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Abstract 

The diffusion of oxygen through capillary to surrounding tissues through multiple points along the 

length has been addressed in many clinical studies, largely motivated by disorders including 

hypoxia. However relatively few analytical or numerical studies have been communicated. In this 

paper, as a compliment to physiological investigations, a novel mathematical model is developed 

which incorporates the multiple point diffusion of oxygen from different locations in the capillary 

to tissues, in the form of a fractional dynamical system of equations using the concept of system 

of balance equations with memory. Stability analysis of the model has been conducted using the 

well known Routh–Hurwitz stability criterion.Comprehensive analytical solutions for the 

differntial equation problem in the new proposed model are obtained using Henkel 

transformations. Both spatial and temporal variation  of concentration of oxygen is visualized 

graphically for different control parameters. Close correlation with simpler models is achieved. 

Diffusion is shown to arise from different points of the capillary in decreasing order along the 

length of the capillary i.e. for the different values of z. The concentration magnitudes at low 

capillary length far exceed those further along the capillary. Furthermore with progrssive distance 

along the capillary, the radial distance of diffusion decreases, such that oxygen diffuses only 

effectively in very close proximity to tissues. The simulations provide a useful benchmark for more 

generalized mass diffusion computations with commercial finite element and finite volume 

software including ANSYS FLUENT. 
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1. Introduction 

Capillaries are very thin and small blood vessels that connect arteries to veins and form a network 

throughout the body. In abnormal blood circulation, cells in the most distal region of the capillary 

at the venous end begin to suffer from hypoxia when perfusion levels (blood delivery to capillary 

beds in tissue) are severely reduced. Insufficient oxygen delivery to the tissues can impede 

metastasis and destroy part of the muscle. 

Several convection and diffusion processes are involved in the systems that regulate oxygen 

distribution. However current understanding of the hydromechanics of these processes is still 

limited. Blood is oxygenated by convection, which depends on active, energy-intensive processes 

that create circulation flow. Diffusion transport describes the passive flow of oxygen along the 

concentration gradient through tissue barriers, including the alveolar capillary membrane, and 

between tissue capillaries and individual cells to the mitochondria in the extracellular matrix. 

Oxygen tension gradient, diffusion distance and tissue capillary density are all factors that affect 

how much diffuse oxygen moves across a given area. The rate of diffusion increases with distance 

and decreases with the difference between cellular and capillary oxygen concentrations [1].  

In the case of hypoxia, which is a condition characterized by low oxygen levels in the body tissues, 

the process of oxygen diffusion from capillaries to tissues is affected. Hypoxia can occur due to 

various reasons, such as decreased oxygen intake, reduced blood flow, negative influence on the 

oxygen tension gradient, the oxygen concentration in the capillary drops too low or impaired 

oxygen utilization by cells.  

When hypoxia, the concentration gradient of oxygen between the capillaries and the tissues is 

reduced, as the partial pressure of oxygen in the capillaries may also be lower. This means that the 

diffusion of oxygen from the capillaries to the tissues will be slower. The human body tries to 

compensate for hypoxia by increasing blood flow to the affected tissues. This can help to increase 

the oxygen delivery to the tissues and promote oxygen diffusion from the capillaries. In some 

cases, such as in high altitude environments (aircraft and space flight), the body can also produce 

more red blood cells to carry more oxygen in the bloodstream. However, in severe cases of 

hypoxia, the tissues may not receive enough oxygen, and this can lead to tissue damage or even 

cell death. In such cases, medical intervention may be required to improve oxygen delivery to the 

tissues, such as providing supplemental oxygen i.e. giving Oxygen therapy or treating the 
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underlying cause of hypoxia. Oxygen treatment can be quite beneficial at times, moderately 

beneficial at others, and virtually useless at yet other times. Thus, it is critical to comprehend the 

many forms of hypoxia before exploring the physiological underpinnings of oxygen treatment. In 

this work, among the many contributors to hypoxia we focus on a primary cause i.e. inadequate 

oxygen transport to the tissues by the blood due to circulatory deficiency. 

To furnish a more accurate appraisal of the mechanisms of hypoxia or other oxygen-depletion, 

more sophisticated mathematical modelling can provide this facility. A mathematical model of any 

real-world problem provides knowledge of the problem and the ability to analyse it clearly, enables 

robust pragmatic solutions. A powerful methodology for improving the precision of mathematical 

differential equation model in medicine, is fractional calculus. This approach successfully 

generalizes the classical, integer order differential calculus to non-integer orders. In the present 

investigation, a fractional order differential equation is therefore applied to the modelling of 

oxygen diffusion from capillaries to tissues. The fractional order differential equation is 

particularly useful in modelling diffusion processes that exhibit anomalous behaviour, such as 

long-range correlations and memory effects, which cannot be captured by the classical diffusion 

equation [9, 10]. In the case of oxygen diffusion, a fractional order differential equation can be 

used to model the transport of oxygen molecules from the capillaries to the surrounding tissue, 

taking into account the spatial heterogeneity of the tissue, the oxygen consumption rate of the cells 

and the oxygen supply from the blood. Go [3] implemented a mathematical model for oxygen 

distribution through capillaries that neglected the longitudinal diffusion of solutes in capillaries 

and also assumed that the diffusion of oxygen and the oxygen consumption rate were constant. 

Diffusion processes will vary from place to place. Go [3] also noted that physical activity increases 

oxygen consumption rate, however it enhances the chance of certain cells to lose oxygen and 

influences the ability of cells engulfing capillaries to utilize or retain more oxygen than required 

for an additional cycle. Srivastava and Rai [4] neglected all these proposed a new mathematical 

model using fractional calculus. Srivastava et al. [5] significantly extended the work in [6] and 

scrutinized the effect of external forces on oxygen diffusion from capillary to tissues during 

hypoxia. Delgadoet. al. [7] study the fractional-order dynamics of the oxygen diffusion through 

capillary to tissues under the influence of external forces using a similar formulation to that 

developed in [4, 5] and the fractional operators of Caputo–Fabrizio. They applied the Laplace 

homotopy analysis method for analytical and numerical results. 

Since, all biological phenomena possess memory effects from the micro level to macro level [7, 

8]. Fractional calculus has been deployed very effectively to resolve challenging problems in 
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biomedical engineering with memory effects including corona virus transmission [9], blood 

coagulation [10], cancer treatment [11], biochemical enzymatic processes [12], tropical disease 

spread [13], ultrasonic heat transfer in tissue therapy [14], kneecap mechanics [15], corneal 

transplant engineering [16] and inner ear hydrodynamics [17]. Srivastava and Rai [4] used 

fractional order partial derivatives instead of integer order partial derivatives to explain both sub-

diffusion and diffusion processes simultaneously to model the diffusion of oxygen in tissues 

through capillaries and gave approximate analytical solution using the New Iterative Method 

(NIM). 

Since diffusion of oxygen through the capillary arises not only into the surrounding tissues, but 

also in the direction of the length of the capillary, this leads to a depletion in diffusion of oxygen 

into the tissues, in comparison to the net diffusion in the absence of axial diffusion along the length 

of the capillary. As we progress along the capillary length, the concentration of oxygen will 

decrease. If the length of the capillary is finite, there will be a significant difference in the 

concentration of oxygen at both ends but it will not be completely zero at the end [1]. At the same 

time, it is also important to be cognizant of the fact that diffusion/sub-diffusion of oxygen is 

occurring along length of the capillary, at different rates and with different concentrations, to the 

surrounding tissues at short axial distances [1], which cannot be explained by conventional 

differential diffusive models [3]. All previous formulations [3,4,5, 24, 25, 26] express the single 

point diffusion at a time, but originally the diffusion from capillary to tissues is in fact a multiple 

point process, as clearly established in [1]. To overcome this deficiency, based on the approach 

expounded in [11], the present investigation adopts a fractional calculus system of balance 

equations and develops an improved dynamical model of memory-based oxygen diffusion from 

capillary to tissues not only at particular point of the capillary but also along the whole length of 

the capillary. 

In this paper, we model the delivery of oxygen from capillary to tissues through multipoint along 

its length such that the concentration of oxygen decays gradually [as explained in ref. [1]] using 

the mechanism of a memory effect based on the concept of fractional calculus as expressed in 

linear systems of balance equations. By considering a chain of balance equations, connecting each 

stage of concentration of oxygen to the next by means of a memory kernel, it becomes possible to 

derive generalised expressions for the overall memory kernel that connects the initial stage 

concentration of oxygen to the final stage concentration of oxygen. Analytical solutions are 

carefully derived using the well-known Henkel Transformation with physiologically robust initial 
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conditions and boundary conditions. Finally, a detailed elaboration on the physical implications of 

the solutions derived is provided. 

The structure of the manuscript is as follows. Section 2 discusses the development of the proposed 

model for oxygen diffusion from multiple points of the capillary to surrounding tissues using a 

system of balance equations with memory. In Section 3, we evaluate the stability of the proposed 

model using Routh – Hurwitz stability criterion. In Section 4, the proposed model is solved 

analytically using Henkel transforms. In Section 5, we analyse and explain the results through 

graphs and plots. In Section 6, the paper is concluded with some discussion and glimpses of future 

work. 

 

2. Mathematical model for oxygen diffusion from multiple points of the capillary to 

surrounding tissues:  

In this work, we analyse the problem of hypoxia due to deficiency of oxygen transport from 

capillary to tissues. For the better treatment we must know the status of such deficiency, and that 

can be highly visualized by mathematical modelling. Now, Fig. 1 shows the physical model of the 

physiological problem, where moving red blood cells in capillary diffuse the oxygen through 

capillary wall to surrounding tissues. In this scenario, it is quite clear that concentration of oxygen 

is decreased when blood is flowing along the capillary [1].  

 

 

Fig.1.Diffusion of oxygen from multiple points to tissues through a single capillary. 
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To explain the sub-diffusion and diffusion phenomenon simultaneously, it is necessary to adopt a 

fractional diffusion equation, i.e. instead of
∂C

∂t
 as in Eq. (2) of [3], we have to use

∂αC

∂tα
where 0 <α< 

1 indicates the sub-diffusion process while α = 1 represents the diffusion process, since 

longitudinal diffusion is also considered. Therefore, the net diffusion of oxygen to tissues will be  

∂αC𝑖

∂tα
−

𝜕𝛽𝐶𝑖+1

𝜕𝑡𝛽
, where C𝑖is the concentrations at ith stage of oxygen along the z-axis and 0 < β < α ≤ 

1.  For this case, along the length of the capillaries, for the different values of 𝑧 =

𝑧0, 𝑧1, 𝑧2 …… , 𝑧𝑁 , the concentration of oxygen C will become𝐶 = 𝐶0, 𝐶1, 𝐶2 …… , 𝐶𝑁 respectively. 

From ref. [1] it is clear that 𝐶0 > 𝐶1 > 𝐶2 > ⋯ > 𝐶𝑁 since it shown that pressure of oxygen is 

decreasing as oxygen containing blood moving forward along the length of capillary. Following 

ref. [4] we may state the balance equations for diffusion as: 

𝜕𝛼0𝐶0

𝜕𝑡𝛼0
−

𝜕𝛼1𝐶1

𝜕𝑡𝛼1
= ∇(𝑑 ∙ ∇(𝐶0 − 𝐶1)) − 𝑘1                           at 𝑧 = 𝑧0 

𝜕𝛼1𝐶1

𝜕𝑡𝛼1
−

𝜕𝛼2𝐶2

𝜕𝑡𝛼2
= ∇(𝑑 ∙ ∇(𝐶1 − 𝐶2) − 𝑘2                            at 𝑧 =  𝑧1 

𝜕𝛼2𝐶2

𝜕𝑡𝛼2
−

𝜕𝛼3𝐶3

𝜕𝑡𝛼3
= ∇(𝑑 ∙ ∇(𝐶2 − 𝐶3) − 𝑘3                            at 𝑧 = 𝑧2 

… … … … … … … … … … … … … … 

… … … … … … … … … … … … … …      …… (1) 

𝜕𝛼𝑚−1𝐶𝑚−1

𝜕𝑡𝛼𝑚−1
−

𝜕𝛼𝑚𝐶𝑚

𝜕𝑡𝛼𝑚
= ∇(𝑑 ∙ ∇(𝐶𝑚−1 − 𝐶𝑚) − 𝑘𝑚          at 𝑧 =  𝑧𝑚 

… … … … … … … … … … … … … … 

… … … … … … … … … … … … … … 

𝜕𝛼𝑁−1𝐶𝑁−1

𝜕𝑡𝛼𝑁−1
−

𝜕𝛼𝑁𝐶𝑁

𝜕𝑡𝛼𝑁
= ∇(𝑑 ∙ ∇(𝐶𝑁−1 − 𝐶𝑁) − 𝑘𝑁           at 𝑧 = 𝑧𝑁−1 

𝜕𝛼𝑁𝐶𝑁

𝜕𝑡𝛼𝑁
= ∇(𝑑 ∙ ∇(𝐶𝑁))                                                    at 𝑧 = 𝑧𝑁 

If d is constant, adding all above equations leads to: 

𝜕𝛼0𝐶0

𝜕𝑡𝛼0
= 𝑑∇2𝐶0 − (𝑘1 + 𝑘2 + 𝑘3 … + 𝑘𝑁) 

Or 

𝜕𝛼0𝐶0

𝜕𝑡𝛼0
= 𝑑∇2𝐶0 − 𝐾where,𝐾 = (𝑘1 + 𝑘2 + 𝑘3 … + 𝑘𝑁)….    (2) 

 

This takes the identical form to the formulation in example 1of Ref.[4]. Furthermore, with α0 = 1 

the equation (1) will same as in [3]. 
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Here C0(r,  t), C1(r,  t),C2(r,  t),C3(r,  t),......,CN(r,  t) is the initial concentration of oxygen, at the 

first step of diffusion, at second step of diffusion, at third step of diffusion, ......, at last step of 

diffusion through capillary respectively, d is the diffusion coefficient of oxygen, and this d may be 

a function of C. 

Equivalent to the system of equations (1), the following system of integral equations arises [21, 

22]: 

𝐶0(𝑟, 𝑡) = 𝐶0(𝑟, 0) + 𝐷𝑡
−(𝛼0−𝛼1)

𝐶1 + 𝐷𝑡
−(𝛼0)

(∇(𝑑 ∙ ∇(𝐶0 − 𝐶1)) − 𝐷𝑡
−(𝛼0)

𝑘1  

𝐶1(𝑟, 𝑡) = 𝐶1(𝑟, 0) + 𝐷𝑡
−(𝛼1−𝛼2)

𝐶2 + 𝐷𝑡
−(𝛼1)

(∇(𝑑 ∙ ∇(𝐶1 − 𝐶2)) − 𝐷𝑡
−(𝛼1)

𝑘2  

𝐶2(𝑟, 𝑡) = 𝐶2(𝑟, 0) + 𝐷𝑡
−(𝛼2−𝛼3)

𝐶3 + 𝐷𝑡
−(𝛼2)

(∇(𝑑 ∙ ∇(𝐶2 − 𝐶3)) − 𝐷𝑡
−(𝛼2)

𝑘3  

… … … … … … … … … … … … … … 

… … … … … … … … … … … … … … 

𝐶𝑚−1(𝑟, 𝑡) = 𝐶0(𝑟, 0) + 𝐷𝑡
−(𝛼𝑚−1−𝛼𝑚)

𝐶𝑚 + 𝐷𝑡
−(𝛼𝑚−1)

(∇(𝑑 ∙ ∇(𝐶𝑚−1 − 𝐶𝑚)) − 𝐷𝑡
−(𝛼𝑚−1)

𝑘𝑚  

......(3) 

… … … … … … … … … … … … … … 

… … … … … … … … … … … … … … 

𝐶𝑁−1(𝑟, 𝑡) = 𝐶𝑁−1(𝑟, 0) + 𝐷𝑡
−(𝛼𝑁−1−𝛼𝑁)

𝐶𝑁 + 𝐷𝑡
−(𝛼𝑁−1)

(∇(𝑑 ∙ ∇(𝐶𝑁−1 − 𝐶𝑁)) − 𝐷𝑡
−(𝛼𝑁−1)

𝑘𝑁  

𝐶𝑁(𝑟, 𝑡) = 𝐶𝑁(𝑟, 0) + 𝐷𝑡
−(𝛼𝑁)

(∇(𝑑 ∙ ∇(𝐶𝑁))  

The initial conditions, similar to [4] are: 

𝐶0(𝑟, 0) = 𝑔0(𝑟, 𝑧0) (1 −
𝑡𝛼0

Γ(𝛼0 + 1)
) 

𝐶1(𝑟, 0) = 𝑔1(𝑟, 𝑧1) (1 −
𝑡𝛼1

Γ(𝛼1+1)
)  

𝐶2(𝑟, 0) = 𝑔2(𝑟, 𝑧2) (1 −
𝑡𝛼2

Γ(𝛼2+1)
)  

… … … … … … … … … … … … … … 

𝐶𝑚(𝑟, 0) = 𝑔𝑚(𝑟, 𝑧𝑚) (1 −
𝑡𝛼𝑚

Γ(𝛼𝑚+1)
)       ...... (4) 

… … … … … … … … … … … … … … 

𝐶𝑁−1(𝑟, 0) = 𝑔𝑁−1(𝑟, 𝑧𝑁−1) (1 −
𝑡𝛼𝑁−1

Γ(𝛼𝑁−1+1)
)  

𝐶𝑁(𝑟, 0) = 𝑔𝑁(𝑟, 𝑧𝑁) (1 −
𝑡𝛼𝑁

Γ(𝛼𝑁+1)
)  

It follows that 𝛼0 ≥ 𝛼1 ≥ 𝛼2 ……𝛼𝑁−1 ≥ 𝛼𝑁 and 𝐶0 ≥ 𝐶1 ≥ 𝐶2 ≥ ⋯𝐶𝑁−1 ≥ 𝐶𝑁 . 
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The Initial Guess 

We take the initial condition as 𝑔𝑚(𝑟, 𝑧) = 𝑒−𝑧 (𝑟 +
𝑅2

𝑟
) as considered in [4]. This assumed initial 

guess is quite close to real physiological situations [1], as it satisfies not only the boundary 

condition [4,5] 
𝜕𝐶

𝜕𝑟
|
𝑟→𝑅

= 0, but also has a finite value at r = 0. As we move away from the capillary 

it is decreasing rapidly, which is in accordance with actual capillary oxygen diffusion in the human 

body [1].  

2.1 Convention for the Model based on system of balance equations with memory 

Let  𝛼0 = 𝛼1 = 𝛼2 = ⋯𝛼𝑛 = 𝛼 in the previously stated system of equations (1). Then it follows 

that:  

𝜕𝛼(𝐶0−𝐶1)

𝜕𝑡𝛼 = 𝑑 ∙ ∇2(𝐶0 − 𝐶1) − 𝑘1 

𝜕𝛼(𝐶1−𝐶2)

𝜕𝑡𝛼 = 𝑑 ∙ ∇2(𝐶1 − 𝐶2) − 𝑘2  

𝜕𝛼(𝐶2−𝐶3)

𝜕𝑡𝛼 = 𝑑 ∙ ∇2(𝐶2 − 𝐶3) − 𝑘3  

  … … … … … … … … … … … … … …                                 …… (5) 

𝜕𝛼(𝐶𝑚−1−𝐶𝑚)

𝜕𝑡𝛼 = 𝑑 ∙ ∇2(𝐶𝑚−1 − 𝐶𝑚) − 𝑘𝑚  

… … … … … … … … … … … … … … 

𝜕𝛼(𝐶𝑁−1−𝐶𝑁)

𝜕𝑡𝛼 = 𝑑 ∙ ∇2(𝐶𝑁−1 − 𝐶𝑁) − 𝑘𝑁  

𝜕𝛼𝐶𝑁

𝜕𝑡𝛼 = 𝑑 ∙ ∇2(𝐶𝑁)  

The Laplacian operator in cylidrical coordinates, ∇2𝐶 =
𝜕2𝐶

𝜕𝑟2 +
1

𝑟

𝜕𝐶

𝜕𝑟
+

𝜕2𝐶

𝜕𝑧2 and at any point, 𝑧 =

𝑧𝑛,   
𝜕𝐶

𝜕𝑧
= 𝑐𝑜𝑛𝑡. [8,18], hence 

𝜕2𝐶

𝜕𝑧2 = 0. Furthermore, we  assume that 𝑘1 = 𝑘2 = 𝑘3 = ⋯ =

𝑘𝑁 = 𝑟−0.6. Proceeding with the analysis, let: 

(𝐶0 − 𝐶1) = 𝐶01 = 𝑈1 

(𝐶1 − 𝐶2) = 𝐶12 = 𝑈2  

(𝐶2 − 𝐶3) = 𝐶23 = 𝑈3                                        .     .. ... (6) 

(𝐶3 − 𝐶4) = 𝐶34 = 𝑈4  

… … 

(𝐶𝑁−1 − 𝐶𝑁) = 𝐶𝑁−1 𝑁 = 𝑈𝑁. 
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Therefore, from system of equations (4), the initial values,after using convention (6), will emerge 

as: 

 

 

𝑈1(𝑟, 0) = (𝑒−𝑧0 − 𝑒−𝑧1) (𝑟 +
𝑅2

𝑟
) 

𝑈2(𝑟, 0) = (𝑒−𝑧1 − 𝑒−𝑧2) (𝑟 +
𝑅2

𝑟
)  

𝑈3(𝑟, 0) = (𝑒−𝑧2 − 𝑒−𝑧3) (𝑟 +
𝑅2

𝑟
)                                         ...... (7) 

... ... 

𝑈 𝑁(𝑟, 0) = (𝑒−𝑧𝑁−1 − 𝑒−𝑧𝑁) (𝑟 +
𝑅2

𝑟
)  

 

3. Stability Analysis of the Mathematical Model 

In this section, the highly reliable Routh– Hurwitz stability criterion [27] is implemented to assess 

the numerical stability of our model. For brevity regarding the mathematical details associated 

with the model (1) we assume N = 3, and from equation (5) invoking convention (6) we arrive at 

the following system of fractonal differential equations: 

𝜕𝛼𝑈1

𝜕𝑡𝛼 = 𝑑 ∙ ∇2𝑈1 − 𝑘1 

𝜕𝛼𝑈2

𝜕𝑡𝛼 = 𝑑 ∙ ∇2𝑈2 − 𝑘2          ..... (8) 

𝜕𝛼𝑈3

𝜕𝑡𝛼 = 𝑑 ∙ ∇2𝑈3 − 𝑘3  

𝜕𝛼𝑈4

𝜕𝑡𝛼 = 𝑑 ∙ ∇2(𝑈4) − 𝑘4  

In Eqn. (8), 𝑘4 = 0i.e. there is no absorption at this stage, and symmetry is assumed. 

 

3.1 Routh – Hurwitz stability criterion for fractional order system of equations[27] 

Eqn. (8) can be considered as follows: 

𝐷𝛼𝑈𝑖 = 𝑓𝑖(𝑈𝑖)..             .... (9)                  

where 𝑓𝑖(𝑈𝑖) = 𝑑 ∙ ∇2𝑈𝑖 − 𝑘𝑖 , 𝑖 = 1,2 ,3,4. 

 

The associated initial conditions are: 

𝑈1(𝑟, 0) = (𝑒−𝑧0 − 𝑒−𝑧1) (𝑟 +
𝑅2

𝑟
) 

𝑈2(𝑟, 0) = (𝑒−𝑧1 − 𝑒−𝑧2) (𝑟 +
𝑅2

𝑟
)       ... ... (10) 

𝑈3(𝑟, 0) = (𝑒−𝑧2 − 𝑒−𝑧3) (𝑟 +
𝑅2

𝑟
)  
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𝑈4(𝑟, 0) = 𝑒−𝑧3 (𝑟 +
𝑅2

𝑟
)  

To determine the critical points of Eq. (9), we prescribe 𝐷𝛼𝑈𝑖 = 0, where 𝑖 = 1,2,3,4.This implies 

that 𝑓𝑖(𝑈𝑖
∗) = 0. Let  𝜁∗(𝑈1

∗, 𝑈2
∗, 𝑈3

∗, 𝑈4
∗) be a critical point of the system (9). Now a positive term 

𝛿(𝑡) i.e. 𝑈𝑖 = 𝑈𝑖
∗ + 𝛿𝑖(𝑡) is added to the critical point for the desired perturbation. It follows that:  

𝐷𝛼(𝑈𝑖
∗ + 𝛿𝑖) = 𝑓𝑖(𝑈𝑖

∗ + 𝛿𝑖), 𝑖 = 1,2,3,4. 

⟹ 𝐷𝛼𝛿𝑖 = 𝑓𝑖(𝑈𝑖
∗ + 𝛿𝑖)    …..(11)  

Now by Taylor’s expansion we have: 

𝐷𝛼𝛿𝑖 = 𝑓𝑖(𝑈𝑖
∗) +

𝜕𝑓𝑖

𝜕𝑈𝑖
|
𝑒𝑞

𝛿𝑖 + ℎ𝑖𝑔ℎ𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 𝑡𝑒𝑟𝑚𝑠     …(12) 

Since 𝑓𝑖(𝑈𝑖
∗) = 0, therefore:  

𝐷𝛼𝛿𝑖 ≈
𝜕𝑓𝑖

𝜕𝑈𝑖
|
𝑒𝑞

𝛿𝑖               ...... (13) 

Now, equation (13) can be derived in the form of the following matrix system: 

𝐷𝛼𝛿 = 𝐽𝛿           ......(14) 

Where 𝛿 = (𝛿1, 𝛿2, 𝛿3, 𝛿4)
𝑇, and 𝐽(𝜁∗) =

[
 
 
 
 
 
 
𝜕𝑓1

𝜕𝑈1
0 0 0

0
𝜕𝑓2

𝜕𝑈2
0 0

0 0
𝜕𝑓3

𝜕𝑈3
0

0 0 0
𝜕𝑓4

𝜕𝑈4]
 
 
 
 
 
 

. Here 𝐽 denotes the Jacobian 

matrix computed at the critical point 𝜁∗, 𝜆1 =
𝜕𝑓1

𝜕𝑈1
, 𝜆2 =

𝜕𝑓2

𝜕𝑈2
, 𝜆3 =

𝜕𝑓3

𝜕𝑈3
 𝑎𝑛𝑑 𝜆4 =

𝜕𝑓4

𝜕𝑈4
 are the  

eigenvalues of 𝐽. 

The initial conditions for the system (8) are: 

 

𝑈1(0) = 𝑈1
∗ + 𝛿1(0),     𝑈2(0) = 𝑈2

∗ + 𝛿2(0),  𝑈3(0) = 𝑈3
∗ + 𝛿3(0),   𝑈4(0) = 𝑈4

∗ + 𝛿4(0),   

…..(15) 

Hence Eqn. (12) yields: 

 

𝐷𝛼𝛿1 = 𝜆1𝛿1, 𝐷𝛼𝛿2 = 𝜆2𝛿2, 𝐷𝛼𝛿3 = 𝜆3𝛿3, 𝐷𝛼𝛿4 = 𝜆4𝛿4,    ...... (16) 

The solutions of equation (16) are: 

 

𝛿𝑖(𝑡) = 𝐸𝛼(𝜆𝑖𝑡
𝛼)𝛿𝑖(0),   𝑖 = 1, 2, 3, 4.    ….(17) 
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Then 𝛿1(𝑡), 𝛿2(𝑡), 𝛿3(𝑡), 𝛿4(𝑡)are decreasing. Thus the critical point 𝜁∗ will have local asymptotic 

stability if the Matignon’s criterion [19] provided by |arg( 𝜆𝑖)| > 𝛼
𝜋

2
  . 𝑖 = 1, 2, 3, 4 is fulfilled. 

 

4. Analytical solutions for the generalized multipoint diffusion model  

Now applying Henkel’s Transformation ( ℋ{𝐶} = �̃�)[20] in the above system of equations (5) 

using the conventiondefined in Eqn. (6), we get: 

At 𝑧 = 𝑧0,    
𝜕𝛼�̃�01

𝜕𝑡𝛼
= −𝑑 ∙ 𝑝2�̃�01 −

0.5725

𝑝1.4
 

At 𝑧 = 𝑧1,    
𝜕𝛼�̃�12

𝜕𝑡𝛼 = −𝑑 ∙ 𝑝2�̃�12 −
0.5725

𝑝1.4  

At 𝑧 = 𝑧2,    
𝜕𝛼�̃�23

𝜕𝑡𝛼 = −𝑑 ∙ 𝑝2�̃�23 −
0.5725

𝑝1.4  

… … … … … … … … … … … … … …                                 …… (18) 

At 𝑧 = 𝑧𝑚−1,
𝜕𝛼�̃�𝑚−1 𝑚

𝜕𝑡𝛼 = −𝑑 ∙ 𝑝2�̃�𝑚−1 𝑚 −
0.5725

𝑝1.4  

… … … … … … … … … … … … … … 

At 𝑧 = 𝑧𝑁−1,
𝜕𝛼�̃�𝑁−1 𝑁

𝜕𝑡𝛼 = −𝑑 ∙ 𝑝2�̃�𝑁−1 𝑁 −
0.5725

𝑝1.4  

At 𝑧 = 𝑧𝑁,  
𝜕𝛼𝐶�̃�

𝜕𝑡𝛼 = −𝑑 ∙ 𝑝2�̃�𝑁 

In view of Matignon [19] (see Remark 7.1 in that article), the solution of the above system of 

equations will be: 

 

�̃�01 = �̃�01(0)𝐸𝛼(−𝑝2𝑑𝑡𝛼) −
0.57254

𝑝1.4 ∫ 𝑠𝛼−1𝐸′
𝛼(−𝑝2𝑑𝑠𝛼)𝑑𝑠

𝑡

0
 

�̃�12 = �̃�12(0)𝐸𝛼(−𝑝2𝑑𝑡𝛼) −
0.57254

𝑝1.4 ∫ 𝑠𝛼−1𝐸′
𝛼(−𝑝2𝑑𝑠𝛼)𝑑𝑠

𝑡

0
  

�̃�23 = �̃�23(0)𝐸𝛼(−𝑝2𝑑𝑡𝛼) −
0.57254

𝑝1.4 ∫ 𝑠𝛼−1𝐸′
𝛼(−𝑝2𝑑𝑠𝛼)𝑑𝑠

𝑡

0
  

… … … … … … … … … … … … … … 

�̃�𝑚−1 𝑚 = �̃�𝑚−1 𝑚(0)𝐸𝛼(−𝑝2𝑑𝑡𝛼) −
0.57254

𝑝1.4 ∫ 𝑠𝛼−1𝐸′
𝛼(−𝑝2𝑑𝑠𝛼)𝑑𝑠

𝑡

0
   ......  (19) 

… … … … … … … … … … … … … … 

�̃�𝑁−1 𝑁 = �̃�𝑁−1 𝑁(0)𝐸𝛼(−𝑝2𝑑𝑡𝛼) −
0.57254

𝑝1.4 ∫ 𝑠𝛼−1𝐸′
𝛼(−𝑝2𝑑𝑠𝛼)𝑑𝑠

𝑡

0
  

�̃�𝑁 = �̃�𝑁(0)𝐸𝛼(−𝑝2𝑑𝑡𝛼)  

 

ForN =3 in the above system we arrive at:  
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�̃�01 = �̃�01(0)𝐸𝛼(−𝑝2𝑑𝑡𝛼) −
0.5725

𝑝1.4 ∫ 𝑠𝛼−1𝐸′
𝛼(−𝑝2𝑑𝑠𝛼)𝑑𝑠

𝑡

0
  

�̃�12 = �̃�12(0)𝐸𝛼(−𝑝2𝑑𝑡𝛼) −
0.5725

𝑝1.4 ∫ 𝑠𝛼−1𝐸′
𝛼(−𝑝2𝑑𝑠𝛼)𝑑𝑠

𝑡

0
      ......(20) 

�̃�2 3 = �̃�2 3(0)𝐸𝛼(−𝑝2𝑑𝑡𝛼) −
0.5725

𝑝1.4 ∫ 𝑠𝛼−1𝐸′
𝛼(−𝑝2𝑑𝑠𝛼)𝑑𝑠

𝑡

0
  

�̃�3 = �̃�3(0)𝐸𝛼(−𝑝2𝑑𝑡𝛼)  

Applying the inverse Henkel Transform, (ℋ−1{�̃�} = 𝐶 ), we get the following expressions: 

𝐶3(𝑟, 𝑡) = ℋ−1{�̃�3(𝑝, 𝑡)} = ℋ−1{�̃�3(𝑝, 0)𝐸𝛼(−𝑝2𝑑𝑡𝛼)} = 𝑒−𝑧3(𝑟 +
𝑅2

𝑟
+

𝑑(𝑟2+𝑅2)𝑡𝛼

𝑟3Gamma[1+𝛼]
+

𝑑2(𝑟2+9𝑅2)𝑡2𝛼

𝑟5Gamma[1+2𝛼]
+

9𝑑3(𝑟2+25𝑅2)𝑡3𝛼

𝑟7Gamma[1+3𝛼]
+

225𝑑4(𝑟2+49𝑅2)𝑡4𝛼

𝑟9Gamma[1+4𝛼]
……)  

           ….(21) 

𝐶23(𝑟, 𝑡) = ℋ−1{�̃�23(𝑝, 𝑡)} = ℋ−1 {�̃�23(𝑝, 0)𝐸𝛼(−𝑝2𝑑𝑡𝛼) −
0.5725

𝑝1.4 ∫ 𝑠𝛼−1𝐸′
𝛼(−𝑝2𝑑𝑠𝛼)𝑑𝑠

𝑡

0
}  

=(𝑒−𝑧2 − 𝑒−𝑧3) (𝑟 +
𝑅2

𝑟
+

𝑑(𝑟2+𝑅2)𝑡𝛼

𝑟3Gamma[1+𝛼]
+

𝑑2(𝑟2+9𝑅2)𝑡2𝛼

𝑟5Gamma[1+2𝛼]
+

9𝑑3(𝑟2+25𝑅2)𝑡3𝛼

𝑟7Gamma[1+3𝛼]
+

225𝑑4(𝑟2+49𝑅2)𝑡4𝛼

𝑟9Gamma[1+4𝛼]
……) −

0.019085𝑑𝑡2𝛼(−
11.5315

𝑟1.6Gamma[𝛼]
+𝑑𝑡𝛼(−

19.6804

𝑟3.6Gamma[2𝛼]
+𝑑𝑡𝛼(−

191.2936

𝑟5.6Gamma[3𝛼]
+𝑑𝑡𝛼(−

4799.1733

𝑟7.6Gamma[4𝛼]
−

231000.20958 𝑑𝑡𝛼

𝑟9.6Gamma[5𝛼]
)))…)

𝛼2 ,  

           ….(22) 

𝐶12(𝑟, 𝑡) = ℋ−1{�̃�12(𝑝, 𝑡)} = ℋ−1 {�̃�12(𝑝, 0)𝐸𝛼(−𝑝2𝑑𝑡𝛼) −
0.5725

𝑝1.4 ∫ 𝑠𝛼−1𝐸′
𝛼(−𝑝2𝑑𝑠𝛼)𝑑𝑠

𝑡

0
}  

=(𝑒−𝑧1 − 𝑒−𝑧2) (𝑟 +
𝑅2

𝑟
+

𝑑(𝑟2+𝑅2)𝑡𝛼

𝑟3Gamma[1+𝛼]
+

𝑑2(𝑟2+9𝑅2)𝑡2𝛼

𝑟5Gamma[1+2𝛼]
+

9𝑑3(𝑟2+25𝑅2)𝑡3𝛼

𝑟7Gamma[1+3𝛼]
+

225𝑑4(𝑟2+49𝑅2)𝑡4𝛼

𝑟9Gamma[1+4𝛼]
……) −

0.019085𝑑𝑡2𝛼(−
11.5315

𝑟1.6Gamma[𝛼]
+𝑑𝑡𝛼(−

19.6804

𝑟3.6Gamma[2𝛼]
+𝑑𝑡𝛼(−

191.2936

𝑟5.6Gamma[3𝛼]
+𝑑𝑡𝛼(−

4799.1733

𝑟7.6Gamma[4𝛼]
−

231000.20958 𝑑𝑡𝛼

𝑟9.6Gamma[5𝛼]
)))…)

𝛼2   

           ….(23) 

 

𝐶01(𝑟, 𝑡) = ℋ−1{�̃�01(𝑝, 𝑡)} = ℋ−1 {�̃�01(𝑝, 0)𝐸𝛼(−𝑝2𝑑𝑡𝛼) −
0.5725

𝑝1.4 ∫ 𝑠𝛼−1𝐸′
𝛼(−𝑝2𝑑𝑠𝛼)𝑑𝑠

𝑡

0
}  
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=(𝑒−𝑧0 − 𝑒−𝑧1) (𝑟 +
𝑅2

𝑟
+

𝑑(𝑟2+𝑅2)𝑡𝛼

𝑟3Gamma[1+𝛼]
+

𝑑2(𝑟2+9𝑅2)𝑡2𝛼

𝑟5Gamma[1+2𝛼]
+

9𝑑3(𝑟2+25𝑅2)𝑡3𝛼

𝑟7Gamma[1+3𝛼]
+

225𝑑4(𝑟2+49𝑅2)𝑡4𝛼

𝑟9Gamma[1+4𝛼]
……) −

0.019085𝑑𝑡2𝛼(−
11.5315

𝑟1.6Gamma[𝛼]
+𝑑𝑡𝛼(−

19.6804

𝑟3.6Gamma[2𝛼]
+𝑑𝑡𝛼(−

191.2936

𝑟5.6Gamma[3𝛼]
+𝑑𝑡𝛼(−

4799.1733

𝑟7.6Gamma[4𝛼]
−

231000.20958 𝑑𝑡𝛼

𝑟9.6Gamma[5𝛼]
)))…)

𝛼2  

…(24)  

Since 𝐶23 = 𝐶2 − 𝐶3,     𝐶12 = 𝐶1 − 𝐶2     and       𝐶01 = 𝐶0 − 𝐶1, it follows that: 

 

𝐶0(𝑟, 𝑡) = 𝐶01(𝑟, 𝑡) + 𝐶1(𝑟, 𝑡)  

=𝑒−𝑧0 (𝑟 +
𝑅2

𝑟
+

𝑑(𝑟2+𝑅2)𝑡𝛼

𝑟3Gamma[1+𝛼]
+

𝑑2(𝑟2+9𝑅2)𝑡2𝛼

𝑟5Gamma[1+2𝛼]
+

9𝑑3(𝑟2+25𝑅2)𝑡3𝛼

𝑟7Gamma[1+3𝛼]
+

225𝑑4(𝑟2+49𝑅2)𝑡4𝛼

𝑟9Gamma[1+4𝛼]
…… ) −

3 ∗

0.019085𝑑𝑡2𝛼(−
11.5315

𝑟1.6Gamma[𝛼]
+𝑑𝑡𝛼(−

19.6804

𝑟3.6Gamma[2𝛼]
+𝑑𝑡𝛼(−

191.2936

𝑟5.6Gamma[3𝛼]
+𝑑𝑡𝛼(−

4799.1733

𝑟7.6Gamma[4𝛼]
−

231000.20958 𝑑𝑡𝛼

𝑟9.6Gamma[5𝛼]
)))…)

𝛼2  

…(25)   

𝐶1(𝑟, 𝑡) = 𝐶12(𝑟, 𝑡) + 𝐶2(𝑟, 𝑡)  

=𝑒−𝑧1 (𝑟 +
𝑅2

𝑟
+

𝑑(𝑟2+𝑅2)𝑡𝛼

𝑟3Gamma[1+𝛼]
+

𝑑2(𝑟2+9𝑅2)𝑡2𝛼

𝑟5Gamma[1+2𝛼]
+

9𝑑3(𝑟2+25𝑅2)𝑡3𝛼

𝑟7Gamma[1+3𝛼]
+

225𝑑4(𝑟2+49𝑅2)𝑡4𝛼

𝑟9Gamma[1+4𝛼]
…… ) − 2 ∗

0.019085𝑑𝑡2𝛼(−
11.5315

𝑟1.6Gamma[𝛼]
+𝑑𝑡𝛼(−

19.6804

𝑟3.6Gamma[2𝛼]
+𝑑𝑡𝛼(−

191.2936

𝑟5.6Gamma[3𝛼]
+𝑑𝑡𝛼(−

4799.1733

𝑟7.6Gamma[4𝛼]
−

231000.20958 𝑑𝑡𝛼

𝑟9.6Gamma[5𝛼]
)))…)

𝛼2 ,  

... (26) 

𝐶2(𝑟, 𝑡) = 𝐶23(𝑟, 𝑡) + 𝐶3(𝑟, 𝑡)  

= 𝑒−𝑧2 (𝑟 +
𝑅2

𝑟
+

𝑑(𝑟2+𝑅2)𝑡𝛼

𝑟3Gamma[1+𝛼]
+

𝑑2(𝑟2+9𝑅2)𝑡2𝛼

𝑟5Gamma[1+2𝛼]
+

9𝑑3(𝑟2+25𝑅2)𝑡3𝛼

𝑟7Gamma[1+3𝛼]
+

225𝑑4(𝑟2+49𝑅2)𝑡4𝛼

𝑟9Gamma[1+4𝛼]
…… ) −

0.019085𝑑𝑡2𝛼(−
11.5315

𝑟1.6Gamma[𝛼]
+𝑑𝑡𝛼(−

19.6804

𝑟3.6Gamma[2𝛼]
+𝑑𝑡𝛼(−

191.2936

𝑟5.6Gamma[3𝛼]
+𝑑𝑡𝛼(−

4799.1733

𝑟7.6Gamma[4𝛼]
−

231000.20958 𝑑𝑡𝛼

𝑟9.6Gamma[5𝛼]
)))…)

𝛼2
 

,                                                                                                  …(27)   

𝐶3(𝑟, 𝑡) = 𝑒−𝑧3(𝑟 +
𝑅2

𝑟
+

𝑑(𝑟2+𝑅2)𝑡𝛼

𝑟3Gamma[1+𝛼]
+

𝑑2(𝑟2+9𝑅2)𝑡2𝛼

𝑟5Gamma[1+2𝛼]
+

9𝑑3(𝑟2+25𝑅2)𝑡3𝛼

𝑟7Gamma[1+3𝛼]
+

225𝑑4(𝑟2+49𝑅2)𝑡4𝛼

𝑟9Gamma[1+4𝛼]
……)  

…(28)   

 

5. Results and Discussion 
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When hypoxia is present, which can be brought on by anemia, aberrant oxygen transfer via 

hemoglobin, inefficient circulation, or physiological shunt, oxygen therapy has significantly less 

benefit since the alveoli already contain normal oxygen levels. Instead, the issue is a deficiency in 

one or more of the systems that carry oxygen from the lungs to the tissues. Nevertheless, even if 

the amount carried by hemoglobin is rarely changed, a tiny amount of excess oxygen, between 7 

and 30 percent, can be transported in the dissolved state in the blood when alveolar oxygen is 

raised to the maximum. This fractional quantity of excess oxygen may constitute the difference 

between life and death [2]. It has been established in previous sections, that through refined 

mathematical models (Eqn. 1) one can easily determine the approximate position of highly effected 

regions.The analytical solutions derived in section 4 have been numerically computed using 

symbolic software, Mathematica 11.3 (Wolfram Research, 

https://www.wolfram.com/mathematica/new-in-11/). All data utilized for the graphical plots given 

in this section is based on physiologically robust sources [19, 20]. Comparing Fig.3 of ref. [4] to 

Fig 2, evidently similar topologies are computed indicating that there is a significant variation of 

concentration of oxygen with respect to a change in the order of derivative (𝛼), at z = 0.1 and  r = 

0.1. From this,it is clear that we remodelled the original problem,as described in ref.[1, 4] without 

changing its originality. An additional advantage of our model is that diffusion is more precisely 

simulated from different points of the capillary in decreasing order along the length of the capillary 

i.e. for the different values of z, the values of 𝐶0(𝑟, 𝑡), 𝐶1(𝑟, 𝑡), 𝐶2(𝑟, 𝑡) 𝑎𝑛𝑑 𝐶3(𝑟, 𝑡)are 

demonstrably depleted as witnessed in Fig.3 at same time, which concurs with actual physiological 

observations [1]. It is important to note that very shallow gradients of concentration with respect 

to time are computed at low values of (𝛼). The growth rate of oxygen diffusion is therefore low 

for this scenario. However as (𝛼) is elevated a very strong enhancement in temporal concentration 

gradient is induced and this further is amplified at greater time values. 

https://www.wolfram.com/mathematica/new-in-11/


 
 

15 
 

 

Fig. 2. Variation of concentration of oxygen versus time with respect to change in 𝛼, at z = 

0.1, r = 0.1, d = 1.0, R= 0.0001. 

 

Fig. 3.Concentration of Oxygen versus time t 𝑤𝑖𝑡ℎ 𝛼 = 0.9; 𝑑 = 1; 𝑅 = 0.0001; 𝑎𝑡 𝑟 = 0.01. 
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Fig. 4.Concentration of Oxygen versus time t 𝑤𝑖𝑡ℎ 𝛼 = 0.9; 𝑑 = 1; 𝑅 = 0.0001; 𝑎𝑡 𝑟 = 0.01. 

 

 

 

Fig. 5. Concentration of Oxygen versus time t 𝑤𝑖𝑡ℎ 𝛼 = 0.9; 𝑑 = 1; 𝑅 = 0.0001; 𝑎𝑡 𝑟 = 0.01. 
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Fig. 6.Concentration of Oxygen versus time t 𝑤𝑖𝑡ℎ 𝛼 = 0.9; 𝑑 = 1; 𝑅 = 0.0001; 𝑎𝑡 𝑟 = 0.01. 

 

 

 

 

Fig. 7.Concentration of Oxygen versus time t 𝑤𝑖𝑡ℎ 𝛼 = 0.9; 𝑑 = 1; 𝑅 = 0.0001; 𝑎𝑡 𝑟 = 0.01. 
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Fig. 8. Variation of concentration of Oxygen with radial direction r for 𝛼 = 0.9; 𝑑 = 1; 𝑅 =

0.0001; 𝑎𝑡 𝑡 = 1. 

 

 

 

 

Fig. 9. Variation of concentration of Oxygen with radial direction r and time t for 𝛼 = 0.9; 𝑑 =

1; 𝑅 = 0.0001. 
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Fig. 10. Variation of concentration of Oxygen with radial direction r and time t for 𝛼 = 0.9; 𝑑 =

1; 𝑅 = 0.0001. 

 

 

Fig. 11. Variation of Concentration of Oxygen with radial direction r and time t for𝛼 = 0.9; 𝑑 =

1; 𝑅 = 0.0001. 
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Fig. 12. Variation of concentration of Oxygen with radial direction r and time tfor 𝛼 = 0.9; 𝑑 =

1; 𝑅 = 0.0001. 

To clarify this more accurately Fig.4, Fig.5, Fig.6, Fig.7 are displayed. It is apparent from 

inspection of these plots that the concentration of oxygen at z = 0.0001 is much greater than the 

concentration of oxygen at z = 1.0 (compare fig 4 and 5). In both these plots, concentration remains 

invariant with time up to t ~3, therafter there is a very sharp acent in concentration. The diffusion 

process is therefore amplified both at short axial distances and large time elapse whereas it is 

suppressed at longer axial distance and low time values. Figs 6 and 7 clearly demonstrate that as 

z is increased to 0.6 and the maximum value of 1 (termination of the capillary), the oxygen 

concentration magnitude reduces by an order of magnitude (from 1017 to 1016) and eventually is 

massively depleted by many orders of magnitude to 1010. The topologies of the plots however 

remain consistent with invariance at small times and rapid ascents at larger times. Also this pattern 

is further emphasized in Fig.8, where as one moves along the length of the capillary the radial 

distance of diffusion decreases. Therefore the oxygen diffuses only in the zones of tissues which 

are very close to the capillary due to the decrease in concentration of oxygen along the capillary 

length. Furthermore asymptotic decays are computed in oxygen cncentration with radial distance 

which is very distinct from the monotnic ascents computed in earlier figures with time. Peak 

concentrations, in consistency with physiological experiments, always arise near the centre of the 

cpaillary (r =0) and minimal magnitudes are generated at large radial distances (periphery of the 

capillary, r = 2). The strong dependence of the diffusion process on time i.e. unsteady phenomena 

is clearly captured. In Fig.9 to Fig.12, the variations of concentration of oxygen with respect to 
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radial coordinate r and time tare visualized simultaneously at the locations, z = 0.0001, 0.1, 0.6 

and 1.0 respectively. These contour plots confirm that maximum oxygen concentrations 

consistently arise at low radial coordinate values and high values of time, irrespective of the 

variation in other parameters.  

 

6. Conclusions 

A comprehensive fractional differential mathematical model for Oxygen diffusion from capillary 

to tissues during hypoxia with memory has been developed for multiple points, generalizing 

previous studies which were restricted to single point diffusion [4], with effect of external force 

[5]. The diffusion of oxygen through capillary to surrounding tissues through multiple points has 

been reported in previous studies, but it has not been considered in mathematical models. This 

concept of multiple point detection simultaneously will greatly assist in a more robust clinical 

approach and subsequent therapies for hypoxia. As we have highlighted above, a very small 

amount of extra oxygen may create the big difference in therapy, if one is able to correctly identify 

the most appropriate region. The present study proposed for the first time therefore a theoretical 

fluid dynamics model that incorporates the multiple point diffusion of oxygen from different 

locations along the capillary length to tissues in the form of a fractional dynamical system of 

equations. A special case of this generalized model is retrieved for single point diffusion and agrees 

exactly with the formulation in [4]. A numerical stability analysis of the dynamical model utilizing 

the Routh – Hurwitz stability criterion has also been conducted. Thereafter analytical solutions of 

the porposed  model have been derived with Henkel transforms applied to the conventional model 

(using𝛼0 = 𝛼1 = 𝛼2 = ⋯𝛼𝑛 = 𝛼). Physiologically realistic scenarios have been simulated. Both 

spatial and temporal variation  of concentration of oxygen is visualized graphically for different 

control parameters. All numerical computation have beeen done using symbolic software, 

Mathematica 11.3. The main findings of the present analysis can be summarized as follows: 

a) Improved accuracy is achieved with the new generalized multipoint model compared with 

the classical single point model. 

b) Close correlation with simpler models is achieved.  

c) Diffusion is shown to arise from different points of the capillary in decreasing order along 

the length of the capillary i.e. for the different values of z.  

d) The concentration magnitudes at low capillary length far exceed those further along the 

capillary.  
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e) With progrssive distance along the capillary, the radial distance of diffusion decreases, 

such that oxygen diffuses only effectively in very close proximity to tissues.  

f) The concentration exhibits a monotnic ascent in time whereas it decays asymptotically with 

radial coordinate.  

The simulations provide a useful benchmark for more generalized mass diffusion computations 

with complex oxygen gradients and partial pressures with commercial finite element and finite 

volume software including ANSYS FLUENT, ADINA-F, STAR-C, CFD-ACE etc. Future studies 

may therefore utilize fully 3-D convective-diffusive models and also consider Taylor 

hydrodynamic dispersion. An additional pathway may be to explore the use of nanoparticles to 

enhance diffusion of oyxgen with considration of thermal convction in heat conducting blood 

flows in capillaries. 
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