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Abstract
Forecasting the El Nino-Southern Oscillation (ENSO) is a challenging task in climatology. It is one of the main factors 
responsible for the Earth’s interannual climatic fluctuation and can result in many climatic anomalies. The impacts include 
natural disasters (floods, droughts), low & high agriculture yields, price fluctuation, energy demand, availability of water 
resources, animal movement, and many more. This study presents a comprehensive ENSO dataset containing standard indi-
cators and other relevant data to facilitate ENSO analysis and forecasting. To ensure the dataset's validity and reliability, we 
performed extensive data analysis and trained four basic deep models for time series forecasting (i.e. CNN, RNN, LSTM, 
and hybrids). The data analysis confirmed the accuracy and suitability of the dataset for ENSO forecasting. The LSTM model 
achieved the best fit to the data, leading to superior performance in forecasting ENSO events.

Keywords  El Nino-Southern Oscillation (ENSO) · El Nino La Nina prediction · Climate changes · Time series analysis · 
Time series forecasting · Deep learning · Neural networks

Introduction

ENSO is an irregular periodic fluctuation (i.e. every 
2–7 years) in wind and sea surface temperature (SST) in the 
central and eastern tropical Pacific Ocean. It has a signifi-
cant impact on global climate patterns because it can change 
atmospheric circulation worldwide, which affects tempera-
ture and precipitation. Agriculture yields, commodity supply 
chains, energy demand, water resources, animal migration, 

etc. are all impacted. The ENSO cycle has three phases: El 
Nino, La Nina, and Neutral (L'Heureux 2014).

•	 El Nino / warm phase: the unusual warm ocean tempera-
tures in the eastern Pacific

•	 La Nina / cool phase: the unusual cool ocean tempera-
tures in the eastern Pacific

•	 Neutral: neither El Nino nor La Nina

ENSO indicators include Oceanic Nino Index (ONI), Mul-
tivariate ENSO Index (MEI.v2), Southern Oscillation Index 
(SOI), Trans-Nino Index (TNI), Pacific-North American (PNA) 
Index, Outgoing Longwave Radiation (OLR), TAO/Triton Data 
Display, and sea surface temperature (SST) indices which are 
Nino 1 + 2, Nino 3, Nino 3.4, Nino 4. According to the National 
Oceanic and Atmospheric Administration (NOAA), the ENSO 
indicators are the ONI, SOI, OLR, MEI.v2, TAO/Triton Data 
Display, and SST anomalies (Barnston 2015; NOAA n.d.).

Linear approaches have historically dominated time series 
forecasting since they can solve many straightforward fore-
casting problems. To address the shortcomings of linear meth-
ods, nonlinear approaches have been applied to climate stud-
ies. Deep learning has been used to improve weather forecasts 
and predict climate variability because it is more effective at 
identifying weather features (Gupta 2019; Shin et al. 2022).
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ENSO exhibits seasonal patterns and is a time series fore-
casting problem (NOAA n.d.). Deep learning holds signifi-
cant potential for forecasting time series, especially learn-
ing about temporal dependencies and addressing temporal 
patterns like trends and seasonality. Deep neural networks 
support multiple inputs and outputs and can learn arbitrarily 
complicated mappings. Deep learning techniques for fore-
casting time series include convolutional neural network 
(CNN), recurrent neural network (RNN) such as simple 
RNN and long short-term memory (LSTM), and hybrids 
(CNN-LSTM, ConvLSTM) (Brownlee n.d.).

The contributions of this study include:

•	 A comprehensive ENSO dataset containing standardized 
monthly climate data spanning 74 years, from 1950 to 
2023 (Mir 2022a)

•	 Data analysis to validate the dataset (Mir 2022b)
•	 Comparison of deep models to verify the dataset and 

assess how well they fit the data (Mir 2023)

Related work

The deep models used in ENSO analysis and prediction 
mainly include CNN, RNN, and hybrids, as shown in Table 1.

Shin et al. (Shin et al. 2022) used CNN to analyze ENSO 
patterns from climate model simulations. The model accu-
rately forecasted ENSO for a 9-month lead with high cor-
relation (~ 0.82). Ham et al. (2019) trained a convolution 
network using transfer learning on historical simulations 
and reanalysis data for multi-year ENSO predictions. The 
model successfully forecasted ENSO 12 months ahead, 
with an accuracy of 66.7%. Cao et al. (Cao et al. 2020) 
studied ENSO prediction based on LSTM using meteoro-
logical time-series data. They also showed that the quality 
of the dataset is important for good prediction results. Ha 
et al. (2021) used LSTM, ConvLSTM-LSTM, and ConvL-
STM-GRU networks, to predict the monthly streamflow 
of the Yangtze River. They proved that there is an implicit 
relationship between ENSO and streamflow data that can 
be learned by the neural network. Mahesh et al. (2019) 
trained a convolutional and recurrent neural networks 
model on physical simulations for predicting monthly 
ENSO temperatures. Wang et al. (2023) reviewed how 

deep learning has been used to predict ENSO in the past 
10 years and provided a summary of the most influential 
papers on this topic. They discussed the potential of deep 
learning for ENSO prediction and the challenges that need 
to be addressed.

Methodology

ENSO data since 1950 was collected from reliable sources 
such as NOAA (NOAA n.d.), NCEI (NCEI n.d.), NCAR 
(NCAR n.d.), and other official weather sites (Null 2023; 
National Centers for Environmental Information NOAA 
n.d.). Data prior to 1950 is available for some indicators 
like Nino 3.4 SST, but for the primary and most recent 
indicators such as MEI.v2 and OLR, the data is unavail-
able. The dataset was prepared and formatted using pan-
das and Excel.

A range of data analysis and visualization techniques 
were utilized to validate the dataset by examining the follow-
ing aspects: seasonal patterns in the ENSO, the strength of 
ENSO phases over time, the relationship between ENSO and 
ONI, and the correlation between different indicators. ONI is 
widely accepted and used by NOAA as the standard for classi-
fying ENSO events. The correlation analysis was specifically 
conducted to explore the relationship between ONI and other 
ENSO indicators to identify potential predictor variables for 
ONI prediction.

During preprocessing, several operations were performed 
to prepare the data for training. The data was transformed 
into supervised learning format to get input and output 
sequences. This is necessary as time series forecasting 
problems need to be reframed as supervised learning prob-
lems. The preceding 12 months' time steps were employed 
to forecast the subsequent 3 months' time steps. The data 
was divided into training, validation, and test sets in an 
80:10:10 ratio. Separate scalers were employed to normal-
ize the input and output variables, ensuring restoration of 
the scaling to obtain the actual output values. To assess the 
suitability of the dataset and predict ONI, four deep learn-
ing models were trained: CNN, Simple RNN, LSTM, and 
CNN-LSTM. The data was also reshaped to adhere to the 
input shape specifications of the model.

Table 1   Deep learning models 
and data used for forecasting 
ENSO

References Methods Data

Shin et al. 2022) CNN Climate model data
Ham et al. 2019) CNN + Transfer Learning Historical simulations & reanalysis data
Cao et al. 2020 LSTM Meteorological time series data
Ha et al. 2021) LSTM, ConvLSTM Streamflow and ENSO data
Mahesh et al. 2019) CNN-LSTM Physical simulations & observational data
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To evaluate the performance and accuracy of each model 
in fitting the data and making predictions, several evalua-
tion metrics such as root-mean-square error (RMSE), mean 
absolute percentage error (MAPE), mean absolute error 
(MAE), and r-squared (R2) were used. These metrics pro-
vide a comprehensive assessment of the model’s accuracy 
and prediction quality.
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Figure 1 summarizes the entire process discussed above 
from data collection to prediction, showing the basic steps 
involved in training a machine learning model.
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Fig. 1   The basic process of training and evaluating a deep learning model

Table 2   ENSO dataset: indicator columns details

Column Description (unit) Column Description (unit)

ONI Oceanic Nino Index (°C) SOI Southern Oscillation Index
OLR Outgoing Longwave Radiation (W/m2) MEI.v2 Multivariate ENSO Index Version 2
TNI Trans-Nino Index PNA Pacific-North American Index
Nino 1 + 2 SST Nino 1 + 2 region Sea Surface Temperatures 

(°C)
Nino 1 + 2 SST Anomalies Nino 1 + 2 region Sea Surface Temperature 

Anomalies (°C)
Nino 3 SST Nino 3 region Sea Surface Temperatures (°C) Nino 3 SST Anomalies Nino 3 region Sea Surface Temperature 

Anomalies (°C)
Nino 3.4 SST Nino 3.4 region Sea Surface Temperatures (°C) Nino 3.4 SST Anomalies Nino 3.4 region Sea Surface Temperature 

Anomalies (°C)
Nino 4 SST Nino 4 region Sea Surface Temperatures (°C) Nino 4 SST Anomalies Nino 4 region Sea Surface Temperature 

Anomalies (°C)

Table 3   ENSO dataset: other 
columns details

Column Description (unit) Column Description (unit)

Date date (yyyy/mm/dd) Year year (yyyy) e.g. 1950
Month month (MMM)

e.g. JAN
Season (2-month) two month season

e.g. DJ
Season (3-month) three month season

e.g. DJF
Season (12-month) twelve month season

e.g. 1950–1951
Global Temperature 

Anomalies
monthly global tem-

perature anomalies 
(°C)

ENSO Phase-Intensity yearly ENSO phase & intensity
e.g. SL (strong La Nina)
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Fig. 2   Changes in global average surface temperature from 1950–2023. Blue bars indicate cooler-than-average years; red bars show warmer-
than-average years

Fig. 3   ENSO events and their strength since 1950. The positive bars in red correspond to El Nino events while the negative bars in blue corre-
spond to La Nina events

Fig. 4   Effect of ONI on defining ENSO event type and intensity. The positive peaks correspond to El Nino events while the negative peaks cor-
respond to La Nina events
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Results

A comprehensive ENSO dataset spanning 1950–2023 was 
created, containing standardized monthly data. Tables 2 and 
3 provides an overview of the dataset's content.

El Nino events contribute to a slight increase in global 
surface temperature, while La Nina events tend to have 
a cooling effect. Global temperature anomalies column is 
added in the dataset to provide data for studying the com-
plex relationship between ENSO and global temperature. 
The data analysis (Fig. 2) shows a consistent rise in global 
temperature, thus validating the dataset.

The primary indicators for ENSO are ONI and MEI.
v2. ONI, the preferred indicator by NOAA, calcu-
lates the 3-month average SST anomaly in the Nino 3.4 
region. El Nino events are identified by SST anomalies 
at or above + 0.5 °C, La Nina events by anomalies at or 
below -0.5 °C and Neutral by anomalies between -0.5 °C 
and + 0.5 °C. The threshold is further categorized as Weak 
(0.5 to 0.9), Moderate (1.0 to 1.4), Strong (1.5 to 1.9), and 
Very Strong (≥ 2.0) events (Null 2023). Visualization of ONI 
and ENSO phase-intensity data (Figs. 3 and 4) confirms the 
correlation between ENSO and ONI, validating the above 
statements and ensuring the dataset's accuracy. The pattern 
in Figs. 3 and 4 also confirms the seasonality in ENSO.

The correlation analysis results (Fig. 5) indicate that 
ONI has a significant positive correlation with Nino 3.4 
SST anomalies and MEI.v2, while it has a strong negative 

correlation with OLR and SOI. Therefore, these indicators 
were selected as predictors for ONI prediction. The cor-
relation analysis also validates the dataset.

Table 4 presents the performance comparison of the 
deep models in forecasting ENSO using test data. The 
results show that the LSTM model outperformed other 
models in terms of accuracy with a root mean square error 
of 0.05, and better fitting the dataset with an r-squared 
value of 0.87.

Conclusion

In this study, we generated a comprehensive ENSO 
dataset, spanning 74 years (1950–2023), by compiling 
standardized monthly climate data from official sources. 
Through data analysis, we explored the seasonality in 
ENSO, the relationship between ENSO and ONI, and 
other trends and correlations within the ENSO data. We 

Fig. 5   Relation of ONI with other indicators. A value above + 0.5 indicates a strong positive (direct) relation and below -0.5 indicates a strong 
negative (inverse) relation

Table 4   Performance comparison of the deep models

Model Loss MAE MAPE RMSE R2

CNN 0.009 0.075 21.349 0.097 0.610
RNN 0.004 0.051 14.559 0.064 0.826
LSTM 0.003 0.042 11.858 0.055 0.873
CNN-LSTM 0.007 0.064 17.284 0.085 0.689
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also trained and compared four deep-learning networks 
(CNN, RNN, LSTM, and CNN-LSTM) to forecast ENSO. 
The LSTM network achieved superior performance and 
demonstrated a good fit with the data. This aligns with 
its ability to capture long-term dependencies and pat-
terns in time series data, crucial for accurately predict-
ing periodic phenomena like ENSO with its 3–7 year El 
Nino/La Nina cycle. Both data analysis and the predic-
tion results validate the dataset. As a valuable resource 
for future research, the dataset (Mir 2022a) and code (Mir 
2022b, 2023) are publicly available on Kaggle, with regu-
lar updates planned. This paves the way for advancements 
in ENSO analysis and forecasting, leading to enhanced 
global preparedness for its wide-ranging impacts.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s12145-​024-​01295-6.
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