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Abstract
Purpose of Review This review collates and analyses data on noise exposure of birds in relation to avian hearing system 
performance. It provides new insights into the mechanistic pathways of anthropogenic noise impact on avian species.
Recent Findings Noise impacts both humans and wildlife. Birds are of conservation concern, given the recent reports of 
major global declines in bird populations and that one in eight bird species is threatened with extinction. Studies of noise 
impacts on birds have been, and continue to be, published. Whilst many of these studies report associations between noise 
and a response in birds, relatively few provide clear demonstration of the mechanisms of impact.
Summary Anatomical and physiological datasets were compiled for species representing nineteen avian orders. Informa-
tion on noise sources, propagation path and habitat selection was also collated. Bird order was not a good predictor of 
bird hearing frequencies, but body dimensions were. In general, smaller birds were found to have higher peak hearing 
frequencies than larger birds. Cranium height was the strongest predictor of peak hearing frequency for birds. These 
findings provide mechanistic context to noise impacts on birds and a potential basis for predicting responses of avian 
species to different noise environments.

Keywords Mechanistic pathways · Noise impact · Birds · Avian hearing system · Avian hearing thresholds · Habitat 
selection · Propagation path

Introduction

Noisy environments have changed significantly and rapidly 
over the recent years. As demonstrated in a recent avian 
population report, around 48% (5245) of the world’s species 
population declined, causing concerns about biodiversity loss 
[1]. Areas with animal abundance are now quieter and are 
presenting non-natural sound sources, e.g. electric vehicles, 
drones, wind farms, heat pumps, and human transportation 
and infrastructure [1, 2]. According to a recent international 
assessment, one in eight bird species are threatened with 
extinction [3]. As stated by Barton and Holmes [4], there is 
no place on Earth free from noise pollution. Not only humans 
are affected by noise pollution but also wildlife. It can affect 

the physiological, behavioural, communication, and sensory 
perception of wildlife.

Birds are important in several ecosystem services, such 
as habitat (1) regulating activities, e.g. pollinators, seed dis-
persers, and control of pets; (2) supporting activities, e.g. 
scavengers activities by nutrient cycling activities and eco-
system fluxes and processes through avian migration; [1] (3) 
cultural activities by physical health and mental wellbeing of 
humans, since avian son can be considered restorative [5].

In birds, communication, e.g. sending or receiving infor-
mation, is essential for several behavioural characteristics 
and survival activities, such as territory defence, warning of 
danger, locating or attracting a mate, caring for offspring, 
prey capture, individual and species recognition, and vocal 
learning [6••, 7]. The variety of hearing ranges possessed by 
birds enhances their ability to localise sounds produced by 
mates, predators, humans and the environment, discriminat-
ing pitch, intensity, and temporal differences [6••].

Sound-source determination involves more than the auditory 
mechanism [8••]. Factors such as learning and attention, stor-
age of information, and hypothesis testing are cognitive aspects 
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linked to the acoustic signal localisation [9]. The sonic propaga-
tion path and habitat selection can also affect the reception of 
acoustic signals, influencing the hearing thresholds of species 
due to signal and spectral degradation [10, 11].

The present study aims to investigate the mechanistic 
pathways of anthropogenic noise impact on avian species. 
Key elements of the mechanistic pathways are explained, 
highlighting critical steps that should be considered in 
anthropogenic noise impact assessment for birds. Since bio-
logical factors are essential in a mechanistic pathway, this 
paper focuses on an analysis of the body and head dimen-
sions, the avian hearing system, and the animal habitat selec-
tion linked to the sound propagation path.

Mechanistic Pathways

The term mechanistic pathway is commonly used in studies 
that are trying to identify the step-by-step of a biochemi-
cal process [12]. This study considers the process of emis-
sion–propagation–reception–outcomes that are widely stud-
ied on noise models for humans, but we are now focusing on 
avian species. The major differentiation between the tradi-
tional noise propagation models and a mechanistic pathway 
is the biological factor, including habitat selection and the 

body structure of each bird species. These aspects are deter-
minants to the outcomes regarding the impacts caused by 
anthropogenic noise in the environment. Figure 1 shows the 
mechanistic pathway of the impact caused by anthropogenic 
noise on avian species. Some confounding factors, indicated 
in red, do not have a direct acoustic influence on the recep-
tor but are important for mechanistic pathways due to avian 
habitat selection. Each step of the mechanistic pathway will 
be explained in detail in the text.

Sound Sources

Soundscapes comprise three significant sound source tax-
onomy components: biophony, geophony, and anthrophony. 
Biophony is sound produced by animals; geophony is non-
biological sound and originates from atmospheric and geo-
physical sounds, e.g. wind, water, and rustling leaves [13]. 
Biophonic and geophonic sounds are classified in Schäfer’s 
taxonomy as natural sounds [14]. In contrast, anthrophony 
is sound from human activities [13]. Schäfer [14] subdi-
vided sounds from human activities into mechanical sounds, 
human sounds, and sounds and society, e.g. descriptions 
related to socio-cultural differences such as continents, 
towns, cities, maritime, domestic, trades, professionals, live-
lihoods, factories, offices, entertainments music, ceremonies 

Fig. 1  Anthropogenic noise impact mechanistic pathway for avian species
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and festivals, parks and gardens, and religious festivals. 
Farina and Gage [15] classify electromechanical sounds as 
technophony, which is usually associated with disturbance 
when there is an overabundance of technological sound 
sources. These are considered perceptually unpleasant, loud, 
or quantified disturbances, frequently rated as unwanted 
sounds or noise [16].

Anthropogenic noise is any human-produced sound con-
sidered unwanted or harmful to humans and wildlife [17]. 
The sound classification taxonomy started through Murray 
Schäfer, which classified the human-produced sounds as 
human-related (voice, body, and clothing), human activities 
(sounds related to general soundscapes, towns, cities, mari-
time, domestic, factories and offices, entertainments, music, 
ceremonies and festivities, parks and gardens, religious 
festivities), and mechanical sounds (machines, industrial 
and factory equipment, transportation machines, warfare 
machines, trains and trolleys, internal combustion engines, 
aircraft, construction and demolition equipment, mechani-
cal tools, ventilators and air conditioners, instruments of 
war and destruction, farm machinery) [14]. The new sound 
sources provided by electrical transportation, drones, wind 
farms, and devices are not observed in Schäfer’s sound 
sources taxonomy. Still, they can be classified, according 
to Brown et al. [18] and the International Organization for 
Standardization [19], as electro-mechanical sounds that can 

be stationary and mobile sounds. Background noise is the 
opposite of foreground noise or principal sound signal under 
investigation [14]. Schäfer describes the difference between 
foreground and background sounds through the description 
of hi-fi and lo-fi soundscapes. Hi-fi sounds have a favourable 
signal-to-noise ratio, where discrete sounds can be heard 
clearly due to low ambient noise, and sounds do not overlap 
frequently, making it easier to determine them at a distance, 
e.g. countryside, rural, and natural areas. Lo-fi sounds are 
obscure in a population of sounds which are amplified, and 
it is not possible to determine their localisation easily [14].

Despite the literature’s emphasis on the sound source 
determination by humans through psychophysical (spec-
tral and spatial–temporal) and perceptual attributes, many 
non-human species will also be able to recognise spectral 
and spatial–temporal content on sound signals. The spec-
tral profile is an amplitude-frequency function and pro-
vides information about who or what emitted the sound, 
e.g. predator, prey, or sounds produced by safe activities 
that can be ignored [20]. Biophony predominates at 2 
and 8 kHz [21–23], while geophony has a diffuse signal 
through the entire spectrum, being strong at the low fre-
quencies [24], e.g. wind and rustling leaves around 200 Hz 
[25]. Sources like wind-generated waves (200 - 2 kHz) and 
rain (15–20 kHZ) also occur at mid and high frequencies 
[26, 27].

Table 1  Frequency range of sound sources that are disturbing to humans

Source type Frequency range (Hz) Dominant 
frequency 
(Hz)

Amplitude References

Car 1000 1000 Rochat [28]
Heavy truck 500–1000 500 Rochat [28]
Motorcycle 1000–3000 Carley et al. [29]
Tractor 63–2000 Abd-El-Tawwab et al. [30]
Train 200–5000 Grassie et al. [31]
Tram 400–1000 500  75.5 dB Panulinova et al. [32]
Aircraft 50–5000 Oakland International Airport [33]
Mining: surface diesel equipment 31.5–125 93–106 dB(A) Giardino and Marracini [34]
Mining: drilling 1000–8000 93–115 dB(A) Giardino and Marracini [34]
Mining: underground cutting equipment 125–500 95–107 dB(A) Giardino and Marracini [34]
Lawnmower 75–300 7–300 95 dB Villa [35]
Leaf blower 6–20,000 220  93–102 dB(A) Cook [36], Pasanen et al. [37]
Construction: foundation-stage machinery below 800 Lee et al. [38]
Construction: demolition-stage machinery 500–2000 Lee et al. [38]
Construction: breaker and bulldozer 4–5000 Lee et al. [38]
Electric vehicles 160–5000 UNECE [39], Soundproofist [40]
Drones 2000–4000 3000 65 dB(A) Jokisch and Fischer [41], Torija and Clark 

[42]
Anthropogenic below 2000 Dowling et al. [43]
Snowmobile 1000–1500 Padois and Berry [44]
Wind farm 20–200 93.2–110 dB Chiu and Lung [45]
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Table 1 shows the frequency range characteristics of tech-
nological sounds, which are considered disturbing by humans. 
Most of the demonstrated sound sources have low (up to 
200 Hz) and mid-frequency (200–2000 Hz) components, and 
around 1/3 of them have high-frequency (above 2000 Hz) com-
ponents. A great part of the demonstrated sound sources has 
mid-frequencies as the dominant frequency.

In contrast, the temporal domain provides through the 
amplitude envelope (AE) the maximum amplitude value 
of all samples in a frame, which can provide characteris-
tics of onset detection (when the acoustic event started), an 
approximate idea of loudness, and sensitivity to outliers. The 
root mean square (RMS) is a stable indicator of loudness, 
which shows the sum of the acoustic energy of the sound 
sample. The zero-crossing rate (ZCR) shows how often the 
sound signal crosses a horizontal axis, representing the time 
domain and the signal’s frequency. It helps to give a mono-
phonic pitch estimation and is ideal for voice or communica-
tion detection [46]. In avian studies, time domain analysis 
is essential for sound source separation and syllable detec-
tion [47]. Bird species identification can be enhanced by 
combining time and frequency domain analysis [48]. Deep 
learning techniques make this possible [49]. Concerning 
the avian hearing perspective, the time domain can help to 
understand possible mechanisms regarding the physiology of 
avian hearing through the correlation of hearing processors, 
e.g. through rearrangement of the auditory nerves to follow 
the cycles of the stimulus tone [50, 51], and the interaural 
time difference [52, 53]. The time domain can help ana-
lyse animals’ behaviour and physiology such as wingbeat 
coupling, respiration, mating preferences, or arousal coding 
interpretation, which can be analysed with the help of the 
amplitude envelope technique [54].

Propagation Path

The sound propagation process in the air naturally 
degrades in amplitude, spectral, and temporal structure  
the acoustic energy of sound signals [10]. Regarding ampli-
tude degradation, the main reasons for acoustic energy  
loss are spherical spreading and excess attenuation. 
Spherical spreading is one form of geometric spreading,  
dependent on the intensity of the sound source [55•]. 
Its attenuation has a relation of I/r2 (intensity divided 
by squared distance), where r represents the distance of 
the sound source, and by doubling the distance, there 
will be a decrease of 6 dB of sound intensity. For linear 
sound, sources will produce a cylindrical spreading. This 
decrease will be 3 dB when doubling the distance from the 
source [56, 57]. The excess attenuation occurs through air 
absorption, turbulence, and boundary conditions, e.g. scat-
tering, diffraction, reflection, refraction, ground effect, 
and absorption of surfaces [10, 55•].

Regarding diffraction, narrowband wavelength sounds, like 
bird vocalisations, cannot diffract in dense vegetation [58]. 
Scattering occurs as a specular reflection on small segments 
of a rough surface [59]. Ground effects also influence animal 
signals with attenuations up to 20 dB [10]. Figure 2 shows each 
acoustic phenomenon for airborne sound propagation.

Some investigations with the blackbird, Turdus merula, 
the song thrush, T. philomelos, and the great tit, Parus 
major, showed an improvement in long-distance communi-
cation when they were singing on the top of trees [60, 61]. 
This observation depends on how dense the forest is, the 
ground effect, and animal behaviour patterns.

The spectral degradation occurs due to signal filtering. 
Animal signals are characterised by their frequency content, 
varying according to taxa [11]. High frequencies (narrow-
band signal) travel short distances, while low frequencies 
(broadband signal) can travel farther [62]. The evaluation of 
anthropogenic noise impact on avian species should consider 
the frequencies characteristics of the anthropogenic noise and 
the hearing abilities as well as communication frequencies 
of the investigated bird species. The relationship between 
anthropogenic noise and ambient sounds can be measured 
through signal-to-noise-ratio (SNR), aiming to reduce the 
noise level and increase the signal level [63]. SNR is the ratio 
between the signal’s power and background noise’s power.

Temporal characteristics of the acoustic signals are essen-
tial in mate selection and localisation [64]. Signal degra-
dation in terms of the temporal domain occurs when over-
lapping signals are received from different paths, causing a 
temporal distortion of the signal [10].

Receiver—Birds

Since birds are considered the receivers in this study, it is 
important to observe how avian orders are classified due to 
specific characteristics, e.g. body dimensions and habitu-
ations, helping us to understand their auditory system and 
hearing capacities.

Avian Orders and Their Relatedness

The avian order presented in Table 2 follows the IOC World 
Bird List [65]. The following orders Phaethontiformes (Ph), 
Pterocliformes (Pt), Otidiformes (Ot), Gaviiformes (Ga), 
Procellariiformes (Pr), Ciconiiformes (Ci), Trogoniformes 
(Tr), and Bucerotiformes (Bu) will not be analysed in this 
work due to lack of information of their hearing capacities, 
e.g. hearing thresholds.

Habitat Selection

Habitat selection is a process of behavioural responses which 
influences the survival and fitness of individuals [66, 67]. 
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Common factors for the habitat selection of avian species 
are food availability, community structural (competition and 
other synecological factors), functional characteristics of the 
species, shelter from enemies and adverse weather [68, 69]. 
Other factors that could influence avian habitat selection are 
landscape, terrain, nesting, communication, look-out, and 
avian internal motivations [70].

Morphological and physiological factors are also con-
nected and can be a reason for habitat selection and hearing 
abilities. As a physiological aspect, it is possible to mention 
the body size of birds. Small birds like reed warbler (Acro-
cephalus scirpaceus) are often observed in dense vegetation, 
while larger birds from the same species prefer open areas. 
The competition of hole-nesting in breeding conditions is 
also associated with body size [71, 72]. Species like (Acro-
cephalus arundinaceus, A. scirpaceus) have adapted their 
body size, such as height and length, to improve survival in 
tall, erect vegetation with deep water. Others adapted their 
climbing abilities to live in areas with water and land [73].

Avian Hearing System

Birds and reptiles have some basic similarities in the design of 
their middle ears but diversity in the structural organisation. The 

similarities are related to the interaural pathway, which is tubes 
in the posterior and ventral portions of their skulls that connect 
the middle ear cavities in their heads; thereby, helping in the 
localisation of sound [74, 75••]. 

The columella is a thin bone structure in the interior posi-
tion of the skull (middle ear) that transmits sounds from the 
eardrums. This bone structure is homologous to stapes in 
mammals. In contrast, the extracolumella is a cartilaginous 
structure associated with the columella [51]. The hearing 
threshold is highly associated with the size of the columel-
lar footplate where larger footplates can lower the hearing 
thresholds of birds.

Like mammals and reptiles, birds also have sensory 
hair cells across the auditory papillae (the primary hearing 
organ—equivalent to the organ of Corti in mammals), tran-
sitioning short to tall hair cells over the immovable superior 
cartilaginous plate (Fig. 3I and J). Short hair cells’ posi-
tion orientation varies according to bird species, while in 
humans, they are fixed and have only one direction. Papillar 
morphology anatomic specialisations make hearing high or 
low-frequency sounds unique among different species [50, 
75••, 76••].

Additionally, the auditory curves of different avian orders 
are related to their body sizes, such as weight and overall 

Fig. 2  Factors influencing sound propagation in airborne (adapted [55•])
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Table 2  Avian orders and relatedness

Avian orders Taxa Relatedness

Anseriformes (An) Ducks, geese, swans Waterfowl (Anseriformes) are sister to the landfowl (Galliformes)
Galliformes (Ga) Quails, partiriges, pheasants Landfowl (Galliformes) are sister to the waterfowl (Anseriformes)
Phoenicopteriformes (Ph) Flamingos Flamingos and grebes (Podicipediformes) are ancient sister taxa, 

potentially related to shorebirds
Podicipediformes (Po) Grebes Grebes and flamingos (Phoenicopteriformes) are ancient sister taxa 

and members of the basal polytomy, potentially related to shorebirds 
(Charadriiformes)

Phaethontiformes (Ph) Tropic birds Tropic birds together with Sun bittern and Kagu (Eurypygiformes) are 
sister to core waterbird clade

Pterocliformes (Pt) Sandgrouse Sandgrouse are sister to the mesites
Columbiformes (Cl) Doves, pigeons Pigeons are the sister group to an Old-World clade consisting of 

sandgrouse (Pterocliformes) and the mesites (Mesitornithiformes). 
Together, they form the clade Columbimorphae at or near the base of 
Neoaves

Caprimulgiformes (Ca) Nightjars The nocturnal caprimulgiform birds and related Apodiformes define a 
spectacular basal adaptive radiation of Neoaves

Apodiformes (Ap) Swifts Swifts and hummingbirds and their relatives are ancient sister to the 
Caprimulgiformes and included together by some in that Order

Otidiformes (Ot) Bustards Now in their Order, the bustards are the sister group to turacos 
(Musophagiformes) or cuckoos (Cuculiformes)

Cuculiformes (Cu) Cuckoos Cuckoos are sister to bustards (Otidiformes) or the turacos 
(Musophagiformes)

Gruiformes (Gr) Cranes, rails, coots Long recognised as an artificial assemblage of taxa, the revised core 
Gruiformes represents the branches of the basal polytomy. This Order 
now includes seven families: rails (Rallidae), flufftails (Sarothruri-
dae), finfoots (Heliornithidae), trumpeters (Psophiidae), cranes (Grui-
dae), and Limpkin (Aramidae)

Gaviiformes (Ga) Loons, dives Loons are the sister group to penguins (Sphenisciformes) + tube-nosed 
seabirds

Procellariiformes (Pr) Tube-nosed seabirds The tube-nosed seabirds are sisters to penguins (Sphenisciformes). 
Albatrosses are the sister group to all other tubenoses

Suliformes (Su) Frigatebirds, cormorants The Suliform waterbirds are sisters to the herons and pelicans (Pele-
caniformes)

Pelecaniformes (Pe) Pelicans, herons, egrets, spoonbills The relationships among Pelecaniform bird families remain uncertain
Ibis, herons, pelicans, hammerkop, shoebill

Ciconiiformes (Ci) Storks The Order Ciconiiformes includes only the storks (Ciconiidae). Ibises 
and spoonbills (Threskiornithidae) and herons (Ardeidae) are mem-
bers of the Pelecaniformes

Charadriiformes (Ch) Waders Shorebirds and diving birds in the Charadriiformes are an ancient and 
diverse adaptive radiation of waterbirds

Accipitriformes (Ac) Raptors Raptors (Accipitriformes) are basal members of the core landbirds 
clade. New World vultures are a deep basal split and sister to the rest 
of the Accipitriformes

Strigiformes (St) Owls Owls are basal members of the core landbirds
Trogoniformes (Tr) Trogons Trogons are embedded in the Core Landbirds as the sister group to the 

Bucerotiformes, Coraciiformes, and Piciformes
Bucerotiformes (Bu) Hornbills, hoopoes Separation of the hornbills and hoopoes from the Coraciiformes as the 

Order Bucerotiformes maintains monophyly of the Coraciiformes
Coraciiformes (Co) Rollers, kingfishers, bee-eaters The kingfishers, rollers, and allies form the sister group to the Pici-

formes
Piciformes (Pi) Woodpeckers, barbets The diverse Piciformes include jacamars, puffbirds honeyguides, wry-

necks, barbets and toucans, and woodpeckers worldwide
Falconiformes (Fa) Falcons The falcons and caracaras (Falconiformes) are not relatives of other 

raptors in the Accipitriformes, but rather are a separate lineage and 
Order in the terminal landbird clade Australaves which includes par-
rots and the Passeriformes
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length, where small birds, like songbirds, can hear higher 
frequencies better, whereas larger birds hear lower frequen-
cies better [76••, 78]. Rosowski and Graybeal [79•] state 
that these inversely and significant correlations are easily 
observed in high and mid-frequency ranges. Peacock et al. 
[77••] observed that a greater absolute mass of the middle 
ear ossicles could predict lower frequency peaks for birds 
with these hearing system characteristics. The avian nucleus 
mesencephalicus lateralis, pars dorsalis (MLd) is an audi-
tory midbrain nucleus responsible for acoustically medi-
ated behaviours, such as vocal learning, echolocation and 
prey localisation. The optic tectum (TeO) is related to flight 
behaviour in birds, providing visual cues. Since MLd and 
TeO occupy the same section of the avian midbrain and they 
are highly dependent and their ratio is used for on investiga-
tion related to avian auditory midbrain. Iwaniuk et al. [6••] 
investigated the size of the auditory midbrain of several birds 
and concluded that independent of MLd size, there is an 
overall similarity in hearing abilities across taxa.

Outcomes—Birds' Response to Anthropogenic Noise

Anthropogenic noise can affect birds’ physiology, behav-
iour, and acoustic perception responses [80, 81]. Common 
physiological impacts include physical damage to ears, stress 
responses, changes in reproductive success, and potential 
changes in birds’ populations are observed. Behavioural 
impacts include fight-flight response, avoidance, and 
reduced foraging efficiency, along with changes in vocal 
communication and the ability to hear predators/other sound 
sources [82••].

Physiological Response

a. Physical damage to ears
  The auditory hair cells can be damaged through expo-

sure to loud sounds. For example, blasts with intensity over 
140 dB(A), multiple blasts up to 125 dB(A), and continu-
ous exposure with an intensity up to 110 dB(A), up to 72 h, 
can all cause permanent hearing cell damage in birds, con-
sequently, the reduction of hearing capacity and possible 

deafness, while intensities between 93 and 110 dB(A) can 
cause temporary hearing damage to birds [83].

b. Stress responses
  Chronic stress of noise causes elevated heart rate, 

increases in stress hormone levels, and weight loss 
in birds [84].

c. Changes in reproductive success and population size
  The stressful conditions caused by anthropogenic 

noise alter birds’ resistance to diseases, resulting in 
reduced reproductive success [84]. Consequently, 
changes in population size happen due to problems 
with egg production, incubation, brooding, predators, 
brood parasites, abandonment of nests, the ability to find 
or attract a mate, and the ability of parents to hear and 
respond to begging calls [4, 82••].

Animal Behaviour

a. Fight-flight response.
  The fight-flight response is caused by stressful stim-

uli which affects the hormonal states of the birds. The 
affected hormones are epinephrine and norepinephrine, 
which are released by the adrenal gland, causing an ele-
vation in birds’ heart rates [85]. Noisy environments can 
cause fight-flight responses, which affect birds’ mate 
attraction and territorial defence [82••].

b. Avoidance response.
  Some species, like the house finch (Carpodacus mex-

icanus) and black-chinned hummingbird (Archilochus 
alexandri), avoid areas with anthropogenic noise [86]. 
According to Forman and Deblinger [87], the avoid-
ance effect was observed through nesting location and 
birds’ occupancy near roadways, with birds staying up 
to 300 m (about 984.25 ft) away from roadways.

c. Changes in foraging responses
  Different behaviours can be observed as changes in for-

aging responses, such as latency on attack response from 
predators, were on great tit (Parus major) studies [88] and 
difficulty in detecting the prey on owl studies [89]. In the 
study of Burger and Gochfeld [90], it highlighted five spe-
cies that usually forage in the presence of people.

Legend: Orders in italics are not included in the review of the present work

Table 2  (continued)

Avian orders Taxa Relatedness

Psittaciformes (Ps) Parrots Parrots (Psittaciformes) are the sister group to the Passeriformes
Passeriformes (Pa) Songbirds The Passeriformes, or perching birds, include most world bird species. 

The New Zealand wrens (Acanthisittidae) are the sister group to all 
passerines, including suboscines and oscines
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Acoustic Perception—Communication and Hearing

Birds’ communication can be affected by the environment, 
body size, vocal apparatus, and masking caused by natural 
and anthropogenic sounds [82••]. Effects from the envi-
ronment are observed easily in urban settings, which have 
acoustic similarities to cliffs, canyons, and other hard-sur-
faced natural environments [91–93]. As mentioned before, 
the body, through the vocal apparatus, also influences which 
frequencies the birds will sing and hear. Masking occurs 
when the communicated sound is hidden or interfered with 
by anthropogenic or natural sounds [82••, 94, 95]. To over-
come this problem, birds may change frequency, amplitude, 
and song components through temporal shifts, e.g. changes 
in preferable hours to communicate (i.e. dawn chorus), 
avoiding rush hours [82••].

One well-studied mechanism of communication is the 
Lombard effect. This mechanism is usually observed in the 
communication of humans, other mammals, and several 
bird species [96]. The Lombard effect occurs when the ani-
mal increases vocal amplitude to cover background noise, 
avoiding a masking process, exercising vocal plasticity, and 
guaranteeing that their communication intentions can be 

achieved effectively [97, 98]. Vocal plasticity is considered 
a vital signal adaptation in the evolution of animal commu-
nication [99]. Despite this, there are different reasons for 
using the Lombard effect across taxa [97, 100, 101], such 
as changes in song composition over time, observed in his-
torical records of bird songs were the minimum frequency 
increased [102], and cultural evolution of birds, noticed on 
frequency-dependent vocalisations for mate selection, where 
male birds with rare alleles most likely learn with common 
allele birds to attract females during breeding season [103].

Methodology

As highlighted in the mechanistic pathway description, this 
work focuses on biological factors, such as the body and head 
effect on avian hearing, hearing system dimensions, and habi-
tat selection of the avian class. Since the hearing physiologi-
cal and psychophysical aspects of birds are topics that few 
investigators conducted research, we selected papers with wide 
coverage of bird orders and species. The base work for selec-
tion on avian orders and species was the study by Peacock 
et al. [77••, 104••]. Not all species indicated in the works of 

Fig. 3  Avian middle ear.  Adapted from Peacock et al. [77••] and Gleich and Manley [50]
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Table 3  Avian body size

Avian 
orders/
Nr

Species binominal name Species common name Body length (cm) Body weight 
(kg)

References

Min Max Avg Min Max Avg

An1 Aix sponsa Wood duck 47.0 54.0 50.5 0.45 0.86 0.66 The CornellLab of Ornothology 
[110]

An2 Anas platyrhynchos Mallard 50.0 65.0 57.5 0.72 1.58 1.15 íNaturalist [111]
An3 Mergus merganser Common merganser 54.0 71.0 62.5 0.90 2.16 1.53 The CornellLab of Ornithology 

[112]
Ga1 Pavo cristatus Indian peafowl 96.0 117.0 106.5 2.75 6.00 4.38 Denver Zoo [113]
Ph1 Phoenicopterus chilensis Chilean flamingo 150.0 150.0 150.0 1.80 3.60 2.70 Associated with American Fla-

mingo: Phoenicopterus ruber 
Smithsonian’s National Zoo & 
Conservation Biology Institute 
[114]

Po1 Podilymbus podiceps Pied-billed grebe 31.0 38.0 34.5 0.25 0.57 0.41 Muller and Storer [115]
Po2 Aechmophorus occidentalis Western grebe 55.0 75.0 65.0 0.80 2.00 1.40 TheCornellLab of Ornithology 

[116]
Cl1 Streptopelia decaocto Eurasian collared dove 30.0 33.0 31.5 0.20 0.20 0.20 Texas Invasive Species Institute 

[117]
Ca1 Chordeiles minor Common nighthawk 22.0 24.0 23.0 0.07 0.10 0.08 University of Michigan. Museum 

of Zoology. Animal Diversity 
Web [118]

Ap1 Aeronautes saxatalis White-throated swift 15.0 18.0 16.5 0.03 0.04 0.03 Collins and Johnson [119], Ryan 
and Collins [120]

Cu1 Coccyzus americanus Yellow-billed cuckoo 32.0 34.0 33.0 0.11 0.13 0.12 The CornellLab of Ornithology 
[121]

Gr1 Fulica americana American coot 34.0 43.0 38.5 0.43 0.85 0.64 Duning Jr. [122]
Su1 Phalacrocorax auritus Double-crested cormorant 70.0 90.0 80.0 1.20 2.50 1.85 TheCornellLab of Ornithology 

[123]
Pe1 Plegadis chihi White-faced ibis 46.0 56.0 51.0 0.45 0.53 0.49 The CornellLab of Ornithology 

[124]
Pe2 Nycticorax nycticorax Black-crowned night heron 58.0 66.0 62.0 0.73 1.01 0.87 Smithsonian’s National Zoo & 

Conservation Biology Institute 
[125]

Pe3 Ardea herodia Great blue heron 115.0 138.0 126.5 1.82 3.60 2.71 Duning Jr. [122]
Ch1 Charadrius vociferus Killdeer 20.0 28.0 24.0 0.07 0.12 0.10 Wiersma et al. [126]
Ch2 Larosterna inca Inca tern 39.0 42.0 40.5 0.18 0.21 0.20 The CornellLab of Ornithology 

[127]
Ch3 Uria aalge Common murre 38.0 46.0 42.0 0.95 1.04 0.99 Duning Jr. [122]
Ch4 Larus delawarensis Ring-billed gull 43.0 54.0 48.5 0.30 0.60 0.45 University of Michigan. Museum 

of Zoology. Animal Diversity 
Web [128]

Ac1 Cathartes aura Turkey vulture 76.0 76.0 76.0 1.36 1.36 1.36 Chattahoochee Nature Center 
[129]

St1 Bubo virginianus Great horned owl 46.0 68.0 57.0 1.40 1.40 1.40 Canadian Raptor Conservancy 
[130]

Co1 Megaceryle alcyon Belted kingfisher 28.0 35.0 31.5 0.11 0.18 0.15 The CornellLab of Ornithology 
[131]

Co2 Dacelo novaeguineae Laughing kookaburra 41.0 47.0 44.0 0.19 0.47 0.33 Pizzey and Doyte [132], Woodfall 
[133]

Pi1 Colaptes auritus Northern flicker 28.0 36.0 32.0 0.09 0.17 0.13 The CornellLab of Ornithology 
[134], Duning Jr [122]

Pi2 Sphyrapicus nuchalis Red-naped sapsucker 19.0 21.0 20.0 0.03 0.07 0.05 The CornellLab of Ornithology 
[135]

Pi3 Picoides villosus Hairy woodpecker 18.0 26.0 22.0 0.04 0.10 0.07 The CornellLab of Ornithology 
[136]
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Peacock et al. [77••, 104••] had a complete dataset about the 
body, middle ear, and auditory midbrain dimensions, as well as 
hearing thresholds in Hertz and Decibels. Body dimensions of 
all referred species are added in Table 3. Head dimensions are 
available in Table 4. Avian middle ear dimensions are shown in 
Table 5 [76••, 77••], auditory midbrain dimensions in Table 6 
[6••], and hearing thresholds in Hertz in Table 7 [104••] and 
in Decibels in Table 8 [105–109]. Table 9 shows the habitat 
selection and influence of the propagation path in some species 
investigated by Peacock et al. [104••].

After gathering all the data, the relationships of body 
weight vs body length, peak hearing frequency vs body 
length, peak hearing frequency vs body weight, and avian 
hearing frequency ranges were plotted. Related to head 
dimensions, the width, length, and height from the cranium 
had their relation analysed together with the peak hearing 
frequencies. Additionally, it analysed the influence of the 
culmen length (beak). In support of the physiological find-
ings, we calculated Pearson’s correlations for sizes of the 
avian middle ear and hearing frequency range, avian audi-
tory midbrain, and avian frequency range.

Results

This study does not cover the following avian orders: 
Phaethontiformes, Pterocliformes, Otidiformes, Gavii-
formes, Procellariiformes, Ciconiiformes, Trogoniformes, 
Bucerotiformes.

Influence of Avian Body Size on Peak Hearing 
Frequency

The indicated bird species in the work of Peacock et al. 
[77••, 104••] were analysed in this section. Complemen-
tary information about body dimensions, e.g. weight and 
height, was collected and displayed in Table 3. Figure 4 
shows a linear regression of the normalised dataset presented 
in Table 3. It adopted the min–max normalisation method. 
The strong positive linear regression of avian body length 
and body weight shows an adjusted R2 = 0.7722, p < 0.001. 
The observations indicated as points are each bird species 
investigated by Peacock et al. [77••, 104••] but indicated 
as their respective bird order. As observed in this figure, 
the bird order of Passeriformes (Pa) concentrates its obser-
vations on the bottom left side of the plot due to its small 
body length and weight. The smallest bird observed in Fig. 4 
is a zebra finch (Taeniopygia guttata), order Passeriformes 
(Pa1), with a 10-cm length and 0.02-kg weight. Bigger birds 
are observed on the upper right side of the figure, e.g. from 
the order Phoenicopteriformes (Ph1), the Chilean flamingo 
(Phoenicopterus chilensis), with 150 cm and 2.7 kg, and 
from the order Pelecaniformes (Pe3), the Great blue heron 
(Ardea herodia), with a length of 126.5 cm and 2.71 kg. 
There are also heavier birds indicated on the graph as an 
outlier: from the order Galliformes (Ga1), the Indian peafowl 
(Pavo cristalus) has a body length of 106.5 cm and a weight 
of 4.38 kg.

Table 3  (continued)

Avian 
orders/
Nr

Species binominal name Species common name Body length (cm) Body weight 
(kg)

References

Min Max Avg Min Max Avg

Fa1 Falco sparverius American kestrel 22.0 31.0 26.5 0.08 0.17 0.12 TheCornellLab of Ornithology 
[137]

Ps1 Melopsittacus undulatus Budgerigar 18.0 18.0 18.0 0.03 0.04 0.04 The Australian Museum [138] 
Ps2 Trichoglossus moluccanus Rainbow lorikeet 25.0 30.0 27.5 0.08 0.16 0.12 Collar [139]
Pa1 Taeniopygia guttata Zebra finch 10.0 10.0 10.0 0.02 0.03 0.02 Animal Spot [140]
Pa2 Sturnus vulgaris European starling 21.5 21.5 21.5 0.07 0.10 0.08 University of Michigan. Museum 

of Zoology. Animal Diversity 
Web [141]

Pa3 Cyanocitta cristata Blue jay 25.0 30.0 27.5 0.07 0.10 0.09 Wheaton Park District. Cosley 
Zoo [142]

Pa4 Quiscalus quiscula Common grackle 28.0 34.0 31.0 0.07 0.14 0.11 The CornellLab of Ornithology 
[143]

Pa5 Corvus brachyrhnchos American crow 40.0 50.0 45.0 0.30 0.60 0.45 BirdLife International [144]
Pa6 Pica hudsonia Black-billed magpie 45.0 60.0 52.5 0.17 0.02 0.09 Trost [145]
Pa7 Corvus corax Common raven 54.0 67.0 60.5 0.69 2.00 1.35 Boarman et al. [146]
Pa8 Cyanocitta stelleri Steller’s jay 30.0 34.0 32.0 0.10 0.14 0.12 Walker et al. [147]
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Table 4  Avian head size

Avian 
orders/
Nr

Species binominal 
name

Species common 
name

Cranium Cranium + culmen References

Width (mm) Length (mm) Height (mm) Length (mm)

Ac1 Cathartes aura Turkey vulture 39.00 61.00 30.00 94.00 Skulssite [148]
An1 Aix sponsa Wood duck 27.00 49.00 27.00 85.00 Skulssite [149]
An2 Anas platyrhynchos Mallard 30.00 60.00 27.00 110.00 Skulssite [150]
An3 Mergus merganser Common merganser 36.00 52.00 24.00 118.00 Skulssite [151]
Ca1 Chordeiles minor Common night-

hawk
22.00 21.00 16.00 34.00 Skulssite [152]

Ch1 Charadrius 
vociferus

Killdeer 18.00 24.00 17.00 48.00 Skulssite [153]

Ch2 Larosterna inca Inca tern 42.00 22.00 17.00 71.00 Based on Sterna 
vittata (Antarctic 
Tern) Skullsite 
[154]

Ch3 Uria aalge Common murre 36.00 46.00 24.00 114.00 Skulssite [155]
Ch4 Larus delawarensis Ring-billed gull 32.00 43.00 24.00 100.00 Skulssite [156]
Cl1 Streptopelia 

decaocto
Eurasian collared 

dove
12.50 31.00 17.46 51.00 Plateau and Foth 

[157], Skullsite 
[158]

Co1 Dacelo novaeguin-
eae

Megaceryle alcyon 38.00 39.00 25.00 109.00 Skullsite [159]

Cu1 Coccyzus ameri-
canus

Yellow-billed 
cuckoo

21.00 - 19.00 50.00 Bone Clones Inc. 
[160]

Fa1 Falco sparverius American kestrel 26.00 31.00 20.00 43.00 Skullsite [161]
Ga1 Pavo cristatus Indian peafowl 38.00 48.00 34.00 86.00 Skullsite [162]
Gr1 Fulica americana American coot 20.00 31.00 19.00 57.00 Based on purple 

gallinule (Porphy-
rula martinica) 
Skullsite [163]

Pa1 Taeniopygia guttata Zebra finch 14.00 18.00 12.00 28.00 Based on painted 
finch (Passerina 
ciris) Skullsite 
[164]

Pa2 Sturnus vulgaris European starling 19.00 24.00 14.00 52.00 Skullsite [165]
Pa3 Cyanocitta cristata Blue jay 25.40 - 25.40 57.15 Darwin and Wallace 

[166]
Pa4 Quiscalus quiscula Common Grackle 21.00 28.00 17.00 53.00 Skullsite [167]
Pi1 Colaptes auritus Northern flicker 23.00 30.00 19.00 69.00 Skullsite [168]
Pa5 Corvus brachyrh-

nchos
American crow 36.00 39.00 26.00 87.00 Skullsite [169]

Pa6 Pica hudsonia Black-billed magpie 13.33 - 22.03 - Based on Eurasian 
magpie (Pica pica) 
Plateau and Foth 
[157]

Pa7 Corvus corax Common raven 24.01 - 31.25 - Plateau & Foth [157]
Pe1 Plegadis chihi White-faced ibis 24.00 35.00 25.00 167.00 Skullsite [170]
Pe2 Nycticorax nycti-

corax
Black-crowned 

NIGHT heron
37.00 57.00 24.00 136.00 Skullsite [171]

Pe3 Ardea herodia Great blue heron 35.00 74.00 28.00 196.00 Skullsite [172]
Ph1 Phoenicopterus 

chilensis
Chilean flamingo 36.00 53.00 31.00 150.00 Skullsite [173]
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To verify the influence of body length against the peak 
hearing frequency, it was plotted in Fig. 5 a linear model 
of avian body length (cm) from Table 3 and peak hearing 
frequency (Hz) from Table 7, with a descending curve 
showing the relationship between body length and peak 
hearing frequency. It adopted the min–max normalisation 
method. The weak negative linear regression of avian body 
length and peak hearing frequencies shows an adjusted 
R2 = 0.2765, p < 0.001. As expected, birds with smaller 
body lengths presented higher peak hearing frequencies, 
e.g. the zebra finch (Taeniopygia guttata), order Pas-
seriformes (Pa1), with the smallest body length, can hear 
1879 Hz as peak hearing frequency (upper left side of the 
plot). The point presented as an outlier on the same side 
of the plot represents the white-throated swift (Aeronautes 
saxatalis) from the Apodiformes (Ap1) order, which can 
hear a peak hearing frequency of 2249 Hz. As an example 
of a bird with a greater length which hears lower frequen-
cies, it is observed that the Chilean flamingo (Phoenicop-
terus chilensis, Ph1) at the right side of the plot hears a 
peak hearing frequency of 973 Hz.

Figure 6 shows a linear model of avian body weight 
(kg) from Table 3 and peak hearing frequency (Hz) from 
Table 7, also with a descending tendency. It adopted the 
min–max normalisation method. The weak negative linear 
regression of avian body weight and peak hearing frequen-
cies shows an adjusted R2 = 0.2182, p < 0.01. On the bot-
tom right side of the plot, it is possible to see heavier birds, 

e.g. the Indian peafowl (Pavo cristalus) from the Galli-
formes (Ga1) order, with a weight of 4.38 kg and a peak 
hearing frequency of 862 Hz. The linear, smooth model 
on the left side of the graph shows the results of the zebra 
finch (Taeniopygia guttata) from the Passeriformes (Pa1), 
with a weight of 0.02 kg and a peak hearing frequency of 
1879 Hz. As mentioned in Rosowski and Graybeal [79•], 
these inversely and significant correlations are more pre-
dominantly observed in high and mid-frequency ranges 
when compared to body weight and length. Figures 4, 5, 
and 6 were produced with the help of the software R, using 
the packages ‘tidyverse’ and ‘ggplot’.

Avian Head Size Relation with Hearing Frequencies

Additional regression analysis was conducted with avian 
head measures (Table 4) and peak hearing frequencies 
(Table 7). It considered the following avian head dimen-
sions: cranium width, length, and height. The influence of 
the beak (culmen) was also considered through the com-
bination of the cranium and culmen length. To complete 
the physiological measures, it also calculated the cranium 
volume, as well as the cranium in combination with the 
culmen volume.

Figure 7 shows a linear model of avian cranium width 
(mm) from Table 4 and peak hearing frequency (Hz) from 
Table 7, also with a descending tendency. It adopted the 
min–max normalisation method. The weak negative linear 

Table 4  (continued)

Avian 
orders/
Nr

Species binominal 
name

Species common 
name

Cranium Cranium + culmen References

Width (mm) Length (mm) Height (mm) Length (mm)

Pi2 Sphyrapicus 
nuchalis

Red-naped Sap-
sucker

19.00 20.00 14.00 46.00 Based on yellow-
billed sapsucker 
(Sphyrapicus 
varius) Skullsite 
[174]

Pi3 Picoides villosus Hairy woodpecker 23.00 23.00 18.00 58.00 Based on three-
toed woodpecker 
(Picoides tridacty-
lus) Skullsite [175]

Po1 Podilymbus podi-
ceps

Pied-billed grebe 19.00 28.00 16.00 53.00 Based on Slavonian 
grebe (Podiceps 
auritus) Skullsite 
[176]

Po2 Aechmophorus 
occidentalis

Western grebe 26.00 48.00 21.00 125.00 Skullsite [177]

Ps1 Melopsittacus 
undulatus

Budgerigar 15.25 13.60 14.20 21.95 Bartels et al. [178]

Ps2 Trichoglossus 
moluccanus

Rainbow lorikeet 19.00 30.00 19.00 45.00 Skullsite [179]

St1 Bubo virginianus Great horned owl 61.00 50.00 38.00 86.00 Skullsite [180]
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regression of avian cranium width and peak hearing fre-
quencies shows an adjusted R2 = 0.2029, p < 0.01. The 
smallest observed cranium width was from the Eurasian 
collared dove (Streptopelia decaocto, Cl1), which corre-
lated with mid to low-peak hearing frequencies. Other birds 
from the order Passeriformes also presented small cranium 
widths, as observed through ‘Pa1’, zebra finch (Taeniopygia 
guttata), and ‘Pa6’, black-billed magpie (Pica hudsonia), 
which correlated with high and mid-peak hearing frequen-
cies, respectively. Furthermore, birds with large cranium 
width, e.g. ‘St1’, great horned owl (Bubo virginianus), are 
correlated with low-peak hearing frequencies.

Figure 8 shows a linear model of avian cranium length 
(mm) from Table 4 and peak hearing frequency (Hz) from 
Table 7, also with a descending tendency. It adopted the 
min–max normalisation method. The weak negative lin-
ear regression of avian cranium length and peak hearing 
frequencies shows an adjusted R2 = 0.3314, p < 0.001. The 
smallest observed cranium length was from the budgeri-
gar (Melopsittacus undulatus, Ps1), which correlated with 
high-peak hearing frequencies. Birds with greater cra-
nium length, e.g. ‘Pe3’, great blue heron (Ardea herodia), 
are correlated with low-peak hearing frequencies.

Figure 9 shows a linear model of avian cranium height 
(mm) from Table 4 and peak hearing frequency (Hz) from 
Table 7, also with a descending tendency. It adopted the 
min–max normalisation method. The weak negative lin-
ear regression of avian cranium height and peak hearing 
frequencies shows an adjusted R2 = 0.4498, p < 0.001. 
The smallest observed cranium height was from the zebra 
finch (Taeniopygia guttata, Pa1), which correlated with 
high-peak hearing frequencies. Birds with greater cra-
nium height, e.g. ‘St1’, great horned owl (Bubo virgin-
ianus), are correlated with low-peak hearing frequencies.

Figure  10 shows a linear model of avian cra-
nium + culmen length (mm) from Table 4 and peak hear-
ing frequency (Hz) from Table 7, also with a descend-
ing tendency. It adopted the min–max normalisation 
method. The weak negative linear regression of avian 

cranium + culmen length and peak hearing frequencies 
shows an adjusted R2 = 0.1019, p < 0.05. The smallest 
observed cranium + culmen length was from the com-
mon raven (Corvus corax, Pa7) and black-billed magpie 
(Pica hudsonia, Pa6), which correlated with mid to low 
and peak hearing frequencies, respectively. Birds with 
greater cranium + culmen length, e.g. ‘Pe3’, great blue 
heron (Ardea herodia), are correlated with low-peak hear-
ing frequencies.

Avian Hearing System Size Relation with Hearing 
Frequencies

To analyse the influence of avian middle ear dimension 
on the hearing frequency thresholds, a Pearson correlation 
with standardised values of the following parameters was 
conducted: (a) avian middle ear dimensions from the data-
set presented in Table 5, where interaural distance (mm), 
ID; columellar mass (mg), CM; columellar length (mm), 
CL; footplate area  (mm2), FA; footplate diameter 1 (mm), 
FD1; footplate diameter 2 (mm), FD2; tympanic membrane 
area  (mm2), TMA; tympanic membrane diameter 1 (mm), 
TMD1; tympanic membrane diameter 2 (mm), TMD2; 
extracolumella (mm), EL, and (b) bird hearing thresholds 
in frequency (Hz) in Table 7, where peak hearing frequency 
is equal to frequency of peak in transfer function (PF), and 
frequencies where it achieved the thresholds of 3 dB, 6 dB, 
and 10 dB.

In this statistical analysis, the following species were 
removed due to missing values of some parameters: mal-
lard, double-crested cormorant, Inca tern, blue jay, common 
murre, and hairy woodpecker.

Figure 11 shows the results of the Pearson correlations, 
where dimensions of the avian middle ear correlate posi-
tively with each other, and the same occurs with avian hear-
ing frequency thresholds (blue-coloured results). These 
correlations are considered strong correlations due to coef-
ficients over 0.5, with an exception on the relation of ‘CM’ 
vs ‘FD1’. Negative correlations occurred when avian middle 

Table 6  Avian auditory midbrain dimensions (adapted from [6••])

AO Species binominal name Species common name Auditory category Brain vol-
ume (mm3)

TeO vol-
ume (mm3)

MLd vol-
ume (mm3)

MLd:TeO

An Anas platyrhynchos Mallard Generalists 6065 187.48 7.916 0.042
Ga Pavo cristatus Indian peafowl Generalists 7355 284.95 15.141 0.053
Gr Fulica americana American coot Generalists 2719 127.65 5.454 0.043
Ch Charadrius vociferus Killdeer Generalists 1073 100.92 1.817 0.035
Co Dacelo novaeguineae Laughing kookaburra Generalists 4027 333.48 5.116 0.015
Ps Trichoglossus moluccanus Rainbow lorikeet Vocal learners 3728 123.42 2.578 0.021

Melopsittacus undulatus Budgerigar Vocal learners 1220 43.53 2.386 0.055
Pa Taeniopygia guttata Zebra finch Vocal learners 328 20.90 0.771 0.034
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ear dimensions were analysed with hearing frequency thresh-
olds (red-coloured results). Strong correlations occurred in 
almost all middle ear dimension relations with the peak 
hearing frequency (PF), especially when observed values 
of − 0.7 correlating with the tympanic membrane diameter 
1 (TMD1/2), footplate diameter 1 (FD1), and columellar 
length (CL), indicating the smaller the respective parts are, 
the higher was the peak hearing frequency. An exception 
occurred on the columellar mass (CM) correlation, which 

presented a weak Pearson coefficient (0.2). It also observed 
the moderate descendent coefficients for 3 dB, 6 dB, and 
10 dB in the correlations with the avian middle ear dimen-
sions. As an overall result related to the negative correla-
tions, it is possible to observe that the smallest the avian 
middle ear component is, the most suitable is the hearing of 
higher frequencies, and the opposite is true.

Regarding the avian midbrain correlation results presented 
in Fig. 12, the dataset of Table 6 about avian auditory midbrain 

Table 7  Bird hearing thresholds in frequencies (Hz) [104••]

AO Species binominal name Species common name Frequency of peak in 
transfer function (Hz)

Frequencies (Hz) where it achieved 
the thresholds of:

3 dB 6 dB 10 dB 20 dB

An Anas platyrhynchos Mallard 1138 431 710 1381 6667
Aix sponsa Wood duck 1106 470 794 1179 -
Mergus merganser Common merganser 802 290 802 1541 -

Ga Pavo cristatus Indian peafowl 862 337 544 911 3612
Ph Phoenicopterus chilensis Chilean flamingo 973 395 685 1199 5142
Po Aechmophorus occidentalis Western grebe 1906 1019 1992 4352 -

Podilymbus podiceps Pied-billed grebe 1141 503 981 1872 -
Cl Streptopelia decaocto Eurasian collared dove 1269 658 1572 4203 -
Ca Chordeiles minor Common nighthawk 1081 297 803 1170 5084
Ap Aeronautes saxatalis White-throated swift 2249 1097 1765 3949 -
Cu Coccyzus americanus Yellow-billed cuckoo 1462 552 954 2050 4536
Gr Fulica americana American coot 1301 384 621 1045 5486
Pe Ardea herodia Great blue heron 895 440 684 1118 6185

Plegadis chihi White-faced ibis 1076 361 605 1052 8792
Nycticorax nycticorax Black-crowned night heron 677 233 454 937 2845

Ch Uria aalge Common murre 1928 1085 3026 - -
Charadrius vociferus Killdeer 1747 632 1427 2154 -
Larus delawarensis Ring-billed gull 1637 630 1024 2246 -
Larosterna inca Inca tern 1801 762 1293 8271 -

Ac Cathartes aura Turkey vulture 1165 713 1810 3129 -
St Bubo virginianus Great horned owl 798 218 362 672 -
Co Megaceryle alcyon Belted kingfisher 947 339 597 1134 9384

Dacelo novaeguineae Laughing kookaburra 928 502 826 3010 -
Pi Colaptes auritus Northern flicker 1511 1258 2048 3913 -

Picoides villosus Hairy woodpecker 1706 534 850 - -
Sphyrapicus nuchalis Red-naped sapsucker 2089 754 1522 2719 -

Fa Falco sparverius American kestrel 1174 464 745 1394 -
Ps Trichoglossus moluccanus Rainbow lorikeet 1764 647 1320 2391 -

Melopsittacus undulatus Budgerigar 1672 905 1648 3499 -
Pa Taeniopygia guttata Zebra finch 1879 1333 2351 6027 -

Sturnus vulgaris European starling 2018 947 1723 3075 -
Quiscalus quiscula Common grackle 1604 607 988 1700 -
Corvus corax Common raven 793 193 310 654 6006
Corvus brachyrhnchos American crow 1062 539 936 2562 5620
Pica hudsonia Black-billed magpie 1426 940 1467 2915 -
Cyanocitta stelleri Steller’s jay 1257 458 907 1384 8359
Cyanocitta cristata Blue jay 1480 609 1024 1522 7560
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dimensions, together with part of the data from Table 7 about 
bird hearing thresholds in frequency (Hz), was used. Since 
the dataset presented in Table 6 is limited, the results shown 
in Fig. 12 refer to the following species: mallard duck, Indian 
peafowl, American coot, killdeer, laughing kookaburra, rain-
bow lorikeet, budgerigar, and zebra finch. The dataset used in 
this correlation was standardised using Z-scores.

The analysed parameters from avian auditory midbrain 
were ‘brain volume  (mm3), BV’; ‘tectum opticum (TeO) 
volume  (mm3), TeOV’; ‘nucleus mesencephalicus later-
alis, pars dorsalis (MLd) volume  (mm3), MLdV’; and ‘ratio 
MLd:TeO, MLd_TeO’. The same bird hearing thresholds of 
the previous correlation were also used in this correlation.

As observed in Fig. 11, the tendency of the same results 
presented in Fig. 12 occurred regarding the positive and 
negative correlations. The only parameter that is not relevant 
is the ratio between MLd:TeO, with weak or not signifi-
cant correlations (bright colours). All correlation plots were 
made with the help of the software R, using the ‘corrplot’ 
package, ‘colour’ method, and ‘upper’ type as correlation 
configurations.

Avian Hearing Frequencies

With the data presented in Table 7, it was possible to show a 
possible hearing frequency of 37 bird species. Figure 13 shows 
the avian frequency range of birds investigated in this study, 
using as the threshold of low frequencies the results presented 
on the 3 dB level, and since not all birds presented 20 dB level 
results, we are plotting as high-frequency thresholds the 10 dB 
level for those species without results on the 20 dB level, with an 
exception for the common murre and hairy woodpecker which 
are showing the 6 dB level results as high-frequency threshold.

Frequencies below 300 Hz are in the low-frequency range, 
and above 5000 Hz are in the high-frequency range. Based 
on this information, it is possible to see that some species can 
hear low frequencies, such as common raven, Pa (193 Hz); 
great horned owl, Str (218 Hz); black-crowed night heron, 
Pa (233 Hz); and common merganser, An (290 Hz). The spe-
cies that can hear up to high frequencies are American crow, 
Pa (5620 Hz); common raven, Pa (6006 Hz); zebra finch, Pa 
(6027 Hz); great blue heron, Pe (6185); mallard duck, An 
(6667 Hz); blue jay, Pa (7560 Hz); Inca tern, Ch (8271 Hz); 
Steller’s jay, Pa (8359 Hz); and white-faced ibis, Pe (8792 Hz). 
The other birds comprise their hearing frequencies in the mid-
frequency range. The frequency range plot was possible through 
the software R, with the package ‘tidyverse’, constructing the 
plot with the geometry line range.

Habitat Selection and Influence of Propagation Path

Table 9 shows the influence of habitat selection and propaga-
tion path for avian species. Based on the selected bird species Ta
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from the work of Peacock et al. [104••, 77••] identified seven 
peer-reviewed works of seven avian species of seven differ-
ent avian orders, e.g. Chilean flamingo (Ph), Eurasian col-
lared dove (Cl), common murre (Ch), hairy woodpecker (Pi), 
common grackle (Pa), great blue heron (Pe), and rainbow 

lorikeet (Ps). Regarding habitat type, most of the works refer 
to natural environments (n = 5; 71.42%), followed by urban 
and zoo environments (n = 1; 14.28%) each. It identified 13 
habitat selection characteristics, e.g. physical characteris-
tics (n = 3; 23.07%), propagation path, and human presence 

Table 9  Habitat selection of avian species

AO Species binominal name Species common name Habitat type Selection characteristics References

Ph Phoenicopterus chilensis Chilean flamingo Zoo environment Space selection according 
to human presence

Rose et al. [181]

Cl Streptopelia decaocto Eurasian collared dove Mediterranean urban 
environment

Food availability, protec-
tion from weather, 
avoidance of predators 
and human disturbance, 
security level, presence 
of competitors, and land-
scape composition

Eddajjani et al. [182]

Ch Uria aalge Common murre Naturally complex and 
noisy acoustic environ-
ment

Acoustic niche diversity Smith et al. [183]

Pi Picoides villosus Hairy woodpecker Mature woodlands Physical characteristics Rottenborn [184]
Pa Quiscalus quiscula Common grackle Roost in forested areas Physical characteristics Bodenchuck and Bergman 

[185]
Pe Ardea herodia Great blue heron Quiet forest areas and 

foraging habitats
Propagation path Carlson and McLean [186]

Ps Trichoglossus moluccanus Rainbow lorikeet Avoidance of road areas Propagation path Uebel et al. [187]

Fig. 4  Linear regression with normalised body length and body weight of avian species
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Fig. 5  Linear regression with normalised body length and peak hearing frequencies of avian species

Fig. 6  Linear regression with normalised body weight and peak hearing frequencies of avian species
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Fig. 7  Linear regression with normalised cranium width and peak hearing frequencies of avian species

Fig. 8  Linear regression with normalised cranium length and peak hearing frequencies of avian species
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Fig. 9  Linear regression with normalised cranium height and peak hearing frequencies of avian species

Fig. 10  Linear regression with normalised cranium + culmen length and peak hearing frequencies of avian species
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(n = 2; 15.38%) each, followed by food availability, protection 
from weather, avoidance of predators, security level, presence 
of predators, and acoustic niche (n = 1; 7.69%) each.

Discussion

Influence of Avian Body Size on Peak Hearing 
Frequency

Using the hearing frequency dataset collected by Peacock 
et al. [77••, 104••] (Table 7) and avian body dimensions 
(Table 3), it was possible to observe through Figs. 5 and 6 
the same findings stated by Rosowski and Graybeal [79•], 
Dooling et al. [78], and Gleich et al. [76••] related to the 
relation of the auditory curves of different avian order 
and their body sizes. Birds with small body sizes tended 
to hear better high frequencies, while species with large 
body sizes could hear more low frequencies.

Fig. 11  Pearson correlations 
between sizes of avian middle 
ear parts and their hearing 
frequency range

Fig. 12  Pearson correlations between dimensions of avian auditory 
midbrain and their hearing frequency range
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Influence of Avian Head Size on Peak Hearing 
Frequency

Through the hearing frequency dataset collected by Peacock et al. 
[77••, 104••] (Table 7) and avian head dimensions (Table 4), 
it is possible to see in Figs. 7, 8, and 9 that birds with smaller 
head dimensions could hear better high peak hearing frequencies, 
while birds with larger head dimensions heard better low frequen-
cies. A similar observation was observed through the functional 
head size of mammals in the work of Heffner and Heffner [188].

Greater adjusted R-squared was presented in results 
related to cranium height, followed by length, width, and 
cranium and culmen length.

Avian Hearing System Size Relation with Hearing 
Frequencies

Rosowski and Graybeal [79•] stated that these inversely 
and significant correlations are easily observed in high and 
mid-frequency ranges. This was observed in great nega-
tive correlations of tympanic membrane diameter 1 and 2 
(TMD 1–2), footplate diameter 1 (FD1), and columellar 
length (CL) with the peak hearing frequency (PF) in Fig. 8. 
Peacock et al. [77••] stated that a greater absolute mass of 
the middle ear ossicles, e.g. columellar mass (CM), could 
predict lower frequency peaks for birds with these hearing 

system characteristics. This was also observed in the figure 
on the low negative correlations with PF.

In general, it is possible to affirm that if the midbrain vol-
ume is large, the most suitable is the possibility of hearing 
low frequencies, and birds with small midbrains are able to 
hear higher frequencies.

Avian Hearing Frequencies

The avian hearing frequencies demonstrated in Fig. 10 are 
shown in ascending order, the species which concentrate 
their hearing frequencies on low to high frequencies. This 
distribution did not follow the avian orders, but there is a 
significant influence on the body size of the shown species. 
Corroborating the findings of the influence of avian body 
size on peak hearing frequency. There are some exceptions, 
like the belted kingfisher with a medium-small body size 
hearing better lower frequencies. Other species, like the 
Chilean flamingo, great blue heron, and turkey vulture with 
larger body sizes, could hear better mid-frequencies.

Habitat Selection and Influence of Propagation Path

Cody [69] informed that community structure, competition, 
and other synecological factors influence habitat selection, 

Fig. 13  Avian frequency ranges of 37 avian species
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as observed in Eddajjani et al. [182], which investigated the 
Eurasian collared dove. This species prefers habitats with 
food availability, protection from weather, avoidance of 
predators and human disturbance, security level, presence 
of competitors, and landscape composition.

The acoustic influence is more evident in the habitat 
selection when observing morphological (vegetation) and 
physiological factors [71–73]. Species that selected their 
habitat according to morphological factors were the hairy 
woodpecker [184], common grackle [185], great blue heron 
[186], and rainbow lorikeet [187]. Physiological factors, e.g. 
stress caused by the visitor in a zoo, were observed in the 
work of Rose et al. [181], which investigated Chilean fla-
mingos and reported a space selection inside the enclosures, 
according to human presence.

Regarding habitat selection, preferences in natural and 
non-natural environments were observed. Rose et al. [181] 
reported that the Chilean flamingo is using the enclosure 
space according to the presence of humans in the sur-
roundings during the day. The Eurasian collared dove gives 
preference to habitats according to food availability, pro-
tection from weather, avoidance of predators and human 
disturbance, security level, presence of competitors, and 
landscape composition [182]. Some species, such as the 
common murre, are selecting acoustically complex envi-
ronments. This suggests that niche diversity could be a rea-
son for habitat selection [183]. Others are more concerned 
with the physical characteristics, e.g. the hairy woodpecker 
prefers mature woodlands [184], and the common grackle 
is known to roost in forested areas [185]. The great blue 
heron is selecting quiet forest areas and foraging habitats. 
This was highlighted in the observations regarding sound 
propagation path, where this species was highly annoyed at 
altitudes below 60 m and when the source was 30- to 267-m 
radius [186]. The propagation path of noises along roads can 
be damped by dense vegetation, as observed in the work of 
Uebel et al. [187], which investigated the rainbow lorikeet 
presence near roads.

Limitations

The main limitations observed in this study are finding 
works with a complete dataset of the investigated species 
over taxa, since there are over 11,000 bird species. The 
information related to the relevant aspects of the mechanis-
tic pathway, such as noise sources, propagation path, habi-
tat selection, and physiological data (body and head dimen-
sions, hearing system, and thresholds), is totally fragmented, 
covering several fields of acoustics, turning this sort of lit-
erature review time-consuming and demanding.

Another relevant factor for the actual state-of-art is that 
few studies realised acoustic measurements and playback 
reproductions to ensure that the reported outcomes are asso-
ciated with the indicated noise sources. Still, most of the 
findings collected in the literature review of this work are 
coming from peer-reviewed papers that use observational 
data as a major data collection method [189].

Conclusion

The presented work aimed to investigate mechanistic path-
ways of anthropogenic noise impact on avian species. This 
work adopted the database of Peacock et al. [77••, 104••] 
regarding birds, and complementary data was added to 
the dataset providing findings related to the physiological 
aspects. Additionally, an extensive literature report pro-
vided information related to propagation path and habitat 
selection.

This work showed that the avian hearing thresholds are 
related to body and head size, indicating that birds with a 
larger body and head size hear better mid and low frequen-
cies, while those with a smaller body and head dimension 
could hear better higher frequencies.

Regarding habitat selection and propagation path, birds 
have specific preferences according to natural and non-
natural environments, e.g. the presence of humans, selec-
tion of acoustically complex environments, due to niche 
diversity, and physical characteristics, such as vegetation 
morphology and avoidance of areas with the dominance 
of traffic noise sources.

This form of study is essential to show how avian spe-
cies hear and how the frequency range of the noise sources 
overlaps with avian hearing frequencies, as well as their 
influence on physiological and habitat selection. This rich 
information can contribute to assertive noise control and 
mitigation measures which also consider the biodiversity, 
turning the sonic environment healthy for all.
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