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Abstract

COVID-19, also known as the SARS-CoV-2 coronavirus, has paralysed the world and

forced people to change their lifestyles. Since COVID-19 deaths are increasing daily, the

disease has become a global public health issue. Different countries used different public

health guidelines to avoid human-to-human transmission. Personal hygiene, hand washing

and sanitization, face masks for social distance, comprehensive testing, and, in the worst

case, a lockdown and travel restriction are rules.

This research seeks the optimal lockdowns and border control approach for timely lock-

down and travel limitations. This thesis attempts to use UK data from the global pandemic

dataset. The data was trained using DRL algorithm to determine lockout and travel lim-

itation timing. This is the first study to use deep reinforcement learning to determine

the best UK lockdown and border control method. A unique base model, Duelling Dou-

ble Deep Q-Network (D3QN), a variation of the Deep Q-Network algorithm (DQN), was

used to train COVID-19 epidemic dataset and evaluated on test data. Public health and

government will be able to execute prompt and appropriate lockdown and border control

policies to minimise the disease’s spread, improving people’s quality of life and lowering

costs.

Initial lockdown and travel restrictions reduced COVID-19 load. However, our agency

advised the UK to lock down or restrict travel before or on the index case (the first deceased

xii



recoded). Moreover, the agent frequently called for a full lockdown, border closures, travel

restrictions, and more harsh security measures than public health. This study assesses the

positive effects of preventing COVID-19’s spread on population health while considering its

negative economic and social effects. Finally, average moving reward was used to compare

baselines.
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Chapter 1

Introduction

Any nation’s public health system must work cooperatively with the rest of society to

prevent illnesses, extend life, and avoid disabilities. As everyone in a social unit is exposed

to the same level of influences that affect their health and wellbeing, it is a collaborative

effort. How well-developed the public health system is will determine how high the quality

of life is. Many health advantages as well as social advantages come with good mental

health. As both equitable social advantages and balanced, healthy lives are supported by

positive psychological performance. A good social objective in and of itself is social well-

being, which includes mental wellbeing. As a result, it has become a definite and stated

objective of the government in many nations.

There is a new wave of sickness that is more deadly in terms of transmissions and mortality

rates, which is of great worry to public health due to the quick expansion of human-to-

human transmission, the lack of immunisations, and the virus’s challenging mutational

behaviour. The spread of this virus has turned into a pandemic, destroying not only na-

tional economy but also the mental and physical health of the populace. On December 31,

2019, Wuhan, China, reported the index case of COVID-19.

Within a month after the initial announcement, there were around 75,000 confirmed cases

1



of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) on the Chinese

mainland. This disease quickly spreads with an outbreak into Korea and Italy. The over-

whelming number of individuals who are infected with this disease within a short period

of time has made it a global problem. There has not yet been a potential vaccination

to guarantee that people are immune to this terrible sickness as of the 28th of February

2021, when this proposition was made. Lack of personal protective equipment, hospitals,

self-quarantine facilities, critical care capacity, and appropriate treatment lead to a surge

in further health crises in some nations and territories. COVID-19 is thought to be re-

sponsible for 0.5 million fatalities worldwide, while this number may be conservative due

to insufficient testing in developing and underdeveloped nations.

An infectious respiratory and vascular disease, COVID-19, affects people. The illness’ typ-

ical signs and symptoms include a fever, cough, exhaustion, shortness of breath, and a

loss of taste and smell. The time it takes a human to contract a virus and start showing

symptoms is known as the incubation period, and it can be anywhere from one day and

14 days. The majority of those affected only experience minor symptoms, but some go on

to suffer acute respiratory distress syndrome (ARDS). Unfortunately, those who overcame

the acute stage would sustain long-term organ damage, mainly to the heart and lungs.

Additionally, those who transiently entered the acute phase would endure one or more of

these symptoms, such as fever, weakness in the muscles, exhaustion, memory loss, and

other symptoms, for an extended period.

Despite the possibility of vaccines that would require people to wait longer to receive them,

there is still a need for People should practise social distance, good personal hygiene in-

cluding washing their hands, and keeping their hands away from their eyes, mouth, nose,

and ears, according to the WHO and public health departments of many nations. To re-

2



duce the danger of transmission, face masks are recommended for usage in public settings.

The disease’s potential impact on individuals who may not manifest any outward signs

is more alarming. Testing is useless in such asymptomatic patients who lack symptoms.

A global economic and financial catastrophe has also been caused by the COVID-19’s

propagation and the response actions that were taken. Because of varying cultures, cli-

mates, and demographics, it can be difficult to identify the right kind and degree of public

health policies for each nation and territory. International organisations are working non-

stop to ease this suffering and safeguard people’s priceless lives. NHS corona dataset, UK

(https://www.gov.uk/coronavirus),UNICEF, (https://www.cdc.gov/coronavirus/2019-ncov

/prevent-getting-sick/prevention.htm)CDC, WHO (https://www.who.int), and numerous

other organisations are just a few of them. To slow the coronavirus’s rapid spread, these

institutions are recommending individuals to follow certain guidelines through the public

health system.

Throughout the past few decades, machine learning (ML) techniques have advanced re-

markably in a variety of fields, most notably in the field of public health (Vlado et al.,

2019). Virtually every element of modern life is supported by machine learning, including

social network functionality, e-commerce recommendation systems, and smart devices like

smartphones and cameras. Supervised and Unsupervised learning, two categories under

which machine learning is typically categorised, have been employed to some extent in the

prediction of clinical risk of diabetes from electronic hospital records (EHR) (Huang et al.,

2007). The application of machine learning (ML) techniques is concentrated on predictive

analyses, such as future forecasting or, more precisely, disease diagnostics, which identifies

the route to disease therapy. Finding the best policy regime for a patient’s therapy, mean-

while, is difficult. As a result, ML algorithms only recommend a generalised treatment that

is not tailored to a specific patient. Since reinforcement learning (RL) has lately acquired
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popularity in video games, it can now fill the gaps left by ML (Mohammad and Mahmoud

,2020).

The reward mechanism used in RL is based on trial and error. This sequential decision-

making method has a delayed reward (Nemati et al., 2016). Because of the non-optimized

training dataset, the results are typically optimal techniques (Raghu et al., 2017). In their

most recent research, Phuong et al. (2018) applied RL to identify the best diabetes type

1 control strategy. The minimum and HAVORKA models were combined in the study to

assess and maintain blood glucose levels. Mahsa et al (2019).’s use of the conventional

Q-learning reward system to identify the best type 1 diabetes care.

Deep learning (DL) is ”Shallow” in comparison to common machine learning methods like

decision trees, logistic regression, support vector machines (SVMs), linear regression, and

more. To learn representations of data with a variety of abstractions, DL uses computer

models consisting of multiple processing layers. There have been numerous DL studies on

diabetes, but they have all relied on the Boltzmann machine approach to categorise and

identify different forms of diabetes (Zeki et al., 2012). The combination of deep learning

with reinforcement learning is known as deep reinforcement learning. The reinforcement

learning uses deep neural networks as its approximation components. A novel method

for simulating basic or complicated real-life settings is DRL. Mnih et al. (2015) reported

progress in learning control strategies for the Atari game directly from high-dimensional

sensory inputs.

In this report, I will discuss how DRL algorithms can be used to determine the appropriate

course of action for public health to safeguard individuals from the spread of COVID-19.

The agent, which is the model software, can identify the appropriate timing for lockdown
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and travel restriction can be applied as policy, that will drastically decrease the spread of

the disease, maintain quality of life, and overall keep the economy going.

1.1 Research Background

Since the World Health Organisation was notified about the SARS-CoV-2 virus at the end

of December 2019, at least 143 activities and interventions have taken place in the UK

to restrict and mitigate the infection’s spread. Considering the classification approach de-

scribed by ( Moy et al., 2020) and the Oxford stringency index created by (Hale et al. 2020)

to investigate these treatments. The policy classification proposes numerous COVID-19

intervention classes that grow in severity and subsequently de-escalate when governments

wind down response actions. These classifications pertain to COVID-19 containment and

mitigation policies, with the goal of reducing the severity of the impact on health and

increasing care. Economic and health technology interventions are also classified.

Some venues like the pubs and restaurants were allowed to open in England on July 4th,

but not in Scotland until July 15th. Indoor restaurants and pubs in Wales could open

on August 3rd, and indoor restaurants and pubs selling food in Northern Ireland could

open on July 3rd, during the early phases of the pandemic, the government focused on

viral prevention and mitigation, most of the measures were related to containment poli-

cies. Following the introduction of social distancing measures and fines, the number of

measures rose, as did the stringency of containment measures. The major limitation was

the suspension of non-essential services on March 16th, followed by a lockdown on March

23rd. This lockdown required everyone to stay at home and work from home as much as

possible, with just one hour of exercise, food shopping and prescription trips allowed every

day, and a social distancing measure of 2 metres. Nonetheless, cases in the UK continued
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to grow until levelling as the number of daily cases slowly decreased, as seen by the de-

creasing confirmation rate. The daily peak in simulated symptomatic and lab-confirmed

cases occurred on April 1st and May 1st, respectively. The severity of policies was lessened

or deescalated after the peak of instances (and the number of confirmed cases continued

to fall).

Zhou and Khan(2021) look at how different social groups’ wages, time utilisation, and sub-

jective well-being altered during the pandemic in the UK. They examine within-individual

changes in labour income, paid work time, housework time, childcare time, and distress

level during the three lockdown periods and the easing period between them (from April

2020 to late March 2021) using longitudinal data from the latest UK Household Lon-

gitudinal Survey (UKHLS) COVID study and earlier waves of the UKHLS. (Zhou and

Khan, 2021) discovered that as the epidemic progressed, COVID-19 and its linked lock-

down measures had unequal and variable effects on people’s income, time consumption,

and subjective well-being based on their gender, ethnicity, and educational level in the

UK. Finally, the magnitude of the effects of COVID-19 and COVID-induced measures, as

well as the rate at which these effects manifested, varied across social groups with different

types of vulnerabilities.

Recent study indicates that the COVID-19 epidemic and accompanying social and eco-

nomic interventions, such as physical separation and business closure, have varied effects

on different social groupings. In the UK, for example, women and parents are shown

to have experienced a greater decrease in subjective wellbeing (David and Jones, 2020).

Pierce et al., (2021) affirm that, Black, Asian, and minority ethnic (BAME) immigrants

were more likely to face economic difficulties in the immediate aftermath of the first na-

tional lockdown (Hu, 2020) Furthermore, among those with COVID-19, people of BAME

6



origin in the UK had a greater death rate than white people (Petel et al., 2020). These

earlier findings showed the existence of acute disparities in repercussions for different social

groups, but our understanding of the long-term effects of COVID-19 and related measures

remains restricted. The COVID-19 epidemic has already lasted more than a year, with the

UK experiencing three national lockdowns. Early research was limited by data that en-

compassed only two-time intervals, such as before and immediately after the first lockdown

notification. Little is known about how unequal societal repercussions manifest themselves

at various stages of the COVID-19 epidemic, particularly with recurrent lockdowns. This

omission limits our knowledge of how COVID-19 and COVID-induced social policies, such

as physical distancing measures, working from home, and the closure of enterprises, which

have been changing on a weekly or even daily basis, affect people’s lives. Documenting the

evolution of the impacts of COVID-19 and COVID-induced measures is critical for under-

standing the ramifications of this quickly developing pandemic and assisting policymakers

in planning for future waves and pandemics.

A more detailed and up-to-date studies on how inequalities have evolved as the COVID-19

pandemic spreads in waves and various strategies to contain it have been implemented

over the last year. We conducted analyses on nationally representative population data

from the most recent UK Household Longitudinal Survey (UKHLS), which was conducted

prior to the first lockdown in March 2020, during the first lockdown from April to June

2020, during the ease of the first lockdown (June to September 2020), and during the

latter two lockdowns (November 2020 and January 2021 to March 2021). In this work,

we contribute to COVID-19 research by giving a dynamic picture of how people’s labour

earnings, time use, and wellbeing varied across different stages of the pandemic. We also

investigated whether and how much the disparities in these outcomes by gender, ethnicity,

and educational level have changed in the last year. In what follows, (Petel et al., 2020)
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first evaluate the most recent research on the impact of COVID-19 and COVID induced

measurements on people’s life, concentrating on three dimensions of social inequality: gen-

der, race/ethnicity, and education. Their research discusses the evolution of the COVID-19

pandemic, and the UK lockdown measures from March 2020 to April 2021. Following that,

(Petel et al., 2020) introduce the data and its longitudinal architecture, which allows us to

compare the information of the same individuals before the start of the epidemic and at

different time periods during the past year. Finally, they provided the results of fixed-effect

regression analysis and discuss their findings.

Although different data mining approaches have been employed in the past, previous re-

search difficulties can be grouped into two categories: data gathering and prediction strate-

gies. With the introduction of COVID-19 in the United Kingdom, data collecting is limited.

The low number of Biobank participants with COVID-19 and serology data leads to model

overfitting or misprediction (Willette et al., 2022).

1.2 Research Motivation

The necessity to help public health determine the best strategic policy to advise in prevent-

ing the spread of pandemics, as COVID-19 in this instance, is what drives this research.

To slow down or stop the spread of the COVID-19 virus. Coronavirus is one of several

public health challenges that urgently calls for government intervention in terms of policy

and management. Otherwise, if an appropriate and effective policy is not in place, it will

spread and cause an increasing number of deaths. As of the time this report was being

written, 17.9 million people worldwide were infected by the coronavirus by December,2020,

which also caused 0.6 million deaths worldwide. As more people are tested, more cases are

coming to light. The above-mentioned need for the DRL algorithm further motivates this
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research, which aims to investigate the effectiveness of the impact of the best policy that

the public health department will advise the populace on, to stop the spread of the virus

while also maintaining positive economy.

1.3 Research Problems

COVID-19 is an infectious disease, because of several acute respiratory syndrome coron-

avirus 2 (SARS-CoV-2). The people affected with COVID-19 normally show symptoms

that include persistence dry cough, fever, fatigue, shortness of breath, and loss of taste and

smell. In older for public health management and government to curb the spread of this

disease, there is need to formulate an optimal policy that will not only flatten the curve of

spread but also bring it down to a manageable number.

A review of the relevant literature uncovered many key themes about COVID-19 preva-

lence. Existing research has greatly aided our understanding of the importance of ML in

controlling the spread of COVID-19 in the UK. There are, however, a few critical research

gaps that must be addressed.

First, most research from the United Kingdom and other nations have simply looked for

trends to predict COVID-19 progression (Xin et al., 2022, Willette et al., 2022, Petel et

al., 2020, David and Jones, 2020, Hu, 2020). Overfitting may occur due to the researcher’s

insufficient data set. Given the importance of determining the optimal timing for lockdown

and travel restrictions, this is a critical research gap.

Second, there is not a single study that was conducted in the United Kingdom that looked

into the optimal timing for travel restrictions and lockdowns that was based on a deep rein-
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forcement learning technique. The few studies that did employ analytics and trustworthy

data never examined the usage of neural networks and reinforcement learning techniques.

Since the findings of their investigation might be misleading, this is another crucial void

that needs to be filled as soon as possible.

Third, DRL has been the only method for determining the optimal period for lockdown

and travel restriction (Harshad et al., 2020, Gloria et al., 2021, Kailiang, 2022,). In a prior

study, DRL was utilised to forecast cases of confirmation, mortality, and recovery, and the

results were compared to the time when lockdown and social isolation were imposed (Dong

et al., 2022).

This novel DRL method is based on Duelling Double Q-Network (D3QN) and uses available

data to learn from the environment the ideal policy for implementing lockdown and travel

restrictions. This technique will assist the government and public health in the United

Kingdom in determining the best strategy for controlling disease transmission over time.

The application of MLSTM aids in forecasting the future development of this disease,

paving the path for contingency measures.

This research would help to enhance knowledge and discover practical applications in the

field of DRL to combat the spread of COVID-19 and other pandemics by solving these

large gaps in research.

1.4 Research Aim and Objectives

Unlike past studies, this research will analyse the potential impact on the quality of life

and the economy by DRL in determining the best time to implement the lockdown and

travel restrictions. COVID-19, like many other diseases, has a greater impact on vulner-

10



able individuals, such as the elderly, people with disabilities, ethnic minorities, and those

living in disadvantaged areas. Allowing the virus to spread exponentially would result in

societally unacceptable consequences in terms of loss of life and illness.

Given the scarcity of research on the detailed use of DRL to find the appropriate timing

for both lockdown and travel restriction in the UK, as well as an analysis of the potential

impact of disease on the economy and the adverse quality of life it caused, the purpose of

this report will be to factor in the economy and quality of life when using deep reinforce-

ment learning on COVID-19 data in the UK.

Based on the motivation, the aim of this Report is to use a state-of-the-art DRL algorithm

to identify the best timing for lockdown, and border control restrictions that would signif-

icantly slow the spread of the disease while having little to no negative economic effects.

The research main objectives:

1. To conduct an extensive exploratory analysis of Epidemic COVID-19 data. Investi-

gate, to reveal patterns in death, recovery and confirmed cases of COVID-19 in the

UK, pre-processing, and feature engineering as necessary.

2. To train DRL algorithm to modify the LSTM model for improved prediction of the

confirmed, recovered and death cases of COVID-19 in the UK.

3. To train a Deep Reinforcement Learning (DRL) algorithm, the D3QN to finding the

right timing of optimal policy for lockdown and travel restriction in the UK.

4. To develop a framework that will clearly spelt out the research approach and results.
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1.5 Research Contributions

This research is about DRL, which evaluates the possible effect of combining COVID-19

Epidemic data with Lockdown and local/international travel ban data to determine the

ideal timing for lockdown and travel restriction. The current report makes significant con-

tributions by attempting to fill several gaps.

First, this study adds to the minimal research on deep reinforcement learning that has

been done to curb the spread of COVID-19 in the UK. This is one of the first studies to

look at determining the best approach for when the UK’s public health and government

suggest a lockdown and travel ban.

Second, by utilising CRISP-DM standard Data Science methodology to determine the op-

timal policy for lockdown and travel ban timing to curtail the spread of COVID-19 in the

UK. This study adds to the existing literature on DRL as an agent to finding the appro-

priate timing for introducing lockdown and travel ban in the UK. This is also one of the

first studies to investigate DRL in relation to COVID-19 dissemination using normal data

mining approaches.

Third, our work adds to the small amount of research on using untrustworthy data from

the Epidemic COVID-19 dataset. The information is primarily aggregated global totals,

therefore it is a true representation of the COVID-19 spread in the UK. DRL requires a

huge amount of data to be trained to near precision, as opposed to a little amount of data,

which could lead to overfitting.

Fourth, no previous research has looked at the unique D3QN, which is a version of the Deep

Q-Network algorithm, according to the literature review conducted for this study. Because
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the off-policy learning required to seek an optimal policy from data emanated from other

behaviour policies generates overestimation and replay buffer (Li,2019), the Double Deep

components help to control the overestimation of the policy (Van et al., 2016) and (Wang

et al., 2003).

Fifth, previous research has concentrated on using DRL with little amounts of data or

with simulated data. One of the first research to employ a novel discrete state and action

representation space-based reinforcement learning paradigm. Because (Kailiang,2022)’s

continuous action space could lead to incorrect prediction and learning because the pan-

demic could come to a halt at any point, D3QN beats DDPG (Julious and Deshendran,

2019) in terms of limited training.

This work would contribute to the new field of DRL by assisting in the management of

COVID-19 spread in the United Kingdom. It will also increase public faith in public health

and government decision-making, as well as public respect and compliance with both public

health and government directives.

1.6 Scope of Research/Research focus

RL itself is a broad area of artificial intelligence (AI), as well as the deep learning. All

aspects of both reinforcement and deep learning that do not have any direct link with use

to finding the optimal policy would not be explained in depth or totally disregarded.

The obvious methods used to control the spread of COVID-19 in the United Kingdom

is by personal hygiene, face mask, quarantine, track, trace, and testing. Those infected

with this virus are made to isolate for 14days so as not to reinfect others in case they are

asymptomatic. It is feasible to test everybody and very expensive especially when one
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does not show any symptoms. Another approach is by disinfection; all the streets, every

home and office will be sanitized. This approach is also very expensive and may crumble

the economy. Another common approach advised by the public health is one or combina-

tion of the followings: washing of hands, social distancing, locking down activities, travel

restrictions and quarantine facilities to isolate those that will show symptoms.

However, this research work will focus on the appropriate timing and intensity for optimal

policy or strategy on lockdown and travel restriction that will slow down the spread of the

virus to a controllable level that will have less burden on the economy.

1.7 Ethical and legal considerations

Ethical considerations were thoroughly addressed throughout the experiment, including

obtaining informed consent, safeguarding participant confidentiality, and minimizing po-

tential harm. Legal considerations included rigorous adherence to data protection rules

and intellectual property rights, which protected the interests of all stakeholders. The

comprehensive approach to these issues indicates a thorough awareness of the professional

norms and rules required for doing responsible research like this one.
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1.8 Research Structure

The study’s context was provided in chapter one. The research problems, aims, and ob-

jectives have been delineated, and the significance of this study has been substantiated.

Chapter two of this study will look at the existing literature on the prevalence of COVID-

19, with the aim of identifying research directions and gaps within the broader context of

determining optimal policies.

Chapter three will undertake a comprehensive examination of the research methodology

and the technical framework used in this research work and strategies for enhancing skill

development within the realm of deep and reinforcement learning and shows several as-

sessment metrics employed in the domain of Deep Reinforcement Learning.

Chapter four of the study will encompass the presentation of the data preparation process

and the subsequent creation of the model. This work aims to provide a justification for the

utilisation of a qualitative, inductive research methodology. Additionally, it will analyse

the overall study framework, including its inherent limitations.

Chapter five provides a comprehensive examination of the research findings and analyses.

Chapter six adequately addresses the research study’s conclusion and offers recommenda-

tions for future research endeavours.
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Chapter 2

Literature Review

2.1 Background and Related work

The COVID-19 pandemic, caused by the new coronavirus SARS-CoV-2, has had a dra-

matic influence on communities all over the world. The UK was no exception, with waves

of infections, healthcare issues, and societal changes. This review of the literature looks

at significant studies and research on the spread of COVID-19 in the UK, highlighting

factors impacting transmission, government interventions, healthcare systems, and lessons

learned. Thus background study will be examining those factors influencing the transmis-

sion, government responses, healthcare systems, and lessons learned of the COVID-19 in

the United Kingdom.

2.1.1 Factor Influaecing Trasmission

1. Population Density and Urbanization:

The COVID-19 pandemic, driven by the new coronavirus SARS-CoV-2, has put worldwide

public health systems under unprecedented strain. The virus has had a substantial impact
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on the United Kingdom (UK), causing researchers to investigate the elements that con-

tribute to the infection’s spread within the country. Population density and urbanisation

are important factors that have been extensively researched for their possible impact on

the transmission of infectious diseases such as Covid-19.Because of increased interpersonal

connections and decreased physical distancing chances, population density, defined as the

number of people living per unit area, plays an important role in disease transmission. The

population density in the United Kingdom, particularly in places like London, varies, which

could affect the virus’s transmission. In densely populated urban areas, public transporta-

tion, shared living spaces, and workplaces are frequently overcrowded, which can enhance

the fast spread of respiratory viruses. Souch and Cossins (2020) discovered a link between

population density and the initial COVID-19 transmission rate in different UK regions.

This shows that higher population density locations saw faster virus propagation, maybe

due to the increased possibility of intimate contact between individuals. The expansion of

cities and urban areas, which is characterised by the growth of cities and urban regions,

is closely tied to population density and can magnify the spread of infectious illnesses.

Increased migration, foreign travel, and human mobility result from urbanisation, all of

which contribute to the rapid spread of diseases. The largest cities in the United Kingdom,

such as London, Birmingham, and Manchester, are economic, social, and cultural centres

that attract people from all over the world. These interactions may increase the likelihood

of virus introduction and transmission. According to Lucas et al. (2021), higher degrees

of urbanisation are associated with an increase in COVID-19 cases in various UK regions,

showing that urban areas are more sensitive to disease outbreaks due to increased connec-

tivity and contact opportunities.

Socioeconomic gaps exacerbate the influence of population density and urbanisation on
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Covid-19 transmission. The wealth distribution in cities is generally uneven, with densely

populated areas facing higher poverty rates and limited access to healthcare resources.

Such discrepancies can worsen the spread of COVID-19 by interfering with persons’ ability

to follow preventive measures such as self-isolation and appropriate medical care. Aldridge

et al. (2020) discovered that neighbourhoods in the United Kingdom with lower socioeco-

nomic level had greater rates of COVID-19 cases and deaths, underscoring the impact of

social variables in shaping illness outcomes. Government initiatives and regulations have

been critical in reducing the impact of population density and urbanisation on COVID-

19 spread in the United Kingdom. Lockdowns, travel restrictions, and social distancing

laws were implemented to lower contact rates and limit transmission within densely pop-

ulated areas. According to Flaxman et al. (2020), severe actions in the UK, including a

nationwide lockdown, significantly decreased the transmission of the virus and avoided a

considerable number of infections.

Finally, the combination of population density, urbanisation, and socioeconomic conditions

has influenced the spread of COVID-19 in the United Kingdom. Highly crowded urban

regions with higher levels of urbanisation have shown an enhanced vulnerability to the

virus’s quick transmission. Socioeconomic gaps within these urban areas amplify the dis-

ease’s impact. Government efforts, on the other hand, have been helpful in slowing the

spread of the virus in densely populated areas. Understanding the complex connections

between these components as the pandemic evolves is critical for developing successful

measures to contain and manage future outbreaks.

2. International Travel International travel has been a major driver of COVID-19’s

global spread, particularly its impact on the United Kingdom (UK). As a highly networked

nation with a high volume of foreign travel, the UK has a significant risk of importing and
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spreading the virus. Air travel, in particular, plays an important role in easing the move-

ment of people across borders, opening up paths for the virus to enter and spread within

the UK. COVID-19 was introduced to the UK mostly through international travel, when

persons harbouring the virus arrived from several worldwide hotspots. Russell et al. (2020)

discovered that the time and amount of international arrivals were substantially associated

to the initial rise in COVID-19 cases in the United Kingdom. Airport hubs such as London

Heathrow, one of the busiest airports in the world, aided in the virus’s rapid spread across

the country. Travellers travelling from areas where epidemics were active inadvertently car-

ried the virus, resulting in localised clusters and eventual community transmission. Travel

restrictions, quarantine procedures, and border controls were among the government ac-

tions aimed at controlling the spread of COVID-19. According to Chinazzi et al. (2020),

adopting travel restrictions dramatically reduced the importation of COVID-19 cases and

thereby delayed the virus’s transmission in the UK. Although effective, these procedures

posed economic and logistical obstacles by disrupting international trade and tourism.

Finally, international travel has been critical in the spread of COVID-19 throughout the

United Kingdom. The UK’s connection with the rest of the world, helped by its busy air-

ports and transit networks, contributed to the virus’s rapid introduction and early spread.

Travel restrictions and quarantine precautions were implemented on time, which helped

to prevent further transmission. Balancing the benefits of foreign travel with the need

to prevent disease importation will remain a crucial challenge as the UK navigates future

phases of the pandemic.

3. Age and Vulnerability

In the UK, age and susceptibility have emerged as significant factors impacting the trans-

mission and effect of COVID-19. Individuals over the age of 65 and those with underlying
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health issues are at a higher risk of severe illness and death, which contributes to disparities

in disease outcomes. The severity of COVID-19 instances has been determined by age. The

elderly, particularly those over 65, are more vulnerable to serious respiratory problems and

have a higher mortality rate. Docherty et al. (2020) discovered that age was a major pre-

dictor of mortality in COVID-19 patients, with the risk increasing exponentially with age.

This age-related susceptibility has raised the strain on healthcare systems and demanded

preventative measures for the elderly, such as shielding and prioritisation of vaccination.

The impact of COVID-19 in the UK has been exacerbated by vulnerability caused by un-

derlying health illnesses such as cardiovascular disease, diabetes, and respiratory disorders.

Patients who have prior diseases are more prone to become really unwell and require hos-

pitalisation. Comorbidities were highly related with death in COVID-19 cases, according

to Williamson et al. (2020), emphasising the necessity of identifying and safeguarding vul-

nerable people. Government policies have prioritised the protection of the most vulnerable

citizens. Vaccination initiatives have prioritised the elderly and those with pre-existing

health issues, with the goal of reducing the burden of severe cases and mortality. Lock-

down measures, such as school closures and employment restrictions, were also put in place

to protect vulnerable populations from the infection.

Finally, age and vulnerability variables have had a considerable impact on the transmission

and impact of COVID-19 in the United Kingdom. The elderly and people with underlying

health issues are at a higher risk of serious illness and death. Because of these differ-

ences, public health interventions such as vaccine prioritisation and preventive measures to

safeguard vulnerable communities have been implemented. Addressing the special require-

ments of these groups is a critical aspect of good pandemic management as the pandemic

evolves.
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2.1.2 Government Responses and Policies

1. Lockdown Measures

Lockdown procedures have been critical in limiting the spread of COVID-19 in the United

Kingdom (UK). These measures, which included stay-at-home orders, the closure of non-

essential businesses, and gathering restrictions, were put in place to decrease human in-

teraction and disrupt transmission chains. According to research, lockdowns have been

beneficial in reducing the transmission of the infection. According to Flaxman et al.

(2020), the initial statewide lockdown in the UK significantly reduced the transmission

rate of Covid-19, resulting in a considerable decrease in new cases. The study emphasised

the need of early and strict actions in slowing the spread of the pandemic.

Lockdowns have not only helped to reduce infection rates, but they have also given health-

care systems much-needed breathing room. Lockdown procedures have saved hospitals

from becoming overburdened by lowering the number of severe cases occurring at the same

time, allowing healthcare resources to be allocated more efficiently. According to Imai et

al. (2020), lockdowns and other non-pharmaceutical measures reduced COVID-19-related

mortality and relieved pressure on the healthcare infrastructure. The impact of lockdown

measures, however, is not without obstacles. Lockdowns have economic, social, and mental

health ramifications, such as job losses, economic downturns, and increased rates of anxiety

and despair. Balancing the health advantages of lockdowns against their societal costs is a

difficult task for politicians. Furthermore, the success of lockdowns can be determined by

public compliance, enforcement measures, and individuals’ ability to follow constraints.

Finally, lockdown measures have been critical in slowing the spread of COVID-19 in the

United Kingdom. Early and strict interventions have been shown to be successful in low-

ering transmission rates and limiting overburdening of the healthcare system. The broader
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impact of lockdowns on economic, social, and emotional well-being, on the other hand,

must be carefully monitored. As the pandemic progresses, a comprehensive approach that

takes into account both the health and socioeconomic components will be critical for ef-

fective pandemic containment.

2. Testing and Contact Tracing

COVID-19 testing and contact tracing have emerged as essential measures for curbing its

spread in the United Kingdom (UK). These methods are intended to swiftly identify and

isolate sick persons, interrupting the transmission chains and limiting further spread. Ef-

fective testing has been critical in detecting symptomatic and asymptomatic cases, allowing

for prompt isolation and treatment. The United Kingdom initially encountered difficulties

in increasing testing capacity, however attempts were made to increase testing availabil-

ity and accessibility. Larremore et al. (2020) found that frequent and extensive testing,

combined with timely reporting of results, can greatly reduce the reproduction number of

COVID-19, hence limiting its spread.

Contact tracing supplements testing by identifying and informing people who have had

close contact with a confirmed case. In the United Kingdom, digital methods and man-

ual contact tracing have been used to identify and isolate probable cases. According to

Hinch et al. (2020), prompt and efficient contact tracing combined with isolation measures

is useful in reducing outbreaks, especially when accompanied with testing.The success of

testing and contact tracing, on the other hand, is dependent on public engagement, prompt

reporting of test findings, and cooperation with isolation measures. The effectiveness of

these tactics can be hampered by a lack of public trust, privacy concerns, and delays in

result announcement.
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Finally, testing and contact tracing have been critical in controlling the spread of COVID-

19 in the United Kingdom. Rapid case identification, isolation, and interruption of the

transmission chain are key components of pandemic management. Effective implementa-

tion necessitates striking a compromise between increasing testing capacity, ensuring timely

result reporting, and encouraging public confidence and engagement. As the epidemic pro-

gresses, it will be critical to refine these evidence-based tactics and adapt to new difficulties.

3. Vaccination Campaigns

Vaccination initiatives were critical in changing the course of the COVID-19 pandemic

in the United Kingdom (UK). As vaccinations became accessible, they provided a strong

tool for reducing virus propagation, controlling severe disease, and eventually achieving

population-level immunity. Vaccination efforts in the United Kingdom have been phased,

with high-risk groups like as the elderly, healthcare professionals, and people with under-

lying health issues being prioritised. Dagan et al. (2021) found that vaccination of elderly

people resulted in a significant reduction in COVID-19 cases, hospitalisations, and severe

outcomes, highlighting the importance of prioritisation measures in preventing transmis-

sion.

The success of immunisation campaigns in reducing COVID-19 spread is dependent on get-

ting adequate vaccine coverage in the population. Vaccination not only protects individuals

directly, but also helps to herd immunity, in which a substantial proportion of the popula-

tion becomes immune, limiting the virus’s capacity to propagate. According to Bubar et

al. (2021), achieving high vaccine coverage in the UK significantly reduced transmission

and the overall impact of Covid-19. Vaccine distribution issues, vaccine reluctance, and

the appearance of novel variations continue to be problems for the effectiveness of immu-

nisation campaigns. Maintaining public trust in vaccine safety and efficacy while resolving
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logistical challenges is critical for achieving broad immunisation and reducing transmission.

Finally, vaccination initiatives have proven to be a game changer in the control of COVID-

19 in the United Kingdom. Prioritising high-risk groups and obtaining high immunisation

coverage have resulted in fewer cases and less severe outcomes. Addressing problems and

modifying tactics will be critical to ensuring long-term control of the pandemic as the UK

continues its vaccination efforts.

2.1.3 Healthcare Systems and Capacity

1. Healthcare Overload

Healthcare overload, defined as overburdening healthcare systems as a result of an increase

in COVID-19 cases, has had a significant impact on the virus’s transmission in the United

Kingdom (UK). As the pandemic spread, hospitals saw difficulties in managing patient in-

flux, affecting both COVID-19 and non-COVID-19 care. High levels of COVID-19 patients

might put a pressure on hospital resources, resulting in a shortage of ICU beds, ventilators,

and medical professionals. According to Remuzzi and Remuzzi (2020), healthcare overload

can lead to higher mortality due to decreased availability to critical care for severe COVID-

19 cases. During moments of healthcare congestion, the United Kingdom, like many other

countries, was forced to make difficult judgements about resource allocation and triage

methods.

COVID-19 patients are not only affected by healthcare overload, but ordinary medical

care is also disrupted. Patients who did not have COVID-19 experienced delays in elec-

tive procedures, treatments, and screenings, potentially resulting in unfavourable health

outcomes. Thornton (2020) conducted a study on the impact of healthcare overload on
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cancer care in the United Kingdom, emphasising the importance of a balanced strategy to

addressing both COVID-19 and non-COVID-19 healthcare demands.To alleviate health-

care overburden, the government responded with lockdowns and public health measures.

These actions were designed to flatten the epidemic curve, minimise case counts, and keep

hospitals from being overburdened. Davies et al. (2020) found that early treatments in

the United Kingdom were beneficial in delaying and lowering healthcare overload, saving

lives and maintaining healthcare capacity.

Finally, healthcare overburdening has had a considerable impact on the spread of COVID-

19 in the United Kingdom. Overburdened healthcare systems struggle to provide proper

treatment for COVID-19 and non-COVID-19 patients, resulting in higher mortality and

delayed medical services. Government initiatives to decrease transmission and flatten the

epidemic curve have been crucial in preventing healthcare overload. As the pandemic pro-

gresses, it is critical to maintain a balance between COVID-19 treatment and ordinary

healthcare services in order to protect public health.

2. Telemedicine and Digital Health

The COVID-19 pandemic has accelerated the implementation of telemedicine and digital

health solutions in the United Kingdom (UK) as a means of mitigating virus propagation

while assuring continuous healthcare delivery. These technology improvements have been

critical in the provision of medical care, the maintenance of health services, and the reduc-

tion of the strain on healthcare facilities.

Telemedicine, which includes virtual consultations and remote patient monitoring, has be-

come a key tool in the management of COVID-19 patients and the maintenance of ordinary

medical care. Telemedicine lowers the need for in-person visits by allowing patients to ob-
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tain healthcare services from the comfort of their own homes, hence reducing potential

virus exposure. Greenhalgh et al. (2020) conducted research that emphasised the bene-

fits of telemedicine during the pandemic, citing its potential to give timely care, facilitate

physical separation, and conserve healthcare capacity. Mobile apps and wearable gadgets,

for example, have been utilised for symptom tracking, contact tracing, and public health

surveillance. The National Health Service (NHS) of the United Kingdom (UK) launched

the NHS COVID-19 app for contact tracing, alerting anyone who have been in close vicinity

to a confirmed case. Ferretti et al. (2020) shown that digital contact tracing, when paired

with other techniques, can help reduce virus spread. While telemedicine and digital health

solutions provide tremendous benefits, there are still limitations. Not everyone has equal

access to technology, which may exacerbate health inequities. Furthermore, preserving

public trust and protecting sensitive health information requires assuring data privacy and

security.

Finally, telemedicine and digital health solutions have been critical in limiting the spread of

COVID-19 in the United Kingdom. Remote healthcare delivery, symptom monitoring, and

contact tracking are all possible with these technologies, decreasing the need for physical

encounters. As the epidemic progresses, incorporating telemedicine and digital health into

healthcare systems can help to improve the efficiency and resilience of healthcare delivery

while also assisting in pandemic management.

3. Health Inequities

Inequities in health have had a substantial impact on the spread and impact of COVID-

19 in the United Kingdom (UK). Differential outcomes among diverse population groups

have been attributed to socioeconomic inequality and unequal access to healthcare services.

Lower-income individuals, racial and ethnic minorities, and people with underlying health
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issues have faced a disproportionate burden of COVID-19 instances and severe outcomes.

Pan et al. (2020) found that locations with higher levels of deprivation in the UK had

higher incidence of COVID-19-related mortality. Factors such as crowded living circum-

stances, restricted access to preventive services, and unequal distribution of healthcare

facilities have worsened health disparities.

Occupational variables have also contributed to health disparities and the spread of COVID-

19. Individuals in lower-paying jobs with few alternatives for remote work have been more

vulnerable to the virus. Lewer et al. (2020) discovered that workers in low-income jobs

were more likely to contract COVID-19, demonstrating how socioeconomic disparities over-

lap with occupational characteristics. To address health inequality and the development of

COVID-19, the government has implemented targeted initiatives, public health campaigns,

and immunisation campaigns that prioritise disadvantaged people. Initiatives to address

structural inequalities, such as improving access to healthcare, affordable housing, and job

opportunities, are critical in addressing the underlying causes of health disparities.

Finally, health disparities have had a considerable impact on the transmission of COVID-

19 in the United Kingdom. Vulnerable communities with inadequate resources and access

to quality healthcare have had greater incidence of infection and poor outcomes. Address-

ing health imbalances through targeted treatments and structural changes is critical not

only for pandemic preparedness, but also for constructing a more equitable and resilient

healthcare system.
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2.1.4 Lessons Learned and Future Preparedness

1. Early Interventions

Early efforts were critical in defining the course of the COVID-19 epidemic in the United

Kingdom (UK). Rapid deployment of preventative measures, testing, and public health

campaigns has been critical in limiting the spread of the virus and mitigating its impact.

Among the first strategies intended at reducing COVID-19 transmission were government-

enforced lockdowns, travel restrictions, and social distancing measures. Flaxman et al.

(2020) discovered that the timing of these treatments had a considerable impact on the

pace of virus propagation in the UK. Early and strong actions were linked to fewer COVID-

19-related deaths and less healthcare overload. When applied early, testing and contact

tracing have also helped to slow the virus’s spread. The UK’s Test and Trace programme,

which sought to detect and isolate patients, was critical in containing outbreaks. Walker

et al. (2021) emphasised the importance of timely contact tracing in lowering transmission

rates in their investigation.

Public health programmes, such as those promoting hand hygiene, mask use, and immuni-

sation, have aided in raising awareness and promoting adherence to preventive behaviours.

Early communication and precise guidance from health officials were critical in changing

public behaviour and lowering the danger of transmission. Early intervention, on the other

hand, is dependent on public compliance, communication techniques, and effective enforce-

ment. Balancing the economic and social costs of interventions against the health benefits

has also presented difficulties.

Finally, early treatments have been critical in slowing the development of COVID-19 in

the United Kingdom. Lockdowns, testing, contact tracing, and public health campaigns

were implemented quickly, which helped to reduce transmission rates and minimise hos-
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pital overburden. As the epidemic progresses, a proactive approach that incorporates

evidence-based therapies and adapts to new difficulties will be critical for effective pan-

demic containment.

2. Data Sharing and Survillance

Data exchange and surveillance have been critical in understanding and managing COVID-

19’s growth in the United Kingdom (UK). Timely epidemiology and health data collection,

analysis, and distribution have enabled informed decision-making, resource allocation, and

successful public health responses. Real-time data sharing has enabled health officials to

trace the virus’s spread, identify potential hotspots, and track changes in transmission pat-

terns. The COVID-19 Dashboard in the United Kingdom, as well as other data systems,

provides up-to-date information on cases, hospitalisations, and mortality rates. Kass-Hout

et al. (2020) found that transparent data exchange was critical for guiding public health

interventions during the epidemic.

monitoring systems such as syndromic monitoring and genomic sequencing have shed light

on the virus’s evolution and transmission. Genomic sequencing, in particular, has aided

in the identification and tracking of variations, allowing for targeted therapies. The COG-

UK consortium has been instrumental in sequencing SARS-CoV-2 genomes in the UK,

which has aided in understanding transmission patterns. Data sharing and surveillance

also aided modelling efforts to estimate the pandemic’s trajectory and assess the effec-

tiveness of countermeasures. Davies et al. (2020) found that combining epidemiological

data with modelling can help inform decision-making and public health policies. However,

issues such as data privacy, standardisation, and data quality continue to be issues. Main-

taining public trust and making informed judgements requires ensuring that collected data

is accurate, representative, and secure.
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Finally, data exchange and surveillance have been critical in understanding and control-

ling the spread of COVID-19 in the UK. These practises provide important insights into

transmission dynamics, direct public health interventions, and allow for more informed

decision-making. Maintaining comprehensive data collection, exchange, and surveillance

procedures will be critical for efficient pandemic management as the epidemic evolves.

3. Collaboration and Communication

In the United Kingdom (UK), effective teamwork and communication have been critical

in overcoming the problems posed by the COVID-19 epidemic. The timely exchange of

information, expertise, and resources among government agencies, healthcare institutions,

researchers, and the general public has been critical in controlling the virus’s spread and

mitigating its damage. Cross-sector coordination has facilitated coordinated pandemic

responses. Government agencies, healthcare providers, and public health organisations

have collaborated to devise strategies, distribute resources, and put interventions in place.

Greenhalgh et al. (2020) found that collaborative efforts are critical in creating and im-

plementing public health interventions such as lockdowns and testing programmes. Global

collaboration has encouraged knowledge exchange and learning from other countries’ ex-

periences. The dissemination of best practises, research findings, and lessons learned has

sped up the creation of effective methods and solutions. International alliances such as

COVAX have worked to provide fair access to vaccines around the world.

Communication has been crucial in getting accurate information out to the people. Trans-

parent and straightforward information from health officials has aided people in under-

standing the virus, preventive measures, and vaccine efforts. Allington et al. (2020) dis-

covered the importance of effective communication in increasing public compliance with
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protective behaviours. However, communication issues include dealing with misinforma-

tion and preserving public trust. Misinformation and rumours can stymie efforts to contain

the virus’s spread. Health communication initiatives should be adapted to specific com-

munities and take cultural and language diversity into account.

Finally, collaboration and communication have been critical in controlling the spread of

COVID-19 in the United Kingdom. Coordination of reactions, global collaborations, and

open communication have enabled the implementation of effective initiatives and resource

mobilisation. As the pandemic progresses, open lines of collaboration and good communi-

cation will be critical for mitigating the virus’s impact and guaranteeing public safety.

2.2 Additional DRL Related Work

2.2.1 Healthcare

The surge of enormous multimodality data availability has increasingly driven and im-

proves computational models and algorithms, the capabilities of Artificial intelligence (AI)

in public healthcare in the last decade (Dilsizian et al., 2014). The proliferation in trend

has led to increase in participation in the use of advanced data analytics and machine

learning approaches in some healthcare applications (Johnson et al., 2016). RL being a

subfield in machine learning does well in theoretical and technical accomplishments in gen-

eralization, thus increasing the applications of RL in real-life problems, computer vision,

in playing games, business management, robotics control, autonomous driving, financial

and natural language (Mnih et al.,2015).

RL techniques have received substantial research in developing effective cancer chemother-
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apy treatment plans. For the first time, Zhao et al. (2009) used the model-free, temporal

difference (TD) technique known as Q-learning to decide how much chemotherapeutic drug

to use. Virtual clinical trial data from in vivo tumour growth patterns was quantitatively

constructed using the mathematical chemotherapeutic model described by numerous Ordi-

nary Difference Equations (ODE). Support vector regression (SVG) (Vapnik et al., 1997)

and extremely randomised trees (ERT) (Ernst et al., 2005) are two explicit machine learn-

ing techniques that were used to fit the approximated Q-functions to the given trial data.

It was shown that using these batch learning techniques, it was possible to simulate opti-

mal strategies directly from clinical trial data.

Based on an ODE-based tumour growth model given by de (Pillis and Radinsky,2003) and

the Natural AC (NAC) technique (Kober and Peters, 2009) for the medication schedul-

ing of cancer chemotherapy, (Ahn and Park, 2011) investigated the applicability of the

NAC approach. By constantly injecting drug from the start until the right time, the NAC

technique might find an efficient drug scheduling policy by minimising the tumour cell

population and the drug amount while maximising the populations of normal and immune

cells. This strategy outperformed the conventional pulsed chemotherapy procedure, which

delivers the medication periodically over a period of many hours.

The work Hassani et al. (2010), in which naive discrete Q-learning was used, likewise

confirmed the superiority of continuous dosage treatment over a burst of dosing treatment.

More recently, to create efficient drug dosing regimens for patient groups with various

characteristics, Padmanabhan et al. (2017) developed various formulations of the reward

function in Q-learning. To estimate Q values in a simulation of an advanced general can-

cer trial, Humphrey (2017) investigated several supervised learning algorithms, including

Classification and Regression Trees (CART), random forests, and modified versions of Mul-
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tivariate Adaptive Regression Splines (MARS). Another important cancer treatment option

is radiotherapy, and several research have used RL methods to create automated radiation

adaption procedures (Feng et al., 2018) by changing the portion size during treatment,

Jalalimanesh et al. (2017) introduced an agent-based simulation model and Q-learning

algorithm to optimise dose calculation in radiotherapy.

Although, most research in Covid-19 are relatively new in machine learning and artificial

intelligence, however, there have been several works on reinforcement learning, deep learn-

ing, and deep reinforcement learning. Ying et al, (2017) used deep reinforcement learning

for Dynamic Treatment Regimes on medical registry data. This deep reinforcement frame-

work involved the use of supervised learning steps to predicting the best action that could

be made by an expert by estimating the value function that is long time for the Dynamic

Treatment Regimes. The research framework (DRL) was motivated on the Centre for in-

ternational Bone Marrow Transplant Research registry, the implementations focused on

prevention and the treatments of acute and chronic disease. The initial implementation

study showed results that accurately predict the diagnosis or decision that could have been

made by human experts.

In the intensive care unit (ICU), Sepsis is a leading cause of death and making cost on

hospitalization overwhelming. Raghu et al, (2017) were able to use deep reinforcement

learning to treat Sepsis in the ICU. The fact that individual response differently to the

same treatment, thus there is no specific agreed treatment for Sepsis, However, in Raghu

et al study, they use the deep reinforcement learning to finding the optimal strategies from

training samples data that are not portray optimal behaviour, thus increasing the survivor

rate of Sepsis in the ICU department. Ngo et al. (2018) proposed a reinforcement learning

based algorithm to optimize glucose in the blood for patients with type-1 diabetes. The
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algorithm proposed helps in form of policy to regulate the optimal insulin to be injected into

Type-1 diabetes patient. This study used historical 10 years of clinical data of patients that

were treated in a general hospital while the technique uses reinforcement learning agent

which runs through different states of the patient and explores the response of patient

when the patient is provided with insulin of different doses. The reward is a function of

the difference between the actual level of glucose in blood in response to the insulin intake

and targeted level of glucose.

Figure 2.1: Treatment of chronic GVHD-Dynamic Treatment Regimes (DTR): A review of
recent reinforcement learning applications to healthcare by Isaac Godfried Towards Data
Science

Lin et al. (2020), in their recent research made use of chest computed tomography (CT)

scan images to differentiate between COVID-19 and Pneumonia chest images. In Lin et al

research work, they extracted different features in the CT images to detect the any chest

x-rays effected with COVID-19 by using deep learning (COVNet). The result showed a

robust model, haven able to decipher between pneumonia and non-pneumonia chest x-ray

images. Five years CT scan images from six different hospital between August 2016 and

February 2020 were collected for this study. Sensitivity, specificity, and the area under

curve were used to check the performance of the model.

Through the validation, the model achieved an accuracy of 89.5% having specificity of 0.88

and sensitivity of 0.87. Early dynamics of COVID-19 pandemic infections were analysis
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by Machine language (ML) based on the existing US data from 20 January 2020 when

the index case was confirmed (Malik, 2020). Public health insights like the rate of mild

infection becoming critical, infectious force, asymptomatic infections estimation, and fore-

casting new confirmed cases over time by analysing number of infection growth over time.

Malik work shows that the proposed technique is efficient and robust making its application

to any virus. Yan et al. (2018) explored the audio-based cough assessment. Their work

assessed cough frequency, intensity of coughing and properties of coughing sound. Moni-

toring coughing tool uses machine language cough recognition algorithm for detecting the

cough.

These classifier algorithms include support vector machine (SVM), naive Bayesian classi-

fier (Bayesian), neural network (NN), hidden Markov model (HMM), and dynamic time

warping (DTW) (Liu and Du, 2009). Hemdan et al., (2020) and Wan et al., (2020) applied

COVIDX-Net, a deep learning framework to assist radiologists to automatically detect

COVID-19 x-rays images. The COVIDX-Net contains seven different architectures of deep

convolutional neural network models, which are the modified Visual Geometry Group Net-

work (VGG19) and the second version of Google MobileNet. Each deep neural network

model can analyse the normalized intensities of the X-ray image to classify the patient

status either negative or positive COVID-19 case. Marco et al., (2020) used mobile phone

tracking data to measure mobility restriction and compare the data to number of new

SAR-CoV-2 positive cases daily in three most affected area in Italy.

Another remarkable study was carried out in China where the first index case was estab-

lished, Chinazzi et al. (2020) explored data from 200 countries and territories using the

global epidemic and mobility model (GLEAM) to model travel restriction. The model

showed 77% reduction in cases imported from other countries due to travel restriction.
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Early lockdown was shown to be more effective than response delayed in China (Tian et

al., 2020). Chinazzi, M et al, (2020) research work assessed the efficacy of travel restric-

tions for different transmission scenarios; travel ban was only meaningful if combined with

a 50% or higher transmission reduction.

Taking early decision on locking down and pre-emptive travel restriction was shown in

(Tian, H et al.,2020) article were considerably effective than response delayed. Previous

studies show that machine learning and other artificial intelligence algorithms are used in

identifying diseases based on existing data and making prediction with simulation. The

proposed approach in this research work is not the same with the previous literature stud-

ied. There would be no supervised learning involved, the algorithm learns by interacting

with the environment. Based on the dynamism of the virus, any change in the environment

is captured by the RL agent with appropriate reward function.

The epidemiologists and scientists could not explain the behaviour of COVID-19 numerous

symptoms with regards to its mutation and how it affected by demographic changes. Thus,

this research would consider the affected of the pandemic on the economy, pattern of spread,

its effect on quality of life and other parameters into the reword function to enable the

RL agent learned the optimal or minimal policy from the data available. In this research

work, we would be focusing on finding optimal policy for controlling the spread of the virus,

timing and intensity of the policy would be considered, however, the evolving symptoms

of COVID-19 are ignored.

36



2.2.2 Robotics

Figure 2.2: TRobotics in RL (source: RL in Robotics.pdf (ieor8100.github.io)

A traditional application of reinforcement learning is in robotics. The end-to-end training

of the perception and control systems was suggested by Levine et al. (2016a) to directly

transfer raw picture observations to torques at the robot’s motors. To overcome the prob-

lem that supervised learning typically does not achieve strong, long-horizon performance,

GPS alternates between trajectory-centric RL and supervised learning, obtaining the train-

ing data from the policy’s own state distribution.

Pre-training is used by GPS to cut down on the quantity of experience data needed to

train visuomotor policies. On a variety of real-world manipulation tasks requiring local-

ization, visual tracking, and managing complex contact dynamics, as well as in simulated

comparisons with earlier policy search techniques, good performance was attained. This

is the first technique that can teach profound visuomotor strategies for complicated, high-

dimensional manipulation abilities with direct torque control, according to the scientists

(Levine et al., 2016a). By maximising cumulative reward while solving an RL problem

and considering un/self-supervised tasks to increase data efficiency and task performance,

Mirowski et al. (2017) was able to develop the navigation skill. Unlike traditional methods

like Simultaneous Localization and Mapping (SLAM), which use explicit location infer-

ence and mapping for navigation, with this method, navigation is a by-product of the

goal-directed RL optimisation problem. This could displace the well-liked SLAM, which
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typically requires manual processing.

2.2.3 Computer Vision

Computer vision is the study of how computers interpret digital photos or videos. The fol-

lowing sections cover recognition, motion analysis, scene understanding, integration with

Natural Processing Language (NLP), and visual control after providing background in-

formation on computer vision. In tasks like object segmentation, articulation model es-

timation, object dynamics learning and haptic property estimation, object recognition or

categorization, multimodal object model learning, object pose estimation, grasp planning,

and manipulation skill learning, reinforcement learning would be a crucial component of

interactive perception (Bohg et al., 2017). By concentrating just on the prominent com-

ponents, RL can increase classification efficiency for images. RL can be more effective for

visual object localization and detection than methods involving exhaustive spatial hypore-

port searching and sliding windows because it strikes a balance between sampling more

areas for greater accuracy and ceasing the search once the target’s location is known with

sufficient certainty.

2.2.4 Robotics

Figure 2.3: Computer Vision (source: Towards Data Science
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To focus on a chosen series of regions or places from an image or video for image classifi-

cation and object recognition, Mnih et al. (2014) presented the recurrent attention model

(RAM). The model was trained using reinforce to get over the non-differentiability prob-

lem, and experiments were conducted on an image classification job and a dynamic visual

control problem. By transforming a bounding box using transformation actions to find

the target objects’ most precise location, Caicedo and Lazebnik (2015) suggested an active

detection model for object localization with DQN.

By maximising the long-term reward associated with localization accuracy over all ob-

jects with DQN, Jie et al. (2016) suggested a tree-structure RL strategy to search for

objects sequentially while considering both the current observation and prior search path-

ways. Mathe et al. (2016) suggested using policy search to recognise visual objects. For

collaborative object search, Kong et al. (2017) used cooperative multi-agent RL with inter-

agent communication. For the categorization of multi-label images, Welleck et al. (2017)

suggested a hierarchical visual architecture with an attention mechanism. For video face

recognition, Rao et al. (2017) suggested an attention-aware deep RL algorithm.

2.3 Systematic Literature Review

Based on the review of previous studies, this section performed a systematic review of only

those studies that seemed to apply deep reinforcement learning technique to finding the

optimal timing for both lockdown and travel restriction in the United Kingdom.
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2.3.1 Methods

PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) reporting

guidelines (Page et al., 2021) guided the selection of this research. PRISMA recommends a

checklist of 27 components for a systematic literature review’s sections and content, as well

as a four-phase flowchart for article selection. In order to meet the requirements of this

research project, the PRISMA guideline was modified. The flowchart for paper selection

consists of three stages: identification, screening, and eligibility.

� Identification: This stage comprises identifying information sources and a search

strategy that yields a list of possible publications. The number of articles selected

during the identification phase is based on the keywords’ deep reinforcement learning

AND optimal policy , AND lockdown AND travel restrictions, AND optimal strategy

AND appropriate timing. Screening means choosing articles from the first phase and

getting rid of the ones that don’t fit with the study’s goal.

� Eligibility: The third phase comprises a more in-depth examination of publications

and the selection of those that are relevant to the research themes., displays the

number of papers at each level and their subsequent progression.
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Figure 2.4: The three stages of the study selection process: identification, screening, and
eligibility

Selection: The next stage is to choose information sources for conducting literature searches.

Despite the fact that there are several search engines and academic databases, the research

focused on scholarly and research databases, including places where data mining methods

for crime prediction and social media usage can be acquired.

This research studied an optimal search process that integrates several academic search

databases, with searches done at the greatest attainable level of specificity. According to

Bramer et al. (2017), if the research topic is more interdisciplinary, a bigger scientific

database like Web of Science is likely to be beneficial. Nevertheless, according to this re-

search, Scopus is a bigger database than the Web of Science. Scholarly opinion is divided

regarding the usefulness of Google Scholar for multidisciplinary research. According to
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Sirotkin (2013), some search engines, particularly Google Scholar, have a predisposition to

selectively reveal information by using algorithms that personalise content for users.

This phenomenon is known as the filter bubble effect. Haddaway et al. (2015) revealed

that while looking for certain papers in Web of Science, the majority of the results were also

found in GS. When similar search terms were used in Web of Science and GS (10-67 percent

overlap), GS missed some crucial information in five out of six case studies, according to

their results. Consequently, publications that are unavailable through Google Scholar or

Scopus were collected through the library of the University of Salford. The identified papers

from each database were imported straight into the free citation manager Endnote. Finally,

duplicates were removed from each database, resulting in 394 papers for the screening step.

As a result, items older than ten years old were excluded during the screening process.

Second, duplicates in the selected datasets were eliminated. Finally, each article was scru-

tinised to eliminate those judged ”irrelevant.” This was accomplished by defining ”relevant”

articles based on the three criteria listed below. The first need is that the record cover lock-

down and border control in the UK that uses DRL as an agent to finding the appropriate

timing. Papers dealing with DRL ,lockdown,travel restrictions, optimal policy or strategy.

The second need for research to be regarded ”relevant” is that it use an exploratory or

cluster analysis data mining technique. The third component is the use of COVID-19 epi-

demic data.

The final step in the screening process was to exclude extraneous articles that the authors

couldn’t read owing to subscription constraints. The screening process yielded 193 items

that were appropriate for the third and final rounds. The abstracts and main body of each

of the 193 papers were inspected and analysed during this final step, the eligibility phase
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(e.g., study field, data, methodology, and findings). The goal was to collect information

for the paper’s qualification requirements. These are divided into three categories: Pro-

cedures; significance: the data item’s relevance and purpose; and research characteristics:

data item study area, data source, data mining methodologies, and evaluation metrics.

Following that, each category and its associated data pieces were scrutinised. The first

data point indicates the type of publication. Conference papers are occasionally excluded

from literature reviews because their quality is not assessed in the same way as Interna-

tional Scientific Indexing (ISI) publications.

However, in particular subjects, such as computer science, several conferences are acknowl-

edged as extremely credible publishing channels. During the screening procedure, a large

number of papers prepared by professionals in computer or information science were dis-

covered; so, conference papers were not rejected at this time. In total, seven novels or

book parts were eliminated. The next two ”relevance” criteria (i.e., relevance and pur-

pose) address the papers’ content’s conformity to the subject of this research. The docu-

ment’s relevance was double-checked at this stage. Several articles that appeared relevant

throughout the screening process . Despite the fact that lockdwon and travel restrictions

were mentioned in the abstract, the authors acknowledged to the fact that they were pro-

viding a framework or survey for future research. This research effort now includes the

data item ”data sources” in order to combine methodologies for modelling and assessing

correlations between dependent and independent variables (e.g., optimal policy). Because

of these criteria, 49 papers were excluded.

Finally, four additional quality and consistency criteria for the selected articles were of-

fered. Nonetheless, as detailed in the Results section, there are significant discrepancies

amongst the research. The final two conditions are the limitation to empirical data analysis
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(e.g., no proof-of-concept or purely methodological study) and the use of measurements

to evaluate model performance (e.g., accuracy, precision). The latter two criteria ensure

that we only review publications that are relevant to this investigation. There were 53

manuscripts that were rejected due to criteria relating to their research relevance.

2.3.2 Study Quality

Before each phase, the chief supervisor and co-supervisor of this research assessed the pub-

lications that composed this study. This research was further analysed and argued until

all parties reached an agreement on the next step. To ensure methodological consistency,

the study’s results were subjected to multiple cross-checks. Throughout the final step (el-

igibility), the research student assessed the papers several times to ensure that all eligible

publications were included. Concerning the results subsections of the four study stages

(”Study characteristics,” ”Overview of selected publications on the DRL on COVID-19 ”

”using DRL to finding appropriate timing for both lock down and travel restrictions in the

UK and epidemic data,” and ”factors to consider when analysing optimal policy”).

To extract information organised as data items, a three-step approach was used: extract,

discuss, and analyse. First, the authors manually extract the data components and val-

ues from the articles by reading them (1-extract). The researcher and supervisors then

discussed and evaluated the data items and their values (2-discussion/consensus). If the

information remains ambiguous, it is compared to freely available information for clarity

(3-analysis). This data was formatted as a matrix, with rows representing papers and

columns indicating various processing data (for example, a data item is the year of pub-

lication). The study scale was used to assess the risk of bias in each study. As stated

throughout the eligibility method, regional and temporal constraints were established to
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ensure that we analyse medium-to-large-scale research and that the results are not bi-

assed by location or season. Furthermore, we found neither duplicate publications (two or

more articles with identical samples and procedures) nor any study characteristics, such

as unique and unusual attributes or research topics.

2.3.3 Results

2.3.3.1 Study Characteristics

This inquiry provided 81 publications in the end. Approximately 89% of the articles chosen

provides United Kingdom trends using COVID-19 epidemic data, whereas approximately

19 of the total publications (11%) only look at the deep reinforcement learning based on

simulated data.

2.3.3.2 Deep Reinforcement Task

Out of the total of 69 publications analysed, about 32 of them exclusively utilised COVID-

19 data and implemented categorization algorithms in order to allocate resources. Twelve

distinct Deep Reinforcement Learning (DRL) techniques were employed in the study, how-

ever using simulated data. Conversely, the remaining approaches employed neural network

applications to predict patterns in the variables of recovery, death, and confirmed cases.

2.3.3.3 Analysis and Discussion

As previously mentioned, the selected papers encompass the authors’ proposed baseline

models for machine learning, reinforcement learning models, or deep reinforcement learn-
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ing models. The evaluation metrics for these models are widely recognised in the field of

deep reinforcement learning, as evidenced by previous studies on reinforcement learning

and deep reinforcement learning. However, in addition to optimising policy, few writers

underscore the importance of integrating or implementing many evaluation measures.

Comparing the evaluation findings of the 69 articles proves to be a tough task, mostly due

to several elements that contribute to the complexity of the task. These factors include

the presence of varied numbers of variables, diverse study fields, and different methodolo-

gies employed in data mining. The examination of their commonalities may be deemed

necessary. In the context of classification and forecasting tasks, accuracy (n = 18) and

precision (n = 8) are the evaluation measures that are commonly employed. The evalu-

ation measures that are commonly employed include Mean Squared Error (MSE, n = 2)

and Root Mean Squared Error (RMSE, n = 2). The investigation focused on evaluat-

ing model performance by utilising the top two assessment criteria, namely accuracy and

precision. Publications that utilise reinforcement and deep reinforcement learning employ

various performance metrics, such as learning curve, average reward, discount return, and

comparisons between baseline and policy evaluation.

2.4 Summary of the Findings

The primary objective of this study is to employ Deep Reinforcement Learning (DRL) as

an agent in order to determine the most effective policy for implementing lockdown mea-

sures and travel restrictions based on data pertaining to the COVID-19 epidemic. In order

to gain a thorough understanding and evaluate the current status of empirical research on

DRL with a specific emphasis on lockdown, a complete literature review was undertaken

46



using the reporting requirements known as ”PRISMA” (Liberati et al., 2009). When con-

sidering data mining methods, authors commonly presented conventional machine learning

techniques and, to a lesser extent, deep learning approaches. The comprehensive review

revealed that the performance of the majority of deep reinforcement learning (DRL) mod-

els exhibited inconsistency.

Furthermore, it was shown that the performance of these models occasionally differed based

on the specific dataset and pre-processing techniques employed. A range of performance

evaluation metrics were employed, with prediction accuracy, precision, and recall emerging

as the three most prominent metrics. Ultimately, the practise of partitioning data into

train and test sets emerged as the prevailing method for evaluating models. However, re-

searchers also employed cross-validation and bootstrapping techniques for this purpose.

Furthermore, essential aspects of research inquiries were provided in a confusing manner

or omitted entirely. With regards to the final point, we propose providing the subsequent

details: study area, dimensions, duration of sampling, specific months, classification type,

characteristics of the samples, techniques employed for feature engineering and selection,

data pertaining to class imbalance problem, exploratory analysis conducted, and temporal

unit. This encompasses a total of 10 elements. Additionally, it is necessary to include a

proposed methodology, a recommended methodology, a baseline methodology, evaluation

metrics, and a validation methodology.
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Chapter 3

Research Methodology & Technical

Framework

3.1 Introduction

This chapter of the research introduces the reader to the models that will be studied in

greater depth in later sections, with a focus on their prevalence and utility in data mining,

as well as their potential for application in DRL as an agent to determine optimal policy.

They were chosen because they were the most common DRL learning models discovered

in earlier studies employing a data mining method to combat COVID-19 spread.

3.1.1 Deep Learning

”Shallow” learning contrasts with deep learning. There is an input layer and an output

layer for many machine learning techniques, such as logistic regression, support vector ma-

chines (SVMs), decision trees, and boosting predictive model. The inputs may be manually

changed prior to training via feature engineering. Between the input and output layers in
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deep learning, there may be one or more hidden layers. We compute the input to each

unit at every layer except the input layer as the weighted sum of units from the previous

layer. Then, we typically apply a nonlinear transformation or activation function, such

as logistic, tanh, or more recently, rectified linear unit (ReLU), to the input of a unit to

obtain a new representation of the input from the previous layer. We have weights on the

connections between the units at each tier. We can compute error derivatives backward

and backpropagate gradients towards the input layer after calculations flow forward from

input to output, at output layer and each hidden layer, so that weights can be adjusted to

optimise some loss function.

A feedforward deep neural network, also known as a multilayer perceptron (MLP), uses

a mathematical function made up of numerous smaller functions at each layer to transfer

a collection of input values to output values. A feedforward deep neural network having

convolutional, pooling, and fully connected layers is called a convolutional neural network

(CNN). CNNs are modelled after simple cells and complex cells in visual neuroscience and

are designed to process data with multiple arrays, such as colour image, language, audio

spectrogram, and video. They take advantage of the properties of such signals, including

local connections, shared weights, pooling, and the use of many layers (LeCun et al., 2015).

By including shortcut connections to learn residual functions with reference to the layer

inputs, ResNets (He et al., 2016d) are intended to make the training of very deep neural

networks easier. With hidden units to preserve the history of previous components, a re-

current neural network (RNN) is frequently used to process sequential inputs like speech

and language, element by element. When unfolded during forward computing, an RNN

can be thought of as a multilayer neural network with all layers sharing the same weights.

The gradient may disappear, and it is difficult for RNN to maintain information for a very

long time.
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LSTM and gated recurrent units (GRU) with gating techniques to modify information

through recurrent cells were proposed to overcome such problems (Hochreiter and Schmid-

huber, 1997; Chung et al., 2014). All the deep neural networks can be trained using

gradient backpropagation or one of its variations. Dropout is a regularisation technique

that trains an ensemble of sub-networks by randomly eliminating non-output units from

the parent network (Srivastava et al., 2014). The purpose of batch normalisation (Ioffe

and Szegedy, 2015) is to expedite training by minimising internal covariate shift, i.e., the

change in parameters of previous layers will modify the distribution of inputs for each layer.

To recover the compositional hierarchies in various natural signals, deep neural networks

automatically train representations from raw inputs. Higher-level features are made up of

lower-level ones, for example, the hierarchy of objects, parts, themes, and local combina-

tions of edges in images.

A key concept in deep learning is distributed representation, which states that several

features may represent one input and that each feature may represent a variety of inputs.

The exponential difficulties posed by the curse of dimensionality are offset by the exponen-

tial benefits of deep, dispersed representations. End-to-end training, as used by AlexNet

(Krizhevsky et al., 2012) with raw pixels for image classification, Seq2Seq (Sutskever et

al., 2014) with raw sentences for machine translation, and DQN (Mnih et al., 2015) with

raw pixels and score to play games, refers to a learning model that uses raw inputs without

manually creating features to produce outputs.
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3.1.2 LSTM Network

To train deep learning models for multi-step-ahead prediction for time series prediction,

the original time series must be converted into a state-space vector. According to Taken’s

Theorem (1980), the reconstruction can accurately capture key characteristics of the origi-

nal time series. As a result, given an observed time series x(t), one can create an embedded

phase space Y (t) = [(x(t), x(tT ), . . . , x(t(D1)T ) where T is the time delay, D is the em-

bedding dimension and N is the length of the original time series. To effectively employ

Taken’s theorem for reconstruction, suitable values for D and T must be chosen. Taken’s

demonstrated that D = 2d + 1 would be sufficient if the initial attractor has dimension d

(Takens, 1980).

Recurrent neural networks (RNNs) can be classified as a variant of long short-term memory

(LSTM) networks. The output generated in the preceding phase is thereafter utilised as

the input for the ongoing step of a RNN. The LSTM model was developed by Hochreiter

and Schmidhuber in 1997. The paper discussed the problem of long-term reliance in RNNs,

wherein the RNN is capable of predicting words based on current input but struggles to

predict words that are stored in its long-term memory. The effectiveness of RNNs decreases

as the length of the gap rises. By default, LSTM has the capability to retain information

for extended periods. The tool is employed for the processing, forecasting, and classifica-

tion of time-series data.

RNNs equipped with LSTM architecture have been specifically designed to effectively pro-

cess sequential data, encompassing time series, speech, and textual information. LSTM

networks are well-suited for many applications such as language translation, speech recog-

nition, and time series forecasting due to their ability to effectively capture and learn

long-term dependencies within sequential data. The network faces difficulties in learning
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long-term dependencies due to the presence of only one hidden state in a conventional

RNN. The aforementioned problem is effectively addressed by LSTM models by the incor-

poration of memory cells, which serve as reservoirs capable of retaining information over

extended periods. The memory cell is regulated by three gates, namely the input gate, the

forget gate, and the output gate. The function of these gates is to ascertain the appropriate

data to be inputted into the memory cell, extracted from it, and afterwards outputted.

The input gate is responsible for managing the data that is added to the memory cell. The

forget gate is responsible for controlling the information that is wiped from the memory

cell. In addition, the output gate serves to regulate the data that is emitted from the

memory cell. LSTM networks provide the capability to acquire knowledge of long-term

dependencies by making informed decisions regarding the retention or elimination of in-

formation as it traverses the network. By employing a stacking technique, it is possible

to construct deep LSTM networks that possess the capability to identify very complex

patterns within sequential data.
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Figure 3.1: The structure of the LSTM neural network: reproduced from (Yan et al.,
2019).The LSTM cell processes information in sequential time steps. At each time step, xt

produces output ht while retaining and updating the cell state Ct.

A hidden state output is calculated by the LSTM network model and ht by:

it = σ(xtU
i + ht−1W

i) (3.1)

ft = σ(xtU
f + ht−1W

f ) (3.2)

C̃t = tanh(xtU
c + ht−1W

c) (3.3)

Ct = σ(ft ∗ Ct−1 + it ∗ C̃t) (3.4)

ht = tanh(Ct) ∗ ot (3.5)

where the terms input, forget, and output gates, respectively, at time t, are denoted by
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it, ft, and ot. Memory cell c is referred to here. The terms xt and ht, respectively, stand

for the quantity of input features and quantity of hidden units. W and U are the weight

matrices that are modified together with b, which is the bias, during learning. Keep in

mind that each gate has the same proportions. dh is determined by the hidden state’s size.

C̃t is the present cell memory and is the intermediate cell state. C0 = 0 and h0 = 0 provide

the initial values at t = 0. Note that we indicate element-wise multiplication with a star (∗).

A memory cell is added to the hidden layer of an RNN deformation structure called an

LSTM to constrain the timeline data’s memory data. Data is transferred between vari-

ous cells of the hidden layer by a few adjustable gates, allowing control of the memory

while ignoring the volume of the prior and current data. The status of the memory cell

is managed by two LSTM gates. The first is the forget gate, which demonstrates how

much ”memory” from the cell’s final instant can be saved; the second is the input gate,

which establishes how much current-time information can be kept in the cell’s status and

controls the fusion ratio of ”old” data and ”present” incentive. Finally, the output gate of

the LSTM is intended to regulate the volume of outputs of cell status information.

Here, the linear and non-linear activation functions of the LSTM are utilised. The non-

linear tanh function is employed by the conventional LSTM. Choosing the most effective

activation function for the best results

f(xt) =
exp(xi)∑
j exp(xj)

(3.6)

Deep learning encourages RL improvement, and the deep reinforcement learning (DRL)

domain is described by DL methods inside RL. Deep learning enables RL to scale up previ-

ously intractable problems, such as high-dimensional state settings, interruption zones, and
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decision-making. Every reinforcement learning function, including the value function, Q

function, transformation system, and reward function, is approximated by deep reinforce-

ment training using a deep neural network. An RL system called Q-Learning determines

which action an agent should do based on an action-value role. Depending on an action-

value role, this establishes the relevance of continuing in a specific state and completing a

specific task there. By creating an algorithm to reduce temporarily deviating from policy,

reinforcement learning has made one of its most significant advances. Using Q-Learning,

a target system’s state-action value function is measured to determine the highest value

in selecting the action. When given a current state (S) and an action (A), function Q

provides an estimated reward for that action in that state. As a result, Q functions start

off by giving arbitrary fixed values before looking into the situation.

States are regarded to be collections of high, moderate, and low, and decisions are made

in response to the states. Here, the decision is made in accordance with the growth in

the number of confirmed and fatal cases. When the predictions of verified cases and death

cases are accurate, a reward is given. The action-value function defined as:

q(s, a; θ) ≈ Q∗(s, a) (3.7)

where is a reference variable that represents the edge weights of the network and q (s, a)

denotes the neural network approximation. The neural network receives a state as its input

and produces approximation q values for unrelated activities Q = q(s, a, θ)| a ∈ As. By

depreciating Q (s, a; θ) anticipated faults, the system is trained. The DRL agent acting at

time t is at = argmaxaq(st, a; θ), where q (st, a; θ) for different activities is provided by

the network’s results. If, for instance, the state changes to st+1 and the compensation is

rt+1, then different actions are offered by the quantum neural networks (QNN) outputs. If
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the state changes to st+1andtherewardisrt+1, then the equation (st,at,tt+1,st+1) establishes

an ”experience sample” that might be used to train the network. The prediction error of

the network for the specific experience sample (st,at,rt+1,st+1) is specified for training as:

Lst, at, rt+1, st+1(θ) = (yrt+1, st+1 − q(st, at; θ))
2 (3.8)

Where θ = weights; and (yt+1,st+1)= targetoutput, which is defined as:

(yrt+1, st+1) = rt+1 + γmax′
aq(st+1, a

′; θ) (3.9)

MLSTM Workflow

Figure 3.2: MLSTM Workflow

Figure 3.2 illustrates the procedural steps undertaken to execute the predictive component

of the research study. Deep reinforcement learning was employed as an extension of the
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Long Short-Term Memory (LSTM) model in order to enhance the accuracy of predicting

recovery, confirmation, and mortality situations.

3.1.3 Differentiable Computational Graphs

A group of techniques known as deep learning are used to build parametric differentiable

computation graphs and train them using gradient-based optimisation. In this section, we

go through a few of the revolutionary aspects of deep learning. An artificial neural net-

work (ANN), also known as a deep learning model, is a network of parameterized functional

modules that are typically arranged in layers to enable computation to be carried out from

the input levels to the output layers. Units or neurons are the names for the values kept in

each layer. Theorem of Universal Approximation: According to the universal approxima-

tion theorem, a neural network with at least one hidden layer can arbitrarily well estimate

any continuous function by changing the number of units. Furthermore, more hidden lay-

ers enable networks to do more intricate hierarchical calculations. Deeper networks are

typically more effective but more challenging to train. From this potent depth dimension

originates the word ”deep” in deep learning.

Figure 3.3: Neural network
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3.1.4 Optimisation

Backpropagation

Gradient-based optimisation, particularly gradient descent, and its variants, is the foun-

dation of deep learning. An initial forward pass through the network is carried out with

a batch of inputs to carry out gradient descent. The outputs are produced, and the loss

is calculated using them. The list of partial derivatives, or the gradient of the loss, must

then be computed with respect to each network parameter. Using the backpropagation

algorithm, also known as backprop, which uses the chain rule and computes the gradient

one layer at a time, iterating backward from the last one, this is efficiently accomplished

in a single backward run.

Automatic Difference

The derivative function of each layer must be known to employ the chain rule; older im-

plementations of the backpropagation technique required the user to provide each of these.

Fortunately, automatic differentiation, also known as autograd, is a feature of all contempo-

rary deep learning frameworks that automatically determines the derivatives by identifying

the main computation units employed, such as sums, products, exponentials, powers, or

sine functions, and using their known derivatives.

Optimizers

To hasten convergence, simple gradient descent can be improved. For instance, momentum

produces updates by linearly adding the most recent update to the gradient of the current

update. The inertia of the generated updates enables them to escape flat areas of the
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search space and overcome oscillations of noisy gradients. Updates can also be made using

additional techniques, such as those based on second order derivatives. There is a trade-off

between sample efficiency and clock time when using some optimisation approaches be-

cause they use a lot of memory and compute. AdaGrad (Duchi et al., 2011), RMSProp

(Tieleman Hinton, 2012), and Adam (Kingma Ba, 2014) are notable instances of opti-

mizers.

Batches

Gradient descent reduces the value of a loss function when the gradient is calculated over

the entire dataset, in theory, provided a sufficiently low learning rate. A dataset is rarely

fully utilised for each training stage. An The simple fact that this is rarely feasible due

to the excessive memory requirement is the obvious cause. It would simply require more

memory than is typically available on computers to feed a whole dataset with potentially

millions of instances, compute the neural activations for each example in parallel, and ex-

ecute backpropagation. Stochastic gradient descent is typically used in practise. It uses

repeated gradient descent steps with smaller data batches to approximate the gradient

descent of the entire batch. It is also important to note that due to the parallelization

possibilities of hardware and software, batches of inputs typically enable faster inference

or backprop per input than for individual calls.

3.1.5 Layers

The fundamental units of neural networks are layers. By stacking them, networks become

deeper and more expressive.
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Skip connections

Deep neural network becomes vanishing gradient problem, in which gradients get smaller

with depth, frequently affects deep neural networks. Some activation functions emphasise

this by squashing the values and lowering gradients. There are certain methods to get

around this problem, like skip connections, where the output of earlier layers is used at

different points. The residual neural network, or ResNet, is the most prevalent type of

network using skip connections. ResNet adds the output of a block of layers to the input

of the same block to keep information and enable shorter channels for gradients to pass

through.

Activation Functions

Most currently used layers convert their inputs along basic linear paths. After such layers,

nonlinearities must be exploited to construct strong functions. Deep neural networks are

more expressive than linear transformations due to the alternation of linear parametric

operations with nonlinear (typically nonparametric) transformations. The ReLU (rectified

linear unit), ELU (exponential linear unit), sigmoig (logistic), tanh (hyperbolic tangent),

and softplus are the most widely used activation functions.

Fully Connected Layers

The fully connected layer, sometimes referred to as dense or perceptron, is the most basic

sort of layer. One hyperparameter is necessary: the quantity of output units. It has two

parameters: a bias vector b and a weight matrix W. The output tensor Y is produced as

follows: Y = f (W.X + b) given an input tensor X and an activation function f . A stack of

entirely connected layers is known as a multilayer perceptron (MLP). Neurons in the visual
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brain serve as a loose inspiration for a 2D convolutional layer. Over a 2D feature map,

it applies a kernel with a receptive field. A tensor with width, height, and depth is a 2D

feature map. The number of channels is another name for the depth number. In contrast

to colour RGB images, which have three channels for red, green, and blue, grayscale images

only have one channel. A kernel with width, height, and depth defines a convolution when

it is moved over an input feature map to produce an output feature map. By applying

the same kernel in different locations across the input feature map, the resulting pattern

matching is translation invariant.

Recurrent Layers

To allow neural networks to process sequences of input data and retain information, re-

current layers have been introduced. They all rely on some internal state being carried

over between unroll steps, and mostly have one hyperparameter specifying the size of the

generated output. The simplest form of recurrent neural network (RNN) takes in input

both the current input and the previous output, concatenates them, and generates a new

output using an internal dense layer. This output is then used itself with the next input

to generate the next output, and so on. The sequence of inputs and outputs can be used

in various ways depending if the task at hand is many to one (only the last output is sent

to the next layer), one to many (the same input is repeated multiple times in input, and

the many outputs are sent to the next layer), or many to many (at every unroll step, a

different input is provided, and the generated output is sent to the next layer).

In any case, the last output generated by a simple RNN is the result of several passes

through the same dense layer. This makes the retention of information increasingly harder

for the network, and the unroll of a recurrent layer is effectively the same as a deep network
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with a repeated layer, creating issues with vanishing gradients once again. To overcome

this issue, long short-term memory (LSTM) (Hochreiter Schmidhuber, 1997) and gated

recurrent unit (GRU) (Cho et al., 2014) layers have been proposed. They rely on gating

mechanisms involving multiple internal dense layers controlling the amount of forgetting

and addition performed at every unroll step, drastically increasing memory capacities and

limiting vanishing gradient issues.

Attention Layers

The padding, which indicates how many pixels were added to the input feature map’s

borders, and the dilatation. The term ”attention” has been used to describe techniques

that allow certain elements of a huge amount of information to be highlighted in the deep

learning literature. Currently, queries, keys, and values are used as the primary types

of attention by the well-known Transformer network (Vaswani et al., 2017). A possible

distinct collection of unordered vectors is projected into query vectors on one side while

an unordered set of vectors is projected into key and value vectors on the other. After

exponentiation and normalisation, scalars produced by the dot product of the keys and

queries yield coefficient weights.

To create a new set of values, these weights are applied to the relevant value vectors in

a weighted sum. The new vectors then aggregate data from various areas of the input

sets. Transformers were first used in translation jobs, where the source language’s text was

represented by the first input set and the target language’s text was represented by the

second input set. An very efficient method of executing the translation without the need

for memorising is to pay attention to both input sequences. Without requiring recurrent

networks to iteratively encode certain sequences, attention attends directly to portions of
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the inputs. Being able to manage dynamic set sizes and producing ”soft weights” that

fluctuate with the inputs, these techniques offer a major paradigm breakthrough in deep

learning.

Probability Distribution

Many neural networks use probability distributions as a final step. For instance, classifiers,

text or image generators, and policies all make use of them. logical operation to establish

the most basic type of probability distribution,

Logical Function

A single scalar x, commonly known as ”logit,” is used to represent the probability of one

result and is passed via the sigmoid function 1/ (1 + exp(-x)). A big negative logit repre-

sents a chance of 0, whereas a large positive logit denotes a probability of 1.

Softmax

A softmax is a logistic function that generalises to many classes. A logit vector x is used to

model the probability of classes after being put through a normalised exponential function.

A class i likelihood is given by exp(xi)/
∑

jexp(xj).
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Gaussian

A multivariate Gaussian distribution, also known as a multivariate normal distribution,

can be utilised for continuous spaces. It is a higher-dimensional generalisation of the one-

dimensional (univariate) normal distribution. The covariance matrix of its probability

density function, which depicts how the distribution spreads across its dimensions, has a

distinctive bell-shaped shape that is centred on its mean. The covariance matrix must be

positive definite, which makes it challenging for a neural network to represent. Because

of this, most multivariate normal distributions are constructed as diagonal distributions,

where the covariance matrix is zero everywhere but the main diagonal (scale). Each di-

mension becomes independent as a result. So, the mean and scale of a diagonal Gaussian

are each represented by a separate vector. The term ”standard normal distribution” refers

to a specific instance of this distribution when the scale vector is filled with ones.

Reparameterization Trick

The generated stochastic samples do not directly allow gradients to flow through a neural

network when a probability distribution is applied somewhere in the centre of the network.

The reparameterization approach can be used to fix this problem. It is based on rewriting

the sample generation process as a differentiable function of the network’s deterministic

values and a random sample supplied by an external distribution of probabilities. For

instance, a sample from a diagonal Gaussian distribution can be produced by combining

a mean vector µ and a scale vector produced by a neural network with a random noise

vector , produced by a multivariate standard normal distribution. This sample has the

formula y = µ + σ ϵ and permits gradients to pass across the points µ and σ.
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Figure 3.4: Reinforcing a dog:The dog
is traduced to different actions , while
the dog observes and does the actions
as commanded, the dog is rewarded with
treat.

Figure 3.5: Action-Perception loop. The
agent acts in a way that has an impact
on the environment. The environment
releases a reward, which the agent then
observes along with the environment’s
present condition. www.Flaticon.com
icons created by Good Ware and
Turkkub.

3.2 Reinforcement Learning

The branch of machine learning that deals with sequential decision-making is called rein-

forcement learning (RL). An agent is given a notion of cumulative rewards and is required

to make decisions in each environment to optimise it. It will become evident that this

formalisation may be used for a wide range of tasks and that it captures many crucial

aspects of artificial intelligence, including a sense of cause and effect as well as a sense of

uncertainty and nondeterminism. An important feature of RL is that an agent picks up

positive behaviours. This indicates that it gradually adjusts existing behaviours and skills

or learns new ones.

One aspect of RL is that, tasks are defined in terms of scalar rewards that an agent can get

by interacting with the environment. In most cases, the objective is to maximise a return,

which is an accumulation of these benefits. In a non-deterministic setting, the objective

is often to maximise return expectations. A policy, which is a function that maps a state

input to an action, or a conditional distribution of actions given a state, is typically how a

solution is presented. This is the principal object that describes the agent’s behaviours. A
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policy’s fundamental form is one that is reactive and chooses an action based on its present

observations. A policy might, for instance, be a look-up table with a cell for a response

action for each state and a size equal to the number of states. Finding the appropriate

actions to enter the table’s cells in this scenario is part of the learning process. The table’s

activities ought to provide a policy that offers agents the highest return.

The core of RL is creating the learning process. When and how to gather information from

an environment should be thought out during the learning process. An agent can use its

activities to investigate its surroundings and gather the information required to enhance

its policy. It must also determine which acts will result in a reward in the far future using

the data it has collected. When the state space is big, a representation like a look-up table

may present issues. One issue is that it would require a significant amount of memory.

Another issue is that it is challenging to travel to enough states to fill up every table cell.

The concept of a function approximator was developed to address this issue. A parametric

function called a function approximator is used to calculate an interest value. The data

is stored more compactly in the parametric function’s parameters by using function ap-

proximators. A learning algorithm can also naturally handle interpolation by selecting the

function that best fits the data. The function approximator can then ”guess” the results

of data that have not yet been seen. One of the key elements that makes it possible for

RL to be used in issues with a wide state space is its interpolation capability. Learning

in RL needs propagation of associative information from an observed outcome back to the

action that took place in the distant past, in contrast to supervised learning. When the

crucial acts are temporally removed from the rewards, learning becomes more difficult.

This gives rise to the concept of temporal abstraction, which aims to break down lengthy

action sequences into more streamlined shorter sequences.
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We investigate a class of policies with hierarchical representations to temporally abstract

an agent’s activity. A policy that combines sub policies and is activated by higher level

policies, which in turn activate lower-level policies, is an example of a hierarchical policy.

The specifics of the decisions made when taking primitive actions are abstracted away by

information propagation at the high-level policy level. RL methods such as hierarchical

reinforcement learning (HRL) techniques use this type of policy representation (Barlo and

Mahadevan, 2003).

3.2.1 Exploration Problem in Reinforcement Learning

The exploration approach of a DRL system is one of its most troublesome features. The

challenge is finding the information that the learning algorithms need. The most basic

version of exploration techniques lacks an understanding of ”what” to explore. Instead, it

makes a random decision about what to do at each time-step. Surprisingly, this type of

exploration, called dithering exploration (Osband and Vana, 2017), is the most widely used

tactic in DRL since it is so easy to use and performs reasonably well. Greedy exploration

is the best-known application of such a tactic, which functions by generally adhering to an

estimated best policy and sporadically uniformly selecting a random action.

The goal of random action is to study and enhance the currently considered best policy.

Searching for a specific target is a better exploring method. The guided exploration ap-

proach is used in this situation (Osband and Vana, 2016). Due to its goal-oriented nature,

guided exploration got its moniker. With orthogonal objectives (or other goals) that may

be distinct from the primary purpose, these exploration tactics delve further. In HRL, ran-

dom exploration strategies at lower temporal scales (lower frequency) can lead to guided
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exploration at higher scales.

The HRL policy structure is to blame for this. A high-level policy (option) in HRL(hierarchical

reinforcement learning) activates lower-level policies (policies) in a hierarchical manner,

which then carry out basic operations. When a high-level policy employs a random explo-

ration, such as greedy, it will choose a random option and activate it until it is terminated.

This adherence to an option’s behaviour over several time steps is a directed behaviour.

As a result, at this scale of time, the agent might be considered as engaging in directed

exploration. As an alternative, a few exploration tactics look for ’valuable’ information

directly. However, it is still unclear exactly what constitutes ”useful” information. The

setting of intrinsically driven agents has been addressed in this field of study, where the

main question is how to measure an agent’s curiosity is up for debate (Schmidhuber, 2010).

For instance, the uncertainty of an agent’s present understanding of the world can serve

as the foundation for inquiry. The agent may have an innate desire to improve the model

of the knowledge it has regarding the environment. In low dimensional contexts, this idea

of leveraging uncertainty for exploration has been well investigated (Strehi et al, 2006).

Another crucial feature of RL is that it relies on trial-and-error learning, as opposed to,

say, dynamic programming, which presupposes complete environment information. The

RL agent just must be able to interact with the environment and gather information; it

does not need to have comprehensive knowledge of or control over the environment. In an

offline context, experience is gained beforehand and used as a batch for learning (hence

the term batch RL for the offline setup).
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3.2.2 Framework

Markov decision process: An agent engages in successive interactions with its environment

in the traditional reinforcement learning framework. Markov decision process (MDP), a

mathematical framework used to represent decision-making, aims to describe the three

factors necessary for decision-making: sensation, action, and objective. MDPs are an ex-

tension of Markov chains that include actions for goal-oriented goals and rewards. A state

space S, an action space A, a reward function r (s, a, s), and a state-transition distribution

p (s|s, a) often make up the description of an MDP. The agent is given a state at each

time step t and creates an action at. In response, the environment offers a new state

(st+1) and a reward (rt+1). There are some states that can be terminal, meaning that once

they are attained, no more interaction is possible.

A decision-maker maps states to probabilities over actions using a policy, symbolised by

the symbol π. States in MDPs are referred to as Markovian because they include all the

data needed to simulate state transitions and rewards and, thus, to reflect ideal policies.

There is no need for further material, such as a history of past states. An environment’s

internal states do not necessarily have to match those offered to an agent. For instance,

a physics simulator’s complete state might include variables like friction coefficients or the

magnitude of the gravitational acceleration if they remain intact, they do not need to be

communicated to the agent. Like this, numerous approaches and different points of ref-

erence can be used to represent an object’s state, including its coordinates, rotation, and

velocity.
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3.2.3 Episodes

Typically, the interaction between the agent and the environment occurs in a limited num-

ber of stages known as episodes. The agent first senses the initial state s0 and outputs the

first action a0 after sampling it from a distribution p0(s0). Following that, the environment

changes to the following state, s1, based on s0 and a0, and produces a reward, r1. The agent

generates a new action, a2, in response to this new state and reward. The interaction loop

continues in this manner until the episode reaches a terminal state and ends. A terminal

state can be the conclusion of a maze for a path-finding job, a lethal hit from an enemy in

a video game or losing balance and falling for a robot.

3.2.4 Objective

Sum of Rewards

The decision-maker’s goal is to create a policy πthat maximises a return R, which is a

cumulative function of the future rewards. But there are several problems that can arise

when using the rewards total directly. For instance, the sum would be boundless if episodes

could endure forever, and an infinite number of awards could be earned. In other cases,

even when there are fewer incentives available, there is no motivation to claim them sooner

rather than later because the amount is time indifferent.

Discounted Sum of Rewards

The most typical alteration used to reward instead of using a simple sum is a geometric

progression utilising a discount factor of γ ∈ [0, 1) .The two difficulties mentioned above are

resolved by this transformation: it makes short-term incentives more attractive and limits
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the sum of reduced rewards than those that are long-term. It is important to note that a

modest discount factor can cause policies to become overly myopic and eagerly choose little

immediate rewards over larger delayed ones. Except when otherwise noted, the remainder

of this argument will assume that returns are discounted.

Rt =
∞∑
k=0

γkrt+k (3.10)

3.2.5 Policy Evaluation

Explains what a state is worth when it abides by a policy. It represents the anticipated

return under the assumptions that we follow our policies and begin in the state, s. Here is

the equation for the state value function:

V π(s) = E
π[Gt|st = s] (3.11)

This equation 3.2 is called a Bellman equation as it connects the value of a state to the

values of the successor states. Intuitively, the Bellman optimality equation should output

a value for a state under an optimal policy that must equal the expected return for the

best action from that state.

V ∗ (s) = maxa∈A qπ∗(s, a) (3.12)

V ∗ (s) = maxa∈A
E
π∗[Gt|St = s, At = a] (3.13)
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V ∗ (s) = maxa∈A π∗E[Rt+1 + γGt|St = s, At = a] (3.14)

V ∗ (s) = maxa ∈ A π∗E[Rt+1 + γV ∗ (St+1)|St = s, At = a] (3.15)

V ∗ (s) = maxa π∗EΣ(s′, r|s, a) + [r + γV ∗ (s′)] (3.16)

The Bellman equation for optimality q ∈ (s) state-value function is:

q ∈ (s, a) = E[Rt+1 + γmaxa q ∗ (St+1, a
′)|St = s, At = a] (3.17)

q ∗ (s, a) =
∑

s′, rp(s′, r|s, a)[r + γmaxaq ∗ (s′, a′) (3.18)

Qπ(s, a) = E
π[Gt|st = s, at = a] (3.19)

Action value function: Indicates the value of acting in accordance with a policy in a par-

ticular state. It is the expected return given the state and an activity taken in accordance

with a policy:
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3.3 The Bellman Equation

An approximation of the Q-value can be found using the Bellman equation below

Q(st, at) = Rt+ 1 + (st+1, a′) (3.20)

If an agent is in state st and then performs an action at, the environment will respond

by giving the agent a reward of level Rt+1 and will place the agent in a new state st+1.

Because the agent does not know the rewards of future time steps while he is interacting

with the environment (Rt+2,Rt+3, etc.), the Bellman equation approximates the Q-value

by assuming that the agent would pick the action a′ at state St+1 that yields the highest

return when following his policy. This is done because the agent does not know the rewards

of future time steps when he is dealing with the environment. The table 3.1 provides basic

mathematical notations used in this report.

3.4 Sarsa Algorithm

The state-action value function Q of the policy is iteratively approximated in the Sarsa

algorithm. This policy, which interacts with the environment, is created by combining

exploratory data with the learnt Q-values. activities that are greedy. For instance, the -

greedy exploration technique chooses the uniformly from A with probability and the greedy

action arg maxaQ(s, a) with probability (1 − ϵ). Another exploration technique is called

Boltzmann exploration, which creates a Boltzmann distribution from the Q-values and

assigns a higher probability to actions with higher values. The loss function is given for a

sample s, a, r, s′, and a′, which gives the method its name:
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Table 3.1: Useful RL notations
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Lθ(s, a, r, s′, a′) =
1

2
(Qθ(s, a)(r + γQ(s′, a′)))2 (3.21)

taking the gradient of this loss with respect to θ, we get:

∇ϑLϑ(s, a, r, s
′, a′) = (Qθ(s, a)(r + (s′, a′)))∇ϑQϑ(s, a) (3.22)

Using this gradient to update θ enhances the estimation of Qπ. It’s interesting to note that

while Q changed, π also altered, but eventually the policy and Q-function would converge.

In addition, as the policy improves, the quantity of exploration can be decreased over time,

allowing the Q-function to monitor changes in. Because the data generated by a policy is

only valid for the policy that generated it and needs to be deleted following an update,

Sarsa is known as an on-policy algorithm.

3.5 Q-Learning

Q-Learning, which stands for Quality Learning, is a reinforcement learning algorithm that

teaches an agent to take the appropriate action given a state. Q-Learning’s purpose is to

learn a policy that maximises overall reward. In other words, the Q-Learning algorithm

is responsible for learning the Q-values in a Q-table. When the Q-table converges, we

have arrived at an optimal policy, in which the agent understands the consequences of

performing a certain action in a specific state. The agent begins with a Q-table that is

initialised with zeros, then through contact with the environment, he updates this table

based on the Bellman Equation, and eventually (after convergence), this table becomes

his reference to choose the best feasible action given a state. Q-Learning is known with a

strong proof of convergence established by (Tommi et al.,1993). It directly computes the
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optimal action policy without any intermediary cost evaluation step and without using any

model. Q-Learning is model free and off-policy algorithm established on the bases of the

Bellman Equation given in bellman equation above.

3.6 Deep Reinforcement Learning

In this section, we will discuss background survey of existing DRL work done previously.

We also give an overview of supporting concepts that are considered fundamentally related

to the realization of the proposed research.

� State: Actions are the Agent’s methods which allow it to interact and change its

environment, and thus transfer between states. Every action performed by the Agent

yields a reward from the environment. The decision of which action to choose is made

by the policy

� Action: Actions are things that an agent can do in the environment. Actions can

be moves allowed by the rules of play. In RL, we distinguish between two types

of actions: discrete or continuous. Discrete actions form the finite set of mutually

exclusive things an agent could do, such as move left or right. Continuous actions

have some value attached to the action.

� Reward: Rewards provide evaluative feedbacks for a RL agent to make decisions. It

can be positive or negative, large, or small. The purpose of the reward is to tell the

agent how well they have behaved.

� Environment: The environment is external to an agent, and its communication with

the environment is limited by rewards (obtained from the environment), actions
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(executed by the agent and given to the environment), and observations (some infor-

mation besides the rewards that the agent receives from the environment).

� Agent: An agent is somebody or something who/which interacts with the envi-

ronment by executing certain actions, taking observations, and receiving eventual

rewards for this. In most practical RL scenarios, it’s our piece of software that is

supposed to solve some problem in a more-or-less efficient way.

� Value Function: A value function is a prediction of the expected, accumulative,

discounted, future reward, measuring how good each state, or state-action pair, would

be.

� Policy: A policy maps state to action, and policy optimization is to find an optimal

mapping.
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3.6.1 Model-Based and Model Free

To explore the taxonomy in reinforcement learning, we first discuss model-based and model-

free methods. A model, such as a deep neural network, is a specific function with initialised

parameters (pre-trained model) or learned parameters (well-trained model). In contrast,

a ”model” in model-based reinforcement learning refers to a collection of learned environ-

mental knowledge. Remember that there are five factors in the Markov decision process

(MDP) labelled as S, A ,P ,R ,γ, S and A indicate the environment’s status space and

action space; p(s | s, a) represents a transition function, which provides the likelihood of

the environment changing from s to s when an agent acts a; and signifies the discount

factor R(s, a) is a reward function that returns a reward when an agent does action an

at state s. The agent is typically unaware of the reward function R and the transition

function (p(s′|s, a). To make use of the incentive feedback, the agent must make a few

mistakes and learn through monitoring the surroundings.

Predicting environmental components is one approach. Although the reward function R

and P are unknown, the agent can nevertheless collect some samples by acting in the

environment. The values of p(s′|s, a) and r can be predicted by supervised learning if

the samples (s, a, s′, r) are large enough. Once all the components are known, planning

techniques can be applied immediately. This approach is known as model-based. Another

approach is to actively search for the best policy rather than modelling the environment.

For instance, the policy gradient method directly looks for the best policy in the policy

space while the Q-learning algorithm selects the actions with the highest Q-values and

converges to an optimal Q-value function. These two algorithms directly seek the largest

reward rather than concentrating on the model. Model-free is the term for this method.

Whether the agent will acquire or learn the model (or dynamics) of the environment, such

as the transition function and the reward function, distinguishes model-based from model-
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free approaches.

Model-based approaches can be divided into two groups: those that use pre-existing mod-

els and those that build new models. The reward function and transition process models

can be accessible directly by the agent for the methods that function with a specific model.

For instance, the AlphaGo algorithm (Silver et al. 2016, 2016) specifies the Go game’s

rules, which are easily comprehensible in computer language. For the agent to assess and

enhance its policy, the transition function and reward function in Go are both well-known.

The complexity or opaqueness of the environment prevents the methods used in the other

category from learning the model directly, but an agent can learn the model through in-

teractions with the environment and then use it to develop policies. The World Models

algorithm (Ha and Schmidhuber 2018), the I2A algorithm (Racanière et al., 2017), and

others are typical instances for the second category. Like the World Models technique, the

agent gathers some input (St, At, St+1) from a random strategy and uses a variational auto-

encoder (VAE) to encode it into a low dimensional latent vector z t (Baldi, 2012). Then, a

prediction model of the future latent vector z is learned using these data (Zt, At, and Zt+1).

Following that, the agent can use the learnt model to refine its policy.

The main benefit of model-based approaches is the ability to predict future states and

rewards using the environment model, which enables the agent to plan more effectively.

Pure planning and expert iteration are two typical approaches (Sutton and Barto, 2018).

For instance, the AlphaGo algorithm (Silver et al. 2016) uses expert iteration while the

MBMF algorithm (Nagabandi et al., 2018) uses pure planning techniques. Model-based ap-

proaches have the drawback that the model is typically unavailable and that the dynamics

of the environment might be complicated, and sometimes not even explicitly represented.

Additionally, the practised learned models are typically erroneous, which introduces bias
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into estimation. When implemented in the real world, a policy that was estimated and

improved using a biased model typically fails.

Figure 3.6: Taxonomy of Reinforcement learning, Source: Hangming and Tianyang(2020)

3.6.2 Model-Free Method

methodologies avoid attempting to create an environment model. The agent immediately

engages with the environment, and as it explores more samples, it becomes more effective.

Model-free methods are easier to implement than model-based methods since they don’t

depend on the model, which might be challenging to understand if it isn’t provided. Model-

free approaches, however, nevertheless frequently experience issues of their own. Sometimes

the time commitment, equipment wears and tears, and safety concerns associated with ex-

ploration in the actual world can be very significant. In the case of an automatic pilot, for

instance, we cannot train an agent to explore in the real world using a model-free method
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without taking any further safety measures because any traffic accident will be too ex-

pensive to sustain. Model-free algorithm includes the deep Q-networks (DQN) algorithm

(Mnih et al. 2015), policy gradient (PG) approaches (Sutton et al. 2000), the deep deter-

ministic policy gradient (DDPG) algorithm (Lillicrap et al. 2015), and others. However,

model-based methods are becoming more and more crucial because model-free methods

have low sample efficiency. Model-based algorithms include, for instance, AlphaGo (Silver

et al. 2016) and AlphaZero (Silver et al. 2018, 2017).

3.6.3 Value-Based and Policy-Based

Value-based approaches and policy-based methods are the two basic categories for pol-

icy optimisation in deep reinforcement learning. The actor-critic class of algorithms and

other algorithms, like QT-Opt (Kalashnikov et al., 2018), which use the value func-

tion for updating the policy, are created by combining the two. The action-value func-

tion Qπ(s, a) must typically be optimised when using value-based approaches. The opti-

mal policy can be calculated by π∗ ≈rgmaxπQπ(”≈ ” due to the approximation error),

whereQπ∗(s, a) = maxaQπ(s, a) is the optimal value function after optimisation. The high

sample efficiency, low estimation variance, and difficulty of falling into a local optimum are

the benefits of the value-based approach. The continuous action space problem is typically

too complex for it to solve, and the epsilon greedy strategy and the max operator, like in

DQN, can easily lead to overestimation.

Q-learning (Watkins and Dayan, 1992), DQN (Mnih et al., 2015), and its derivatives are

two popular value-based algorithms: Prioritised Experience Replay (Schaul et al., 2015)

increases learning efficiency by weighting the data based on TD error; Dueling DQN (Wang

et al., 2016) enhances network structure. To increase approximation capacity, it divides
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the action-value function Q into the state-value function V and the advantage function A;

Double DQN (Van Hasselt et al. 2016) selects and assesses actions with various parameters;

Retrace (Munos et al. 2016) updates the calculation method for the Q value and lowers the

variance of value estimation; and Noisy DQN (Fortunato et al.,2017). The policy-based

approach directly optimises the policy by iteratively updating it until the cumulative re-

turn is maximised. A policy-based method provides the advantages of simplified policy

parameterization, better convergence, and suitability for continuous or high dimensional

action space when compared to the value-based method. PG (Sutton et al., 2000), TRPO

(Schulman et al., 2015), PPO (Schulman et al., 2017; Heess et al., 2017), and others are

examples of standard policy-based algorithms.

To avoid policy collapse and increase algorithm stability, TRPO and PPO limit the up-

date step based on PG. The more common approaches, in addition to the straightforward

value-based and policy-based approaches, are those that combine the two and produce an

actor-critic framework. The actor-critic method combines the advantages of the value-

based method and the policy-based method by learning a Q function or value function to

increase sample efficiency using the value-based methods and a policy function that is ap-

propriate for discrete or continuous action space using the policy-based methods. This kind

of strategy can be seen as an upgrade to the policy-based method for lowering sampling

variance or as an extension of value-based methods in continuous action space. The bene-

fits of the two ways are combined in this strategy, but the drawbacks are also carried over.

For instance, the actor struggles with inadequate exploration, and the reviewer likewise

struggles with overestimation. Actor-critic (AC) method (Sutton and Barto, 2018), among

others, is a popular deep reinforcement learning actor-critic algorithm. It has undergone

a number of changes, including: (1) DDPG (Lillicrap et al. 2015) inherits DQN’s target

network, and the actor is a deterministic policy; (2) A3C (Mnih et al. 2016) extends AC
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to asynchronous and parallel learning, disturbs the correlation between data, and improves

the speed of data collection and training; (3) TD3 (Fujimoto et al. 2018) introduces clipped

double Q-learning mode and delayed policy update strategy.

3.6.4 Monte Carlo and Temporal Difference

Some algorithms had already examined the distinctions between the Monte Carlo (MC)

and temporal-difference (TD) approaches. For the sake of wrapping up, I will once more

summarise their distinctions here. TD is a middle ground between MC techniques and dy-

namic programming (DP). Both TD and DP use bootstrapping for estimate, and neither

TD nor MC require complete environmental knowledge. The method used for the learning

update is where MC and TD diverge the most. DP can update at every time step, but

MC must wait until the end of an episode to do so. Due to this distinction, TD methods

will be able to have larger biases while MC methods will have larger variances.

3.6.5 On-Policy and Off-Policy

From a policy standpoint, there is a distinction between on-policy and off-policy .Off-policy

methods evaluate or improve a separate policy from the one used to generate the data,

in contrast to on-policy approaches, which aim to evaluate or enhance the policy that

is used to make choices. The on-policy method necessitates that the agent itself engage

in environmental interaction; hence, the policy that engages in environmental interaction

and the policy that is being improved must be the same. It is not necessary for the off-

policy technique to follow it; instead, the policy can be improved by learning from how

other agents interact with the environment. Sarsa is a popular on-policy technique that
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chooses an action based on the existing policy, carries it out, and then utilises the results

to update the policy. Therefore, the updated policy and the policy that interacts with the

environment are both the same. The Q function is updated as follows:

Q(St, At)← Q(St, At) + α[Rt + γQ(St+1, At+1)−Q(St, At)]

(3.23)

A classic off-policy method is q-learning. The policy that interacts with the environment

and the updated policy are not the same since it adopts the max operation and a ∈-greedy

policy when choosing actions. The Q function is updated as follows:

Q(St, At)← Q(St, At) + α[Rt + γmax
a Q(St+1, At+1)−Q(St, At)]. (3.24)

3.7 Deep Q-Network (DQN)

Deep-Q-Learning is a variant of Q-Learning in which a Neural Network (NN) is used in

place of a table to learn the Q-value function for a variety of states and actions. Deep-

Q-Learning is also known as Q-Learning 2.0. This neural network is referred to as a

Deep-Q-Network (DQN) by us. This DQN takes a state as its input and computes the

corresponding Q-values for each action as its output after receiving the state. A straightfor-

ward explanation of the DQN algorithm may be found in the form of a regression problem,

in which the NN makes predictions for the Q-values of all possible actions based on a state.

with contrast to the traditional method of learning through supervision, known as super-

vised learning, with reinforcement learning (RL), we do not have access to the accurate
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target values. Because of this, we train the network in a supervised online method and use

the Bellman Equation to come up with an approximation of the goal Q-values is defined

as follow.

Qtarget(St, at = Rt+1 + γmaxQpred(st+1, a
′) (3.25)

3.8 Double-Q-Learning

The problem with DQN, which is otherwise one of the most powerful algorithms, is that not

only the predicted Q-values rely on the NN, but also the target Q-values that we estimate

using the Bellman equation. This is the reason why, when we update the weights of the

network to give us a prediction that is close to the target value, the target value will also

change because of the update to the weights of the network. Because of this association,

the double DQN was developed in (Van et al., 2015) to break it. Instead of using a single

NN, the double DQN uses two NNs. One of them, known as the learning network, is the

one that is routinely updated at each timestep, while the other, known as the target net-

work, is the one that is utilised to compute the target values. When the learning network

is updated in this manner, the target variables won’t be affected in any way. The weights

of the learning network are periodically incorporated into the target network, which is

periodically updated. Van et al.( 2015) gives more specific details regarding the operation

of the algorithm. However, this report tends to use Dueling double-Q-learning, and this

will be explained extensively next.
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3.9 Dueling DQN (D3QN)

Up until this point, the Deep Learning Models (here the term models refer to their us-

age as in supervised learning models as opposed to the MDP model) that we discussed

were ’Sequential’ architectures (sequential architectures and sequential models may have

had different meanings in different contexts) a distinct meaning in the context of deep

learning). In these models, every neuron in a certain layer could only be connected to the

neurons in the layer immediately before and following their own layer. This restriction

applied to all the neurons in that layer. To put it another way, these model architectures

did not have any branches or loops of any kind.

Even though DQN and Double DQN each featured two Q networks, there was only one

deep learning model, and the values of the other (target) network were just periodic copies

of the values of the active (online) network. In Dueling DQN, we have a non-sequential ar-

chitecture of deep learning in which, after the convolutional layers, the model layers divides

into two independent streams (sub-networks), with each having their own fully-connected

layer and output layers. This allows the model to train in a more efficient manner than tra-

ditional sequential architectures. The first of these two branches or networks corresponds

to the Value function, which can be utilised to ’guess’ the value of a certain state and

only contains one node in its output layer. This branch or network is corresponding to the

Value function. The second branch or network is known as the ”Advantage” network, and

it is responsible for calculating the value of the ”advantage” of performing a certain action

in comparison to the base value of existing in the present condition.
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Figure 3.7: Schematic structure of Dueling Q Network.

However, the Q Function in Dueling DQN still reflects the Q Function in any a typical

Q Learning algorithm, and so the Dueling DQN algorithm should work conceptually in

the same manner that a typical Q Learning algorithm works by estimating the absolute

action values or Q estimates. As a result, we must estimate the action-value/Q estimates

as well. Remember that action-value is the absolute value of performing a specific action

in a specific condition. So, if we combine (add) the output of the state’s base value (first

network/ branch) and the incremental ’advantage’ values of the actions from the second

(’advantage’) network/ branch, we can effectively estimate the action-value or are Q Values

as required in Q Learning. This can be expressed mathematically as follows:

Q(s,a;,α,β) = V(s;θ,β) + (A(s,α;θ,α) −maxa′∈|A|A(s,a′;θ,α)) (3.26)

The words Q, V, s, a, and a′ in equation above have the same consistent meaning as in

the table of mathematical notations above . Furthermore, the letter ’A’ represents the

advantage value. ′θ′ denotes the parameter vector of the convolutional layer that is shared

by both the ’value’ and ’Advantange’ networks. ′α′ represents the ′Advantange′ network’s

parameter vector, and ′β′ represents the ’State-Value’ function’s parameter vector. Since

we’ve reached the domain of function approximators, the values of any network are in-
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dicated regarding the parameters of the ’estimating’ network to differentiate between the

values/estimates of the same variable inferred via many different estimating functions. The

equation in simple terms means that the Q value (the subscripts θ, α, β to the Q indicate

that the Q estimates here are as computed from the estimating model which has three

series of parameters or is a function of θ, α, β) for a given state-action combination is

equal to the value of that state or absolute utility of being in that state as estimated from

the state-value (V) network (the subscripts θ, β of V in the equation denote that the state

value is estimated from Corrections for ”identifiability” complete the equation. Examining

the ”identifiability” further, From the basic, obvious explanation above equation may have

been as easy as below:

Q(s,a;θ,β) = V (s; θ, β) + A(s, a; θ, α) (3.27)

However, the issue with this straightforward construction is that, while we might obtain the

value of Q (action values), if the values of S and A are supplied, the inverse is not true. This

is illustrated in equation 3.22 above. This means that we were unable to ”uniquely” deduce

the values of S and A from a given value of Q. This is referred to as ’unidentifiability’.

Equation 3.23, which is a superior variation of equation 3.21, is shown below. The final

component of equation 3.21 is slightly altered in equation 3.23. Although the numbers are

somewhat off-targeted when a constant is subtracted, this has little impact on learning

because the value comparison is still there. Additionally, the stability of the optimisation

is increased by the equation in this form.

Q(s,a;θ,α,β) = V (s; θ, β) + (A(s,a;θ.α) −
1

|A|
∑
a

A(s, a; θ, α)) (3.28)
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Figure 3.8: D3QN algorithm for optimal policy implementation of COVID-19 ,Source:
(Huang et al., 2018)

The figure 3.7 shown above is the step by step implementation of the D3QN algorithm for

the derivation of optimal policy for appropriate timing of lockdown and travel ban of both

local and international travels.

3.10 Framework for DRL on COVID-19 in the UK

The development of a comprehensive framework for deep reinforcement learning (DRL) on

COVID-19 to finding the optimal policy for lockdown and travel ban in the UK entails

the integration of methodologies derived from deep learning and reinforcement learning to

effectively tackle the unique obstacles associated with the ongoing pandemic. Presented

below is a comprehensive framework that might serve as an initial reference point.
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3.10.1 Problem Definition

The main problem is to designing an effective policy for appropriate timing for lockdown

and travel restrictions to combat the spread of COVID-19 in the UK. Before the policy

design, there is need to find the severity of the state of COVID-19 with regards to death,

recovery and confirmed cases.

3.10.2 Data Collection

Collecting relevant data for training and evaluation. This include; COVID-19 case data(confirmed,

recovered and deaths), Policy interventions data(lockdown measures and travel ban).

3.10.3 State Representation

The task involves establishing the state representation that will be employed by the Deep

Reinforcement Learning (DRL) model. The process entails determining the necessary

information that the model need in order to make informed decisions.

3.10.4 Action Space

This defines the actions that our DRL(D3QN) agent can take. Adjusting the severity of

lockdown and travel restriction(Low, medium or high).

3.10.5 Reward Function

In order to assess the desirability of various situations, it is necessary to establish a reward

function. The reward function plays a crucial role in shaping the learning process of the

deep DRL agent. See section 5.10.
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3.10.6 Model Architecture

This has to do with choosing the appropriate deep neural network, in our case D3QN.

3.10.7 Training

Training our DRL(D3QN) model using historical data.

3.10.8 Evaluation

Assess the efficacy of the trained model by conducting a performance evaluation on an

independent test dataset. Utilise appropriate metrics that align with the objectives of

your framework, such as the accuracy of predictions, efficiency in resource utilisation, or

the implications of policy suggestions.

3.11 Evaluation Metrics

The evaluation metrics employed in deep reinforcement learning (DRL) can exhibit vari-

ability contingent upon the particular situation at hand. Nevertheless, there exist various

prevalent metrics and methodologies that are utilised to evaluate the efficacy of DRL al-

gorithms. The following are several significant evaluation measures and methodologies:

3.12 Reward Function

The fundamental evaluation metric commonly utilised in the field of reinforcement learning

is the cumulative reward or return acquired by the agent over its temporal trajectory. The

reward function establishes the objective particular to the task, and the agent’s efficacy

is commonly evaluated based on the cumulative reward it acquires over the training or
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testing process.

3.13 Average Reward

The average reward is a popular assessment metric in Deep Reinforcement Learning (DRL)

for assessing an agent’s performance during training or testing. It indicates how effectively

the agent performs on average across episodes or time steps. In DRL, you can calculate

and analyse the average reward metric as follows:

3.13.1 Calculation of Average Reward

1. During training or testing, the agent interacts with the environment, taking actions

and receiving rewards at each time step.

2. Calculate the cumulative reward obtained by the agent in each episode (the sum of

rewards obtained in that episode).

3. After a set number of episodes or time steps, calculate the average of these cumulative

rewards to get the average reward.

Mathematically, the average reward can be expressed as:

Average Reward =
1

N

N∑
i=1

Ri (3.29)

Where:

� N is the total number of episodes or time steps.

� Ri is the cumulative reward obtained in episode i
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The average reward serves as a measure of the agent’s total task performance. A larger

average reward often signifies superior performance on the part of the agent, whereas a

lower average reward implies inferior performance. Nevertheless, the understanding and

analysis of the mean reward are contingent upon the particular job at hand and the explicit

formulation of the reward function.

It is imperative to acknowledge that although the average payout serves as a valuable

metric, it may not comprehensively encompass all facets of the agent’s performance. For

instance, the provided information does not encompass details regarding the agent’s ap-

proach to exploration, and it may not accurately depict the agent’s proficiency in accom-

plishing a particular task objective.

3.14 Discounted Return

The discounted return, akin to the average reward, is frequently employed in order to

incorporate the concept of temporal discounting of rewards. The phenomenon prioritises

present gains above future rewards to a greater extent.

3.15 Learning Curve

Learning curves illustrate the progression of an agent’s performance as it undergoes train-

ing or over a period of time. The aforementioned curves offer valuable insights into the

learning process, stability, and convergence of the agent.
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3.16 Policy Evaluation

Metrics pertaining to the efficacy of the acquired policy, such as the extent of state ex-

ploration, the accuracy of action selection, and the precision of value estimation, can offer

valuable insights into the behavioural patterns exhibited by the agent.

3.17 Comparison to Baselines

It is customary to evaluate the performance of the Deep Reinforcement Learning (DRL)

agent by comparing it to baseline methods, which may include conventional reinforcement

learning algorithms or, if applicable, human performance.

Other evaluation metrics are the Success Rate,Exploration vs Exploitation Trade-off,Entropy,

Safety and Ethical Metrics and Generalization which valuate the agent’s ability to gen-

eralize its learned policy to unseen or slightly modified environments, which is crucial in

real-world applications.
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Chapter 4

Data Preparation & Model

Development

The development of data mining approaches aimed to enhance the comprehensiveness of

the information finding process, moving beyond the sole utilisation of statistical or machine

learning techniques. The primary objective of these workflows is to initiate a systematic

process that commences with the identification of relevant inquiries and proceeds with the

targeted analysis of unprocessed, often disorganised data with the aim of uncovering novel

insights. While the building of models is an essential component of the knowledge discovery

process, it is important to note that the selection and deployment of these models constitute

only a small portion of the overall time invested. On the other hand, the process of data

gathering, manual cleaning, and preparation can necessitate a significant allocation of time.

The predominant emphasis in data science research has been on the technical proficiencies

essential for the field, with limited attention given to the challenges associated with project

management in data science. Furthermore, only a small number of scholars have under-

taken an analysis of the diverse methodologies employed by data science teams (Saltz and
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Hotz, 2020). This study utilised the cross-industry standard procedure for data mining

(CRISP-DM) to examine the potential for enhancing crime prediction by integrating Twit-

ter sentiment polarity with historical crime records. The aim was to explore the feasibility

of leveraging social media data from Twitter to improve crime prediction. The CRISP-DM

framework, as described by Wirth and Hipp (2000), serves as a systematic approach to

converting business difficulties into data mining tasks and effectively implementing data

mining projects, regardless of the specific application area or technology utilised. The im-

plementation being discussed is a widespread adoption of the Knowledge Discovery (KD)

approach as described by Brachman and Anand in their work published in 1994.

Figure 4-1 depicts the interconnections among the six stages of the CRISP-DM process

model. The initiation of a data mining project entails the articulation of the project’s

objectives, a process that is encompassed under the ”Business Understanding” phase. The

application of predictive analytics to enhance the operational performance and effective-

ness of machinery is a common goal within the realm of crime prediction research in busi-

ness settings. The aforementioned objective is subsequently transformed into a distinct

data mining task, which involves determining the suitable machine learning technique and

assessing the variables’ impact on the model. During the phase known as ”Data Under-

standing,” hypotheses are formulated to uncover latent information that may be relevant

to the project aim. These hypotheses are derived from prior experience and are supported

by qualifying assumptions. In the context of crime prediction, it is advisable to retrain

the model by employing diverse sampling approaches. This approach aims to determine

the ideal hyperparameter that would yield the most effective models, utilising all of the

major characteristics or variables present in the dataset. The picture illustrates a concise

summary of the sequential stages involved in the conventional approach to data science

utilising the Cross-Industry Standard Process for Data Mining (CRISP-DM).
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Figure 4.1: CRISP-DM.(Source:https://towardsdatascience.com/data-science-career-
reflection based-on-crisp-dm-process-model-aedd8542b019)

Business Understanding

The evaluation of existing research and literature is essential in order to ascertain the re-

sources that are currently accessible and required. The identification of the data mining

purpose is a very important part of this process. The initial step in data mining involves

specifying the particular type of analysis, such as classification, alongside identifying the

key performance indicators for evaluating the data mining process, such as accuracy, pre-

cision, or recall. It is imperative to develop a project plan that is mandatory.
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Data Understanding

The procedural elements encompassed in this process entail the collection of data from

diverse sources, the subsequent extraction of pertinent information, the verification of

accuracy, and the assurance of its overall quality. This stage of the research endeavour en-

compasses a comprehensive depiction of the data, as well as an investigative examination of

the statistical patterns and interconnections present within the data employed in the study.

Data Preparation

Prior to selecting data, it is essential to establish clear inclusion and exclusion criteria. The

issue of inadequate data quality can be addressed through the process of data cleansing.

The construction of derived features is contingent upon the model chosen, as described

in the initial step. There exist various different approaches for each of these procedures,

which are depending on the available resources and the specific model being utilised.

Modelling

The process entails the selection of a suitable modelling strategy, the formulation of a

test case, and the subsequent development of the model. All techniques utilised in the

field of data mining hold relevance. Typically, the business problem and the factual cir-

cumstances have influence on the decision-making process. The primary focus lies in the

process of justifying the selection. In order to create the model, some parameters need to

be established. The act of assessing the model by comparing it to predetermined evaluation

criteria and thereafter choosing the most suitable ones is deemed to be a suitable approach.
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Evaluation

During the evaluation phase, the outcomes are assessed in relation to the predetermined

business objectives. Therefore, it is vital to assess the obtained outcomes and formulate

further procedures accordingly. An additional contention posits that a comprehensive ex-

amination of the entire method is warranted. Currently, in the course of this project,

one or more models exhibiting exemplary attributes of data analysis have been developed.

Prior to proceeding with the ultimate implementation of the model, a comprehensive eval-

uation is conducted on the model(s), and the methodologies employed in its development

are scrutinised to ascertain its alignment with the business objectives. The basic objective

is to evaluate whether there exist any substantial business concerns that have not been

sufficiently resolved. Upon reaching the culmination of this phase, it is imperative to arrive

at a definitive determination on the utilisation of the outcomes derived from the process

of data mining.

Deployment

Typically, the construction of the model does not serve as the culmination of the project. In

general, it is necessary to organise and deliver acquired knowledge in a manner that allows

the recipient to effectively employ it. The deployment phase can range from a simple task

of providing a report to a complex endeavour involving the implementation of a repeatable

data mining process, contingent upon the specific requirements. In numerous cases, the

responsibility of executing deployment operations lies with the user rather than the data

analyst. Regardless, it is imperative to premeditate the necessary measures for effectively

implementing the generated models. The process of deployment is comprehensively out-
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lined in the user guide. The deployment phase encompasses activities like as deployment

planning, monitoring, and maintenance. Consequently, the subsequent sections of this

chapter will adhere to the phases suggested in the CRISP-DM architecture.

4.1 Study Area

Despite the global devastation caused by the COVID-19 pandemic, there has been a limited

amount of research conducted on determining the most effective strategies for implement-

ing lockdown measures and travel restrictions. The accuracy of these research studies is

likely compromised due to the lack of uniformity in data collection methods across differ-

ent countries. It is important to note that certain countries may have recorded false data,

which introduces a potential bias into the analysis.

The selection of the UK as the research setting is motivated by its limited exploration

within the domain of utilising deep reinforcement learning to determine optimal timing

for lockdown and travel restriction in order to reduce the spread of COVID-19. Existing

studies that have incorporated UK datasets have not adequately utilised relevant data,

focusing primarily on predicting cases (such as death, recovery, and confirmed cases) for

resource allocation purposes.
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4.2 Research Design

Figure 4.2, depicted below, presents the sequential procedures entailed in achieving our

research aims and objectives.

Figure 4.2: Research Process Framework

The subsequent portion of this chapter will provide a more detailed explanation of the flow

nodes of the research process framework.
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4.3 Data Understanding

This section gives a comprehensive explanation of the collected datasets and a thorough

exploratory study of the epidemic COVID-19 dataset.

4.4 Data collection and Description

Data used in this investigation were collected from various sources. These dataset are as

follow:

a. The date of the first confirmed case.

� Johns Hopkins coronavirus data repository

� WHO’s case reports

b. The time series for the number confirmed, recovery, and death.

� Johns Hopkins coronavirus data repository

� WHO’s case reports

� OurworldInData Coronavirus Pandemic (COVID-19)

c. The timing of lockdown and international travel restrictions.

� OurworldInData Coronavirus Pandemic (COVID-19):

� Wikipedia :

d. UK COVID-19 dataset.

� https://coronavirus.data.gov.uk/
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4.4.1 Global COVID-19 epidemic Data Description

This study utilised COVID-19 epidemic data obtained from reputable sources such as the

Johns Hopkins coronavirus data repository, the World Health Organisation (WHO), Our-

worldInData, Wikipedia, and the UK coronavirus repository. The data spanned from 2020

to 2021 and served as the primary source for COVID-19 case information in this research.

The data used in this study were selected due to their relevance in providing pertinent infor-

mation. This would also enhance the credibility of the research, as the data were collected

from reliable sources without any instances of information duplication. The Table 5.3, Ta-

ble 5.4 and Table 5.5 present data on the number of deaths, confirmed cases, and recoveries.

In our approach, we incorporated many features including the number of confirmed infec-

tions, recoveries, and fatalities, as well as the rate of change from ech case Additionally, I

considered factors such as population size and population demography During each time

step, a feature vector of size 5 Ö 1 was utilised as the state st. Moreover, supplementary

features are also obtained, encompassing the comparative proportion and cumulative data

of those features.

4.4.2 Data Exploratory Analysis

This section presents a concise statistical analysis of the datasets, aiming to facilitate

the selection of suitable data processing techniques, feature engineering approaches, and

strategies to address class imbalance concerns. Additionally, it aims to address crucial

inquiries that could contribute to the development of an optimal policy regarding appro-

priate lockdown measures and travel restrictions. This section additionally examines the

subsequent inquiries: What has been the trajectory of COVID-19 transmission over the

past few weeks, and what are the projected trends for confirmed cases, fatalities, and re-
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Table 4.1: Samples of confirmed cases

Table 4.2: Samples of death cases
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Table 4.3: Samples of recovery cases

coveries in the future? The responses to these questions were included in the results section.

On March 11, 2020, the declaration of the COVID-19 pandemic was made by the World

Health Organisation (WHO). The rapid spread of the disease has had significant implica-

tions for healthcare systems in several countries, including Italy, Spain, France, the United

States, and the United Kingdom (Velásquez and Lara, 2020). The precise modelling and

prediction of the quantity of confirmed and recovered cases of COVID-19 is crucial in com-

prehending the situation and aiding policymakers in implementing measures to mitigate

or halt its spread.

In light of the global spread of the COVID-19 pandemic, there is a pressing need for real-

time assessments of epidemiological data in order to provide the population with a robust

strategy to combat the illness. Since the emergence of the COVID-19 pandemic, there has

been a global and zealous pursuit of its objectives (Punn et al., 2020). As of July 27, 2020,

the global number of confirmed COVID-19 cases stood at 828,508,485, with the United
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Figure 4.3: Death cases

Figure 4.4: Confirmed cases

Kingdom reporting 313,798 cases. Among these instances, there were 43,384,903 deaths

globally, with the UK reporting 46,706 deaths. Additionally, there were 388,408,229 recov-

ered cases worldwide, with the UK reporting 267,092 recoveries. These figures are based

on the data available to us . Figures 5.8,5.9,5.10 and 5.11 illustrate the temporal patterns

seen in the number of confirmed cases and fatalities attributed to the Covid-19 pandemic.
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Figure 4.5: Death per 100K population

Figure 4.6: Fatility rate
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Additionally, there were 388,408,229 recovered cases worldwide, with the UK reporting

267,092 recoveries. These figures are based on the data available to us . Figures 4.8,4.9,4.10

and 4.11 illustrate the temporal patterns seen in the number of confirmed cases and fatal-

ities attributed to the Covid-19 pandemic.

4.5 Data Pre-processing

This section aims to provide an analysis of both globally COVID-19 epidemic data and

the UK COVID-19 dataset. Before the merger process, the two datasets underwent clean-

ing procedures that focused solely on tasks such as standardising variable names, imput-

ing missing data, and performing feature engineering. Consequently, the aforementioned

datasets were utilised for the purpose of training both the MLSTM and the duelling DQN.

A Deep Reinforcement Learning (DRL) technique was employed to enhance the forecast-

ing of future prevalence trends of COVID-19. This was achieved by including the DRL

algorithm into the Long Short-Term Memory (LSTM) model, specifically targeting im-

provements in the prediction accuracy of recovery, confirmation, and mortality rates. This

allows for the tracking of illness severity as it progresses. Based on the established facts

regarding the severity and prevalence of the disease, it is now possible to determine an

optimal policy for implementing lockdown measures and travel restrictions. This can be

achieved through the utilisation of a trained dataset. The data preprocessing stage involved

the utilisation of Scikit-learn, whereas the model training phase employed the TensorFlow

framework.
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4.6 Merge Datasets

The process involved utilising linear interpolation techniques to estimate the number of

COVID-19 cases in the United Kingdom based on the index case date in each country.

Subsequently, the extracted UK cases were integrated with the appropriate dataset spe-

cific to the United Kingdom from the global COVID-19 data set. Subsequently, the data

was aggregated by calculating the average value over a three-day period. The purpose of

this action was to mitigate the influence of potential bias resulting from delayed reporting

and fluctuating viral testing capabilities. The decision was made to utilise numerical data

over the previous three days as opposed to daily figures, as each time stamp necessitated

time-sensitive data. Simultaneously, this measure was implemented in order to mitigate

potential bias resulting from delayed reporting and fluctuations in viral testing capacity

on weekends. After applying data normalisation for feature scaling, the dataset was sep-

arated into training, validation, and test sets in the ratio of 6:2:2 of trained, validate and

test dataset.

4.7 Feature Engineering

Feature engineering is an essential procedure in the realm of data analysis and machine

learning, wherein one generates novel features (variables) based on pre-existing ones or

modifies the current features to enhance the efficacy of the models. The implementation

of well-designed feature engineering techniques has the potential to enhance the accuracy,

interpretability, and efficiency of models. The following are few prevalent methodologies

and strategies employed in the process of feature engineering:

The dataset exhibits a class imbalance in the target variable, as seen by a preliminary
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study. This research utilises the up-sampling method to address class imbalance concerns,

as it has demonstrated high performance across different numbers of variables and is suit-

able for our dataset’s size (Willette et al., 2022). Various strategies, such as undersampling

and oversampling, exist for addressing class imbalance concerns. However, the up-sampling

method is specifically chosen for this research.

Addressing outliers during the process of feature engineering is a crucial undertaking in

the preparation of data for machine learning models. The presence of outliers can have

a substantial impact on the performance and accuracy of models, thereby necessitating

the appropriate handling of such data points. Regarding this research, the outliers were

addressed through the utilisation of normalisation and scaling techniques, specifically the

Min-Max strategy.

4.8 Action Space

In response to the implementation of lockdown measures and travel restrictions, I estab-

lished a 3x3 action space. A tripartite system of lockdown measures was created, consisting

of three distinct stages. There are three levels of measures implemented in response to the

current situation: Level 0, which involves no action being taken; Level 1, which entails re-

strictions on social gatherings; and Level 2, which involves a complete national lockdown.

In terms of the travel policy, there are three possible scenarios: no action (T0), aircraft

cancellations (T1), and border closures (T2).
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Table 4.4: Action space

This work posits the utilisation of a discrete action space for the determination of in-

tensity levels pertaining to lockdowns and travel limitations, as opposed to conventional

approaches. The study conducted by Julius and Deshendran (2019) found that the Deep

Q-Network (DQN) shown superior performance compared to the Deep Deterministic Policy

Gradient (DDPG) algorithm when the number of episodes was restricted. This indicates

that the DQN-based recommendation engine exhibits greater adaptability and personal-

ization compared to a system that operates in a continuous action space (Kailiang, 2022).

However, the Dueling DQN method, which was used in our model, demonstrated superior

performance in properly handling the discrete output space.

4.9 State Space

The disclosure of trends in diseases is a crucial aspect of state observations, as these char-

acteristics inherently include the analysis of time series data. If we solely provide a number

of infections for the present day, the agent will lack any indication of whether this metric

is improving or worse. The agent is endowed with the capacity to deduce the sequen-

tial relationship between variables in the multivariate time series data by integrating prior
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knowledge obtained from preceding days. This aids the agent in making a more knowledge-

able determination regarding the escalation or relaxation of particular control measures in

the long run. In the course of our experimental study, we administered one single state

input including the feature values observed during the preceding ten days.

4.10 Reward Defination

In order to assist the agent in its pursuit of identifying the optimal policy, it is imperative

to devise a well-designed incentive function. In the case in point, the objective would entail

managing the ongoing pandemic crisis through the implementation of daily adjustments

to the extent of lockdown measures and travel restrictions. From a logical standpoint, it

is desirable to implement measures to mitigate the rise in deaths or diseases, as this would

yield an unfavourable outcome in terms of rewards within this context. Conversely, it is

imperative to promote certain actions and then provide positive incentives when they effec-

tively mitigate the number of infections and deaths, keeping them below a predetermined

level. The reward system employed inside our surroundings consists of two components,

namely death and recovery. Each of these components possesses its own distinct system of

rewards and punishments, thereby constituting the complete framework.

Subsequently, the total daily rewards can be determined by aggregating the two compo-

nents of the reward. The following table 4.1 presents a visual representation of the overall

sign orientation pertaining to the underlying justification for the establishment of rewards.

This orientation is determined by the gravity of death cases, and the same rationale can

be applied to instances of recovery. However, the sign will alter in this particular scenario.

This research proposes the utilisation of discrete action space to decide the severity level
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Figure 4.7: Reward distribution: This shows the IFELSE distribution of the reward ac-
cording to change in cases

of lockdowns and travel restrictions. When compared to a continuous action space, this

approach is deemed more dependable, given the assumption that the epidemic will ulti-

mately end.

Table 4.5: Designing the reward sign orientation for death severity is one example. Death
and recovery follow the same logic, with the latter assuming the reverse sign. Because
the sickness is contagious, the number of deaths will almost certainly increase if no action
is done. On the other hand, if the situation improves as a result of particular acts, the
effect may take a few days to become apparent, and the reward will finally be positive and
therefore encouraged by the agent.
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In accordance with this overriding guideline, the following is how we designed the reward

function rt. It is important to keep in mind that the relative weights of these two compo-

nents can be adjusted to suit our needs. This research factored into account the effect of

the COVID-19 on the quality of life and devastation on the economy. The good quality

of life and good economy is denoted by 10 why the otherwise is denoted by 0. It is worth

noted that the quality of life and economy have so many factory to determine how good

they are, however, for this research work , I arbitrarily chosen 0 and 10 and bad and good

respectively. Thus, we have the equation below:

c0 = cf +
1

ld
(4.1)

c0 = cf +
1

tr
(4.2)

c1 = cf +
1

ld
(4.3)

c1 = cf +
1

tr
(4.4)

rt = rrct + rdtt + rcft (4.5)

rit =



−c0 − c1 × (stt+1 − sit) if (stt+1 > sit) and (sit > 0)
−0.5xc0 + c1 × (stt+1 − sit) if (stt+1 = sit) and (sit+1 ̸= 0)

and ((alockdown
t+1 > 0) or (atravel bant+1 > 0))

c0 − c1 × (stt+1 − sit) if (stt+1 < stt)
−0.5xc1 × (stt+1 − sit) otherwise

for i in rc and dt

(4.6)
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rit =



c0 + c1 × (stt+1 − sit) if (stt+1 > sit) and (sit > 0)
0.5xc0 + c1 × (stt+1 − sit) if (stt+1 = sit) and (sit+1 ̸= 0)

and ((alockdown
t+1 > 0) or (atravel bant+1 > 0))

−c0 + c1 × (stt+1 − sit) if (stt+1 < stt)
−c1 × (stt+1 − sit) otherwise

for i in cf

(4.7)

Cf :confirmed cases, Ld.: lockdown=0.5 tr: travel restriction, Lq: living quality= 0 or 10
and econ: Economy = 0 or 10.
rc: recovery cases,cf: confirmed cases,and dt death cases

rt=reward at timestamp t
st=state at timestamp t
c0,c1 = constant value
alockdown
t ,atravelbant =lockdown and travel ban

4.11 Model Bulding

The assessment of the algorithmic performance entailed a comparison of the Mean Abso-

lute Error (MAE) and Root Mean Square Error (RMSE) metrics for both the LSTM and

MLSTM models. Metrics are utilised to assess the accuracy of expected case trends and

evaluate their performance. Furthermore, an evaluation was conducted to determine the

convergence of the Moving Average Reward (MAR) for the trained and validated datasets

of the D3QN method.

4.11.1 Building Model

Two separate algorithms (LSTM and D3QN) were trained independently, with and without

hyper-parameter adjustment, using the previously prepared cleansed COVID-19 dataset.
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Table 4.6: Loss function errors result

4.12 Model Evaluation

The evaluation of the performance of each algorithm involved comparing the Mean Abso-

lute Error (MAE) and Root Mean Square Error (RMSE) for both the LSTM and MLSTM

models. The metrics are used to deterterming how well performed the predicted trends of

cases. Also, in the case of D3QN , the convergence in the Moving Average Reward (MAR)

was assessed for the trained and validated data of the Duelling Deep Q-Network (D3QN)

algorithm.

The algorithms presented for trend prediction, namely LSTM and MLSTM, have the ca-

pability to assess the effectiveness of learning by utilising the following metrics: The two

often used metrics in evaluating the accuracy of a predictive model are the Mean Absolute

Error (MAE) and the Root Mean Square Error (RMSE). Figure 4.8 illustrates the com-

parative analysis of evaluation metrics. The table 4.6 shows the difference the measure

of the average absolute difference between the predicted and actual values in the case of

MAE and in the case of RMSE ,it penalizes large errors. Based on the observed results,

the MLSTM system is suggested due to its comparatively lower error rate when compared

to the MAE. Deep learning techniques are employed to construct a predictive system for

forecasting future COVID-19 cases.

This research does projections on instances that have been confirmed, patients that have

recovered, and cases that have resulted in death. The escalating number of fatalities and
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Figure 4.8: Loss function comparison between MAE and RMSE methods

documented instances of infection presents a disconcerting situation for the global commu-

nity. The precise magnitude of the impact of the COVID-19 pandemic on the population

of the United Kingdom remains uncertain. However, we endeavours to approximate the

projected impact on the population in terms of new cases of recovery, confirmed cases,

and fatalities during the upcoming days. Consequently, this process contributes to the

enhancement of public health and facilitates the allocation of resources by the government.

Furthermore, it plays a crucial role in determining the severity of COVID-19, thereby

assisting in the formulation of appropriate policies pertaining to lockdown measures and

travel restrictions, since the correlation coefficient between the original and forecasted data

of confirmed and death cases is 0.999.
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4.12.1 Baseline Policy Comparison Evaluation

This study aims to assess the efficacy of the D3QN algorithm in applying lockdown and

travel limitations by utilising the average moving reward as a metric. The evaluation will

be conducted through a baseline comparison, with the objective of identifying the algo-

rithm that achieves the largest cumulative rewards for the ideal policy.

The utilisation of the average moving reward is a commonly utilised metric in the field

of reinforcement learning for the purpose of evaluating the effectiveness of an agent over

a specific duration. The metric measures the average cumulative reward obtained by the

agent within a moving time frame of episodes or steps. The application of this metric is

commonly utilised to reduce the influence of unpredictable reward signals and generate a

more reliable assessment of an agent’s effectiveness.

The V-D D3QN algorithm is an enhanced version of the D3QN algorithm that integrates

the concept of value distributions. Instead of making an estimation of the Q-value as a

singular scalar, the V-D D3QN algorithm does an estimation of the complete probability

distribution encompassing all potential values of the Q-function. This has the potential

to enhance the algorithm’s efficacy in managing uncertainty. Based on the experimental

findings obtained through the utilisation of the D3QN model. In the context of the ex-

periment, the discounting factor was assigned a value of 0.99. The maximum number of

episodes was set to 100, while the maximum mean reward per 100 steps was set to 10000.
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Figure 4.9: Moving average rewards for D3QN algorithm

Figure 4.10: Moving average rewards for V-D D3QN algorithm

Additionally, the learning rate for both the policy and value networks was set to 0.0001.

The replay buffer size was configured to be 10000, whereas the batch size was set to 32. The

value of the soft update parameter was modified to 0.005. Figures 4.9 and 4.10 display the

moving average rewards for both the training and evaluation phases. It is observed that the

evaluation performance rapidly stabilises at approximately 3000 and 4000 during the initial

episodes, and gradually improves thereafter. This indicates that the D3QN algorithm is

proficient and successful in capturing the enduring systematic patterns present in the data.
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Chapter 5

Result and Discussion

5.1 Introduction

This section is the crucial part of our research , since it discusses about the result and

interpretation to those findings.

5.2 Result of the Analysis Performed with the Mod-

ified (LSTM)

The study incorporates summary tables pertaining to regular time intervals, encompassing

data on the count of cases as well as deaths recorded within a specified number of days

following the onset of the pandemic. The data analysis encompassed the period from Jan-

uary 22, 2020, which marks the date of the initial global report of the first COVID-19 case,

to March 30, 2021. The dataset was divided into two subsets, with 70% of the data used

for training purposes and the remaining 30% utilised for prediction and validation.

The provided data consists of granulated samples representing daily time series for con-
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Table 5.1: Daily and weekly death and confirmed cases for COVID-19 in the UK

firmed cases, death cases, and recovered cases. Additionally, Table 5.1 displays the daily

and weekly data for confirmed cases and death cases. Figs 5.1,5.2,5.3,5.4,5.5 and 5.6 present

a comparison of the confirmed, death, and recovered cases between the original and pre-

dicted figures from the onset of the pandemic into the future. In this particular instance, a

significant correlation was seen between the actual cases and the projected cases. The pre-

sented data illustrates a comparison between the confirmed and recovered cases of death,

both in their original and forecasted values. This comparison highlights the observable

trend of a little increase in the confirmed, recovered, and death rates on certain days.

The COVID-19 pandemic is still alive and poses a major threat to people’s health world-

wide in a short period of time. This study proposes a deep learning-based prediction

technique for predicting COVID-19 risk. The system examines the real daily dataset and

use deep learning algorithms to provide forecasts for the coming days. The research pre-

sented here determines the optimal activation function for MLSTM by applying a deep

reinforcement learning algorithm to maximise the prediction outcomes. When compared
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Figure 5.1: Death cases

Figure 5.2: Death Prediction cases
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Figure 5.3: Confirmed cases

Figure 5.4: Confirmed Prediction cases
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Figure 5.5: Recovery cases

Figure 5.6: Recovery Prediction cases
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to well-known contemporary algorithms such as LSTM. The findings of the study show

that the DL technique is helpful in predicting COVID-19 cases in the future. Overall,

the model’s predictions are consistent with the trends of the virus cases; this may help

us understand the virus and stop its spread. The forecast offered by this study may be

of significant use in addressing the COVID-19 scenario by quick measures and educated

assessments. To prevent additional COVID-19 and social media platform proliferation,

future COVID-19 and social media platforms should be recognised using a semi-supervised

hybrid architecture.

Two distinct measures were employed to assess the modification of the Long Short-Term

Memory (LSTM) model, as elucidated in the preceding Chapter 4, Section 4.12.
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5.3 Lockdown and Travel restrictions Optimal Policy

for COVID-19 Pandemic control

Applying empirical disease data pertaining to COVID-19 in the United Kingdom spanning

from January 2, 2020 to January 2, 2021, with the initial case being documented on Jan-

uary 31, 2020, we conducted experimental investigations to assess the effectiveness of our

proposed model.

In order to facilitate the agent’s search for the optimal policy, it is imperative to develop a

well-designed incentive function. In the above scenario, the objective would entail manag-

ing the ongoing pandemic by implementing daily modifications to the extent of lockdown

measures and travel limitations. From a cognitive perspective, individuals would naturally

be inclined to mitigate the occurrence of elevated mortality rates or illnesses, as such cir-

cumstances would yield unfavourable outcomes. Conversely, it is imperative to promote

specific actions and thereafter provide rewards for successfully mitigating the number of

infections and death cases below a predetermined level. The reward system utilised inside

our surroundings consists of two components, namely death and recovery. Each of these

components possesses its own distinct system of rewards and punishments, thereby consti-

tuting the complete framework.

Subsequently, the aggregate reward for each day can be computed by summing the two

components of the reward. The table that presents a visual representation of the overall

sign orientation pertaining to the underlying justification for the establishment of awards

can be seen in Chapter 5, section 5.10 . This orientation is determined by the level of

severity in cases of death, and the same line of reasoning may be applied to instances of

recovery. However, the sign will alter in this particular scenario. This study proposes
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the utilisation of discrete action space to decide the severity level of lockdowns and travel

restrictions. When compared to a continuous action space, that was proposed by (Liu K,

2022) , a DDPG implementation, this approach demonstrates less reliability, particularly

when taking into account the eventual ending of the epidemic.

5.3.1 Results

The suggested dueling DQN was trained and the findings were examined using data from

three unique time periods related to the epidemic. The time periods under consideration

can be categorised as follows: the initial three months, the entire duration, and the most

recent three months.

In Figs 5.7,5.8 and 5.9, the agent was trained exclusively on data from the initial three

months. As a result, the agent initially advised maintaining stringent regulation of both

local and international policy. Nevertheless, commencing in mid-March, there was a dis-

cernible decline in the magnitude of the agent’s suggested measures. In late March, ideas

were put out regarding policy at a foundational level. During the interim period, the

policies put forward in the past three months have attained a level of agreement with the

policies suggested by the public health, as depicted in Figs 5.10, 5.11 and 5.12. To pro-

vide more clarification, the proposed lockdown policy exhibited a marginally lesser degree

compared to the current public health policy. However, in terms of travel restrictions, the

present public health policy shown a little higher degree.
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Figure 5.7: Lockdown 1st-3 months

Figure 5.8: Travel ban for 1st-3 months
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Figure 5.9: Total Intensity for 1st-3 months

Figs 5.13,5.14 and 5.15 illustrate the total intensity level of lockdown and travel restriction

measures implemented by the public health authorities and endorsed by our agent using

deep reinforcement learning over the duration of the pandemic. The implementation of

these policies was prompted by the findings made by our agent regarding the proliferation

of the pandemic. In the majority of instances, the agent recommended implementing a

policy of lockdown or travel restrictions at level one significantly earlier than the point

at which it was officially adopted by public health authorities, as indicated in figure 5.15.

Our agent has suggested the implementation of a minimum degree of lockdown or travel

restrictions in the United Kingdom. Despite the fact that the index case date occurred in

late March, the agent suggested that the initial policy, regardless of its level, should have

been implemented in late January. Conversely, the agent advised a postponement of policy

implementation in the United Kingdom, whereas other public health experts advocated for

prompt action, despite the absence of exponential growth in the number of cases.
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Figure 5.10: Lockdown for most last 3months

Figure 5.11: Travel ban for most last 3months
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Figure 5.12: Total Intensity for most last 3months

Figure 5.13: Lockdown for overtime period
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Figure 5.14: Travel ban for overtime period

Figure 5.15: Total Intensity for overtime period
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5.4 Discussion

This study presents a novel approach for training an agent to determine optimal timing and

intensity of lockdown measures and travel restrictions for United Kingdom. The proposed

method utilises Deep Reinforcement Learning (DRL) and leverages a dataset extracted

from the United Kingdom’s COVID-19 epidemiological data and global COVID-19 dataset

from Johns Hopkins coronavirus data repository, specifically focusing on United Kingdom

information. In order to ascertain the optimal course of action for individual states over

a given period, we conducted a temporal analysis of policy implementation in relation to

varying levels of crisis severity. This analysis was carried out using deep reinforcement

learning techniques, specifically focusing on continuous state spaces and incentive struc-

tures. The algorithm we developed primarily recommended a comparatively less stringent

approach to lockdown measures and travel restrictions in response to the COVID-19 pan-

demic, in contrast to the measures actually implemented by public health authorities. The

recommendation put forth by our agent was to implement a lockdown at an earlier stage

of the epidemic with a greater degree of severity.

The agent ultimately acquiesced to the policies of public health, though. Moreover, it

aligned with the recommendations of public health authorities to mitigate the stringency

of lockdown measures during the final phases of the pandemic. The significance of this

matter lies in the need to carefully consider the early implementation of policies aimed

at mitigating the impact of COVID-19, taking into account the potential consequences on

economic, social, and health-related aspects. Sustaining prolonged lockdowns and border

closures poses considerable challenges, despite the implementation of punitive measures

such as fines and jail to deter non-compliance with public health regulations.
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Furthermore, the agent provided counsel against consistently advocating for a comprehen-

sive and complete lockdown. Instead, the agent advocated the implementation of an initial

low-intensity lockdown, such as limitations on public meetings or the promotion of online

e-learning, as a means of alerting and safeguarding the population.

When comparing the initial implementation to the subsequent official implementation, the

agent proposed the imposition of travel restrictions as a minimum measure. In contrast to

the projections made by travel agents, it is noteworthy that public health authorities have

implemented and upheld more rigorous travel restrictions. The implications of the algo-

rithm and the findings of the study suggest that the agent does not endorse protracted high

intensity lockdowns and travel restrictions for the sake of UK public health. The outputs

of the suggested technique were compared and assessed in the result of UK government

result time line as shown in figure 5.16, the full duration, the most recent three months,

and the beginning three months. This analysis was supported by Figures 5.7-5.12.

According to Figure 5.10-5.12, the agents first recommended the implementation of strin-

gent regulatory policies, which were afterwards advised to be gradually relaxed starting

in mid-March. This shift in policy intensity coincided with the utilisation of algorithm

training based on data gathered during the initial three months. Based on an analysis of

pandemic data spanning the last three months, Figures 5.13-5.15 illustrates that agents

have reached a certain level of consensus about public health decisions, which is equivalent

to the policies proposed throughout the entire period (Figure 5.7-5.9). However, there were

inconsistencies seen in relation to travel restrictions. During the latter half of the research

period, the policy on travel restrictions exhibited a little more lenient approach compared

to that of public health authorities.
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Nevertheless, the travel restriction policy implemented by the agent exhibited a slightly

more stringent approach compared to the government’s policy. This was mostly due to the

fact that the agent only took into account data from the preceding three months. Con-

sequently, no immediate action was taken, as depicted in Figures. This phenomenon can

be attributed to the observation that in the case of Figures 5.7-5.9, the implementation

of lockdown measures and travel restrictions, which were acquired over the duration of

the epidemic, were promptly and intensively enforced during its initial stages, with sub-

sequent adherence to these policies being largely sustained thereafter. In summary, the

aforementioned findings, specifically Figures 5.7-5.9 and Figures 5.13-5.15, along with the

data shown in Figures 5.10-5.13 for the initial three-month period, collectively suggest that

initiating a programme at an early stage might effectively mitigate various forms of losses.

The research training of a reinforcement learning agent is contingent upon the accurate

definition of a reward function. The reward functions serve as a weak indicator. In contrast

to supervised learning, the incentive signal in reinforcement learning solely communicates

the immediate input from the environment, without explicitly offering the proper answer

to the current learning problem. The pursuit of immediate gains without considering the

transition dynamics in the environment might lead to premature and suboptimal conver-

gence. Hence, it is imperative that the reward definition takes into account the specific

attributes of the environment in which the agent operates, enabling it to effectively learn

and optimise its actions over an extended planning horizon.

In the process of seeking improvement, the learning algorithm may encounter challenges

arising from inadequately specified reward functions, which might potentially lead to con-

fusion or misguidance of the agent in certain circumstances. The article outlines the design

of a customised reward function that incentivizes timely disease management and discour-
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ages adverse outcomes resulting from inadequate control measures. We suggest that this

definition adequately fulfils the primary objective of disease prevention. Opting for a cau-

tious and risk-averse approach to control at the earliest opportunity offers greater benefits

compared to implementing the optimal policy suggested by our agent. This decision may

prevent the potential consequence of incurring excessive costs during the implementation

phase.

Chapter 4 subsection 4.12.1 shows the evaluation of the algorithm performance.

Figure 5.16: COVID-19 UK Government Lockdown timeline
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Chapter 6

Conclusion and Recommendations

6.1 Introduction

This chapter will examine the implications of the study’s findings regarding the potential

of DRL as a tool for determining the most effective policy for implementing lockdown mea-

sures and travel restrictions in the United Kingdom. The findings drawn in this study were

derived from the stated aims, research problems, and obtained outcomes. This research

will elucidate the consequences of the aforementioned findings and then provide an analysis

of the resulting recommendations. The recommendations were derived from the study’s

conclusions and aligned with its intended objectives.

6.2 An Overview of the Research

The present study employed the widely accepted data mining process known as CRISP-

DM in order to accomplish the predetermined objectives and effectively tackle the research

difficulties at hand. This study aims to investigate the application of deep reinforce-
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ment learning as an agent in determining the optimal timing for implementing lockdown

measures and travel bans. The study adopts an exploratory, descriptive, and contextual

qualitative approach to gain a comprehensive understanding of this topic. The selection

of research methodology and approach for this study was based on identified gaps in prior

research and the findings of a thorough systematic review. The subsequent discussion per-

tains to the research issues, objectives, and outcomes derived from the data analysis.

The research inquiries were centred on the subsequent research problems:

� Inadequate planning while selecting the best method to finding the optimal policy

for lockdown and travel restriction in the case of COVID-19 in the United Kingdom,

which might be because of insufficient data exploration on the best agent , would

lead to the feature engineering required to develop the most effective machine learning

models.

� The majority of studies utilised simulated data rather than real-world COVID-19

data.

The aforementioned objectives were formulated in order to effectively tackle the identified

concerns.

� A comprehensive exploratory analysis was conducted to investigate the potential re-

lationship between various features utilised for the development of an optimal policy.

The analysis also recommended the most suitable pre-processing, transformation,

and engineering techniques that should be implemented prior to constructing the

optimal policy for an effective lockdown and travel restriction model.

� Having to identify the future trends for all cases firstly, let us to knew the severity

of the disease and also helps us to know weather the agent is acting properly when

administered to find the appropriate period for both lockdown and travel ban. In lieu
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of a continuous action space that does not anticipate the conclusion of the pandemic,

this study proposes the use of a novel discrete state and action representation based

reinforcement learning paradigm.

6.3 Future Research

� The formulation of rewards in deep reinforcement learning (DRL) is a crucial com-

ponent in the development and training of a proficient reinforcement learning agent.

The reward function is a fundamental component that delineates the optimisation

objectives for an agent and holds significant influence over the agent’s behavioural

patterns. The formulation of the reward function has a significant impact on both

the learning dynamics and the overall performance of the agent. Thus, building

an improved reward system to improve the optimal policy for lockdown and travel

restriction.

� Explore the area of using deep reinforcement learning with regards to optimal vac-

cine distribution to different population based on various factors, such as infefection

rates,population density, and healthcare infrastructure. The application of reinforce-

ment learning (RL) in vaccine distribution systems enables the optimisation of vaccine

allocation, resource management, and delivery processes. The COVID-19 pandemic

has brought to the forefront the significance of effectively disseminating vaccines on

a substantial magnitude. This my future research aims to discuss the potential ap-

plication of Reinforcement Learning (RL) techniques in the context of vaccination

distribution.
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6.4 Research Limitation

This study examined COVID-19 epidemiology data as a primary source of information

to determine the most effective policy for implementing lockdowns and travel restrictions.

Nevertheless, there is a restricted availability of UK COVID-19 data, which can only be

accessed through the UK government website and the National Office of Statistics. The

public has access to exclusively aggregated data pertaining to COVID-19. Therefore, the

research is dependent on global epidemiological data. During the initial stages of the

COVID-19 pandemic, obtaining a sufficiently enough sample size posed challenges in order

to achieve more precise outcomes.

The scope of this study is confined to the examination of COVID-19 data. However, it

is worth noting that additional data pertaining to the specific aspects of quality of life

and socio-economic factors during the pandemic might be organised and incorporated to

facilitate a more comprehensive analysis.

6.5 Conclusion

This research employed deep reinforcement learning to assess the effectiveness of imple-

menting a lockdown and travel restrictions in limiting the COVID-19 epidemic. Our study

demonstrates that it is possible to train an algorithm to enable an agent to make informed

decisions regarding the optimal strategy for maximising the expected value of total rewards

over time in the United Kingdom and its territories. This is achieved by utilising data ob-

tained from the local population, as well as epidemiological data specifically related to

COVID-19. By engaging in comprehensive discussions regarding the conceptualization of

the action space, state space, and reward function in reinforcement learning, we undertake

a study of the underlying framework of the optimal control problem. This enables us to
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Table 6.1: Showing cases and fatalities in three different months mode

ascertain the appropriate approach for resolving the situation. In this work, we provide

a theoretical rationale for the value and policy networks of the Dueling DQN model, as

well as evidence supporting its superior performance in comparison to alternative models.

Our aim is to showcase the significant impact of this model. The demonstration of this

was achieved through the utilisation of the available data. In contrast to the strategies

implemented by public health and government authorities, the key proposition put out by

the agent was the implementation of early lockdowns and travel restrictions as a means to

mitigate the impact of COVID-19.

If the public health and government had followed the recommendations provided by our

agent, as indicated in figures 5.1-5.12, which proposed implementing earlier lockdown mea-

sures and travel restrictions, it is estimated that an approximately total of 50,398 that is

47% of lives may have been spared from January to November 2020, based on the available

dataset as per the period under consideration.

6.5.1 Novelty

This is the first research of its sort to be conducted in the United Kingdom that involved

the use of deep reinforcement learning to the management of the spread of COVID-19.
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