prey at random (Mafarja & Mirjalili, 2018).

The HHO algorithm, introduced by Heidari et al. (2019), is inspired by the cooperative
hunting tactics observed in Harris hawks. Known for their exceptional intelligence among
avian species, Harris hawks demonstrate sophisticated teamwork in hunting. The HHO
algorithm incorporates both local and global searches, enhancing its ability to effectively
balance exploitation and exploration search methods (Shehab et al., 2022).

Generally, WOA is relatively simple to implement and effective in global search due
to its focus on mimicking the efficient hunting behavior of whales. On the other hand,
HHO is more complex due to its incorporation of teamwork-inspired search methods. For
solving the mobile authentication problem, WOA might be suitable due to its simplicity
and effectiveness in global search. However, HHO could also be considered for its ability to
balance exploration and exploitation, which could potentially lead to better optimization
and adaptation to varying authentication scenarios. The aim of applying WOA and HHO
is to determine which one is more efficient in solving the current problem of mobile
authentication.

The primary objectives of the employed metaheuristic optimization algorithms (HHO
and WOA) are to maximize the rate of feature reduction, denoted as f(fr) Eq. (5), and
minimize the classification error f(ce) Eq. (6). However, f(ce) holds greater significance
than f(fr). The success of WOA and HHO is contingent on not only decreasing the number
of chosen features but also ensuring that the error rate diminishes. To consolidate these
objectives into a single metric, referred to as fitness in Eq. (7), f(ce) is assigned the highest
weight. In each generation (gen) of HHO and WOA, the fitness value is evaluated. If the
fitness value is minimized, the feature list is updated. Conversely, if the fitness value does
not decrease, the feature list remains unchanged and is passed on to the next generation.

f (fr)=NSF/NF (5)

where, NSF is number of selected features and NS is number of all features.

f (ce)= 1−Acc, (6)

where, Acc. is a classification accuracy rate as defined in Eq. (8).

fitness=w ∗ f (ce)+ (1−w)∗ f (fr) (7)

where w represents a weight, and it’s equal 0.99.
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Classification
The classification task in this step is a binary classification, where the first class consists
of legitimate user, and the second class comprises illegitimate users. While various ML
models can predict authentication, our focus is on threemodels that demonstrated superior
performance KNN, random forest (RF) and support vector machine (SVM). The aim of
using three classifiers is to test the performance of three different strategies. The KNN
classifier falls under instance-based learning methods, making predictions based on the
closest instances in the training data. The random forest approach integrates multiple
classifiers through ensemble learning to enhance model performance, while SVM’s strategy
emphasizes maximizing the margin between classes to improve generalization to unseen
data, thereby achieving robust classification performance.

KNN is a popular non-parametric technique used for regression or classification. It
leverages inter-sample similarity observed in the training set to intuitively classify unlabeled
samples. The key parameter in KNN is the number of neighbors considered. When this
value is small, the model’s decision boundary becomes complex and prone to overfitting.
Conversely, a high number of neighbors results in a simpler decision boundary, which
may lead to underfitting. Consequently, selecting an appropriate value for this parameter
is crucial for optimal model performance (Wan et al., 2018).

RF is a widely used classification and regressionmethod known for its significant success.
It operates by aggregating predictions from multiple randomized decision trees, averaging
their outputs. RF is versatile and well-suited for large-scale problems. It provides variable
importance measures and adapts effectively to diverse learning tasks (Biau & Scornet,
2016).

SVM is a well-known supervised machine learning method. It operates by first non-
linearly transforming data into higher-dimensional spaces. In the second phase, SVM
establishes a linear optimum hyperplane or decision boundary to separate points of
different classes (Aggarwal, 2018). The objective in SVM is to maximize the margin
between the hyperplane and the closest training data points, ensuring effective separation.

EXPERIMENTAL WORK
In this section, we developed two main experiments and used a publicly available dataset
(more details below) in order to assess theONE3A. The first experiment aims tomeasure the
performance of generated data by CTGAN. While the second experiment aims to measure
the performance of ONE3A. Widely used performance metrics (more details below) for
user authenticationmethods are used to quantify the outcomes of two experiments.Mainly,
three classifiers (SVM, KNN, and RF) and two optimization algorithms (HHO and WOA)
are employed. Each algorithm undergoes five iterations, and the average and standard
deviation are recorded for convergence speed, high reduction ability, and performance
metrics such as accuracy, recall, precision, and F1 Score, etc.

The optimization techniques are implemented using Jx-WFST (Wrapper Feature
Selection Toolbox) (Too, 2021). The experiments were conducted on an 11th Gen Intel(R)
Core(TM) i5-1135G7 @ 2.40 GHz 2.42 GHz Ram 8.00 GB. It’s important to note that the
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Table 3 Algorithms parameters.

HHO No
WOA b= 1# constant
KNN k= 5
pop 10
gen 100
iteration 5

number of generations gen is set to 100, and the population pop equals 10 for all users.
Table 3 summarizes the parameter settings used for each algorithm.

Experimental setup
Datset
The dataset employed in this study is the RHU touch mobile keystroke dataset, publicly
released in El-Abed, Dafer & El Khayat (2014). This dataset was derived from51 individuals,
each tasked with entering the password ‘‘rhu.university’’ 15 times across three distinct
sessions. These sessions were conducted with an average interval of 5 days between each.
Notably, data were independently collected for each session, resulting in a dataset typically
comprising 955 samples. The participants encompassed individuals of various ages and
included both males and females.

For each user, four primary features were extracted from the dataset: PR (time between
key pressure and key release), PP (time between two key pressures), RP (time between key
release and key pressure), and RR (time between two key releases). Figure 2 explains the
timing features (e.g., PR, PP, RP, and RR) for dynamics keystroke. Specifically, RR, RP,
and PP each have 13 subfeatures, while PR has 14 subfeatures. Consequently, each user (or
class) is characterized by a total of 53 features.

Performance evaluation metrics
The performance evaluation includes assessing the effectiveness of the proposed model
through three different learning strategies,instance-based, ensemble-based and hyperplane.
KNN, RF and SVM were selected as examples of each learning strategy. For each
classification experiment, a confusion matrix is constructed, detailing the number of
cases classified (e.g., legitimate or illegitimate user). Assuming the existence of true
positives TP , false positives FP , true negatives TN and false negatives FN , the correctness
of each combination is carefully evaluated. Additionally, various performance metrics are
computed, encompassing sensitivity, precision, specificity, accuracy, F1-score, and the
Kappa index. These metrics provide a comprehensive analysis of the model’s capabilities,
enabling researchers to compare multiple models and select the most suitable one for their
specific requirements. A detailed breakdown of the model’s performance for each case
allows researchers to assess its applicability and draw well-informed conclusions about
their data.
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Figure 2 Dynamics keystroke illustration: press-to-release (PR), press-to-press(PP), release-to-release
(RR), and release-to-press (RP) (Adesina & Oyebola, 2021).

Full-size DOI: 10.7717/peerjcs.2001/fig-2

The accuracy (Acc) is represented by the following equation, which denotes the ratio of
the number of correct classifications to all investigated cases.

Acc=
TP+TN

TP+TN +FP+FN
. (8)

The number of successfully classified positive cases was introduced by the sensitivity
(recall), which is represented by the following equation.

Sensitivity=
TP

TP+FN
. (9)

The precision is represented by the number of correctly classified cases out of all positive
cases classified as given below:

Precision=
TP

TP+FP
. (10)

The number of correctly identified negative cases was introduced by the specificity, which
can be stated in the following equation.

Specificity=
TN

TN +FP
. (11)

The harmonic mean of recall and precision was introduced by the F1-score and is
represented by the following equation.

F1-score=
2 * Precision * Recall
Precision + Recall

. (12)

The following formula represents the Kappa index.

Kappa=
2× (TP×TN −FN ×FP)

(TP+FP)× (FP+TN )+ (TP+FN )× (FN +TN )
. (13)
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Table 4 CTGAN performance.

User N M Quality score Column shapes Column pair trends

1 18 360 89.96% 94.29% 85.63%
6 21 420 91.84% 94.47% 89.22%
8 15 300 90.92% 93.84% 87.99%
9 20 400 89.70% 94.12% 85.27%
11 20 400 91.75% 94.76% 88.75%
12 16 320 88.37% 94.14% 82.59%
14 22 440 90.65% 94.55% 86.75%
26 19 380 90.27% 94.34% 86.20%
46 17 340 90.26% 94.03% 86.49%
49 18 360 90.95% 94.72% 87.18%

Experiment 1: data generation using CTGAN
In this experiment, CTGAN is employed to generate data for ten users. As indicated in
Table 4, each user’s data is generated 20 times the number of original records. For instance,
if the original number of records for user 1 is 18, then the number of generated records is
20 ×18= 360.

To evaluate the data quality generated by CTGAN, three performance metrics are
employed to evaluate the correlations and column shapes of the synthetic data, thereby
determining its quality. The first one of these metrics is the quality score, which assesses
the quality of synthetic data in terms of its effective creation.

Another metric involves measuring the column shapes and calculating a percentage that
reflects the similarity between the value distributions of actual and synthetic data. A higher
score for a column indicates that its values are distributed in a manner consistent with
the original dataset distribution. These scores for each column are averaged to derive the
dataset overall score.

The third metric assesses the trend between two columns, explaining how they change
concerning each other, akin to correlation. A higher score indicates more similarity in
patterns. As illustrated in Table 4, the quality score, column shapes, and column pair
trends of the generated data reach up to 91.84%, 94.76%, and 89.22%, respectively.

Experiment 2: ONE3A model application
The goal is to compare the performance of two metaheuristic algorithms, WOA and HHO,
in selecting the feature set that yields the highest classification performance across three
different learning strategies: KNN, RF and SVM. In essence, the objective is to identify the
optimal combination of WOA and HHO with each of these classifiers. This investigation
aims to determine which algorithm, paired with which classifier, achieves the most effective
feature selection for classification tasks.

The produced set of feature from Experiment 1 is entered to one of the combinations
and the evaluationmetrics are recorded. Moreover, the mean and standard deviation of five
iterations is calculated. The obtained results of three classifiers (SVM, KNN and RF) are
presented in Tables 5, 6 and 7 respectvely. We noted that the results for user 1 dataset shows
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Table 5 Performance metrics of SVM algorithms using ten users dataset.

User OP Time NSF Acc F1_score AUC Precision Recall Specificity Kappa

1 HHO mean 40.32 24.20 96.13 0.96 0.96 0.93 1.00 1.00 0.92
std 11.09 3.11 0.56 0.01 0.01 0.01 0.00 0.00 0.01

WOA mean 14.89 17.80 96.80 0.97 0.97 0.94 0.99 0.99 0.94
std 2.64 10.92 0.56 0.01 0.01 0.02 0.01 0.01 0.01

6 HHO mean 58.96 18.20 97.05 0.97 0.97 0.94 1.00 1.00 0.94
std 9.64 5.54 0.48 0.00 0.00 0.01 0.00 0.00 0.01

WOA mean 12.08 12.60 97.05 0.97 0.97 0.95 0.99 0.99 0.94
std 0.97 4.93 0.48 0.00 0.00 0.02 0.02 0.02 0.01

8 HHO mean 26.17 8.40 100.00 1.00 1.00 1.00 1.00 1.00 1.00
std 3.93 2.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00

WOA mean 14.73 7.60 100.00 1.00 1.00 1.00 1.00 1.00 1.00
std 4.41 2.41 0.00 0.00 0.00 0.00 0.00 0.00 0.00

9 HHO mean 11.14 8.20 100.00 1.00 1.00 1.00 1.00 1.00 1.00
std 2.11 6.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00

WOA mean 20.91 7.80 100.00 1.00 1.00 1.00 1.00 1.00 1.00
std 8.19 4.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00

11 HHO mean 22.83 9.80 95.48 0.95 0.96 0.92 1.00 1.00 0.91
std 2.68 7.29 1.43 0.01 0.01 0.03 0.01 0.01 0.03

WOA mean 28.08 10.60 95.12 0.95 0.95 0.91 1.00 1.00 0.90
std 32.12 8.32 0.78 0.01 0.01 0.01 0.00 0.00 0.02

12 HHO mean 49.43 20.40 96.12 0.96 0.96 0.95 0.98 0.98 0.92
std 14.34 9.89 1.33 0.01 0.01 0.02 0.02 0.02 0.03

WOA mean 64.26 22.80 96.42 0.96 0.96 0.95 0.98 0.98 0.93
std 55.36 11.21 1.11 0.01 0.01 0.02 0.01 0.01 0.02

14 HHO mean 90.68 25.80 99.89 1.00 1.00 1.00 1.00 1.00 1.00
std 165.29 9.23 0.24 0.00 0.00 0.01 0.00 0.00 0.00

WOA mean 14.13 17.60 100.00 1.00 1.00 1.00 1.00 1.00 1.00
std 4.24 5.68 0.00 0.00 0.00 0.00 0.00 0.00 0.00

26 HHO mean 52.13 22.80 94.05 0.94 0.94 0.90 0.99 0.99 0.88
std 20.12 11.30 0.72 0.01 0.01 0.01 0.01 0.01 0.01

WOA mean 36.57 20.20 94.05 0.94 0.94 0.90 0.99 0.99 0.88
std 11.07 8.38 1.52 0.01 0.01 0.02 0.01 0.01 0.03

46 HHO mean 33.08 13.80 99.72 1.00 1.00 0.99 1.00 1.00 0.99
std 19.99 5.45 0.39 0.00 0.00 0.01 0.00 0.00 0.01

WOA mean 8.43 16.60 100.00 1.00 1.00 1.00 1.00 1.00 1.00
std 2.63 2.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00

49 HHO mean 19.59 18.80 98.53 0.98 0.99 0.98 0.99 0.99 0.97
std 0.94 3.70 0.87 0.01 0.01 0.01 0.01 0.01 0.02

WOA mean 33.75 22.00 99.60 1.00 1.00 1.00 0.99 0.99 0.99
std 3.09 8.60 0.37 0.00 0.00 0.01 0.01 0.01 0.01
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Table 6 Performance metrics of KNN algorithms using ten users dataset.

User OP Time NSF Acc F1_score AUC Precision Recall Specificity Kappa

1 HHO mean 116.50 10.80 97.60 0.98 0.98 0.95 1.00 1.00 0.95
std 97.38 13.65 1.01 0.01 0.01 0.02 0.00 0.00 0.02

WOA mean 56.17 18.60 97.47 0.97 0.98 0.95 1.00 1.00 0.95
std 32.53 16.36 0.30 0.00 0.00 0.01 0.01 0.01 0.01

6 HHO mean 146.35 22.20 98.75 0.99 0.99 0.98 1.00 1.00 0.97
std 80.88 11.03 0.74 0.01 0.01 0.01 0.01 0.01 0.01
mean 50.60 24.60 99.09 0.99 0.99 0.98 1.00 1.00 0.98

WOA std 21.87 8.05 0.51 0.01 0.00 0.01 0.00 0.00 0.01
8 HHO mean 20.12 3.60 100.00 1.00 1.00 1.00 1.00 1.00 1.00

std 9.61 2.51 0.00 0.00 0.00 0.00 0.00 0.00 0.00
WOA mean 18.37 4.00 100.00 1.00 1.00 1.00 1.00 1.00 1.00

std 4.34 1.87 0.00 0.00 0.00 0.00 0.00 0.00 0.00
9 HHO mean 37.81 5.80 100.00 1.00 1.00 1.00 1.00 1.00 1.00

std 41.71 8.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00
WOA mean 24.53 3.00 100.00 1.00 1.00 1.00 1.00 1.00 1.00

std 9.79 4.47 0.00 0.00 0.00 0.00 0.00 0.00 0.00
11 HHO mean 143.89 13.80 96.55 0.96 0.97 0.93 1.00 1.00 0.93

std 80.31 7.79 0.98 0.01 0.01 0.02 0.01 0.01 0.02
WOA mean 21.41 11.20 96.90 0.97 0.97 0.94 1.00 1.00 0.94

std 21.04 10.18 1.36 0.01 0.01 0.02 0.01 0.01 0.03
12 HHO mean 81.39 8.20 96.87 0.97 0.97 0.95 0.98 0.98 0.94

std 77.52 11.37 1.53 0.02 0.02 0.03 0.03 0.03 0.03
WOA mean 47.77 6.60 96.12 0.96 0.96 0.95 0.97 0.97 0.92

std 48.95 9.13 0.33 0.00 0.00 0.03 0.04 0.04 0.01
14 HHO mean 127.96 28.40 99.78 1.00 1.00 1.00 1.00 1.00 1.00

std 30.69 5.37 0.30 0.00 0.00 0.01 0.00 0.00 0.01
WOA mean 58.06 21.60 99.78 1.00 1.00 1.00 1.00 1.00 1.00

std 23.61 7.23 0.49 0.01 0.00 0.01 0.00 0.00 0.01
26 HHO mean 75.24 17.60 95.95 0.96 0.96 0.92 1.00 1.00 0.92

std 24.06 11.67 0.72 0.01 0.01 0.01 0.01 0.01 0.01
WOA mean 178.57 20.20 96.33 0.96 0.96 0.94 0.98 0.98 0.93

std 155.95 4.44 0.53 0.00 0.00 0.02 0.01 0.01 0.01
46 HHO mean 152.98 17.60 99.72 1.00 1.00 0.99 1.00 1.00 0.99

std 66.12 5.08 0.39 0.00 0.00 0.01 0.00 0.00 0.01
WOA mean 68.17 20.20 100.00 1.00 1.00 1.00 1.00 1.00 1.00

std 20.73 6.76 0.00 0.00 0.00 0.00 0.00 0.00 0.00
49 HHO mean 182.38 20.00 99.47 0.99 0.99 0.99 1.00 1.00 0.99

std 77.80 7.78 0.56 0.01 0.01 0.01 0.01 0.01 0.01
WOA mean 114.35 27.20 99.73 1.00 1.00 1.00 1.00 1.00 0.99

std 19.77 3.03 0.37 0.00 0.00 0.01 0.01 0.01 0.01
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Table 7 Performance metrics of RF algorithms using ten users dataset.

User OP Time NSF Acc F1_score AUC Precision Recall Specificity Kappa

1 HHO mean 1755.65 7.20 99.33 0.99 0.99 0.99 1.00 1.00 0.99
std 1272.71 3.70 0.47 0.00 0.00 0.01 0.01 0.01 0.01

WOA mean 997.40 7.80 99.60 1.00 1.00 0.99 1.00 1.00 0.99
std 600.96 4.27 0.37 0.00 0.00 0.01 0.01 0.01 0.01

6 HHO mean 870.45 17.40 99.66 1.00 1.00 1.00 1.00 1.00 0.99
std 455.22 7.27 0.31 0.00 0.00 0.01 0.01 0.01 0.01

WOA mean 460.59 13.40 99.89 1.00 1.00 1.00 1.00 1.00 1.00
std 407.06 1.14 0.25 0.00 0.00 0.01 0.00 0.00 0.01

8 HHO mean 305.62 4.00 99.52 1.00 1.00 0.99 1.00 1.00 0.99
std 50.73 4.80 1.06 0.01 0.01 0.01 0.01 0.01 0.02

WOA mean 737.74 1.80 100.00 1.00 1.00 1.00 1.00 1.00 1.00
std 884.06 1.79 0.00 0.00 0.00 0.00 0.00 0.00 0.00

9 HHO mean 652.78 2.80 100.00 1.00 1.00 1.00 1.00 1.00 1.00
std 589.31 1.79 0.00 0.00 0.00 0.00 0.00 0.00 0.00

WOA mean 798.26 1.00 100.00 1.00 1.00 1.00 1.00 1.00 1.00
std 1047.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

11 HHO mean 756.24 8.20 99.76 1.00 1.00 1.00 1.00 1.00 1.00
std 188.69 4.82 0.33 0.00 0.00 0.01 0.00 0.00 0.01

WOA mean 505.10 7.80 99.76 1.00 1.00 1.00 1.00 1.00 1.00
std 51.30 4.97 0.33 0.00 0.00 0.01 0.00 0.00 0.01

12 HHO mean 820.00 8.20 99.25 0.99 0.99 0.99 1.00 1.00 0.99
std 180.44 3.42 1.06 0.01 0.01 0.02 0.01 0.01 0.02

WOA mean 1151.25 8.20 98.66 0.99 0.99 0.99 0.98 0.98 0.97
std 801.55 2.49 0.82 0.01 0.01 0.01 0.01 0.01 0.02

14 HHO mean 450.89 6.00 99.89 1.00 1.00 1.00 1.00 1.00 1.00
std 89.42 1.87 0.24 0.00 0.00 0.01 0.00 0.00 0.00

WOA mean 261.75 4.80 99.89 1.00 1.00 1.00 1.00 1.00 1.00
std 164.57 0.84 0.24 0.00 0.00 0.00 0.01 0.01 0.00

26 HHO mean 506.44 10.80 99.75 1.00 1.00 0.99 1.00 1.00 0.99
std 342.97 6.30 0.35 0.00 0.00 0.01 0.00 0.00 0.01

WOA mean 2001.47 7.60 99.49 0.99 1.00 0.99 1.00 1.00 0.99
std 2052.32 3.29 0.53 0.01 0.01 0.01 0.00 0.00 0.01

46 HHO mean 865.38 10.40 99.44 0.99 0.99 0.99 1.00 1.00 0.99
std 891.30 5.41 0.31 0.00 0.00 0.01 0.00 0.00 0.01

WOA mean 191.26 6.60 99.44 0.99 0.99 0.99 1.00 1.00 0.99
std 14.08 3.05 0.92 0.01 0.01 0.02 0.00 0.00 0.02

49 HHO mean 497.92 6.60 99.47 0.99 0.99 0.99 1.00 1.00 0.99
std 48.51 2.07 0.30 0.00 0.00 0.01 0.01 0.01 0.01

WOA mean 303.64 5.40 99.47 0.99 0.99 0.99 1.00 1.00 0.99
std 63.78 1.95 0.87 0.01 0.01 0.02 0.00 0.00 0.02
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that the combination of WOA-RF surpass the other algorithms in terms of performance
metrics. The WOA-RF achieved an average accuracy of 99.60 ± 0.37%. The second metric
compares the number of features selected by the two optimization algorithms (HHO
and WOA) that able to achieve high performance. HHO-RF chose the fewest number of
features in average 7.20± 3.70 while attaining an accuracy rate of (99.33± 0.47%). Finally,
WOA-SVM is faster than other algorithms, finishing 100 generations in a mere 14.89 ±
2.64 s. Consequently, WOA-RF demonstrated the best accuracy performance, HHO-RF
excelled in feature reduction, and WOA-SVM showed superior convergence speed.

The results of the experiment for user 6 shows that the combination of WOA-RF surpass
the other algorithms in terms of performance metrics. The WOA-RF achieved in average
99.89 ± 0.25% accuracy. The second metric compares the number of features selected by
two optimization algorithms (HHO and WOA) for use in its classification step, that each
combination was able to use to attain its high performance. WOA-SVM chose the fewest
number of features in average 12.60 ± 4.93 while attaining the accuracy rate of (97.05 ±
0.48%). Also, WOA-SVM is faster than other algorithms, finishing 100 generations in a
mere 12.08 ± 0.97 s. As a result, we can say that, WOA-RF performs the best in terms
of accuracy. WOA-SVM performs the best in both of feature reduction and convergence
speed.

The results of the experiment for the user 8 show that all combinations achieved an
accuracy of 100% except for HHO-RF which achieved 99.52% ± 1.06. The second metric
compares the number of features selected by two optimization algorithms (HHO and
WOA). The obtained results demonstrate that, on average, the combination of WOA-RF
chose the fewest number of features: 1.80± 1.8 features. Finally, WOA-SVM is faster than
other algorithms, finishing 100 generations in a mere 14.73 ± 4.41 s. As a result, we can
say that, all most combinations act better in terms of accuracy. WOA-RF performs the best
in terms of feature reduction, while WOA-SVM performs the best in terms of convergence
speed.

DISCUSSIONS
To compare the performance of different combinations of HHO and WOA combined
with SVM, KNN, and RF in solving the legitimacy problem for 10 users, each user run as
separated experiment. we conducted cumulative analysis. Each combination that achieved
the highest performance was assigned a point of 1, and then we counted the number of
points gained by each combination for the three different problems (accuracy, number
of feature reduction, and speed). The results are presented in Fig. 3 From the analysis,
we can conclude that WOA-RF performs the best in terms of accuracy and feature
reduction. Additionally, WOA-SVM demonstrates the best convergence speed for most
of the users. The results of our experiments showed consistency with the comprehensive
study conducted by Alwajih et al. (2022) comparing WOA and HHO for feature selection
problems where it was found thatWOA has performed better thanHHO in these problems.
It is important to note that there are a few limitations inherited from the RHU touchmobile
keystroke dataset used in the study. These include a small sample size (51 individuals),
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Figure 3 Commutative comparison of the different combinations in terms of accuracy, NSF and
speed.

Full-size DOI: 10.7717/peerjcs.2001/fig-3

not covering all age groups, a homogeneous task of entering a single password, and
limited demographic details. These constraints may impact the generalizability and
representativeness of findings in studying typing behavior for mobile authentication.

CONCLUSION
The study aims to address computing constraints in smartphones, introducing an efficient
user authentication system and addressing public dataset size issues. CTGAN is employed
for generating synthetic data from real data. Subsequently, a novel implicit authentication
model is presented for smartphone users identification. The proposed model (ONE3A) is
utilizes bio-inspred algorithms (WOA and HHO) as feature selection method, combined
with one of three classifiers: SVM, KNN and RF. The model (ONE3A) is mirroring
real authentication scenarios. The model is evaluated using a publicly available dataset,
demonstrating: (1) GAN-generated data quality with scores of 91.84%, 94.47%, and
89.22% for quality score, column shapes, and column pair trends, respectively; (2) WOA
outperforming HHO in feature selection for touch-based smartphone authentication;
and (3) The combination of WOA-RF is the most effective among various combinations,
achieving an average accuracy of 99.62% ± 0.40% for ten users, with an average reduction
rate of 87.85%. In the future, it is aimed to build a bigger study covering data from various
age groups with wider demographic details.
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