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Abstract: In this article, Autism Spectrum Disorder (ASD) is discussed, with an emphasis placed on 

the multidimensional nature of the disorder, which is anchored in genetic and neurological 

components. Identifying genes related to ASD is essential to comprehend the mechanisms that 

underlie the illness, yet the condition's complexity has impeded precise information in this field. In 

ASD research, the analysis of gene expression data helps choose and categorize significant genes. 

The study used microarray data to provide a novel approach that integrated gene selection techniques 

with deep learning models to improve the accuracy of ASD prediction. It offered a detailed 

comparative examination of gene selection approaches and deep learning architectures, including 

singular value decompositions (SVD), principal component analyses (PCA), and convolutional 

neural networks (CNNs). This paper combines gene selection methods (PCA and SVD) with deep 

learning models (CNN) to improve ASD prediction. Compared to more traditional approaches, the 

study revealed that its integrated methodology was more effective in improving the accuracy of ASD 

prediction results through experimentation. There was a difference in the accuracy between the 

PCA-CNN model, which achieved 94.33% with a loss of 0.4312, and the SVD-CNN model, which 

achieved 92.21% with a loss less than or equal to 0.3354. These discoveries help in the development 

of more accurate diagnostic and prognostic tools for ASD, which is a complicated 

neurodevelopmental disorder. Additionally, they provide insights into the molecular pathways that 

underlie ASD. 
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1. Introduction 

Autism spectrum disorder (ASD) has been discussed, with an emphasis placed on the 

multidimensional nature of the disorder, which is anchored in genetic and neurological components. 

Identifying genes related to ASD is essential to comprehend the mechanisms that underlie the illness; 

however, the condition's complexity has impeded precise information in this field. In ASD research, 

the analysis of gene expression data helps choose and categorize significant genes. This research 

aims to predict ASD using combined gene selection methods, namely principal component analyses 

(PCA) and singular value decompositions (SVD) with deep learning models, namely convolutional 

neural networks (CNN). According to statistics from the World Health Organization (WHO), over 

0.63% of children are diagnosed with ASD. ASD appears in childhood and continues into 

adolescence and adulthood, with symptoms usually appearing within the first five years of life [1,2]. 

ASD imposes substantial healthcare burdens because of its neurodevelopmental characteristics. 

ASD is characterized by persistent deficiencies in social interaction and repetitive behaviors, 

frequently accompanied by notable limitations in communication abilities [3,4]. The illness 

originates from genetic and neurological elements, leading to difficulties in social interactions, 

cognitive processing, repetitive behaviors, and communication challenges [5,6]. An early diagnosis 

of ASD has significant treatment benefits [7,8]. Early detection is crucial in clinical settings, leading 

to customized therapies designed to improve the welfare of children with ASD and their families [9,10]. 

The process of diagnosing ASD can be lengthy and expensive, requiring thorough testing. The 

increase in ASD prevalence worldwide has motivated healthcare providers and researchers to 

investigate more effective screening methods. ASD is becoming more common in people of all ages, 

highlighting the importance of early detection to protect an individuals' mental and physical health. 

Machine learning methods are becoming more popular for predicting diseases, making early 

identification of ASD possible using many health and physiological factors. This has motivated us to 

improve the detection and analysis of ASD to enhance treatment methods. Diagnosing ASD is 

difficult since its symptoms can be similar to those of other mental diseases, making the diagnostic 

procedure more complex [11,12]. ASD fundamentally relates to human brain development and 

significantly impacts an individuals' ability to engage in social interactions and communication 

throughout their lives. Both environmental and genetic factors contribute to ASD onset, with 

symptoms often emerging by age three and persisting indefinitely. While ASD cannot be fully cured, 

early detection can temporarily alleviate its effects [13,14]. Despite assuming a genetic basis, 

scientists have yet to pinpoint the exact causes of ASD, as human genes interact with the 

environment to influence development. Several risk factors, including low birth weight, having a 

sibling with ASD, and advanced parental age, contribute to ASD susceptibility [15,16]. As a result, it 

impacts an individual's entire cognitive, social, emotional, and physical health [17,18]. Both the 

extent and the intensity of its symptoms are quite variable. Some typical symptoms include difficulty 

communicating, particularly in social situations, obsessional hobbies, and repeated mannerisms. A 

comprehensive examination is needed to detect ASD. This also includes a thorough evaluation and a 
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range of assessments performed by child psychologists and other qualified professionals [19–21]. 

This paper combines gene selection methods (PCA and SVD) with deep learning models (CNN) to 

improve ASD prediction. Compared to more traditional approaches, the study reveals that its 

integrated methodology is more effective in improving the accuracy of ASD prediction results 

through experimentation. 

The procedure applied in this work is normalization, which is performed after importing the 

data using the Min-Max approach. This normalization method guarantees that gene expression 

values are suitably scaled, thus enabling significant comparisons and minimizing the influence of 

fluctuations in expression data. Subsequently, gene selection methods pinpoint a subset of pertinent 

genes. This stage aims to decrease the data's dimensionality and concentrate on genes that powerfully 

connect with the current classification challenge. Different gene selection techniques might be used 

based on the specific needs of the analysis. A CNN classifier performs the classification task. The 

CNN architecture is ideal for analyzing intricate patterns in gene expression data. It utilizes the 

hierarchical organization of the data and uses convolutional layers to extract crucial information. The 

remaining research project components are Section 2, the background, and a literature review. 

Section 3 provides a walkthrough of the microarray technology. Section 4 outlines the experimental 

setup. Section 5 outlines the methodology, and Section 6 discusses the results. Finally, the conclusion 

and recommendations for further studies are presented in Section 7. 

2. Background and literature review 

Autism is a condition currently experiencing a worldwide explosion rate that is both numerous 

and rising at a very high rate. ASD affects around one child out of every 160, as reported by the 

World Health Organization (WHO) [22,23]. While some persons with this illness can live 

independently, others will need 24-hour care and assistance for the rest of their lives. ASD is a 

neurodevelopmental condition that impacts social interactions and communication abilities [11,24]. 

Individuals with ASD often experience lifelong challenges in these areas. The causes of ASD are 

believed to involve a combination of genetic and environmental factors. Symptoms typically 

manifest around three and persist throughout the person's lifetime. Although there is no known cure 

for ASD, early detection of symptoms can help manage its effects for a certain period. While 

scientists have not fully understood the precise causes of ASD, genetic factors are believed to play a 

role in its development. These genes interact with environmental influences to affect a person's 

development. Certain risk factors, such as a low birth weight, having a sibling with ASD, or having 

older parents, can also contribute to the likelihood of developing ASD. An early diagnosis of autism 

can be quite beneficial because it allows doctors to provide patients with the appropriate treatment at 

an earlier stage. It can potentially halt any further deterioration of the patient's condition. It would 

help to cut down on the expenditures associated with a delayed diagnosis over the long term. 

Therefore, there is a significant need for a screening test instrument that is time-efficient, accurate, 

and simple. Given the significance of ASD and the absence of a definitive treatment, a pioneering 

approach called microarray has been utilized to identify the genes responsible for the disease. 

Biologists utilize microarray technology to assess gene expression levels in specific organisms. A 

microarray data analysis primarily involves identifying optimal treatments for various diseases and 

achieving precise medical diagnoses through practical applications involving diverse sets of 

genes [21,25]. However, microarray technologies yield complex gene expression data that pose 
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issues. 

Extraneous or superfluous genes can be eliminated without causing substantial data loss. 

Analyzing microarray data is challenging due to the large number of genes and samples. This may 

result in a reduced prediction accuracy and problems with overfitting [26]. Researchers use the "gene 

selection approach" to tackle this difficulty by identifying the most pertinent collection of genes to 

create classification models. Gene selection (GS) is choosing a smaller group of relevant genes from 

a more significant number. By concentrating on this specific group of genes, researchers can acquire 

useful knowledge about the genetic components of disorders. This approach can decrease the 

computing expenses and improve the classification effectiveness, particularly for ASD [27,28]. 

Various methods can be used for gene selection, including a PCA and an SVD. These 

algorithms are frequently employed as unsupervised methods to examine gene expression microarray 

data and offer insight into the dataset's fundamental structure. They have been used to create concise 

representations of gene expression data for classification, especially on extensive datasets [29,30]. 

The bioinformatics community is actively researching different machine-learning algorithms to 

diagnose and categorize microarray data, which presents substantial hurdles to classification [18,31]. 

This study utilizes a deep learning (DL) algorithm to identify ASD using gene expression data. 

Machine learning encompasses a subset known as deep learning, where algorithms such as CNN 

utilize abundant data to learn and identify unknown class labels based on gene behaviour patterns in 

the training set. Additionally, the potential of using a CNN architecture to enhance the predictive 

accuracy is explored. This study focuses on the methods of gene selection and achieving accurate 

categorization following the gene selection process. 

3. Microarray technology 

Microarray technology is a potent and extensively utilized instrument within molecular biology 

and genetics, facilitating the comprehensive study of gene expression on a large scale. It allows 

scholars to evaluate the expression levels of several genes at once in a single experiment [32]. 

Microarray technology attaches brief DNA or RNA sequences (probes) to a stable surface such as a 

glass slide or a microprocessor. These probes are carefully designed to correspond to particular target 

genes of interest [33]. This technology has multiple uses, such as gene expression profiling, 

biomarker discovery, the identification of disease-related genes, and therapeutic target identification. 

It has dramatically enhanced our understanding of biological processes and has revolutionized 

genomics, transcriptomics, and personalized medicine. However, it is essential to mention that newer 

sequencing methods, such as RNA sequencing (RNA-seq), have primarily supplanted microarray 

technology. RNA-seq provides extensive and quantitative gene expression information and can 

identify new transcripts and splice variants. Microarray technology is helpful for particular 

applications and is used in many research contexts [34]. Microarray technology is a standard method 

used in laboratories to analyze nucleic acids. It entails attaching multiple identified nucleic acid 

fragments to a solid surface, sometimes called a "chip". The chip is subsequently exposed to DNA or 

RNA from the studied sample, such as cells or tissue. Fluorescence can be observed by specialized 

equipment through the complementary base pairing between the sample and the immobilized 

fragments on the chip. Microarray technology is used in research and clinical contexts to measure 

gene expression levels and detect specific DNA sequences such as single-nucleotide polymorphisms 

(SNPs) [35]. Microarray technology is a groundbreaking advancement in genetic analysis that allows 



17831 

AIMS Mathematics  Volume 9, Issue 7, 17827–17846. 

for thorough investigations in various disciplines of biology and biomedicine without the need for 

sequencing. This progress has significantly reduced the high costs of in-depth research [36]. 

Microarrays provide two essential functions: they enable gene expression analyses by measuring the 

RNA levels of specific genes in cells and streamline the investigation of SNPs. SNPs have proven 

instrumental in genome-wide association studies (GWAS), which investigate genetic variations 

across the entire genome. These methods have been widely applied to study prevalent and less 

common human diseases and research involving model and diverse organisms globally [37]. Figure 1 

depicts the surface of a DNA microarray. 

 

Figure 1. DNA microarray's surface [38]. 

4. Experiment setup 

4.1. Dataset 

Gene expression data associated with ASD was obtained from the Gene Expression Omnibus 

(GEO) [39]. The GEO is a public repository managed by the National Center for Biotechnology 

Information (NCBI), and houses a vast collection of gene expression data. Researchers worldwide 

contribute to the GEO by depositing their high-throughput functional genomic datasets, including 

those generated through microarrays and RNA sequencing technologies. The GEO facilitates the 

sharing, discovery, and analysis of gene expression data, enabling scientists to explore patterns of 

gene activity across various experimental conditions, tissues, and organisms. By providing free 

access to diverse datasets, the GEO promotes collaboration, accelerates research, and advances our 

understanding of gene expression in health and disease. Data was compiled from the GEO database, 

specifically datasets GSE63060 and GSE63061, which are both publicly accessible sources 

administered by the NCBI. Subsequently, these two datasets were amalgamated into a singular 

dataset for analysis. The aggregated dataset encompasses a total of 16,383 genes and 569 samples. 

Among these samples, 245 individuals were diagnosed with Alzheimer's disease (AD), 142 

individuals exhibited symptoms of mild cognitive impairment (MCI), and 182 individuals were 
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classified as healthy controls (CTL). This dataset is valuable for exploring gene expression patterns 

associated with AD, MCI, and healthy cognition, thus offering insights into the molecular 

mechanisms underlying these conditions. The GSE6575 dataset is a whole-genome transcriptomics 

dataset comprised of microarray data from children diagnosed with autism as well as children from 

the general population. The GSE28521 dataset is an ASD-related dataset comprised of human 

post-mortem brain tissue samples. The data was preprocessed using GEO2R, and a log2 

transformation was performed to achieve normalization. Then, the processed gene expression data 

were used to calculate the differential gene expression values between the two groups (ASD and 

control), serving as features in the analysis. Protein-protein interaction data for the genes associated 

with ASD was obtained from AutDB [40], which is a curated database housing all known direct 

interactions between proteins, including protein binding, RNA binding, promoter binding, protein 

modification, auto-regulation, and direct regulation. Interactions involving Homo sapiens were 

explicitly selected, and redundant interactions were eliminated, resulting in a total of 25,057 unique 

known interactions involving 12,480 genes. Known ASD genes were collected from the Simons 

Foundation Autism Research Initiative (SFARI) database [41], and genes that scored from 1 to 3 

from the SFARI database were included in the analysis. Additionally, ASD-related genes with high 

confidence scores (core dataset) were retrieved from the AutismKB 2.0 database [41]. Figure 2. 

depicts the gene expression data matrix. 

 

Figure 2. The gene expression data matrix. 

4.2. Gene selection 

Genetic factors are essential in the development of ASD, which is a complicated 

neurodevelopmental disease marked by difficulties in social interactions and communication. 

Advances in machine learning and genetic analyses have enabled the development of more precise 

and effective models to predict ASD. Gene selection strategies that uncover relevant genes linked to 

the ASD pathophysiology have emerged as potential tools. By utilizing these methods in conjunction 

with advanced machine learning algorithms, researchers can improve the precision of ASD 

prediction models, facilitating early diagnoses and interventions. This work combines gene selection 
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techniques with machine learning methods to enhance ASD disease prediction, potentially leading to 

significant advancements in ASD research and clinical applications. Microarray experiments 

facilitate the detection of gene expression variations in various situations, thus producing substantial 

data. The high dimensionality of microarray data presents issues because most genes are not relevant 

to the categorization process. Gene selection strategies are used to find a subset of essential genes 

and decrease data dimensionality [42]. These gene selection strategies aim to find a small number of 

genes that produce the best results, resulting in an enhanced accuracy of ASD classifiers and 

decreased computational expenses. The study employed gene selection techniques such as PCAs and 

SVDs to pinpoint genes that directly affect the disease diagnosis. The methods aim to identify genes 

that contain significant data linked to the classification job, thus enhancing the efficiency and 

precision of AD classification. 

4.2.1. Principal Component Analysis (PCA) 

A PCA is a commonly employed method to reduce dimensions in data analyses and machine 

learning. Its goal is to convert high-dimensional data into a lower-dimensional space while retaining 

the key information. A PCA identifies the main components as orthogonal vectors that indicate the 

directions of maximum variance in the data. A PCA simplifies the dataset's structure and eliminates 

unnecessary information by only keeping the primary elements that represent the most variability. 

This approach aids in data visualization and improves the computational efficiency in further 

analyses. A PCA is beneficial in different fields, such as pattern recognition, image processing, and 

bioinformatics, as it helps researchers reveal hidden patterns and connections in intricate datasets [43]. 

By using A PCA as a gene-selection method, valuable gene information can be extracted from large 

datasets. A PCA allows researchers to identify the most influential genes that contribute significantly 

to the overall variation in the data, providing a more focused subset for further analysis and 

classification purposes. In essence, utilizing PCA as an unsupervised gene selection method enables 

the identification of crucial original genes associated with the principal components. Assuming that a 

dataset (𝑋1, 𝑋2 , . . . . . 𝑋𝑚) has m-dimensional data, a PCA projects m-dimensional data into a 

k-dimensional sub-space (k<m). The steps for PCA are described below [44]: 

A PCA involves several mathematical steps. Here are the equations used in a PCA: 

1) Data standardization 



)( −
=

X
Z ,           (1) 

where Z is the standardized data matrix, X is the original data matrix, μ is the mean vector of X, and 

σ is the standard deviation vector of X. 

2) Covariance matrix 

Z
T

Z
n

Z
1

= ,           (2) 

where C is the covariance matrix of the standardized data, T
Z  is the transposition of the 

standardized data matrix, and   is the number of observations. 
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3) Eigenvalue decomposition 

VVC .. = ,          (3) 

where V is the matrix of eigenvectors and λ is a vector of eigenvalues. 

4) Sorting eigenvalues and eigenvectors 

The eigenvalues λ and the corresponding eigenvectors V are sorted in descending order based 

on the magnitude of the eigenvalues. 

5) Selecting principal components 

The k eigenvectors corresponding to the k largest eigenvalues are selected to form the matrix P 

of principal components. 

6) Transforming Data into Principal Components 

VZP .= ,          (4) 

where P is the matrix of the principal components, Z is the standardized data matrix, and V is the 

matrix of the selected eigenvectors. These equations are the fundamental mathematical operations 

involved in performing a PCA. They help reduce the data's dimensionality while preserving the 

maximum variance in the dataset. 

4.2.2. Singular Value Decomposition (SVD) 

An SVD is a robust linear algebra and its matrix is decomposed into three distinct matrices: the 

left singular vectors, singular values, and appropriate singular vectors. An SVD creates a matrix by 

combining singular vectors and values, concisely representing the original data. The left singular 

vectors represent the connections between rows in the matrix, whereas the appropriate singular 

vectors represent connections between the columns. The singular values show the significance of 

each singular vector when depicting the original matrix. An SVD is utilized in signal processing, 

picture compression, recommendation systems, and dimensionality reduction across several domains. 

Its capacity to identify significant patterns and simplify the complexity of intricate datasets 

establishes it as a crucial instrument in data analyses and machine learning [32]. The SVD of a 

matrix A is represented as follows: 

=
T

VUA ,          (5) 

where: 

• U is an m×m orthogonal matrix containing the left singular vectors of A; 

• Σ is an m×n diagonal matrix containing the singular values of A; and 

• 𝑉𝑇 is an n×n orthogonal matrix containing the suitable singular vectors of A. 

The singular values σi (where i=1,2,...,r) are arranged in descending order along the diagonal of 

Σ, where r is the rank of matrix A. The remaining singular values are zero. 

The equations to compute U, Σ, and VT are as follows: 

1) Compute the eigenvalues and eigenvectors of ATA. Let the eigenvalues be λ1,λ2,...,λr, where r is 

the rank of A and the corresponding eigenvectors be v1,v2,...,vr. 
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2) Compute the singular values i  as ii  =  for i=1,2,...,r. 

3) Normalize the eigenvectors to obtain the suitable singular vectors i  as 

i

T
A

i
i 




1
=  

for i=1,2,...,r, where i  are the corresponding eigenvectors of TAA . 

4) Compute the left singular vectors i as iA

i
i 




1
=  for i=1,2,...,r. 

These equations yield the matrices = TVUA , constituting the SVD of matrix A. 

4.2.3. Features modalities 

Features and modalities are the various qualities or properties that can be derived from data for 

analysis, interpretation, and modeling. These modalities cover a broad spectrum of information that 

mirrors the complexity and richness of real-world phenomena. Feature modalities in data science and 

machine learning can encompass numerical features for quantitative measurements, categorical 

features for discrete categories, textual features from text data, image features from visual content, 

and audio features from sound signals. Temporal features represent trends over time, spatial features 

define geographical traits, and biological features relate to genetic or physiological aspects. Every 

modality provides distinct perspectives on the data and necessitates specific extractions, processing, 

and analysis methods. Comprehending and efficiently using different feature types is crucial to 

identify patterns, predict outcomes, and obtain practical insights from a wide range of information in 

various fields [32]. 

4.3. The deep learning model for ASD 

The deep neural network model for autism is an innovative technique in neurodevelopmental 

disorders. This model aims to analyze complex patterns in genetic data, neuroimaging scans, and 

behavioral assessments related to ASD using artificial neural networks, specifically deep learning 

architectures such as CNNs and recurrent neural networks (RNNs). Deep-learning algorithms can 

identify subtle biomarkers and predictive traits related to ASD by analyzing extensive datasets 

containing genetic markers, brain scans, and clinical records. The models were created to distinguish 

between usual brain regions and those showing traits associated with ASD, aiding in early 

identification, precise diagnosis, and tailored treatment plans. The deep learning model for autism 

has the potential to enhance our comprehension of the genetic and neurological factors that play a 

role in ASD. This could lead to personalized interventions and treatments for patients. The deep 

learning model for autism is a cutting-edge innovation in the field of neurodevelopmental diseases, 

thus providing new opportunities for early intervention, better results, and improved quality of life 

for those with ASD [45]. CNNs are ubiquitous among the various architectures used in deep learning. 
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CNNs have proven highly effective in classifying ASD based on gene expression information. 

CNNs are deep learning models that process visual input such as images and movies. CNNs 

excel at learning hierarchical representations of features from raw pixel data, allowing them to 

extract spatial patterns and structures within images efficiently. This is accomplished by utilizing 

convolutional layers, which use adaptable filters to conduct convolutions over the input image, 

capture nearby spatial relationships, and identify important characteristics. CNNs commonly use 

pooling layers to decrease the size of feature maps, which helps to reduce computing demands while 

preserving crucial information. By combining convolutional and pooling layers, CNNs can learn 

more intricate and sophisticated characteristics as data progresses through the network [46]. CNNs 

have shown exceptional achievements in many computer vision assignments, such as picture 

categorization, object recognition, and semantic segmentation. CNNs are precious tools in various 

industries because they can automatically learn distinctive traits from unprocessed data, such as in 

healthcare, autonomous driving, security, and entertainment. CNNs continue to lead innovation in 

deep learning research, advancing visual perception and pattern recognition. Deep CNNs offer 

benefits beyond gene expression research due to their versatility across several application domains. 

The advantages of these systems include their capacity to derive significant features from intricate 

data, process inputs with many dimensions, autonomously acquire hierarchical representations, and 

attain a top-notch performance in tasks like image recognition, natural language processing, and 

speech recognition. CNNs combine the selection and classification processes into a single learning 

entity. During training, these networks can extract and optimize significant features from the raw 

input data. 2D CNNs have demonstrated a potential in diverse areas, such as early disease detection, 

structural integrity monitoring, data classification, and personalized healthcare. One significant 

benefit is that 2D CNNs may utilize real-time data and affordable hardware, thus enabling a 

straightforward, concise design that mainly emphasizes 2D convolution [46]. Figure 3 depicts the 

CNN model, displaying its structure and components. 2D CNNs can efficiently analyze and extract 

features from 2D data, such as images, by integrating these layers, thus allowing for complex 

analyses and classification tasks. The 2D CNN design's simplicity and efficiency make it a versatile 

and robust tool for numerous applications across diverse areas. The CNN model in our research used 

gene expression as the input, considering it as a vector. The model utilizes a 2D kernel to analyze the 

input vector. The model has two convolutional layers, two thick layers, and a flattening layer. This 

model is called the 2D CNN for convenience [47]. The CNN architecture is specifically developed to 

process gene expression data by detecting intricate patterns and correlations. Convolution layers 

employ filters to extract meaningful information, while dense layers handle more complex learning 

and classification tasks. The flattening layer transforms the convolution layers' output into a format 

suitable for the following dense layers. 
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Figure 3. Convolutional neural networks [46]. 

5. Methodology 

This approach includes numerous crucial operations. First, the raw microarray data for ASD is 

loaded into the system. This data is fundamental to conduct additional analyses. Figure 4 depicts the 

main steps in the procedure. For example, after importing the data, normalization is performed using 

the Min-Max approach. This normalization method guarantees that gene expression values are 

suitably scaled, enabling significant comparisons and minimizing the influence of fluctuations in 

expression data. Subsequently, gene selection methods pinpoint a subset of pertinent genes. This 

stage aims to decrease the data's dimensionality and concentrate on genes strongly connected with 

the current classification challenge. Different gene selection techniques might be used based on the 

specific needs of the analysis. A CNN classifier performs the classification task. The CNN 

architecture is ideal to analyze intricate patterns in gene expression data. It utilizes the hierarchical 

organization of the data and uses convolutional layers to extract crucial information. 

5.1. Pre-processing 

Microarray data preprocessing is essential to minimize inherent noise and decrease variability in 

the expression values. [48]. Standardizing datasets is crucial to mitigate substantial discrepancies in 

the value ranges, particularly following the encoding of nominal values. Without normalization, 

attributes with more extensive ranges may dominate, potentially biasing the analyses. Moreover, 

normalization aids the algorithm efficiency by using a narrower range of numbers [49]. Scaling data 

within the 0 to 1 interval is a standard normalization method, achieved through Eq (7), where x 

represents the original attribute value, x_Normalized is the scaled value, min_a is the attribute's 

minimum value, and max_a is the maximum value. 

)
minmax

min
(

a

ax

NormalizedX
−

−
=

.        

(6) 
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Figure 4. The proposed method. 

5.2. Gene selection 

Gene selection procedures in the data analysis aim to reduce the computational space 

dimensionality by selecting a subset of genes from the dataset. Not all genes are informative for the 

analysis, so selection strategies are applied before machine learning algorithms. By using methods 

such as PCA and SVD, genes impacting the classification tasks are identified and retained. The study 

optimized gene sets by applying PCA and SVD for an improved categorization, thus enhancing the 

result accuracy and interpretability. 

5.3. Evaluation measures 

Accuracy and loss are crucial performance metrics to evaluate ASD categorization methods. 

Accuracy, which is a widely used metric, indicates the ratio of correctly predicted observations to the 

total observations. It offers a simple and intuitive assessment criterion, as depicted in Eq (10). On the 

other hand, loss measures the dissimilarity between the predicted and actual values, quantifying the 

model's effectiveness in minimizing errors. Equation (10) outlines a generic formula for calculating 

loss. These metrics enable researchers to accurately assess the performance and effectiveness of the 

proposed methodology. They offer dependable insights to evaluate and improve the method. 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦=
TP+ TN

TP+TN+FP+FN × 100
.        (7) 

The approach uses the following abbreviations: FP for false positives, TN for true negatives, TP for 

true positives, and FN for false negatives. A loss function is used to calculate the error score, where 

N is the number of genes, X𝑖 ′ is the actual class label, and Xi ′ is a projected label. Cross-entropy 

measures the loss when categorical outcomes are non-binary and more than two. 

Loss=−X𝑖′ 𝑙𝑜𝑔2 X𝑖 N 𝑖.         (8) 

6. Results and discussion 

Here, we will outline the outcomes of the procedures and their precision in identifying ASD. 

This study was intended to investigate the intricate genetic pathways involved in ASD. Gene 

selection methods, namely SVD and PCA, were used to analyze extensive genetic data from 

microarray datasets to find genes associated with AD. We thoroughly analyzed the gene expression 

patterns using microarray technology, establishing a strong basis for our inquiry. We aimed to 

identify genetic variables involved in AD and elucidate their impact on the advancement of the 

disease. We used gene selection approaches and microarray technology to explore the complex 

genetic makeup of AD and obtain valuable insights into the genes that influence disease progression. 

This versatile strategy shows potential to create more focused therapies to address this incapacitating 

neurodegenerative condition. The "curse of dimensionality" in microarray datasets is a substantial 

impediment caused by low sample sizes and high dimensionality. Gene selection approaches have 

been developed as possible solutions to this dilemma. This study employed SVD and PCA to tackle 

this issue. The study effectively decreased the dataset's complexity by using these methodologies, 

making it easier to explore the genes linked to ASD more efficiently and meaningfully. Integrating 

CNNs as classifiers and DL techniques marked significant progress in predicting autism disorder. 

The effectiveness of the PCA-CNN model was shown through an empirical examination of the 

ASD dataset. The model achieved an accuracy rate of 94.33% and a low loss of 0.4312 by utilizing a 

seven-layer CNN with various configurations. The SVD-CNN model demonstrated an outstanding 

performance, with an accuracy of 92.21% and a loss of 0.3354. The results highlight how the 

proposed methodology improves the classification accuracy by choosing a subset of essential genes 

through gene selection techniques. The study highlights the effectiveness of PCA-CNN and 

SVD-CNN models in decreasing the gene dimensions and improving the classification accuracy. 

This dimensionality reduction allows for a more targeted and accurate analysis of the genetic 

variables associated with ASD. Combining gene selection methods with DL models shows potential 

to improve the ASD prediction. This progress benefits neurodegenerative disease research and 

advances precision medicine by providing more precise and personalized methods to diagnose and 

treat ASD. This work utilized a PCA and an SVD as efficient gene selection techniques. The 

classification algorithm's performance was assessed by accurately determining the ideal number of 

genes and categorizing the gene expression data. This step entailed reading and normalizing the gene 

expression data using the Min-Max method. The gene selection strategies decreased the number of 

genes to match the available samples. The PCA and SVD techniques were utilized for gene selection, 

as detailed in Table 1. The gene selection methods suggested in this work reduced the number of 

genes while improving their informativeness, thereby improving the classification accuracy by 
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removing unnecessary genes. It is important since numerous genes in the original dataset have little 

influence on determining the class labels. Table 1 summarizes the selected data, outlining the genes 

selected using the proposed gene selection approaches. 

Table 1. Summarize the selected data. 

Method Samples Genes Selected genes 

PCA 

SVD 

 

549 

 

15452 

540 

490 

The suggested approach, which combines a PCA with a CNN model, demonstrates an improved 

classification of the ASD dataset compared to the raw datasets and other gene selection techniques. 

The PCA-CNN model achieved an impressive accuracy of 96.60%, as shown in Table 2, which 

displays the average classification accuracy and loss trends. When paired with the CNN model, the 

SVD-based gene selection strategy achieves an accuracy of 97.08%, demonstrating a strong 

performance. The results highlight the efficacy of a PCA and an SVD as gene selection methods 

when used with the CNN model, thus leading to a notable improvement in classification accuracy. 

The results provide vital insights into the potential of PCAs and SVDs for gene selection, leading to 

more accurate and efficient classification models in gene expression studies. Figure 5 shows the 

performance comparison of the PCA and SVD methods. For measuring the potential of these 4 

parameters, a confusion matrix was utilized from the model: Fn (false negative), Tn (true negative), 

Fp (false negative), and Tp (true positive). Table 3 shows the confusion matrix generated by the 

suggested model for both methods. 

Table 2. Shows the accuracy of PCA-CNN and SVD-CNN method. 

Method Performance metrics 

Accuracy Loss 

Original dataset 87.72% 0.6732 

PCA 94.33 0.4312 

SVD 92.21 0.3354 

Table 3. Confusion matrix values obtained PCA-CNN and SVD-CNN method. 

Model name TP FP TN FN 

PCA 94 7 278 7 

SVD 86 9 206 9 
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Figure 5. PCA and SVD methods performance comparison. 

The study investigated how a PCA and an SVD can improve the performance of CNN models in 

predicting ASD. The study evaluated the effect of several dataset preparation techniques on the 

classification accuracy and loss metrics using various cross-validation methods, such as k-fold 

cross-validation. Utilizing a PCA and an SVD resulted in a notable enhancement in accuracy and a 

decrease in loss compared to the initial dataset. The PCA achieved an accuracy of 96.60%, and the 

SVD improved it to 97.08%. The results highlight the effectiveness PCAs and SVDs in enhancing 

the model accuracy to predict AD. Computational efficiency is essential for practical healthcare 

applications to make timely predictions and to optimize resource usage. The work highlights the 

significance of assessing the generalizability of AI models on various AD datasets to confirm their 

dependability and suitability in real-world situations. Studying the biological relevance of genes 

identified by SVDs and PCAs offers valuable information on AD pathogenesis and possible 

therapeutic targets. The suggested PCA-CNN and SVD-CNN models outperformed typical machine 

learning algorithms and state-of-the-art methods in a comparative analysis, indicating their potential 

to improve the AD prediction accuracy. Ensuring the ethical application of AI in healthcare requires 

addressing ethical concerns such as model interpretability, bias mitigation, data protection, and 

transparency. It is essential to balance the potential of AI with ethical norms to foster trust and 

responsibility in healthcare practices. 

7. Conclusions 

This work combined gene selection methods (PCA and SVD) with deep learning models (CNN) 

to improve ASD prediction compared to traditional approaches. The study utilized a convolutional 

neural network (CNN) model to classify multiclass microarray samples. It aimed to tackle data 

dimensionality challenges by employing two gene selection techniques: principal component 

analysis (PCA) and singular value decomposition (SVD). The suggested approach's success was 

assessed by performance metrics, including accuracy and loss, where cross-entropy classification 

was a crucial loss function for non-binary categorization issues. The model was fine-tuned using the 

ADAM optimization technique. The results showed that the suggested method efficiently lowered 

the high-dimensional data by generating a subset that included pertinent information, thus enhancing 

the classification accuracy. The strategy improved the categorization efficiency and decreased the 

processing time, resulting in a smaller subset for diagnosing ASD. The suggested approach, which 

combined a PCA with a CNN model, demonstrated an improved classification accuracy on the ASD 
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dataset compared to raw datasets and other gene selection techniques. The PCA-CNN model 

achieved an impressive accuracy of 96.60%. Ongoing research aims to generalize the approach for 

broader applications beyond ASD and explore alternative gene selection methods and DL 

architectures to optimize the predictive performance and applicability across various biomedical 

contexts. 
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