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Abstract: The investigation into potential hazards linked with millimeter-wave (mmWave) radiation
is crucial, given the widespread adoption of body-centric wireless sensor nodes operating within
this frequency band. This is particularly pertinent in light of its envisaged use for the upcoming
5G/6G networks and beyond. As 6G is anticipated to leverage a broad spectrum, including both
sub-6 GHz and mmWave bands (30–300 GHz), concerns arise regarding increased human exposure to
non-ionizing radiation (NIR). This work highlights the advantages of deploying 6G in the mmWave
band, focusing on evaluating human body exposure to NIR interactions. Additionally, this research
aims to address mmWave NIR exposure by introducing a Distributed Base Station (DBS) network.
Utilizing low-power remote antennas to extend network coverage, the DBS architecture seeks to
effectively minimize NIR’s impact without compromising overall network performance. The findings
underscore the significant potential of the DBS approach in mitigating NIR-related concerns associated
with mmWave utilization in 6G networks.
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1. Introduction

To address the substantial surge in Global Mobile Data Traffic (GMDT), the devel-
opment of the sixth-generation (6G) network has become imperative. According to Er-
icsson [1], global data traffic attributed to next-generation networks is experiencing a
significant increase compared to the fourth-generation (4G) and other wireless networks,
as illustrated in Figure 1.

The primary objectives of the fifth generation (5G) revolve around meeting heightened
user demands, achieving extensive network capacity, and facilitating seamless connectivity
for Internet of Things (IoT) applications [2]. In contrast, 6G is anticipated to be designed as
an intelligent wireless network that leverages the power of Artificial Intelligence (AI); 6G is
envisioned to usher in a paradigm shift toward the Metaverse, a space where reality can
be shared between the cyber and real world, connecting and intelligently integrating all
things [3].

To accommodate these highly demanding services, 6G is expected to operate at higher
carrier frequencies in the millimeter-wave (mmWave) band, ranging from 30 to 300 GHz.
This is due to the availability of considerable amounts of unused spectrum resources [4].
However, one crucial aspect that merits attention is the human body’s exposure to Electro-
magnetic Field (EMF) radiation from mmWave base stations, leading to the generation of
heat in human body tissues. This thermal effect becomes more pronounced as the frequency
shifts from microwave to mmWave bands. Consequently, the mmWave band’s limited
penetration capability necessitates only a low level of EMF energy to induce heating in
human tissues [5].
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X-rays and gamma rays, mmWave radiation falls under the category of non-ionizing radia-
tion (NIR). This implies that it does not cause mutations or damage to human DNA, there-
fore posing no direct harm to the user’s biological system. However, the main concern re-
mains the elevation of human tissue temperature due to EMF energy absorption [7]. 

The frequency band ranging from 30 to 300 GHz Is commonly known as “Extremely 
High Frequency” (EHF) or “millimeter wave band”, whereas the 3 to 30 GHz band is 
known as “Super High Frequency” (SHF) or “centimeter wave band”. However, since 
both EHF and SHF have approximately the same propagation characteristics, the collec-
tive term “mmWave band” is employed, representing wavelengths spanning from 1 to 100 
mm within the 3–300 GHz range [4]. For an illustration of the ionizing and non-ionizing 
spectrum, please refer to Figure 2. 

 

Figure 1. GMDT growth forecast.

Efforts such as the LEXNET research initiative [6] aim to minimize the radiation
emitted by mmWave networks while upholding the Quality of Service (QoS) standards.
Unlike X-rays and gamma rays, mmWave radiation falls under the category of non-ionizing
radiation (NIR). This implies that it does not cause mutations or damage to human DNA,
therefore posing no direct harm to the user’s biological system. However, the main concern
remains the elevation of human tissue temperature due to EMF energy absorption [7].

The frequency band ranging from 30 to 300 GHz Is commonly known as “Extremely
High Frequency” (EHF) or “millimeter wave band”, whereas the 3 to 30 GHz band is
known as “Super High Frequency” (SHF) or “centimeter wave band”. However, since both
EHF and SHF have approximately the same propagation characteristics, the collective term
“mmWave band” is employed, representing wavelengths spanning from 1 to 100 mm within
the 3–300 GHz range [4]. For an illustration of the ionizing and non-ionizing spectrum,
please refer to Figure 2.
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The utilization of mmWave transmission in commercial applications must adhere to
standard exposure guidelines [8,9]. To assess the exposure of Electromagnetic Field (EMF)
energy at frequencies below 6 GHz, the Specific Absorption Rate (SAR) measurement is
heavily relied on in the literature [5]. However, at higher carrier frequencies, there is a
significant loss of penetration, limiting energy absorption primarily to the skin surface.
Consequently, the radiation compliance above 6 GHz is evaluated using Power Density
(PD) instead of SAR [5,6].

The investigation of NIR stemming from mmWave technologies is directly connected
to EMF interaction with the biological systems of human beings. This research is of utmost
importance due to potential public health concerns and the need to address health and
environmental hazards [10,11]. Moreover, understanding exposure becomes even more
crucial when considering mobile networks equipped with high-gain massive Multiple
Input Multiple Output (massive MIMO) systems. In the context of telecommunications,
massive MIMO, or large-scale MIMO, involves the implementation of a substantial number
of antennas at the Base Station (BS) relative to those at the User Equipment (UE). This
configuration enables massive MIMO to concurrently accommodate multiple UE channels,
significantly enhancing the spectral efficiency of wireless networks to meet 6G and beyond
network requirements [10]. Additionally, mMIMO offers increased degrees of freedom
in interference coordination. However, to compensate for the increased path loss in the
high-frequency band [12], mmWave BSs require massive antenna arrays to attain substan-
tial gains. Consequently, the use of higher-gain arrays in mmWave BSs may lead to an
increase in the heat sensation on human skin in the proximity of High-Power Node (HPN)
base stations.

In the Distributed Base Station (DBS) architecture, the fronthaul link plays a pivotal
role in transferring the data from the Remote Radio Heads (RRHs) back into the central
unit known as the Base Band Unit (BBU). A significant advantage of this architecture is
its seamless integration with the Cloud Radio Access Network (C-RAN), facilitating a
powerful combination of cloud processing and the DBS architecture, significantly reducing
computational complexity in wireless mobile networks and minimizing latency by leverag-
ing the powerful capabilities of a vast number of Virtual Base Stations (VBSs) with parallel
processing [13].

Furthermore, the adoption of C-RAN allows different networks to efficiently share
their infrastructure (towers and equipment), fostering a more resource-efficient and collab-
orative ecosystem. In this regard, the research and industry should focus on unifying the
digital markets of wireless networks, achieving multi-tenancy with major stakeholders [14].
The layout of the DBS architecture is illustrated in Figure 3, showcasing its structural
components and connectivity.
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Numerous studies have been dedicated to investigating the interaction of NIR from
the mmWave band with the human body. For instance, the authors of [15] explored the
effects of Maximum Permissible Exposure (MPE) levels at 60 GHz (free licensed band) on
human cell membranes using Low-Power Nodes (LPNs) with a power density of 10 to
100 mW/cm2. In [16], researchers delved into the thermal response of human tissue exposed
to the radiation of mmWave transmitters, concluding that a steady-state temperature
(ssT) increase occurs in human cell membranes when a base station radiates at certain
power levels.

Rappaport et al. [7] considered the impact of NIR on the human body and suggested
that measuring the ssT is preferable to power density (PD) when mmWave transmitters are
in close proximity to the human body.

In terms of specific exposure scenarios, ref. [17] investigated near-field radiation from
transmitting nodes at mmWave frequencies, demonstrating significant radiation absorption
on the user’s ear during calling and on their fingers during browsing. Electromagnetic field
(EMF) radiation in the mmWave frequencies is evaluated in [18]; the authors conducted
empirical assessments at 28 GHz using horn and path antenna types, evaluating the power
density based on the E-field. The resultant heat increase due to the exposure to EMF within
the 6 GHz to 1 THz range was studied in [19] across different exposure scenarios.

Regarding human tissue proximity to 6G-transmitting nodes at mmWave frequencies
above 24 GHz, ref. [20] explored the absorption of EMF energy, concluding that the heat
effect was negligible in comparison to public safety margins. Additionally, the work
in [21] conducted resonant heating experiments at 24 and 28 GHz on individual insects,
presenting exposure impact results and suggesting that NIR exposure could alter termite
behavior and potentially be lethal to them. Furthermore, the impact of NIR on the human
body was analyzed and demonstrated in [22], where safety standards were examined and
benchmarked in the best healthcare services of different countries.

The development of the Reconfigurable Intelligent Surface (RIS) can play a major role
in network design and beamforming selection. RIS is a surface with a massive number of
reflectors; these reflectors can potentially impose an amplitude and phase shift to adjust the
coefficients of the incident wave [23]. In this context, ref. [24] demonstrated how RIS can be
used as a malicious attack by modifying the incident signal so that it provides destructive
beamforming at the target device. This can result in significant fading in the received signal,
and in the case of mmWave, there is no gain from using beamforming, there is only the
“pain” of exposure to mmWave. On the other hand, RIS can be used to provide robust
beamforming, which can help suppress jamming [25].

Furthermore, reference [26] presented an overview of radiation exposure and the
interaction of EM waves with the human body. The study suggested that in order to
minimize the radiation effect, it is necessary to work on a heterogeneous network with
reduced transmit power using femto and pico base stations, especially at the 20–70 Hz band.
Meanwhile, in [27], a radiation reduction mode is proposed, particularly for mmWave,
through the adoption of Non-Orthogonal Multiple Access (NOMA) to replace the Or-
thogonal Frequency Division Multiple Access (OFDMA), and digital beamforming and
MIMO coordination to suppress radiative interference in the controlled area. A two-
dimensional computational analysis of the Specific Absorption Rate (SAR) was conducted
by [28]. The author examined the collected temperature on the human body using non-
ionizing and ionizing radiation and showed how the duration of exposure can contribute
to a greater temperature increase. A thermal radiation mode is suggested in [29] for
networks operating at the mmWave band, with a special focus on elevated heat in the
human body. The study is based on SAR and power density figures, aiming to reduce
the radiation of wireless communication networks to increase the safety and reliability of
next-generation networks.

Additionally, the radiation exposure for both downlink and uplink transmission is
studied and analyzed in [30]. The authors quantified the radiation through the use of
electric and magnetic field strength in their calculation of power density and suggested
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a power control scheme as a way to suppress the radiation in both uplink and downlink
transmission. A detailed survey on radiation exposure and its concern to public health is
presented in [31]; the authors also provided experimental outdoor analysis of the exposure
to the electric field at different locations using a dosimeter in downlink mode.

This paper focuses on the requirements of the regulations concerning NIR within the
mmWave band. Specifically, it centers on the implementation of LPN as a 6G-transmitting
node in a DBS architecture, employing multiple RRHs to replace High-Power Nodes (HPNs)
like mMIMO arrays, which may lead to increased radiation exposure in the proximity of
HPN deployments. HPN mMIMO systems rely on high-gain antenna arrays to enhance
the communication link and compensate for the considerable path loss and penetration
loss in mmWave propagation. In contrast, the LPN approach in a DBS architecture employs
spatially distributed RRHs (which consequently make the network nodes much closer to
users), effectively mitigating the excessive path loss. The DBS network can significantly
decrease the NIR exposure rate due to its low-power nature compared with massive MIMO
and beamforming. Therefore, a DBS architecture and mmWave network fit well as a
promising way to reduce the impact of NIR in mobile networks.

This work is motivated by the introduction of a Fog Radio Access Network (F-RAN) in
next-generation mobile networks to achieve Ultra-Reliable Low-Latency Communication
(URLLC) [32,33]. The massive distribution of Virtual Baseband Units (VBU) in F-RAN in the
form of an access point or RRHs for interference coordination and resource management is
similar to the architecture of a DBS network. DBS F-RAN, in this work, is envisioned as the
future network paradigm in the mmWave band and adopted as a novel way to suppress
the potential hazard of NIR in mmWave 6G networks.

The rest of this paper is structured as follows: Section 2 presents a discussion on
the exposure regulations pertinent to mmWave frequencies. In Section 3, an in-depth
exploration of mmWave takes place, which includes an analysis of path loss and foliage
loss models. Moving on to Section 4, the paper presents the metrics employed to assess
NIR exposure. The network model and simulation settings are the subject of Section 5.
Section 6 involves a comprehensive examination of the simulation results. Finally, Section 7
draws conclusions based on the findings presented throughout the paper.

2. Exposure Regulations at mmWave Frequencies

The guidelines prescribed by the Federal Communications Commission (FCC) en-
compass specific limits for MPE concerning electric and magnetic field strength, as well as
power density for transmitting nodes operating within the range of 300 kHz to 100 GHz [34].
Additionally, the Institute of Electrical and Electronics Engineers (IEEE) has developed
standards governing exposure to NIR. These standards explicate the allowable duration
and quantity of exposure for individuals in both controlled and uncontrolled areas. These
restrictions are outlined in the IEEE C95.1-2005 [8]. Table 1 provides a summary of the
NIR exposure limits based on averaging time, in accordance with the IEEE standards.
Contrasting this, the International Commission on Non-Ionizing Radiation Protection (IC-
NIRP) standard sets restricted levels for power density at frequencies ranging from 10 to
300 GHz. For the general public, the power density restriction is set at 10 W/m2, while for
the occupational group, it is set at 50 W/m2 (Table 5 in [9]).

Table 1. MPE limits—average PD for uncontrolled and controlled areas with averaging time.

Frequency
(GHz)

Power Density (Controlled Envir.)
“Upper Tier” in W/m2

Power Density (Uncontrolled Envir.)
“Lower Tier” in W/m2

3 to 30 100 in avg. time = 19.63/f1.079 min 10 in avg. time = 150/f min

30 to 100 100 in avg. time = 2.524/f0.476 min 10 in avg. time = 25.24/f0.476 min
where f represents the frequency in GHz.
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Moreover, the IEEE standard allows for a relaxation of MPE power density when
considering exposure to any part of the human body. In controlled environments, the
power density must not extend 200(f/3)1/5 W/m2 for 3 to 96 GHz and 400 W/m2 for the
frequency band of 96 to 300 GHz. In the case of uncontrolled environments, the standard
limits the power density level below 18.56(f)0.669 W/m2 for the 3 to 30 GHz band and
200 W/m2 for the 30 to 300 GHz band [7,8].

3. The mmWave Band

This section presents an overview of the potential bands for 6G networks and assesses
the migration to mmWave frequencies. Within the sub-6 GHz bands, approximately 2.5 GHz
of licensed bandwidth is designated, with a significant portion allocated at 3.5 GHz. How-
ever, when considering the mmWave band, the responsible regulatory bodies for spectrum
allocation, such as the FCC in the United States [35] and the International Telecommunica-
tion Union-Radio (ITU-R) [36], have released numerous bands.

The mmWave bands have been designated at frequencies ranging from 28 to 30 GHz,
38 to 40 GHz, and a free-licensed band extending from 57 to 71 GHz, providing a valuable
14 GHz of contiguous band. Notably, this allocation represents 15 times the unlicensed
spectrum of Wi-Fi [37]. Additionally, a 12.9 GHz band is located at 71–76 GHz, 81–86 GHz,
and 92–95 GHz [38,39]. Furthermore, in the UK, Ofcom has released the 26 GHz frequency
band, spanning from 24.25 up to 27.5 GHz, for potential 6G utilization [40]. In China,
considerations are being made for 45 GHz bands for both licensed and unlicensed wireless
networks. For bands above 100 GHz, ITU has released a wide bandwidth of more than
20 GHz of unlicensed spectrum for wireless communication and applications [41,42]; this
spectrum will shape the future of wireless communications [43]. For more details about the
potential bandwidth allocation for 6G, please refer to Table 2.

Integrated satellite–terrestrial networks can also share the mmWave bandwidth with
mobile networks; these satellites adopt digital beamforming to form multibeam transmis-
sion [44]. To provide a visual representation, Figure 4 illustrates the candidate bandwidths
for 6G, encompassing the various mmWave bands and their allocated frequencies [10].
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The following path loss and foliage loss models are both adopted in the simulation
as part of the parameters of the simulation setting and the calculation of the performance
metrics to evaluate the DBS LPN and HPN network models.

3.1. The mmWave Path Loss

The mmWave channel measurements conducted in [12,48] illustrate the highly sensi-
tive nature of mmWave to blockages, resulting in distinct Line-Of-Sight (LOS) and Non-
Line-Of-Sight (NLOS) path loss characteristics. During transmission, mmWave signals
suffer from substantial penetration loss when passing through solid materials. Furthermore,
heavy rain can lead to significant attenuation as a result of signal scattering because the
size of raindrops is of a similar size to mmWave wavelengths [47]. Consequently, the LOS
link is limited due to the presence of obstructions. On the other hand, NLOS transmission
occurs due to reflected waves from blockage surfaces, typically resulting in weaker signals
but still contributing to providing coverage for users in shadowed areas [48].

The path loss exponent for LOS transmission is similar to that of free space and is
represented by a value of 2 [49]. However, for the NLOS link, the path loss exponent has
been measured to be larger than the LOS exponent, with values of 3.86 at the University of
Texas, Austin campus, and 5.76 at NYC downtown [12,49]. Additionally, the 3rd Generation
Partnership Project (3GPP) released a path loss model for frequencies ranging from 0.5 to
100 GHz [50]. Consequently, the path loss between a 6G-transmitting tower and a receiving
device, as described in this context, is defined for LOS and NLOS by the model proposed
in [50] as follows:

LLOS = 32.4 + 20log10( f )+21log10(d) (1)

LNLOS = 32.4 + 20log10( f ) + 31.9log10(d) (2)

where f is the link frequency in GHz, and d is the distance between a transmit antenna and
a mobile antenna in meters, as shown in Figure 5. A path loss map is shown in Figure 6 for
Co-located Base Station (CBS) and DBS networks, in terms of the Signal-to-Interference-
plus-Noise Ratio (SINR) [51].
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3.2. Foliage Loss

The Weissberger model has been used in this work to define the signal propagation
through vegetation in mmWave networks [52]. The Weissberger foliage loss is described by
the following:

L f = 0.45 f 0.284
(

d f

)
f or 0 ≤ d ≤ 14 m

L f = 1.33 f 0.284(d)0.588 f or 14 ≤ d ≤ 400 m
(3)

where f represents the center frequency in GHz, applied for 230 MHz to 95 GHz, and d is
the depth of the foliage in meters. The overall propagation loss is equal to the path loss
(described earlier) added to the Weissberger foliage loss:

LT = PL + L f (4)

The ITU foliage model is a different model for characterizing foliage loss, which was
developed by (CCIR Rpt 236-2) [53]. The ITU foliage loss model is defined as follows:

LF = 0.2 f 0.3d0.6 (5)

where LF is the foliage penetration loss in dB, f is the designated frequency in MHz, and
d is the depth of the foliage in meters. In Figure 7, we present the plotted foliage loss for
both the ITU and Weissberger models, considering two different foliage depths: 3 m and
15 m. The graph illustrates that the ITU model yields relatively consistent results with
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minimal variation when compared to the Weissberger model. The foliage loss values for
the specified models and foliage depths are depicted, providing valuable insights into the
performance of the respective models under different foliage conditions.
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4. Radiation Metrics

The energy of a photon can be described by [54]:

E = h f =
hc
λ

(6)

where E is the photon energy, h is Plank’s constant, c is the speed of light, and λ is the
designated wavelength. The energy of a photon in the mmWave band is 0.012 up to
1.2 milli-electron volts (meV). The mmWave radiation metrics are as follows [55]:

4.1. Specific Absorption Rate (SAR)

Specific absorption is the rate at which energy is absorbed by a mass within a given
volume, considering its density. It is the time derivative of the increased absorbed energy
by the mass. SAR is expressed in the SI unit of Watts per kilogram (W/kg), where

SAR =
Pi
mi

= Ch
dT
dt

∣∣∣∣
t=0

(7)

where Pi is the power of the incident wave, and mi is the mass of the body. Unlike the
power density, SAR calculation considers the sample’s physical properties. SAR is also
described by the electric field:

SAR =
σ|

→
E |2

ρm
(8)

where σ is the tissue conductivity, and ρm is the tissue mass density. Furthermore, SAR can
also be described by the temperature increase:

SAR = Ch
dT
dt

∣∣∣∣
t=0

(9)
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where Ch is the heat capacity in
(

J
kgCo

)
, T is the temperature, and t is the exposure duration.

4.2. Power Density

Power density is the primary metric of radiation used by international standards and
guidelines governing mmWave frequencies. The power density can be defined as follows:

PD =
Pi
Sa

= |
→
E ×

→
H| (10)

where Sa is the area exposed to the incident wave, and
→
E and

→
H are the vectors of the

electric and magnetic fields.

4.3. Steady-State Temperature (ssT)

The ssT is an important measure, especially in scenarios involving medium- to high-
power radiation exposures at mmWave frequencies [16]. In such cases, ssT is considered to
be preferable over SAR and power density, particularly when evaluating devices positioned
close to the human body, such as sensors at mmWave frequencies. ssT offers valuable
insights into the potential thermal effects on biological tissues, making it a relevant metric
for assessing the safety and health implications of mmWave radiation exposure.

5. Network Model

This section presents the network models used in this work, namely, CBS and DBS
network models, and illustrates the simulation settings and parameters used to produce
the results. In the context of the Radio Access Network (RAN), the typical architecture of
wireless networks involves a single Base Station (BS) providing coverage and resources
to users. This traditional network implementation often consists of a three-sector node,
where the BS employs directional antennas in three directions, located at the BS site. This
architecture is referred to as CBS network architecture.

However, an alternative approach is the DBS architecture. In this architecture, the BS
is divided into two units: the central unit known as the BBU, and RRH units mounted on
towers situated at a distance far from their corresponding BBUs. High-speed fiber-optic
links connect the RRHs to their BBUs, serving as both the power supply for the RRHs and
the medium for carrying signaling [13]. The DBS architecture inherently represents the
native structure of C-RAN networks, and the RRHs collect and relay the traffic back to the
local VBS to handle complex processing through powerful cloud computing.

The simulation parameters are shown in Table 3. The distributed RRHs share resources
with users in close proximity. The RRHs are connected to their respective BBUs through
high-bandwidth fiber links, also known as fronthaul links. The BBUs, in turn, establish
backhaul links to the C-RAN cloud, enabling the processing of substantial data from the
RRHs. The user distribution is modeled as a uniform distribution, with more than 100 users
in the Region of Interest (RoI).

In this simulation, HPN employs a single BS that implements a large-scale MIMO
array antenna, consisting of 128 antenna elements arranged in an 8 × 8 configuration with
dual polarization, as depicted in Figure 8. The gain of the array is 30 dB, and it transmits at
46 dBm. Additionally, the LPN in DBS network architecture has a 20 dB gain and transmits
at 30 dBm. The RRHs are distributed 100 m away from the BBU. The area of the simulation
measures 300 × 300 m2. HPN and LPN transmitters are set at a 10 m height, and all UEs at
a 1.5 m height.
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Table 3. Network parameters.

Parameters Value

Link Downlink
Designated frequency 28 GHz

Path loss model As per 3GPP Report 38.901 [50]
Foliage loss model Weissberger model [52]

Bandwidth Up to 500 MHz
Tx Power 30–46 dBm
RRH gain 15 dB

MIMO array gain 30 dB
RRH distribution 3 per BBU

Antenna type SISO and MIMO
Tx height 10 m
Rx height 1.5 m

MIMO 128 elements
Polarization −45/45 X-POL

RoI 300 × 50 m Street Canyon
MPE model IEEE C 95.1-2005 model
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To carry out the simulation, a test area is selected and designed as a street canyon, as
depicted in Figure 9. The street canyon exhibits a width of 50 m and is flanked by high-rise
buildings on both sides. Two types of transmitters are employed for the investigation:
an HPN with a massive MIMO array containing 128 elements, and a Low-Power Node
with a 4 × 4 MIMO configuration. All transmitters are at a height of 10 m, simulating a
small-cell deployment scenario. The receivers in this study, representing the mobile users,
are uniformly distributed along the street at a height of 1.5 m.

Through this simulation setup, the study aims to gain insights into the potential
exposure levels to electromagnetic radiation experienced by end users in the vicinity of
HPN sources compared to the LPN deployment. By considering the specific radiation
characteristics and deployment scenarios, this research seeks to provide valuable guidance
for ensuring the safety and efficiency of 6G network deployments.
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Power density has been employed as the second measure to characterize the impact
of NIR from mmWave wireless networks. Power density serves as a crucial metric for
assessing the level of electromagnetic energy exposure in the surrounding environment
and is utilized to evaluate the potential NIR effects of mmWave communication systems.
By using power density as a key parameter, this study aims to gain valuable insights into
radiation levels and their potential implications on human health and safety, contributing to
a comprehensive understanding of the mmWave network’s impact on the electromagnetic
environment. The general calculation of MPE is derived from the Friis equation [33]:

Sr =
PtGt

4πr2 (11)

where Sr represents the PD, Pt is the transmit power, G is the gain of the antenna, and r
represents the Tx–Rx separation. In this context, knowing the power gain of the transmitter,
the MPE can be easily calculated at any distance.

6. Results and Discussion

This section demonstrates the results and their corresponding discussion and justifica-
tions. The section starts with the default CBS network, to present the impact of HPN nodes
in terms of power density. After that, the DBS network results are shown to compare the
results and emphasize the importance of the DBS network over the CBS network.

This study adheres to the IEEE controlled area guidelines for “upper-tier” exposure,
as outlined in the IEEE C95.1-2005 standard. It investigates radiation hazard levels with
distance from the transmitting HPN– and LPN–DBS transmitting sources to outdoor
users of 6G. Such information is crucial for the effective planning and optimization of
6G networks, especially in cases where an HPN with a very large-scale antenna array
is utilized.

6.1. HPN with CBS Architecture

In this paper, the HPN is depicted as a massive MIMO equipped with a 128-antenna
array. In this paradigm, the base station transmits at 46 dBm. The received power results
are presented in Figure 10, showcasing that in the massive MIMO scenario, very high-
power levels are reported compared to the DBS network. This is a consequence of the
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substantial number of antennas in the massive MIMO base station in contrast to the UE.
The increased antenna gain effectively compensates for the high path loss at mmWave
frequencies, resulting in a notable reduction in the exhibited path loss, as illustrated in
Figure 11. This enhancement in gain achieved by the massive number of antennas in the
HPN significantly contributes to the successful mitigation of challenges posed by mmWave
propagation and ensures robust network performance.
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However, the use of massive MIMO has significantly increased the power density
in the vicinity of the base station transmitter. As a result, high figures for MPE levels
are reported, particularly for users located within the radiation area. These users may
experience elevated temperature increases in their eyes and skin tissues due to exposure to
mmWave NIR.

Figure 12 illustrates the power density measured in W/m2 received by UEs in relation
to the hazard threshold according to the regulations of the IEEE and the ICNIRP. The
findings show that UEs in close proximity to the massive MIMO array may be exposed to
mmWave NIR, potentially leading to heat increases in their body tissues, particularly in
the area below 200 m. This area (<200m) where the power density (blue line) crosses the
safety standards (red line) can pose a significant hazard to living beings and needs to be
addressed. Prolonged exposure to NIR in these areas can lead to even worse diseases such
as tissue damage and other related consequences.

It is important to emphasize that these radiation exposure results are based on the
assumption of stationary transmitters and receivers. In scenarios where users are moving
at higher speeds, lower figures of exposure are expected due to the dynamic nature of the
wireless communication system. Nevertheless, this study highlights the need for careful
consideration of power density levels in close proximity to massive MIMO arrays operating
at a high frequency to ensure compliance with safety standards and mitigate potential
health risks for users.
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6.2. LPN with DBS Architecture

The architecture of the DBS network proposes an efficacious method to augment
network coverage within the mmWave band. The DBS approach uses dispersed RRHs as a
compensation measure for the escalated path loss occurring at mmWave frequencies. By
positioning RRHs in closer proximity to end users, the signal pathway and corresponding
path loss are minimized. This strategy enhances spectral efficiency and fosters a more
equitable allocation of resources [51,56]. Furthermore, the DBS architecture holds the
potential to amplify LoS signal coverage through the strategic spatial distribution of remote
antennas, embodied in RRHs. The dispersed configuration of RRHs mitigates the effect
of shadow fading, facilitating a larger proportion of UEs to maintain LoS connectivity, as
delineated in Table 4. In the corresponding simulation, 1100 UEs were deployed to contrast
the coverage and outage probability metrics of DBS and CBS architectures.
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Table 4. Coverage probability of HPN and LPN.

Network Type HPN–CBS LPN–DBS

All UEs 1000 1000
LOS + NLOS 880 968
Outage UEs 120 32

Prob. of Coverage 88% 96.8%

In this study, an LPN with a transmit power of 30 dBm in a DBS network architecture
is compared with the massive MIMO architecture. Three RRHs are employed in the DBS
scheme to provide a coverage solution. In the DBS network, the RRHs can be powered
with green energy sources, promoting a cleaner and more sustainable 6G network. The
DBS architecture exhibits significantly reduced received power without compromising the
QoS provision.

Table 4 demonstrates an improvement in the probability of coverage in the DBS
network. The transmit power is distributed over three RRHs as well as the BBU. Therefore,
the power density is substantially decreased, and no reports of increased radiation are
observed in the DBS system. Figure 13 illustrates the average power density with respect to
distance; the results are averaged for all distributed RRHs in the area of interest. The MPE
of the aggregated signal power density does not pose hazard figures, alleviating potential
concerns related to radiation exposure.

Electronics 2024, 13, x FOR PEER REVIEW 15 of 19 
 

 

with green energy sources, promoting a cleaner and more sustainable 6G network. The 
DBS architecture exhibits significantly reduced received power without compromising 
the QoS provision. 

Table 4 demonstrates an improvement in the probability of coverage in the DBS net-
work. The transmit power is distributed over three RRHs as well as the BBU. Therefore, 
the power density is substantially decreased, and no reports of increased radiation are 
observed in the DBS system. Figure 13 illustrates the average power density with respect 
to distance; the results are averaged for all distributed RRHs in the area of interest. The 
MPE of the aggregated signal power density does not pose hazard figures, alleviating po-
tential concerns related to radiation exposure. 

The DBS architecture, with its distributed RRHs and reduced power density, proves 
to be a promising solution for achieving efficient mmWave network coverage while en-
suring compliance with safety regulations and environmental considerations. 

Table 4. Coverage probability of HPN and LPN. 

Network Type HPN–CBS LPN–DBS 
All UEs 1000 1000 

LOS + NLOS 880 968 
Outage UEs 120 32 

Prob. of Coverage  88% 96.8% 

 

Figure 13. IEEE C 95.1-2005 MPE—DBS architecture. 

The implementation of the DBS architecture has successfully achieved a reduction in 
radiation exposure without compromising the overall network performance. To demon-
strate the performance of both the traditional CBS and DBS networks, a system-level sim-
ulation tool was utilized in the 26 GHz “pioneer band” (a frequency band from 24.25 up 
to 27.5 GHz), specifically designed for high data throughput applications and services, 
released by Ofcom—London, UK. 

In the system-level simulation, the advantages of the DBS over the CBS architecture 
were further analyzed. The simulation results illustrate that the DBS architecture exhibits 
superior spectral efficiency compared to the CBS network. This improvement can be at-
tributed to the distribution of RRHs in the designated areas, thereby enhancing the signal 
path gain. As a result, the DBS network achieves better spectral efficiency, leading to an 
enhanced user experience in terms of average user throughput, as shown in Figures 14 
and 15. These figures show the Cumulative Distribution Function (CDF) of spectral effi-
ciency and data throughput, respectively. 

0

10

20

30

40

50

60

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0 100 200 300 400 500 600 700
H

um
an

 h
az

ar
d 

th
re

sh
ol

d

Po
w

er
 d

en
si

ty
 (W

lm
2 )

Line of Sight distance (m)

IEEE C 95.1-2005  MPE for DBS network 

Power density - Three RRHs
 Hazard Threshold

hazard limit
secondary Y-axis

Figure 13. IEEE C 95.1-2005 MPE—DBS architecture.

The DBS architecture, with its distributed RRHs and reduced power density, proves to
be a promising solution for achieving efficient mmWave network coverage while ensuring
compliance with safety regulations and environmental considerations.

The implementation of the DBS architecture has successfully achieved a reduction in
radiation exposure without compromising the overall network performance. To demon-
strate the performance of both the traditional CBS and DBS networks, a system-level
simulation tool was utilized in the 26 GHz “pioneer band” (a frequency band from 24.25
up to 27.5 GHz), specifically designed for high data throughput applications and services,
released by Ofcom—London, UK.

In the system-level simulation, the advantages of the DBS over the CBS architecture
were further analyzed. The simulation results illustrate that the DBS architecture exhibits
superior spectral efficiency compared to the CBS network. This improvement can be at-
tributed to the distribution of RRHs in the designated areas, thereby enhancing the signal
path gain. As a result, the DBS network achieves better spectral efficiency, leading to an en-
hanced user experience in terms of average user throughput, as shown in Figures 14 and 15.
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These figures show the Cumulative Distribution Function (CDF) of spectral efficiency and
data throughput, respectively.
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The improved spectral efficiency and enhanced user throughput in the DBS environ-
ment highlight the potential benefits of this architecture in high data rate demand scenarios.
The DBS network’s ability to capitalize on the spatial distribution of RRHs, reducing path
loss and enhancing signal gain, contributes to the overall optimization of the 6G network
performance, making it an attractive solution for future mmWave deployments.
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7. Conclusions

This study focused on evaluating the performance of a DBS network at mmWave
frequencies as the envisioned architecture for a 6G network. The evaluation encompassed
reducing Non-Ionizing Radiation (NIR) levels and assessing the network performance in
terms of coverage probability and data throughput.

As the demand for wide bandwidth at millimeter-wave frequencies increases, it is
necessary to consider any potential impact on the organic and biological systems of humans.
This becomes crucial with massive MIMO and beamforming techniques in next-generation
networks, which provide substantial gains in signal power to improve the network perfor-
mance. To assess the potential radiation exposure in the 6G network, this study employed
the IEEE C95.1-2005 standard, aiming to achieve a clean and environmentally friendly
mobile network. In this context, a DBS network with low transmit power is suggested as a
way to reduce the NIR exposure to nearby users. The performance of both mMIMO and
DBS networks is evaluated in terms of radiation, spectral efficiency, and data throughput.

The findings suggest that, at the mmWave band, the DBS architecture offers the most
favorable option for next-generation mobile networks. This is due to the notable reduction
in radiation levels compared to the high associated power of massive MIMO. Additionally,
the LPN with DBS architecture demonstrates that the reduction in radiation exposure can be
accomplished without compromising the QoS provision in the network. In summary, this
study advocates for the adoption of a DBS network with an LPN as a more suitable solution
for 6G deployment at the mmWave band. The implementation of such an architecture can
effectively minimize radiation exposure while ensuring a robust and efficient 6G network
performance, meeting the growing demands of modern wireless communication systems.
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