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Abstract: Deep learning has attained state-of-the-art results in general image segmentation problems;
however, it requires a substantial number of annotated images to achieve the desired outcomes. In the
medical field, the availability of annotated images is often limited. To address this challenge, few-shot
learning techniques have been successfully adapted to rapidly generalize to new tasks with only a few
samples, leveraging prior knowledge. In this paper, we employ a gradient-based method known as
Model-Agnostic Meta-Learning (MAML) for medical image segmentation. MAML is a meta-learning
algorithm that quickly adapts to new tasks by updating a model’s parameters based on a limited set
of training samples. Additionally, we use an enhanced 3D U-Net as the foundational network for our
models. The enhanced 3D U-Net is a convolutional neural network specifically designed for medical
image segmentation. We evaluate our approach on the TotalSegmentator dataset, considering a few
annotated images for four tasks: liver, spleen, right kidney, and left kidney. The results demonstrate
that our approach facilitates rapid adaptation to new tasks using only a few annotated images. In
10-shot settings, our approach achieved mean dice coefficients of 93.70%, 85.98%, 81.20%, and 89.58%
for liver, spleen, right kidney, and left kidney segmentation, respectively. In five-shot sittings, the
approach attained mean Dice coefficients of 90.27%, 83.89%, 77.53%, and 87.01% for liver, spleen,
right kidney, and left kidney segmentation, respectively. Finally, we assess the effectiveness of our
proposed approach on a dataset collected from a local hospital. Employing five-shot sittings, we
achieve mean Dice coefficients of 90.62%, 79.86%, 79.87%, and 78.21% for liver, spleen, right kidney,
and left kidney segmentation, respectively.

Keywords: few-shot learning; MAML; medical image segmentation; meta-learning; U-Net

1. Introduction

Recent advancements in medical imaging are utilized in healthcare for the diagnosis
and treatment of various diseases. They utilize diverse methods and technologies to
generate visual depictions of the internal organs and tissues within the human body [1].
Some of those technologies include X-ray, Computed Tomography (CT), Ultrasound, and
Magnetic Resonance Imaging (MRI) [2]. Each has its unique benefits and risks [3]. For
example, X-rays are known for their low cost and quick acquisition time, which have made
them one of the most commonly used technology. Ultrasound imaging is fast, allowing for
the real-time visualization of blood flow in arteries using the Doppler shift. MRI produces
volumetric images with high spatial resolution, mainly by detecting signals from hydrogen
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nuclei. This modality uses the abundance of hydrogen nuclei to generate detailed images
of internal structures, making it particularly effective for imaging soft tissues. While CT
imaging employs X-rays to produce detailed cross-sectional images of the body, it is also
widely utilized because of its fast scan time and excellent resolution [1,4].

To facilitate accurate decision-making by physicians, it is crucial to segment key
objects and extract essential features from the segmented areas of medical imaging. The
segmentation process defines meaningful regions within an image, such as tissues, organs,
or pathological conditions. This is important in assisting clinicians in diagnosing diseases,
calculating prognoses, and planning medical operations [5]. For instance, segmentation is
used to detect infected tumor tissues in medical imaging modalities by separating tumor
tissues from normal brain tissues and solid tumors [6].

Segmenting medical images is a demanding and time-consuming task [7]. Detecting
abnormalities, particularly rare ones, is time-consuming and costly for medical experts.
Consequently, artificial intelligence (AI) has been widely adopted for the automated pro-
cessing of medical images as a supportive tool for physicians [8]. As a result of the rapid
advancement of AI, particularly deep learning (DL), image segmentation methods based
on DL have achieved significant success in the field. DL offers many advantages over
traditional machine learning and computer vision methods in segmentation accuracy and
speed. Using DL to segment medical images can help doctors confirm tumor sizes, quantita-
tively evaluate treatment effects, and significantly reduce doctors’ workload [9]. While DL
has made significant progress and demonstrated high performance in automated general
image segmentation, it is also inherently expensive. This is due to the substantial need
for annotated images, computing power, and memory resources. Moreover, DL typically
demands large datasets, which can be challenging to obtain in the medical domain due
to limitations in image availability, privacy concerns, and other issues [8]. Using small
datasets may result in overfitting and generalization errors [10]. Additionally, DL struggles
to generalize well when applied to unseen datasets [11]. Consequently, few-shot learning
is proposed as a solution, enabling the generalization to new tasks with only a few samples.
Few-shot learning not only learns rare cases but also reduces the cost and effort associated
with data acquisition, along with minimizing processing and computational costs [12].

Recently, few-shot learning has emerged as a promising approach to address data
scarcity challenges in the medical field. Few-shot learning models excel at identifying new
categories without the need for retraining, making them particularly suited for tasks where
labeled data are limited or expensive to collect [13]. Among the various techniques for
few-shot learning, one notable method is Model-Agnostic Meta-Learning (MAML) [14].
MAML is an algorithm designed to learn the initialization parameters of a model, allowing
for adaptation to new tasks with only a few samples and iterations. It is a versatile few-shot
learning algorithm applicable to various types of models and learning problems, including
classification, regression, and reinforcement learning. MAML efficiently initializes model
parameters, achieving optimal fast learning for new tasks with only a few gradient steps.
Furthermore, the MAML technique demonstrates high performance and generalization
even on small datasets. Operating in two phases, MAML first undergoes meta-training
on a diverse task distribution by iteratively adapting its parameters to new tasks with
a limited number of labeled samples. Subsequently, the model is meta-tested on a new,
unseen task to evaluate its ability to adapt quickly to novel challenges. MAML has been
gaining attention and showing promise in various tasks associated with medical imaging,
such as classification [15] and skin lesion segmentation [16].

In this paper, we employ the MAML algorithm in conjunction with a modified 3D
U-Net [17] as the baseline network. The synergy between MAML’s capability to learn
from small annotated datasets and swiftly adapt to new tasks, combined with the well-
established effectiveness of the U-Net architecture in medical image segmentation, results in
enhanced segmentation accuracy and efficiency, particularly in scenarios where annotated
images are limited.

We have made four key contributions:
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• Utilizing the MAML algorithm with the enhanced 3D U-Net architecture for general-
ized few-shot medical image segmentation.

• Evaluating our proposed approach under 5-shot and 10-shot settings.
• Comparing our proposed approach with existing methods using five-shot settings.
• Testing the performance of the final models on local hospital data to demonstrate the

model’s effectiveness in real-world scenarios.

The remainder of this paper is structured as follows. Section 2 provides an overview
of the fundamental and relevant theories. Section 3 highlights previous research studies
and identifies gaps. Section 4 describes the adopted methodology. Section 5 presents the
experimental results and discussion. Finally, Section 6 presents the conclusion.

2. Theoretical Background

This section summarizes the concepts and technologies used in this paper. Section 2.1
focuses on medical image segmentation, and Section 2.2 explains CT modality. Further,
Section 2.3 describes the U-Net architecture. Lastly, Section 2.4 discusses Meta-Learning in
more detail.

2.1. Medical Image Segmentation

Medical image segmentation is fundamental for many medical applications and re-
search purposes, such as diagnosis, treatment planning, and disease monitoring. Its
significance lies in its ability to assist radiologists and physicians in making clinical de-
cisions. Additionally, it allows researchers to extract quantitative measurements such as
area, shape, intensity, and volume of the segmented regions that provide valuable insights
into anatomical structures, disease progression, and treatment planning. As a result, this
information is essential for guiding treatment strategies, facilitating early disease detection,
and providing insights into how diseases develop.

Medical image segmentation is the process of extracting areas of interest, including
organs, vessels, and lesions, from a medical image to emphasize specific information
within an image [18]. In other words, the process is about analyzing the medical image by
generating a mask to isolate the specific object from the background and unwanted details,
where the object has uniform characteristics in texture or gray level. Both types of image
segmentation could be applied to medical images. For instance, semantic segmentation
is applied in brain tumor segmentation, whereas instance segmentation is applied in cell
nuclei segmentation.

Many segmentation software tools are specifically designed for medical imaging,
supporting various medical imaging modalities. Medical imaging modalities are gener-
ally categorized into structural and functional modalities, depending on the information
contained in the image. The modalities include but are not limited to X-Ray radiography,
CT, MRI, Positron Emission Tomography (PET), and Single Positron Emission Tomography
(SPECT). Figure 1 illustrates the different medical imaging modalities for brain imaging [19].
The software includes various tools and algorithms supporting manual, semi-automatic,
or completely automated segmentation. Manual segmentation is time-consuming and
labor-intensive and may need expertise. Semi-automatic segmentation techniques combine
automated algorithms with user interaction to achieve accurate results. Users often provide
an initial region of interest, which guides the algorithm to segment the image as a whole.
Manual adjustments, such as refining region boundaries, are also used to decrease segmen-
tation errors. Unlike manual segmentation and semi-automatic approaches that rely on
user interactions, fully automatic segmentation methods operate without the need for user
interaction. This technique utilizes advanced AI algorithms and computational methods
to segment the medical images automatically [20]. DL and U-Net architecture are among
the most popular methods for automatic medical image segmentation. Recently, few-shot
learning has emerged as a topic of interest and research in medical image segmentation
and it is detailed in Section 2.4.1.
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Figure 1. Different medical imaging modalities [19].

2.2. Computed Tomography

CT is a type of medical imaging utilizing X-ray technology to generate cross-sectional
images of a human body. This technique provides a more comprehensive view of inter-
nal structures than traditional X-rays. In the term Computed Tomography, computed
means calculation or reconstruction, while tomograph is derived from Greek words as
a combination of “tomo” meaning cut or slice, and “graphy” meaning to describe. CT
scanner is a specialized machine that typically uses 100 kV to 150 kV [21] of energy to
generate images for diagnosing abnormalities and other therapeutic measurements [3].
The basic idea of a CT scanner is to measure the X-ray beam projected through the body
by a single detector, and the X-ray tube moves along with the detector [21]. Then, the
measurements of the X-rays are processed by computers to create cross-sectional images of
the human body called slices. These images show detailed information about the structure
and density of various tissues, including bones, organs, blood vessels, and tumors. The
computer saves each slice as a file in the Digital Imaging and Communications in Medicine
(DICOM) format. Whearse DICOM is the standard format used in medical imaging to
store medical images such as CT scans. This file type can contain metadata such as patient
information and imaging devices, which are necessary for interpreting and transmitting
images [22]. The computer can reconstruct the DICOM files to form a three-dimensional
image, allowing healthcare professionals to visualize the body’s internal structures from
different perspectives.

The Neuroimaging Informatics Technology Initiative (NIfTI) is a standardized file
format that stores and manages medical image data such as CT scans and MRI [23]. NIfTI
was adopted as the default format to ensure compatibility and interoperability across
different software tools and platforms [24] like 3D Slicer [25] and the Monai framework [26].

2.3. U-Net

U-Net is a network architecture primarily designed for medical image segmentation by
Ronneberger et al. [27] in 2015. U-Net has performed accurate segmentation for medical im-
age segmentation through pixel-by-pixel prediction. Figure 2 shows the U-Net architecture.
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Figure 2. U-Net architecture. The blue boxes refer to a multi-channel feature map. Each box is
numbered with the channel number. Feature maps are displayed in white boxes. Arrows indicate
various functions [28].

2.4. Meta-Learning
2.4.1. Few-Shot Learning

Few-shot learning is a machine learning challenge involving learning from a few
samples. It involves a learning task T that uses a dataset D = {Dtrain, Dtest} where Dtrain is
the training set is Dtrain = {(xi, yi)}I

i=1, where I is a few number of samples, and Dtest is the
testing set = {xtest}. For input x and output y, p(x, y) is the joint probability distribution,
and ĥ is the optimal hypothesis that maps input x to output y. Few-shot learning recognizes
ĥ by fit Dtrain and tests on Dtest. To approximate ĥ, the few-shot learning model defines
a hypothesis space H of hypotheses h(.; θ)s, in which θ represents each parameter of h.
A parametric h represents a nonparametric model usually requiring massive datasets
unsuitable for few-shot learning. Few-shot learning is an optimization technique to search
H to identify the θ that parameterizes the most suitable h∗ ∈ H. A loss function assesses
the performance of the model denoted as L(ĥ,y), which is determined over the prediction
ĥ = h(x; θ) and the output y [12].

2.4.2. Model-Agnostic Meta-Learning

MAML is designed for meta-learning tasks. It utilizes a straightforward task-agnostic
algorithm to train model parameters. The objective is to enable the model to learn unseen
tasks quickly with just a few gradient updates. MAML was developed in 2017 by Stanford
Research and UC Berkeley Alum Dr. Chelsea Finn [14]. The generalized MAML algorithm is
explained in Algorithm 1. In MAML, meta-learning refers to a range of tasks p(T) to which
the model should be capable of adapting. When the model is trained with K-shot learning,
it learns unseen task Ti based on p(T) from K samples derived from transition distribution
qi and the feedback LTi generated by Ti. The meta-training process involves sampling
a task Ti from p(T), training based on K samples, updating from the respective loss LTi ,
and testing the model on unseen samples from Ti. Afterward, the model f is enhanced
by looking at how the test error changes with parameters to the new data from qi. Then,
unseen tasks are chosen from the p(T) during meta-training, and the meta-performance is
determined after the K samples [14]. The model is depicted by a parameterized function
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denoted as fθ , where θ corresponds to the model’s parameters. The θ is updated to θ′i when
adapting unseen task Ti as shown in Figure 3. Specifically, MAML determines a set of
weights θ which can be fine-tuned in an easy way to new testing tasks using the following
optimization in Equation (1) [14]:

min
θ

∑
Ti∼p(T)

LTi ( f θ′i) = ∑
Ti∼p(T)

LTi ( f θ − α∇θLTi ( fθ)) (1)

Meta-learning
Learning/adoaptationLearning/adaptation
Meta-learning

Figure 3. Meta-learning in MAML algorithm [14].

Algorithm 1 MAML Meta-Lerning

Input: α: Inner learning rate, β: Outer learning rate, p(T): Variety of tasks
Output: θ′i : Updated set of parameters

1: Randomly initialize θ
2: while Training do
3: Select task Ti from p(T)
4: for all Tasks do
5: for all samples in Ti do
6: Evaluate: ∇θLTi ( fθ)
7: end for
8: Calculate adapted parameters: θ′i = θ − α∇θLTi ( fθ)
9: end for

10: Adjust the parameter: θ = θ − β∇θ ∑Ti∼p(T) LTi ( f θ′i)
11: end while

3. Literature Review

This section provides an overview of various techniques used in medical image seg-
mentation and is divided into three sections. Section 3.1 discusses general approaches for
medical segmentation, while Section 3.2 introduces some few-shot learning techniques.
Section 3.3 discusses different few-shot image segmentation techniques, while Section 3.4
focuses on the application of few-shot learning specifically in the context of medical im-
age segmentation.

3.1. Medical Image Segmentation

Many researchers rely on fully convolutional neural networks (FCNNs). Duanmu et al. [29]
introduced a brain organ segmentation technique using a 3D FCNN. The method effectively
handles significant organ size variation through a weighted loss function and multiple resolution
paths, demonstrating good performance in segmenting thin or small organs. Other researchers
aim to enhance accuracy while minimizing the size of the training set. Falk et al. [30] imple-
mented a U-Net-based [28] solution for common quantification tasks in biomedical image
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data, focusing on cell detection and shape measurements. Ibrahim et al. [31] predicted the
desired heart mask in MRI using FCNN, introducing both multichannel and single-channel
input schemes with U-Net. The multichannel provides more input dimensions, while the
single-channel, using a large network, increases network parameters. Yang et al. [32] ap-
plied brain tumor segmentation using the basic structure of U-Net, enhancing performance
by adding a 1 × 1 convolutional layer for parameter reduction. Various modifications to
the U-Net architecture have been proposed in the literature to address challenges such
as gradient vanishing and increased complexity. Kerfoot et al. [17] implemented U-Net
with residual units [33] on cardiovascular MRI. Hatamizadeh et al. [34] proposed a novel
architecture called UNETR, combining transformer architecture with the U-shaped net-
work design for improved capability in capturing long-range spatial dependencies in
volumetric medical image segmentation. Jafari et al. [35] introduced DRU-Net, combin-
ing the advantages of ResNet and DenseNet on skin lesions and brain images, resulting
in fewer hyperparameters, reduced training time, and improved segmentation accuracy.
Liu et al. [36] proposed a hybrid approach leveraging pretrained 2D networks for learning
features from anisotropic images and then extending it to 3D with anisotropic convolu-
tional blocks. This design allows the effective capture of 3D context while maintaining
faster processing times, with skip connections, dense connections, and a pyramid volu-
metric pooling module contributing to overall performance. Kamiya et al. [37] focused
on musculoskeletal analysis by using deep learning to automate the extraction of muscle
characteristics from CT images. They introduced 3D recognition of the erector spinae
muscle, employing the iterative random forest. Further, they used the FCN-8s network for
2D segmentation of the erector spinae muscle. Additionally, they expanded their scope by
applying deep learning to whole-body muscle analysis including segmentation of muscles
and bones from whole-body CT images using 2D U-Net. The research also explored the
fusion of deep learning with traditional handcrafted feature-based methods to address
challenges in preparing labeled training data. The previous networks are specialized for
one segmentation task. Inspired by multi-domain learning, Huang et al. [38] presented
a multi-domain medical image segmentation approach using a universal neural network
architecture that handles multiple tasks. The proposed 3D U2-Net aims to learn a universal
data representation capable of handling multiple segmentation tasks with a single model.
The 3D U2-Net consists of separable convolution, which utilizes domain-specific spatial
correlations and cross-domain correlations. Their proposed architecture was designed to
handle diverse imaging modalities and anatomical structures. However, these segmentation
methods heavily rely on CNN. Their effectiveness is predominantly observed in scenarios
where a substantial amount of annotated data is available. This scenario changes when
confronted with data scarcity in the medical field, where only a limited number of annotated
images are accessible.

In semi-supervised learning, most samples are unannotated, with only a few being
annotated. On the other hand, unsupervised learning involves scenarios where there are
no annotations or human interactions. Due to the limited quantity of annotated images in
the medical field, many researchers have turned to unsupervised learning. Two popular
methods used in this context are image alignment and feature alignment through adversar-
ial learning. Dog et al. [39] achieved comparable accuracy to supervised learning but used
only 10% of annotated brain tumor images. Their segmentation technique was based on a
Cycle Generative Adversarial Network (CycleGAN) and used unsupervised domain adap-
tation and semi-supervised learning. Chen et al. [40] introduced an unsupervised domain
adaptation framework that combines image alignment and feature alignment guided by
adversarial learning. The authors demonstrated improved segmentation performance on
unannotated target images. However, these methods necessitate retraining models using
images from the target domain, whether annotated or unannotated. Gathering data from
every new target domain for model adaptation is time-consuming and impractical in many
real-life scenarios.
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Recently, self-supervised learning has gained attention in medical segmentation. In
self-supervised learning, data representations are acquired without human annotations.
The model is initially trained on unannotated medical images, which are easier to obtain,
and later fine-tuned using a small set of annotated medical images. Self-supervised learning
involves training embedding functions through self-supervision, aiming to identify more
generalizable and transferable features [41]. Various data-augmentation techniques are
commonly applied in this approach. Ma et al. [42] utilized adversarial learning to acquire
vessel representations based on unannotated images. Adversarial learning is employed
to simultaneously generate fake and segmented vessels from unannotated images. This
method exhibits significant superiority with performance comparable to unsupervised and
traditional techniques. In a different application, Zhang et al. [43] presented a framework
for detecting and segmenting cystic lesions in lung CT images. The framework involves
two stages: unsupervised segmentation followed by segmentation networks. In the unsu-
pervised segmentation stage, initial annotations for all images are obtained using K-means
graph cuts. These annotations are then utilized as labels for a U-Net. Subsequently, a new
network is trained recursively from previous predictions. The authors achieved signifi-
cantly improved segmentation accuracy compared to the segmentation generated using
the K-means method. However, since the authors applied unsupervised learning, they
needed to manually set the cluster numbers in various applications. Additionally, there
could be challenges related to imbalanced label or class distribution. It is worth noting that
self-supervised learning is computationally demanding and slower due to the additional
annotation task.

3.2. Few-Shot Learning

Few-shot learning emulates the learning capability of humans when provided with
limited examples. It aims to achieve generalization to related but unseen examples using
only a small number of instances, making it particularly valuable in the context of medical
images. Researchers have introduced a variety of approaches, encompassing both data-level
and meta-learning methods.

3.2.1. Data-Level

These approaches aim to mitigate the overfitting problem associated with small datasets
by expanding the dataset through the generation of additional samples. Kumar et al. [44]
focused on generative models for text classification and augmented data using various
Feature Space Data Augmentation (FDA methods. FDA involves learning a data represen-
tation or feature extractor, which is then used to create new data in the feature space. The
classifier is subsequently trained on both the original and augmented data. Chen et al. [45]
proposed a method that combines Generative Adversarial Networks (GANs) to generate
diverse, high-quality medical images across various modalities, including CT scans, X-rays,
and pathology images. They evaluated their method on eight datasets to demonstrate the
method’s efficacy and generalizability. Li et al. [46] introduced a data-augmentation method
based on the Conditional Wasserstein Generative Adversarial Network (cWGAN). Their
approach utilizes features from a few labeled samples to construct synthetic features for
new classes. It is important to note that the success of data augmentation is contingent on
the characteristics of the input dataset. If the input data exhibits biases, the generated data
may also inherit those biases. Additionally, for effective data augmentation, a reasonably
large training set with sufficient samples is still required.

3.2.2. Meta-Learning

Meta-learning, often referred to as “learning to learn”, aims to enhance the adaptability of
automatic learning systems for solving various learning problems. There are three well-known
approaches to meta-learning: model-based, metrics-based, and gradient-based meta-learning.

In model-based meta-learning, models are initialized based on known classes and then
rapidly adapted to new classes using a small number of examples and gradient updates.
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Meta-learning models update their parameters after a few training steps, which can be
performed independently or controlled by another meta-learner model. Examples of model-
based approaches include meta-networks and memory-augmented neural networks. For
instance, Santoro et al. [47] employed model-based meta-learning for the one-shot learning
problem by utilizing a memory-augmented neural network to retrieve and store memories
for each classification task. This method achieved competitive results and demonstrated
quick adaptation to new tasks with limited samples. However, it relies on the use of RNN,
which can be computationally complex.

In metrics-based meta-learning, the objective is to minimize the distance between
feature vectors corresponding to images of the same class while increasing the distance
between feature vectors of different classes. The focus is on learning transferable feature
embeddings that can generalize from seen to unseen categories. This approach is con-
ceptually similar to nearest neighbor algorithms like k-NN [48] and k-means [49]. For
instance, WANG et al. [50] adopted a Siamese network for leaf classification, ensuring that
similar samples are close together and dissimilar ones are distant. Li et al. [51] improved
matching networks by introducing a category traversal module, which scans all classes
in the support set together to identify relevant dimensions for each task. Wu et al. [52]
proposed a position-aware relation network based on CNN to learn a suitable distance
and relation score, enhancing feature extraction and improving generalization for few-shot
problems. Li et al. [53] enhanced prototypical networks by introducing an adaptive margin
loss, utilizing a class-relevant additive margin loss to separate samples based on semantic
similarity in the feature embedding space. While metrics-based meta-learning is effective
and straightforward, its application to tasks like regression or reinforcement learning can
be challenging, and it often requires specialized architecture.

In gradient-based meta-learning, the objective is to utilize small support sets to rapidly
update the learners’ parameters for effective adaptation to new tasks. The approach
involves enhancing the optimization algorithm until the model becomes proficient in
learning from a few examples. Several methods have been proposed by different researchers.
Santoro et al. [47] incorporated LSTM to obtain valuable data representations through
gradient descent. The authors employed a gradually learned abstract method to extract
helpful representations from the dataset using gradient descent, along with a mechanism
for rapidly incorporating unseen information after one presentation using an external
memory module. Zhong et al. [54] introduced a remote sensing image retrieval system
built upon MAML. Their approach included three core learning modules: image feature
extraction using DNN, mAP optimization using histogram binning, and few-shot learning
using MAML. This design allows for effective adaptation to new tasks with only a few
samples and iterations.

3.3. Few-Shot Image Segmentation

Few-shot image segmentation is an emerging research area that significantly reduces
the need for human supervision. It involves predicting areas for new classes based on
only a few annotated images. Several studies have explored different approaches in this
domain. Wang et al. [55] introduced non-parametric metric learning into few-shot image
segmentation. The authors employed a prototype alignment network to extract robust
prototypes from the support set. The segmentation of query images is achieved by assigning
each pixel a class based on the nearest prototype. Lu et al. [56] guided the segmentation
of query images by aligning and matching the features of target classes. The authors also
incorporated an LSTM optimization network to enhance predictions iteratively without
forgetting the internal segmentation cues. Cao et al. [57] proposed a novel framework
called MetaSeg, which combines meta-learning with the supervised learning semantic
segmentation methods. MetaSeg can learn an effective initialization and parameter update
strategy by distributing few-shot semantic segmentation tasks on meta-training classes.
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3.4. Few-Shot Medical Image Segmentation

Recently, some researchers have explored few-shot learning for medical image seg-
mentation. Zhao et al. [58], utilizing data augmentation, introduced a one-shot method
for MRI brain segmentation. The fundamental concept involves transforming annotated
samples and images to generate new annotated samples. However, it is important to
note that the segmentation model still requires retraining whenever a new class is added.
Ruiwei et al. [59] merged few-shot learning with interactive segmentation to alleviate the
annotation burden associated with traditional supervised DL algorithms. The authors
introduced multiple branches with robust connections for few-shot medical image seg-
mentation. Additionally, they presented a novel algorithm addressing the limitations of
existing few-shot segmentation methods through user interaction. The algorithm demon-
strated enhanced performance in trained tasks such as liver and stomach segmentation.
However, it may not perform as effectively for other tasks, and the algorithm might incur
additional time and cost due to the need for expert involvement. Tomar et al. [60] applied
self-supervised learning to acquire random spatial and style representation through a one-
shot atlas-based approach utilizing a prior distribution. The authors initially trained the
model by employing the style encoder model to learn the similarity between distributions.
Subsequently, they applied self-supervised learning to cluster images. Additionally, the
authors utilized the appearance model and flow decoder to generate new images and their
segmentations. Gama et al. [61] applied MAML to few-shot segmentation tasks, incorporat-
ing sparse annotations during meta-training and dense annotations during meta-testing. To
address computational constraints, the authors introduced miniUNet, a simplified version
of the standard U-Net with three encoder and decoder blocks instead of four. The experi-
ments conducted involved four chest X-ray datasets. This approach enabled the model to
predict dense labels by leveraging knowledge acquired from sparse annotations.

In summary, while extensive research has been conducted on image segmentation
using DL techniques, their suitability for the medical field is limited due to poor general-
ization with a small number of samples. To overcome this limitation, few-shot learning
has gained widespread application in the medical domain, as it demonstrates strong gen-
eralization with only a few samples. MAML, a gradient-based meta-learning technique,
offers the ability to quickly adapt to unseen samples with just a few gradient steps. More
recently, researchers have integrated U-Net with some few-shot gradient-based algorithms,
presenting a promising avenue for further exploration and contribution.

4. Methodology

This section provides details on the algorithm, backbone network, and methodology
used to obtain the experimental results. Specifically, Section 4.1 introduces the proposed
architecture, and Section 4.2 discusses the backbone network.

4.1. The Proposed Architecture

In our approach, we have devised a tailored architecture that combines the MAML
algorithm with an enhanced 3D U-Net for the segmentation of medical images. While
MAML focuses on optimizing the model’s parameters and is compatible with various
network architectures, we have specifically chosen to integrate it with the 3D U-Net for
improved medical image segmentation. The U-Net architecture stands out as a highly
effective network for image segmentation, known for its flexibility, modular design, and
success across various medical image modalities [62]. Its versatility extends to handling
both 2D and 3D images from different modalities like MRI and CT, making it particularly
suitable for a range of medical imaging applications. The enhanced 3D U-Net variant
employed in our approach emphasizes 3D medical image segmentation and incorporates
residual units. These residual units contribute to faster training and enhance the network’s
resilience to inputs that deviate from the training data. The MAML algorithm operates
by training a model on diverse tasks, enabling it to quickly adapt to new tasks with only
a limited number of training samples. This characteristic aligns well with the challenges
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posed by medical images, where data scarcity is common. The ability of MAML to fine-tune
a model to specific characteristics of each human organ, which can vary significantly, is
particularly advantageous for improving segmentation accuracy. Furthermore, MAML
facilitates learning a robust initialization that can be fine-tuned for various medical image
segmentation tasks, reducing the necessity to train a new model from scratch for each
specific task. This not only saves time but also conserves computational resources.

Our proposed architecture trains an enhanced 3D U-Net using the MAML algorithm
and follows a comprehensive three-phase approach: meta-training, meta-testing, and
final testing. The proposed architecture is depicted in Figure 4. In the meta-training
phase (Figure 4a), the MAML algorithm optimizes the model’s parameters by iteratively
updating the initial parameters after each epoch until reaching optimal values. During this
phase, MAML trains distinct U-Net models on various tasks, each representing a specific
segmentation problem (e.g., liver segmentation, spleen segmentation, and right kidney
segmentation). For each task, a support set consisting of a few 3D images is utilized to train
a model, resulting in different optimal parameters θi for each task, as depicted in Figure 5.
Subsequently, a query set comprising a few 3D images is used to test each parameter θi, and
the corresponding losses are calculated. The MAML algorithm then backpropagates across
the sum of these losses, updating the final parameter θ. This iterative process continues until
obtaining the optimal parameters θ that generalize well across all tasks. In the meta-testing
phase (Figure 4b), the model is fine-tuned on new tasks, such as left kidney segmentation,
using the learned parameter θ′ obtained during the meta-training phase. The fine-tuning
process involves updating the model’s parameters through a few gradient steps with a small
number of 3D images. Importantly, in this phase, the model learns the optimal parameters
for the new task leveraging knowledge acquired from other tasks in the meta-learning phase,
eliminating the need to start from scratch. Finally, in the final testing phase (Figure 4c), the
performance of the final model is evaluated on unseen images belonging to the same tasks used
in the meta-testing phase. This phase serves as a crucial evaluation step to assess the model’s
generalization capabilities on entirely new but related data.
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Figure 4. Architecture of our approach. (a) Meta-training stage: the model optimizes its initial
random parameters θ for different tasks. (b) Meta-testing stage: the model uses the generalized
parameters θ′ and fine-tunes them for the new task. (c) Testing stage: the model is evaluated on an
unseen dataset but belongs to the same testing task using the fine-tuned parameters θ′′.
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Figure 5. Meta-learning in MAML algorithm.

4.2. Backbone Network

The standard U-Net was originally constructed as a fully convolutional network and
adapted to function with a reduced set of training images. The 3D U-Net [63] serves as an
extension of U-Net specifically designed for the volumetric segmentation of 3D medical
images, such as CT or MRI scans. Unlike its predecessor, it employs 3D convolutions to
capture features from the entire image volume of the image rather than individual 2D slices.

Our approach adopts an enhanced version of U-Net [17] as the baseline network, lever-
aging its numerous advantages. These advantages will be elaborated upon in subsequent
paragraphs. Additionally, we tailor this network into a 3D U-Net, utilizing 3D convolutions
to address the high-dimensional nature of the data.

The enhanced U-Net extends the original U-Net architecture by incorporating layers
in the encoding and decoding stages defined using residual units. In the encoding part,
each box is labeled with the output volume shape and is implemented with a residual
unit. In the decoding part, each box is implemented with an upsampling unit, maintaining
similar output volume dimensions and levels as the encoding layer. The utilization of
Parametric Rectifying Linear Unit (PReLU) enhances activation learning, resulting in
improved segmentation [17]. PReLU is a generalized parametric formulation of ReLU and
can be defined as follows [64]:

f (yi) =

{
yi if yi > 0
αiyi if yi <= 0

(2)

The variable yi represents the input to the activation function from the i layer, where
i denotes the number of channels. Each layer learns the same slope parameter, denoted
as αi. Additionally, the enhanced U-Net incorporates instance normalization to mitigate
contrast variations, ensuring that input images are not influenced by varying contrast levels
when batched together with images having different contrast ranges. As illustrated in
Figure 6, the enhanced U-Net utilizes convolutions with a stride of two for down-sampling
and transpose convolutions with a stride of two for up-sampling, instead of using pooling
and unpooling layers. These adjustments enable the network to learn the most effective
down-sample and up-sample operations while reducing the number of layers within the
network’s units [17]. Moreover, we set the input channels to one, signifying that our mask
images have only one channel, either zeros or ones. For the output channels, we set it to
two, one channel for the background and the other channel for the foreground. In other
words, the output channels correspond to the number of classes. Additionally, we set the
network’s dropout to 0.1, as the dropout is a widely adopted regularization technique to
prevent a network from overfitting during the training phase [65]. Finally, we used batch
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normalization, a technique used to normalize the activation in the intermediate layers of
the network. Batch normalization enhances training speed and accuracy [66].

Figure 6. The enhanced U-Net architecture [17].

5. Experimental Results and Discussion

This section presents the results and analysis of the experiments, including findings
obtained from two datasets under two experimental settings: 10-shot and 5-shot scenarios.
Section 5.1 includes an overview of the comprehensive datasets. Furthermore, Section 5.2
presents the experimental settings. Section 5.3 shows the meta-learning results, Section 5.4
discusses the one-way 10-shot results, while Section 5.5 provides a comparative analysis,
where the one-way five-shot results are presented and compared against different methods
regarding accuracy, time efficiency, and the number of parameters. It also presents the
performance of our models by testing them on the hospital dataset. Finally, Section 5.6
provides a further discussion.

5.1. Datasets

We used two distinct datasets. The first one is the publicly available TotalSegmentator
dataset [67], which is summarized in Section 5.1.1. This dataset played a primary role in
both meta-training and meta-testing. The second dataset was obtained from a local hospital
and was employed to assess the performance of the final models presented in Section 5.1.2.

5.1.1. TotalSegmentator Dataset

As part of our experiment, we trained our models using the publicly available TotalSeg-
mentator dataset [67], which encompasses a diverse range of medical images depicting
various health conditions. This dataset comprises 1204 CT images, with segmentation
provided for 104 anatomical structures, including 27 organs, 59 bones, 10 muscles, and
8 vessels. All images are in 3D NIfTI format, exhibiting distinct sizes and slice num-
bers. Annotations for the images were performed using public AI models whenever
available, and subsequent manual refinement of segmentations was conducted as needed.
For anatomical structures lacking an AI for automatic segmentation, manual annotation
was carried out. The refinement and manual segmentation processes were overseen by
board-certified radiologists.
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Due to hardware limitations, we narrowed our focus to four specific anatomical
structures: the liver, spleen, right kidney, and left kidney. More precisely, we randomly
selected 50 3D images, each paired with 200 corresponding anatomical structure masks.

5.1.2. Hospital Dataset

The hospital dataset was collected following the receipt of ethical approval No. 10-
EP-2023. The dataset comprises five 3D images obtained from a public hospital in Saudi
Arabia. Specifically, Siemens SOMATOM Perspective CT Scanner with a mm slice thickness
was used for image acquisition. Table 1 provides information on the gender and age of
each patient. Each image was meticulously annotated, encompassing segmentation details
for four organs: liver, spleen, right kidney, and left kidney. In total, the dataset consists
of five CT images and 20 segmentation images, all in NIfTI format. The annotations were
performed using a 3D Slicer by a radiology specialist.

Table 1. Details of hospital dataset.

Patient Number Gender Age

1 Male 41
2 Female 29
3 Male 27
4 Male 32
5 Female 38

5.2. Experimental Setup
5.2.1. Task Generation

The MAML algorithm trains a model using a task distribution p(T). In our approach,
we focused on four tasks, each corresponding to the segmentation of a specific organ: the
liver, spleen, right kidney, and left kidney. Figure 7 displays these four human organs.
We employed N-way k-shot learning in all experiments, where N represents the number
of tasks, and k denotes the number of images per task. We conducted four experiments,
training four models on three tasks during meta-training, while reserving the last task for
meta-testing. This final task remains unseen during meta-training, providing insight into
how well the model generalizes to new tasks. During the meta-training phase, each task
comprises ten images in a support set and an additional ten in a query set. Furthermore, ten
images were used to assess the meta-training models. In meta-testing, we utilized twenty
unseen images, with ten or five for training and the remaining ten for testing. Table 2
provides detailed information for each experiment. Throughout all tables and figures, we
denote “right” as “R” and “left” as “L” for clarity.

Figure 7. Internal organs of the human body.
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Table 2. Number of 3D images utilized per task during both meta-training and meta-testing in each
Experiment E.

E
Meta-Training Meta-Testing

Task1 Task2 Task3 Support-Set Query-Set Testing Task4 Training Testing

1 Spleen L Kidney R Kidney 10 10 10 Liver 10/5 10
2 Liver L Kidney R Kidney 10 10 10 Spleen 10/5 10
3 Liver Spleen L Kidney 10 10 10 R Kidney 10/5 10
4 Liver Spleen R Kidney 10 10 10 L Kidney 10/5 10

5.2.2. Implementation

The implementation was carried out using a cloud service with GPU support. The
server’s CPU was an Intel(R) Xeon(R) CPU @ 2.20 GHz, and the GPU used was the NVIDIA
A100-SXM4-40 GB. All experiments were conducted using the Monai [26] framework.
Initially, Monai transforms were applied to standardize the intensity range to −200 and
200 and to resize the images to 128 × 128 × 256 for the TotalSegmentator dataset and
128× 128× 128 for the hospital dataset. The network dropout was set to 0.1, and batch
normalization was implemented. The network underwent training from scratch using the
dice loss until convergence, employing a batch size of 1. An early stopping strategy was
applied with a patience parameter set to twenty for meta-training and ten for meta-testing.
Parameters were updated using the Adam optimizer, incorporating a learning rate alpha
value of 1 × 10−4, a beta value of 1 × 10−6, and a weight decay of 1 × 10−5. DSC served
as the primary metric to gauge the performance of all experiments. Additionally, for the
final test, other metrics such as the IoU and HD were employed. Table 3 summarizes
the hyperparameters.

Table 3. Hyperparameters used in our experiments.

Parameter Value

Batch size 1
Dropout 0.1

Optimizer Adam
α 1 × 10−4

β 1 × 10−6

Weight decay 1 × 10−5

5.3. Meta-Training

For all the experiments presented in Table 2, the meta-training phase yielded promising
results, showcasing the models’ capability to acquire generalized knowledge (parameters).
This acquired knowledge can be effectively transferred to unseen tasks, leading to a reduction
in the required number of images and resources for training. The MAML model’s generaliza-
tion ability stems from its training on diverse tasks, where each training task encompasses
data specific to that particular task. These tasks can be drawn from a distribution of tasks,
and the variability introduced is crucial for generalization. It compels the model to capture
common patterns and relevant features across a spectrum of tasks. To demonstrate the success
of the proposed approach, we evaluated the accuracy of the generalized parameters for each
experiment using the DSC. The results are visualized Figure 8.
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(a) Meta-training result of E1

(c) Meta-training result of E3

(b) Meta-training result of E2

(d) Meta-training result of E4

Figure 8. Meta-learning result: DSC (%) VS epochs of all experiments Ei. (a) Meta-training result of
E1, (b) Meta-training result of E2, (c) Meta-training result of E3, (d) Meta-training result of E4.

5.4. Results of 1-Way 10-Shot

In this section, we assess our models using the TotalSegmentator dataset, where we set
N = 1 and k = 10. Specifically, we conducted the meta-testing, which constitutes the second
phase of our experiments, as outlined in Table 2. The mean DSC of our results is 87.62%,
the mean IoU is 80.91%, and the mean HD is 12.01 mm. The detailed results are presented
in Table 4, highlighting the models’ effectiveness in adapting to new unseen tasks with
only ten samples. Random slices for each task are illustrated in Figure 9, showcasing both
the Ground Truth (GT) masks and the corresponding predicted masks.

Table 4. Experimental results on all tasks using 10-shot and DSC (%), IoU (%), and 95% HD (mm).

Method Liver Spleen R Kidney L Kidney Mean

DSC 93.70 85.98 81.20 89.58 87.62
IoU 88.95 78.80 72.99 82.89 80.91
HD 20.55 10.03 14.53 2.92 12.01

Figure 9. Segmentation results on three slices for each task using 10-shot.

The liver segmentation predictions with a DSC of 93.70% consistently outperform
those for other tasks below 90%. This can be attributed to the liver’s relatively fixed, large
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shape, and distinct boundaries when compared to other organs. In contrast, segmentation
for other tasks presents challenges due to the variability in organ shape, size, location,
and orientation. To provide a more detailed analysis, we further scrutinized the results
by comparing the DSC for each individual image, rather than calculating the average.
Figure 10 displays the DSC for each image within every task. Notably, images within a task
exhibit normal variations in DSC, influenced by differences in image quality and the level
of detail in various features.

Figure 10. DSC results for each image in each task using 10-shot.

5.5. Results of 1-Way 5-Shot

In this section, we explore the impact of reducing the support set to half by setting
k = 5. Using a smaller value of k offers several advantages, including the ability to train
models effectively with relatively small datasets. This proves particularly beneficial in
cases involving rare abnormalities and diseases. Moreover, a smaller dataset reduces the
burden of data annotation, subsequently lowering annotation costs. The results for the
one-way five-shot experiment are presented in Table 5.

Table 5. The difference in DSC (%) between using 10-shot and 5-shot.

k Liver Spleen R Kidney L Kidney Mean

10 93.70 85.98 81.20 89.58 87.64
5 90.27 83.89 77.53 87.01 84.68

3.43 2.09 3.67 2.57 2.94

When comparing the k = 5 to k = 10 experiments, it is evident that the mean DSC
for all tasks decreased by 2.94%. This reduction is anticipated due to the decrease in data
volume. Based on the detailed comparison between the two sittings presented in Table 5, all
four organs—liver, spleen, right kidney, and left kidney—showed improvement in the DSC
when trained on a larger dataset (10-shot) compared to a smaller dataset (5-shot). However,
the degree of improvement varied between the organs. For the right kidney, the difference
in the DSC was the highest at 3.67%, indicating a significant improvement in segmentation
accuracy when using more training data. This suggests that the five-shot model struggled
more with right kidney segmentation than other organs. The spleen difference showed
a minor improvement compared to other organs with a value of 2.09%, suggesting the
model with five shots might have already captured the spleen’s features. The difference
in the liver was 3.43% and 2.57% for the left kidney, indicating a moderate improvement
compared to the other organs. While all organs benefited from more training data, the
right kidney showed the most significant improvement, suggesting it might require a more
extensive dataset or more focused training strategies for optimal segmentation accuracy.
Overall, the variation in results could be affected by different factors such as anatomical
complexity, natural anatomical variability, size and visibility, and data quality.
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In the following sub-sections, we expand our results by evaluating the performance
of our 5k model on various datasets and comparing it against different medical image
segmentation methods.

5.5.1. Comparison with Existing Medical Image Segmentation Methods

We evaluated our method on the TotalSegmentator dataset, targeting the four specified
tasks. Our approach demonstrated superior performance compared to other existing
medical image segmentation methods, including AHNet [36], Basic U-Net [30], U-Net [17],
and UNETR [34], for all tasks. The mean DSC across all tasks reached 84.68%, with an
HD of 11.92%. Tables 6 and 7 present the results of evaluating our approach against
these existing medical segmentation methods, utilizing a five-shot scenario and employing
various evaluation metrics. In these experiments, AHNet exhibited the lowest DSC of
50.11%, indicating a relatively lower match between predicted and actual segmentation
masks. Moving upwards, U-Net alone demonstrated better performance with a DSC of
65.10%. UNETR followed with a DSC of 68.16%, and BasicUNet achieved a DSC of 70.19%,
signifying improved segmentation capabilities. However, our approach emerged as the top-
performing method, showcasing its ability to learn effectively from limited training data
and generalize to new tasks with high accuracy. This is in contrast to the other methods,
which may require more annotated data to achieve comparable results. By outperforming
U-Net with a mean DSC increase of 19.58%, our approach demonstrates the effectiveness
of incorporating the MAML algorithm with the enhanced 3D U-Net. The segmentation
results of various methods on the TotalSegmentator dataset are visualized in Figure 11.

Table 6. Experimental results against existing medical segmentation methods on all tasks using
5-shot and DSC (%).

Method Liver Spleen R Kidney L Kidney Mean

AHNet [36] 58.96 47.51 47.02 46.93 50.11
Basic U-Net [30] 76.21 68.08 65.38 71.10 70.19

U-Net [17] 86.40 67.76 52.24 53.99 65.10
UNETR [34] 88.29 63.23 57.69 63.42 68.16

Our Approach 90.27 83.89 77.53 87.01 84.68

U-Net

Our Method

UNETR

 Basic U-Net 

AHNet 

Ground Truth

Liver Spleen R Kideny L Kideny

Figure 11. Segmentation results using different methods. The results show three slices for each task.
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Table 7. Experimental results against existing medical segmentation methods on all tasks using
5-shot and 95% HD (mm).

Method Liver Spleen R Kidney L Kidney Mean

AHNet 75.36 91.76 87.58 84.75 84.86
Basic U-Net 57.48 66.86 64.75 43.66 58.19

U-Net 31.04 88.42 80.41 78.38 69.56
UNETR 36.84 63.03 70.21 59.74 57.45

Our Approach 15.01 07.84 19.14 05.70 11.92

5.5.2. Evaluation on the Hospital Dataset

We conducted further evaluations of our models using a real-world dataset, enabling
an assessment of their performance and robustness. This evaluation aims to demonstrate
the potential utility of our models in real-world applications. Testing the data across all four
tasks, we achieved a mean DSC of 81.99%, an IoU of 74.72%, and an HD of 10.88 mm for
all tasks combined. Additional details can be found in Table 8, and Figure 12 displays the
segmentation result for randomly selected slices. The results highlight a high DSC for the
liver task, primarily due to the consistency of the liver among individuals. However, the
other tasks exhibited slightly lower DSC, influenced by two factors: first, the model’s lower
performance, and second, the inconsistency of the spleen and kidneys among individuals
in terms of size, position, and orientation. Figure 13 illustrates an example of the variation
in spleen characteristics among different individuals. Despite considering only five images,
our results underscore the robustness and reliability of our approach across all tasks.

Table 8. Experimental results using hospital dataset and DSC (%), IoU (%), and 95% HD (mm).

Metric Liver Spleen R Kidney L Kidney Mean

DSC 90.62 79.86 79.87 78.21 82.14
IoU 84.18 72.45 71.75 71.27 74.91
HD 7.77 6.84 14.85 9.88 9.84

Figure 12. The segmentation results obtained by our approach when applied to the hospital dataset.

Figure 13. Variation in spleen characteristics among individuals.

5.5.3. Robustness to Noise

We trained and evaluated our approach on the TotalSegmentator dataset, which pro-
vides a comprehensive and highly varied dataset, including data from different years,
resampled to 1.5 mm isotropic resolution, and various levels of ambiguity (e.g., struc-
tures highly distorted due to pathology). The dataset contains a wide range of different
pathologies, scanners, sequences, and institutions.

For further study of robustness to noise, we applied Gaussian noise to the hospital
dataset with a mean of 0.0 and a standard deviation of 0.2, simulating realistic noise
situations without significantly reducing image quality. Table 9 shows the results of the
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noisy images using DSC, IoU, and HD. The results demonstrate that our method maintains
a high level of accuracy despite the presence of noise, with only a minor decrease in the
mean DSC. For the original images, the mean DSC was 82.14%, while for noisy images,
the mean DSC was 82.12%. These results show that our approach can effectively handle
noise, ensuring reliable performance in clinical applications where noise is possible. Future
work will explore robustness to other types of noise and artifacts, further enhancing the
applicability of our method in diverse medical imaging scenarios.

Table 9. Experimental results using a noisy hospital dataset and DSC (%), IoU (%), and 95% HD
(mm).

Metric Liver Spleen R Kidney L Kidney Mean

DSC 90.66 79.71 79.92 78.41 82.12
IoU 84.23 72.36 71.79 71.44 74.96
HD 7.67 6.86 11.48 9.74 8.94

5.5.4. Method Efficiency

Time efficiency is crucial as it directly impacts speed and resource requirements.
Table 10 compares the time, while Table 11 compares the number of parameters used for
the different methods. Notably, our approach demonstrated improved time efficiency,
exhibiting a shorter execution time while maintaining a similar number of parameters as
U-Net. This efficiency is attributed to the fact that MAML does not expand the number of
learned parameters. These results affirm the effectiveness and efficiency of our approach.

Table 10. Comparison of the time efficiency among different methods, with time measured in seconds (S).

Method Liver Spleen R Kidney L Kidney Mean

AHNet 184.3 176.2 175 232.5 192
Basic U-Net 46.9 50.2 63.4 48.4 52.225

U-Net 58.4 111.8 79.2 94.1 85.875
UNETR 251.4 189.3 183.6 214.8 209.775

Our Approach 18.2 21.8 10.1 22.7 18.2

Table 11. Comparison of the number of parameters among different methods.

Method Number of Parameters

AHNet 38,134,944
Basic U-Net 5,749,410

U-Net 4,808,917
UNETR 93,404,386

Our Method 4,808,917

While most of the methods are based on the U-Net architecture, they differ in com-
plexity. This is due to the different architectural designs, including the number of layers,
types of layers, and connectivity types. Also, the integration with other architectures may
lead to more complexity. For instance, the complexity of UNETR compared with the U-Net
arises due to its integration of transformer components, sequence processing mechanisms,
and attention mechanisms. While the enhancements have shown a good performance, they
necessitate additional computational resources and architectural complexity.

5.6. Discussion

By training our models on a diverse set of tasks during the meta-training phase, we
achieve a generalized understanding of underlying patterns and structures within medical
images. This foundational knowledge, supported by the robust performance of parameters
θ
′

across all tasks (Section 5.3), empowers the models with remarkable adaptability to
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quickly grasp new tasks even when presented with limited samples during the meta-
testing phases (Sections 5.4 and 5.5). This impressive ability to apply knowledge to unseen
tasks, even with limited annotated images, is a testament to the transformative power
of generalization in medical image segmentation. Importantly, our models consistently
outperformed traditional supervised learning methods, further underscoring the value
of this approach. Moreover, successful testing on a hospital dataset validated the models’
cross-domain generalizability, ensuring their applicability to diverse clinical scenarios. The
exceptional performance of our models in both 10-shot and 5-shot scenarios resoundingly
affirms their effectiveness in resource-constrained settings. These remarkable results, as
measured by the DSC, IoU, and HD metrics, demonstrate the models’ exceptional ability
to extract maximum learning from minimal annotated images. This accomplishment
highlights the transformative potential of few-shot learning in medical image segmentation,
indicating a shift in addressing the challenges posed by limited data availability.

Notably, the improved 3D U-Net, when used as a baseline for MAML, achieved
impressive results while maintaining a compact model size similar to the baseline-enhanced
3D U-Net. This simple architecture, with its reduced computational requirements, has
significant implications for our field, where training models for various 3D medical image
tasks is crucial. By minimizing computational overhead, we enable greater accessibility
and scalability in medical image analysis.

6. Conclusions

In this paper, we integrated the MAML algorithm with U-Net to address the challenge
of medical image segmentation in scenarios with limited annotated images. Our approach
effectively learned efficient parameters that rapidly adapted to new tasks, yielding satisfac-
tory segmentations. This adaptability allows its application to diverse tasks in the future,
including those involving new organs, tumors, and rare diseases, thereby reducing training
time and resource requirements. We evaluated our method on the TotalSegmentator dataset
in two settings: 10-shot and 5-shot. To demonstrate its effectiveness, we tested our models
on a hospital dataset, showcasing their segmentation capabilities on real-world data. In
comparison to existing methods, our approach successfully improved the mean DSC by up
to 15.91%. Notably, relying solely on U-Net did not yield high results due to the limited
number of available images, as U-Net traditionally depends on large datasets for training.
The key differentiator of our approach lies in the rapid adaptability and learning capacity
of MAML, which enables the effective utilization of limited image datasets. This results in a
notable enhancement in accuracy and time efficiency. The learned initialization parameters
from the meta-training phase serve as a robust starting point for U-Net, contributing to the
overall success of our proposed method.

Training four models on distinct tasks using both datasets underscores the robustness of
our approach, particularly in liver segmentation. However, we acknowledge the challenge
of segmenting other organs due to their distinctive features, including variable shapes and
anatomical variations. Recognizing the pivotal role of preprocessing in enhancing training
results for medical images, we propose exploring varied processing techniques tailored to
each task. This tailored approach may yield superior segmentation outcomes compared to
a one-size-fits-all preprocessing strategy. Specifically, we plan to apply specific intensity
normalization and contrast enhancement techniques for each organ separately to better
highlight the organs. Additionally, we plan to use advanced filtering techniques such as
anisotropic diffusion to reduce noise and preserve edges and fine details. Moreover, we
will explore the adaptive histogram equalization to improve the visibility of each organ.
Therefore, we will conduct comparative studies to evaluate the impact of each preprocessing
technique on segmentation performance for each organ, using various metrics, including
DSC, IoU, and HD. To further enrich this work, it would be valuable to address, and conduct
comprehensive accuracy assessments and comparative studies for specific challenges of data
scarcity and investigate clinical cases such as specific tumors or tuberculosis caverns in the
lung. This area of research warrants detailed exploration and could significantly enhance the
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applicability and robustness of the proposed approach. Moreover, it is worth investigating
Basic U-Net or UNETR as potential baseline networks for MAML, given their demonstrated
competitive DSC. However, this consideration comes with the caveat of increased resource
requirements due to the higher number of parameters involved. As part of our future
endeavors, we plan to augment the hospital dataset by incorporating images of unhealthy
organs. This expansion aims to create a more comprehensive dataset for our research.

Author Contributions: Conceptualization, methodology, A.M.A., E.A. and S.B.K.; data curation,
S.S.A. and A.M.A.; writing—original draft preparation, A.M.A.; writing—review and editing, E.A.
and A.A.; visualization, A.M.A.; supervision, E.A. and A.A. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported in part by the Deanship of Scientific Research, King Faisal
University under Grant 3796.

Institutional Review Board Statement: The study was approved by King Fahad Hospital-Hofuf
(KFHH No. (H-05-HS-065), Date: 2/15/2023).

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this research are available on request from the
corresponding author due to privacy.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Islam, S.M.S.; Nasim, M.A.A.; Hossain, I.; Ullah, D.M.A.; Gupta, D.K.D.; Bhuiyan, M.M.H. Introduction of Medical Imaging

Modalities. In Data Driven Approaches on Medical Imaging; Springer: Cham, Switzerland, 2023; pp. 1–25.
2. Webb, A. Introduction to Biomedical Imaging; John Wiley & Sons: Hoboken, NJ, USA, 2022.
3. Hussain, S.; Mubeen, I.; Ullah, N.; Shah, S.S.U.D.; Khan, B.A.; Zahoor, M.; Ullah, R.; Khan, F.A.; Sultan, M.A. Modern diagnostic

imaging technique applications and risk factors in the medical field: A review. BioMed Res. Int. 2022, 2022, 5164970. [CrossRef]
[PubMed]

4. Panayides, A.S.; Amini, A.; Filipovic, N.D.; Sharma, A.; Tsaftaris, S.A.; Young, A.; Foran, D.; Do, N.; Golemati, S.; Kurc, T.; et al.
AI in medical imaging informatics: Current challenges and future directions. IEEE J. Biomed. Health Inform. 2020, 24, 1837–1857.
[CrossRef]

5. Wang, R.; Lei, T.; Cui, R.; Zhang, B.; Meng, H.; Nandi, A.K. Medical image segmentation using deep learning: A survey. IET
Image Process. 2022, 16, 3523–3542. [CrossRef]

6. Bahadure, N.B.; Ray, A.K.; Thethi, H.P. Image analysis for MRI based brain tumor detection and feature extraction using
biologically inspired BWT and SVM. Int. J. Biomed. Imaging 2017, 2017, 9749108. [CrossRef] [PubMed]

7. Zambrano-Vizuete, M.; Botto-Tobar, M.; Huerta-Suárez, C.; Paredes-Parada, W.; Patiño Pérez, D.; Ahanger, T.A.; Gonzalez, N.
Segmentation of medical image using novel dilated ghost deep learning model. Comput. Intell. Neurosci. 2022, 2022, 6872045.
[CrossRef] [PubMed]

8. Thambawita, V.; Salehi, P.; Sheshkal, S.A.; Hicks, S.A.; Hammer, H.L.; Parasa, S.; Lange, T.D.; Halvorsen, P.; Riegler, M.A.
SinGAN-Seg: Synthetic training data generation for medical image segmentation. PLoS ONE 2022, 17, e0267976. [CrossRef]

9. Liu, X.; Song, L.; Liu, S.; Zhang, Y. A review of deep-learning-based medical image segmentation methods. Sustainability 2021, 13, 1224.
[CrossRef]

10. Jaiswal, A.; Babu, A.R.; Zadeh, M.Z.; Banerjee, D.; Makedon, F. A survey on contrastive self-supervised learning. Technologies
2020, 9, 2. [CrossRef]

11. Khadka, R.; Jha, D.; Hicks, S.; Thambawita, V.; Riegler, M.A.; Ali, S.; Halvorsen, P. Meta-learning with implicit gradients in a
few-shot setting for medical image segmentation. Comput. Biol. Med. 2022, 143, 105227. [CrossRef] [PubMed]

12. Wang, Y.; Yao, Q.; Kwok, J.T.; Ni, L.M. Generalizing from a few examples: A survey on few-shot learning. ACM Comput. Surv.
(CSUR) 2020, 53, 1–34. [CrossRef]

13. Wang, X.; Wang, H.; Zhou, D. Feature transformation network for few-shot learning. IEEE Access 2021, 9, 41913–41924. [CrossRef]
14. Finn, C.; Abbeel, P.; Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks. In Proceedings of the 2017

International Conference on Machine Learning (ICML), Sydney, Australia, 6–11 August 2017; pp. 1126–1135.
15. Zhang, J.; Xie, Y.; Wu, Q.; Xia, Y. Medical image classification using synergic deep learning. Med. Image Anal. 2019, 54, 10–19.

[CrossRef] [PubMed]
16. Khouloud, S.; Ahlem, M.; Fadel, T.; Amel, S. W-net and inception residual network for skin lesion segmentation and classification.

Appl. Intell. 2022, 52, 3976–3994. [CrossRef]

http://doi.org/10.1155/2022/5164970
http://www.ncbi.nlm.nih.gov/pubmed/35707373
http://dx.doi.org/10.1109/JBHI.2020.2991043
http://dx.doi.org/10.1049/ipr2.12419
http://dx.doi.org/10.1155/2017/9749108
http://www.ncbi.nlm.nih.gov/pubmed/28367213
http://dx.doi.org/10.1155/2022/6872045
http://www.ncbi.nlm.nih.gov/pubmed/35990113
http://dx.doi.org/10.1371/journal.pone.0267976
http://dx.doi.org/10.3390/su13031224
http://dx.doi.org/10.3390/technologies9010002
http://dx.doi.org/10.1016/j.compbiomed.2022.105227
http://www.ncbi.nlm.nih.gov/pubmed/35124439
http://dx.doi.org/10.1145/3386252
http://dx.doi.org/10.1109/ACCESS.2021.3065904
http://dx.doi.org/10.1016/j.media.2019.02.010
http://www.ncbi.nlm.nih.gov/pubmed/30818161
http://dx.doi.org/10.1007/s10489-021-02652-4


Diagnostics 2024, 14, 1213 23 of 25

17. Kerfoot, E.; Clough, J.; Oksuz, I.; Lee, J.; King, A.P.; Schnabel, J.A. Left-ventricle quantification using residual U-Net. In Statistical
Atlases and Computational Models of the Heart. Atrial Segmentation and LV Quantification Challenges: 9th International Workshop, STACOM
2018, Held in with MICCAI 2018, Granada, Spain, 16 September 2018; Revised Selected Papers 9; Springer: Cham, Switzerland, 2019;
pp. 371–380.

18. Aljabri, M.; AlGhamdi, M. A review on the use of deep learning for medical images segmentation. Neurocomputing 2022, 506, 311–335.
[CrossRef]

19. Polinati, S.; Dhuli, R. A review on multi-model medical image fusion. In Proceedings of the 2019 International Conference on
Communication and Signal Processing (ICCSP), Chennai, India, 4–6 April 2019; pp. 554–558.

20. Haque, I.R.I.; Neubert, J. Deep learning approaches to biomedical image segmentation. Inform. Med. Unlocked 2020, 18, 100297.
[CrossRef]

21. Jung, H. Basic physical principles and clinical applications of computed tomography . Prog. Med. Phys. 2021, 32, 1–17. [CrossRef]
22. Halford, J.J.; Clunie, D.A.; Brinkmann, B.H.; Krefting, D.; Rémi, J.; Rosenow, F.; Husain, A.; Fürbass, F.; Ehrenberg, J.A.; Winkler, S.

Standardization of neurophysiology signal data into the DICOM® standard. Clin. Neurophysiol. 2021, 132, 993–997. [CrossRef]
[PubMed]

23. Basheer, S.; Singh, K.U.; Sharma, V.; Bhatia, S.; Pande, N.; Kumar, A. A robust NIfTI image authentication framework to ensure
reliable and safe diagnosis. PeerJ Comput. Sci. 2023, 9, e1323. [CrossRef] [PubMed]

24. Larobina, M.; Murino, L. Medical image file formats. J. Digit. Imaging 2014, 27, 200–206. [CrossRef]
25. Fedorov, A.; Beichel, R.; Kalpathy-Cramer, J.; Finet, J.; Fillion-Robin, J.C.; Pujol, S.; Bauer, C.; Jennings, D.; Fennessy, F.; Sonka, M.; et al.

3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reson. Imaging 2012, 30, 1323–1341.
[CrossRef]

26. Cardoso, M.J.; Li, W.; Brown, R.; Ma, N.; Kerfoot, E.; Wang, Y.; Murrey, B.; Myronenko, A.; Zhao, C.; Yang, D.; et al. Monai:
An open-source framework for deep learning in healthcare. arXiv 2022, arXiv:2211.02701.

27. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings
of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany,
5–9 October 2015; pp. 234–241.

28. Siddique, N.; Paheding, S.; Elkin, C.P.; Devabhaktuni, V. U-net and its variants for medical image segmentation: A review of
theory and applications. IEEE Access 2021, 75, 82031–82057. [CrossRef]

29. Duanmu, H.; Kim, J.; Kanakaraj, P.; Wang, A.; Joshua, J.; Kong, J.; Wang, F. Automatic brain organ segmentation with 3D fully
convolutional neural network for radiation therapy treatment planning. In Proceedings of the 2020 IEEE 17th International
Symposium on Biomedical Imaging (ISBI), Iowa City, IA, USA, 3–7 April 2020; pp. 758–762.

30. Falk, T.; Mai, D.; Bensch, R.; Çiçek, Ö.; Abdulkadir, A.; Marrakchi, Y.; Böhm, A.; Deubner, J.; Jäckel, Z.; Seiwald, K.; et al. U-Net:
Deep learning for cell counting, detection, and morphometry. Nat. Methods 2019, 16, 67–70. [CrossRef] [PubMed]

31. Ibrahim, S.M.; Ibrahim, M.S.; Usman, M.; Naseem, I.; Moinuddin, M. A study on heart segmentation using deep learning
algorithm for mri scans. In Proceedings of the 2019 13th International Conference on Mathematics, Actuarial Science, Computer
Science and Statistics (MACS 2019), Karachi, Pakistan, 14–15 December 2019; pp. 1–5.

32. Yang, T.; Song, J. An automatic brain tumor image segmentation method based on the u-net. In Proceedings of the 2018 IEEE 4th
International Conference on Computer and Communications (ICCC 2018), Chengdu, China, 7–10 December 2018; pp. 1600–1604.

33. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

34. Hatamizadeh, A.; Tang, Y.; Nath, V.; Yang, D.; Myronenko, A.; Landman, B.; Roth, H.R.; Xu, D. Unetr: Transformers for 3d
medical image segmentation. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa,
HI, USA, 3–8 January 2022; pp. 574–584.

35. Jafari, M.; Auer, D.; Francis, S.; Garibaldi, J.; Chen, X. DRU-Net: An efficient deep convolutional neural network for medical
image segmentation. In Proceedings of the 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI 2020), Iowa
City, IA, USA, 3–7 April 2020; pp. 1144–1148.

36. Liu, S.; Xu, D.; Zhou, S.K.; Pauly, O.; Grbic, S.; Mertelmeier, T.; Wicklein, J.; Jerebko, A.; Cai, W.; Comaniciu, D. 3D anisotropic
hybrid network: Transferring convolutional features from 2D images to 3D anisotropic volumes. In Medical Image Computing and
Computer Assisted Intervention—MICCAI 2018: 21st International Conference, Granada, Spain, 16–20 September 2018; Proceedings, Part
II 11; Springer: Cham, Switzerland, 2018; pp. 851–858.

37. Kamiya, N. Deep learning technique for musculoskeletal analysis. In Deep Learning in Medical Image Analysis: Challenges and
Applications; Springer: Cham, Switzerland, 2020; pp. 165–176.

38. Huang, C.; Han, H.; Yao, Q.; Zhu, S.; Zhou, S.K. 3D U 2-Net: A 3D universal U-Net for multi-domain medical image segmentation.
In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Shenzhen,
China, 13–17 October 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 291–299.

39. Dong, H.; Yu, F.; Jiang, H.; Zhang, H.; Dong, B.; Li, Q.; Zhang, L. Annotation-Free Gliomas Segmentation Based on a Few Labeled
General Brain Tumor Images. In Proceedings of the 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI 2020),
Iowa City, IA, USA, 3–7 April 2020; pp. 354–358.

40. Chen, C.; Dou, Q.; Chen, H.; Qin, J.; Heng, P.A. Unsupervised bidirectional cross-modality adaptation via deeply synergistic
image and feature alignment for medical image segmentation. IEEE Trans. Med. Imaging 2020, 39, 2494–2505. [CrossRef]

http://dx.doi.org/10.1016/j.neucom.2022.07.070
http://dx.doi.org/10.1016/j.imu.2020.100297
http://dx.doi.org/10.14316/pmp.2021.32.1.1
http://dx.doi.org/10.1016/j.clinph.2021.01.019
http://www.ncbi.nlm.nih.gov/pubmed/33662849
http://dx.doi.org/10.7717/peerj-cs.1323
http://www.ncbi.nlm.nih.gov/pubmed/37346677
http://dx.doi.org/10.1007/s10278-013-9657-9
http://dx.doi.org/10.1016/j.mri.2012.05.001
http://dx.doi.org/10.1109/ACCESS.2021.3086020
http://dx.doi.org/10.1038/s41592-018-0261-2
http://www.ncbi.nlm.nih.gov/pubmed/30559429
http://dx.doi.org/10.1109/TMI.2020.2972701


Diagnostics 2024, 14, 1213 24 of 25

41. Peng, H. A Brief Summary of Interactions Between Meta-Learning and Self-Supervised Learning. arXiv 2021, arXiv:2103.00845.
42. Ma, Y.; Hua, Y.; Deng, H.; Song, T.; Wang, H.; Xue, Z.; Cao, H.; Ma, R.; Guan, H. Self-Supervised Vessel Segmentation via

Adversarial Learning. In Proceedings of the IEEE/CVF International Conference on Computer Vision (CVPR 2021), Nashville,
TN, USA, 10–17 October 2021; pp. 7536–7545.

43. Zhang, L.; Gopalakrishnan, V.; Lu, L.; Summers, R.M.; Moss, J.; Yao, J. Self-learning to detect and segment cysts in lung CT
images without manual annotation. In Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging
(ISBI 2018), Washington, DC, USA, 4–7 April 2018; pp. 1100–1103.

44. Li, K.; Zhang, Y.; Li, K.; Fu, Y. Adversarial feature hallucination networks for few-shot learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR 2020), Seattle, WA, USA, 13–19 June 2020; pp. 13470–13479.

45. Chen, X.; Li, Y.; Yao, L.; Adeli, E.; Zhang, Y. Generative adversarial U-Net for domain-free medical image augmentation. arXiv
2021, arXiv:2101.04793.

46. Kumar, V.; Glaude, H.; Campbell, W.M. A Closer Look At Feature Space Data Augmentation For Few-Shot Intent Classification.
In Proceedings of the 2nd Workshop on Deep Learning Approaches for Low-Resource NLP (DeepLo), Hong Kong, China,
3 November 2019; pp. 1–10.

47. Santoro, A.; Bartunov, S.; Botvinick, M.; Wierstra, D.; Lillicrap, T. Meta-learning with memory-augmented neural networks.
In Proceedings of the 2016 the 33rd International Conference on Machine Learning (ICML 2016), New York City, NY, USA, 19–24
June 2016; pp. 1842–1850.
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