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A B S T R A C T   

Implemented in Python, CoverPy enables automated estimation of plant area index (PAI), the fraction of 
vegetation cover (FCOVER), crown cover (CC), and crown porosity (CP) from digital cover photography (DCP). 
When compared to available alternatives, a key strength of CoverPy is the incorporation of end-to-end uncer-
tainty propagation, enabling uncertainties due to within-plot variability and the user-specified extinction coef-
ficient to be quantified. CoverPy is made available to the community on an open-source basis via GitHub, and 
should prove useful for researchers and citizen scientists interested in quantifying vegetation structure using 
inexpensive, non-specialist hardware.   

Metadata  

Nr Code metadata description  

C1 Current code version v0.1.0 
C2 Permanent link to code/repository 

used for this code version 
https://github.com/luke-a-brow 
n/coverpy 

C3 Permanent link to reproducible 
capsule 

– 

C4 Legal code license MIT 
C5 Code versioning system used Semantic versioning 
C6 Software code languages, tools 

and services used 
Python 

C7 Compilation requirements, 
operating environments and 
dependencies 

CoverPy makes use of the imageio, 
numpy, rawpy, scikit-image, and 
uncertainties modules, in addition 
to the glob module included in the 
Python Standard Library. 

C8 If available, link to developer 
documentation/manual 

README at https://github.com/l 
uke-a-brown/coverpy 

C9 Support email for questions l.a.brown4@salford.ac.uk  

1. Motivation and significance 

Owing to its low cost and wide accessibility, digital cover photog-
raphy (DCP) is an increasingly popular method for estimating canopy 

biophysical variables such as plant area index (PAI), the fraction of 
vegetation cover (FCOVER), crown cover (CC), and crown porosity (CP). 
In contrast to alternative techniques requiring costly and specialist 
hardware, such as digital hemispherical photography (DHP), cep-
tometry, the LI-COR LAI-2000 series of instruments, and terrestrial laser 
scanning [1,2], the key advantage of DCP is that it requires only a 
standard, inexpensive digital camera with a 15◦ to 30◦ field-of-view 
[3–6]. Further advantages include increased spatial resolution, 
reduced sensitivity to illumination conditions and exposure, and a nar-
rower rectangular footprint that is well-suited to experimental plots [3, 
5,6]. 

Images acquired using DCP must subsequently be processed to esti-
mate gap fraction (and the proportion of large, between-crown, and 
small, within-crown gaps), from which PAI, FCOVER, CC, and CP can be 
determined. Whilst several software packages have been made available 
to facilitate DCP processing, few have been provided on an open-source 
basis. One popular commercially available solution is WinSCANOPY [7], 
and an example of an open-source solution is the recently released 
coveR2 package [8]. Another freely available solution is CAN-EYE, 
which allows the processing of digital images acquired at nadir, but 
only for the derivation of FCOVER [9]. Although undoubtedly useful, 
these packages do not provide for the quantification or propagation of 
uncertainties in the derived canopy biophysical variables, despite the 
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increasing importance of uncertainty estimates in assessing measure-
ment quality and fitness-for-purpose [10–12]. 

For the estimation of PAI, a primary source of uncertainty in DCP is 
the specification of the extinction coefficient (k), which is dependent on 
the leaf angle distribution of the canopy in question, necessitating 
ancillary data collection or assumptions [13–15]. Whilst many previous 

studies have assumed a spherical leaf angle distribution (k = 0.5) [4–6, 
16], previous work has shown that this assumption is often violated in 
broadleaf canopies [17]. As such, accounting for the uncertainty asso-
ciated with the extinction coefficient is a key, yet underexplored, issue. 

This original software paper describes CoverPy (https://github. 
com/luke-a-brown/coverpy), an open-source Python module for auto-
mated estimation of PAI, FCOVER, CC and CP, and uncertainties from 
DCP. 

2. Software description 

2.1. Software architecture 

CoverPy is implemented in Python, and is closely related to the 
HemiPy module [18], which is designed for processing DHP (i.e. images 
acquired with a fisheye lens) as opposed to DCP data. The key differ-
ences between CoverPy and HemiPy are related to post-classification 
analysis:  

• HemiPy computes multi-angular estimates of gap fraction (based on 
the optical centre and projection function of the adopted camera and 
fisheye lens), whereas CoverPy requires no information on the 
properties of the camera used;  

• Once the classification is performed, CoverPy identifies clusters of 
pixels, in order to identify small, within-crown, and large, between- 
crown gaps. A distinction between types of gaps is not made in 
HemiPy;  

• Because HemiPy makes use of multi-angular information, its PAI 
derivation methods do not require assumptions on canopy leaf angle 
distribution or the specification of an extinction coefficient, which is 
the case for CoverPy. 

CoverPy makes use of the imageio, numpy, rawpy, scikit- 
image, and uncertainties modules [19–22], in addition to the glob 
module included in the Python Standard Library. It consists of a single 
main function: coverpy.process(), and the workflow for processing 
a set of DCP images from a single measurement plot is to pass this 
function the directory of images to be processed, along with the direc-
tion of the images (i.e. upwards- or downwards-facing) (Fig. 1). As in 
HemiPy, all images within a directory are processed together to provide 
a single value and uncertainty for each canopy biophysical variable, 
meaning that each directory should contain multiple images corre-
sponding to the same measurement plot [18]. Processing of a directory 
containing a single image is possible, but discouraged, as a less reliable 
biophysical variable and overoptimistic estimate of its uncertainty will 
be obtained. 

2.2. Software functionality 

Images are read into memory as numpy arrays using either imageio 
(for 8-bit formats, including JPEG, PNG, GIF, BMP and TIFF), or rawpy 
(for RAW formats, including NEF, CR2, CR3 and PEF). In the latter case, 
by default, gamma correction is applied and contrast stretching is car-
ried out so that 1% of pixels at the high and low ends of the histogram 
are saturated. The result is stored in 8-bit form for further analysis. This 
procedure corresponds to the recommendations of Macfarlane et al. 
[23]. Alternatively, RAW images may be processed in their full bit-depth 
by setting the pre_process_raw parameter of coverpy.process() 
to False. To reduce computation time, downsampling, which makes 
use of the measure.block_reduce() function of scikit-image, is 
possible by setting the down_factor parameter of coverpy.process 
() to greater than one. A default value of 3 is assumed. 

Once loaded into memory, pixels are classified as belonging to the 
canopy or background. The classification approach is dependent on 
whether the direction parameter of coverpy.process() has been 
set to ‘up’ (as is default) or ‘down’, reflecting upwards- or downwards- 

Fig. 1. Overview of the workflow for processing a set of DCP images 
with CoverPy. 

Fig. 2. Extinction coefficient (k) associated with various leaf angle distribu-
tions as a function of zenith angle (near-nadir values are applicable to DCP). 
Note that the planophile and erectophile values in this figure correspond to 
completely horizontal and vertical leaves, so represent extreme cases. 

Table 1 
Equations to compute extinction coefficient (k) as a function of zenith angle 
(θ) for planophile, spherical, erectophile, and ellipsoidal leaf angle distri-
butions [26–29]. In the case of the ellipsoidal leaf angle distribution, x 
corresponds to the ratio of the horizontal to vertical semi-axis, where x < 1 
implies a more planophile canopy and x > 1 a more erectophile canopy.  

Leaf angle distribution k 

Planophile 1 
Spherical 1

2cos(θ)
Erectophile 2tan(θ)

π 
Ellipsoidal ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

x2 + tan(θ)2
√

x + 1.744 (x + 1.182)− 0.733   

Fig. 3. Illustrative example of how CoverPy can be used to process the example 
dataset provided in the GitHub repository. 
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facing images, respectively. In the former case, Ridler and Calvard’s 
[24] clustering algorithm is adopted to separate the sky from the canopy 
on the basis of the blue band of the image, whereas in the latter case, 
green vegetation is distinguished from the soil by Meyer and Neto’s [25] 
colour index based approach. 

After classification, gap fraction is calculated as 

P =
nbackground

n
(1)  

where nbackground and n are the number of pixels classified as the back-
ground, and the total number of pixels in the image, respectively, as 
determined using the numpy statistics functions. From gap fraction, 
FCOVER and effective PAI (PAIe) (i.e. assuming a random distribution of 
plant material) can be directly determined as 

FCOVER = 1 − P (2)  

and 

PAIe =
− ln(P)

k
(3)  

where P is the mean gap fraction over all images, and k is the extinction 
coefficient provided as an input to the coverpy.process() function, 
which is set to 0.5, corresponding to a spherical leaf angle distribution, 
by default. 

Clusters of pixels classified as gaps are determined using the mea-
sure.label() function of scikit-image, according to 8-connectiv-
ity. Each cluster is designated as a small, within-crown or large, 
between-crown gap according the criterion proposed by Macfarlane 
et al. [5,6] (i.e. gaps larger than 1.3% of the total image area are 
designated as large, between-crown gaps). For each image, this enables 
CC and CP to be determined as 

CC = 1 −
nlarge

n
(4)  

and 

Fig. 4. Results obtained from processing the example dataset with CoverPy. Note that results are reported in default 64-bit ‘double’ precision, but are not considered 
reliable to this level of precision. 

Table 2 
Example orthographic and DCP images simulated by POV-Ray for four virtual forest scenes according to a planophile, random, and erectophile leaf angle distribution. 
Note that the FCOVER values represent the mean FCOVER derived from orthographic images corresponding to the three leaf angle distributions.  
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CP = 1 −
1 − P
CC

(5)  

where nlarge represents the number of pixels labelled as belonging to 
large gaps. The mean CC and CP values over all images are reported. 
From these values, it is possible to correct for the effects of canopy 
clumping, enabling PAI as opposed to PAIe to be derived as 

PAI = − CC
ln(CP)

k
(6)  

where CC and CP are the mean CC and CP values over all images. The 
extinction coefficient (k) should be set according to leaf angle distri-
bution of the canopy being analysed. Values of k for various leaf angle 
distributions are provided in Fig. 2, and can be computed according to 
the equations detailed in Table 1. 

The clumping index, Ω, is calculated as the ratio of PAIe to PAI, 
which is equivalent to 

Ω =
(1 − CP)ln(P)
ln(CP)(1 − P)

(7) 

To account for within-plot variability, uncertainties in gap fraction, 
CC, and CP are determined as the standard error of the mean over all 
images being analysed. For FCOVER, PAIe, and PAI, the un-
certainties module is used to automatically and analytically prop-
agate these uncertainties (as well as the uncertainty associated with the 
extinction coefficient for the latter two variables, which is set to 0.2 by 
default) through Eqs. (2), (3) and (6). This achieves accordance with the 
International Standards Organisation (ISO) Guide to the Expression of 
Uncertainty in Measurement (GUM) [30], in addition to the recom-
mendations of the Fiducial Reference Measurements for Vegetation 
(FRM4VEG) project [10]. CoverPy returns results as a dictionary of 

ufloat values (i.e. as defined by the uncertainties module). 

3. Illustrative examples 

3.1. Example dataset 

To enable users to check that CoverPy is installed and working 
correctly, an example dataset for a single measurement plot containing 
upwards-facing images is provided in the GitHub repository. Fig. 3 
demonstrates the processing of this dataset, whilst Fig. 4 demonstrates 
the results obtained. Note that by embedding this simple example in a 
loop (or nested loop), multiple plots (and sub-plots) could easily be 
processed in batch (an example of this is provided in the README file). 

3.2. Verification against simulated images 

To verify CoverPy’s outputs, we adopted a three-dimensional simu-
lation-based approach. Using the Persistence of Vision Raytracer (POV- 
Ray) [31], we simulated 20 DCP images for 75 virtual forest scenes with 
a PAI ranging from 0.3 to 7.5. Scenes could represent a Neyman, plan-
tation, or random stem distribution, and for each scene, three sets of 
simulations were conducted with planophile, random, and erectophile 
leaf angle distributions. The parameters used to generate the virtual 
forest scenes are described in detail by [32]. Simulations were carried 
out at a resolution of 4500×3000 pixels, with a 30◦ field-of-view across 
the diagonal. It is worth noting that of the variables derived by CoverPy, 
only PAI was an explicit input to the POV-Ray simulations. Nevertheless, 
reference FCOVER values were determined from very high spatial res-
olution (1 cm) orthographic images simulated by POV-Ray for a 30 m x 
40 m area of each virtual forest scene (Table 2). 

The images simulated with POV-Ray were processed with CoverPy 
using an extinction coefficient corresponding to a spherical leaf angle 
distribution (k = 0.5), and agreement with the reference values was 
quantified using the root mean square error (RMSE) and bias. Good 
overall agreement was observed between CoverPy’s FCOVER outputs 
and the reference FCOVER values derived from orthographic images 
(RMSE = 0.10, bias = 0.03) (Fig. 5a), with little difference in perfor-
mance observed between the planophile (RMSE = 0.12, bias = 0.02), 
random (RMSE = 0.11, bias = 0.04), and erectophile (RMSE = 0.08, bias 
= 0.02) leaf angle distributions. 

CoverPy’s PAI outputs demonstrated more moderate agreement with 
the PAI values used to simulate the images (RMSE = 1.88, bias = − 0.91) 
(Fig. 5b). Particularly poor agreement was observed in the case of the 

Fig. 5. Verification of CoverPy’s FCOVER (a) and PAI outputs for simulated DCP images generated with POV-Ray using an extinction coefficient corresponding to a 
spherical leaf angle distribution (k = 0.5) (b), in addition to an alternative extinction coefficient (k = 0.2) for the erectophile cases (c). Error bars represent standard 
uncertainties. 

Table 3 
Total processing time for 75 virtual forest scenes (20 images per scene) using 
CoverPy and coveR2’s default settings, for planophile, random, and erectophile 
leaf angle distributions.   

Processing time (h:mm) 

Leaf angle distribution CoverPy coveR2 

Planophile 0:41 2:28 
Random 0:47 2:32 
Erectophile 1:01 2:35  
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erectophile leaf angle distribution (RMSE = 2.27, bias = − 1.82) when 
compared to the planophile (RMSE = 1.73, bias = − 0.07) and random 
(RMSE = 1.58, bias = − 0.85) leaf angle distributions, indicating that the 
assumed spherical leaf angle distribution was ill-suited to erectophile 
canopies. Indeed, when an alternative extinction coefficient corre-
sponding to a more erectophile canopy was used to calculate PAI for the 
erectophile cases (k = 0.2), agreement was substantially increased, both 
for these cases (RMSE = 1.66, bias = 0.43), and overall (RMSE = 1.65, 
bias = − 0.16) (Fig. 5c). 

3.3. Benchmarking against the coveR2 package 

To further asses CoverPy, we also processed the simulated images 
described in Section 3.2 with the coveR2 package [8], allowing a direct 
comparison between CoverPy and coveR2’s outputs to be made. Default 
settings were used, with the exception that an extinction coefficient (k) 
of 0.2 was set for the erectophile cases (as was the case with the CoverPy 
processing). In addition to assessing the agreement between outputs, we 
also calculated the time taken to process each batch of images (i.e. 75 
virtual forest plots, with 20 images per plot) on a personal computer 
with an Intel i7–6500U 2.5 GHz processor and 8 GB of memory. Unlike 
CoverPy, which provides a single value and uncertainty per measure-
ment plot, coveR2 processes each image individually. Therefore, Cov-
erPy outputs were compared against the mean of the coveR2 outputs 
from all 20 images in each plot. 

In all cases, coveR2 processing was substantially slower than 

CoverPy processing (Table 3). This is likely because CoverPy down-
samples images by a factor of three in order to speed up computation by 
default (Section 2.2), whereas images are processed in their native res-
olution by coveR2. Despite differences in processing time, overall 
agreement between CoverPy and coveR2 outputs was high for FCOVER 
(RMSE = 0.03, bias = 0.01), PAIe (RMSE = 0.31, bias = − 0.17), and PAI 
(RMSE = 0.57, bias = − 0.20) (Fig. 6). For FCOVER, little difference in 
performance was observed between the planophile (RMSE = 0.05, bias 
= 0.01), random (RMSE = 0.03, bias = 0.00), and erectophile (RMSE =
0.03, bias = 0.00) leaf angle distributions (Fig. 6a). Meanwhile, for PAI, 
greater disagreement was observed for the planophile leaf angle distri-
bution (RMSE = 0.73, bias = − 0.35) than for the random (RMSE = 0.49, 
bias = − 0.21) and erectophile (RMSE = 0.46, bias = − 0.05) leaf angle 
distributions (Fig. 6c). 

Some disagreement between CoverPy and coveR2 was observed in 
the case of CC (Fig. 6d) and CP (Fig. 6e), where CoverPy overestimated 
coveR2’s outputs in a number of cases. This is likely due to differences in 
the way clusters of pixels are identified as gaps by coveR2 (8-connec-
tivity is used by CoverPy, meaning larger gaps would be identified than 
if using 4-connectivity). It is worth noting that these outputs were 
identified as having a higher uncertainty. Despite this, overall agree-
ment was reasonable (RMSE = 0.18, bias = 0.08 for both CC and CP). 

4. Impact and conclusions 

A principal strength of CoverPy is that it is well-suited to batch 

Fig. 6. Comparison between CoverPy and coveR2 FCOVER (a), PAIe (b), PAI (c), CC (d), and CP (e) outputs. Error bars represent standard uncertainties.  
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processing, meaning it should prove useful for processing long time- 
series of DCP observations from automated digital cameras and 
routine sampling. Indeed, several authors have demonstrated the use of 
timelapse camera systems for capturing DCP images, which, when 
processed, can provide rich information on the temporal dynamics of 
vegetation structure [16,33,34]. 

It is worth noting that DCP is a primary data collection method 
adopted by environmental monitoring networks including the Terres-
trial Ecosystem Research Network (TERN). TERN routinely collects DCP 
at 10 ‘SuperSites’ spread across Australia, and over 12,000 unprocessed 
DCP images acquired between 2013 and 2023 are currently available via 
the TERN EcoImages Portal [35]. Under the European Space Agency 
(ESA) funded ‘Ground Reference Observations Underlying Novel Deca-
metric Vegetation Data Products from Earth Observation (GROUNDED 
EO)’ project [36], these images are being processed using CoverPy, and 
the results will be made available to the community in the near future. 

Since CoverPy provides quantitative estimates of uncertainty in 
accordance with ISO GUM and FRM4VEG standards [10,30], it is very 
well-suited to deriving reference data for the calibration and validation 
of remotely sensed data products [37]. Owing to the narrow rectangular 
footprint associated with DCP, CoverPy should prove particularly useful 
for calibration/validation of high spatial resolution estimates from un-
occupied aerial vehicle (UAV) and satellite sensors [3]. 

Finally, because DCP images can be acquired with low-cost digital 
cameras and even smartphones [38], there is high potential for re-
searchers and citizen scientists interested in quantifying vegetation 
structure using inexpensive, non-specialist hardware to adopt the 
module for DCP processing [39]. 
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