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Abstract: Dynamic economic emission dispatch problems are complex optimization tasks in power
systems that aim to simultaneously minimize both fuel costs and pollutant emissions while satisfying
various system constraints. Traditional methods often involve solving intricate nonlinear load
flow equations or employing approximate loss formulas to account for transmission losses. These
methods can be computationally expensive and may not accurately represent the actual transmission
losses, affecting the overall optimization results. To address these limitations, this study proposes
a novel approach that integrates transmission loss prediction into the dynamic economic emission
dispatch (DEED) problem. A Random Forest machine learning model was offline-trained to predict
transmission losses accurately, eliminating the need for repeated calculations during each iteration
of the optimization process. This significantly reduced the computational burden of the algorithm
and improved its efficiency. The proposed method utilizes a powerful multi-objective stochastic
paint optimizer to solve the highly constrained and complex dynamic economic emission dispatch
problem integrated with random forest-based loss prediction. A fuzzy membership-based approach
was employed to determine the best compromise Pareto-optimal solution. The proposed algorithm
integrated with loss prediction was validated on widely used five and ten-unit power systems with
B-loss coefficients. The results obtained using the proposed algorithm were compared with seventeen
algorithms available in the literature, demonstrating that the multi-objective stochastic paint optimizer
(MOSPO) outperforms most existing algorithms. Notably, for the Institute of Electrical and Electronics
Engineers (IEEE) thirty bus system, the proposed algorithm achieves yearly fuel cost savings of USD
37,339.5 and USD 3423.7 compared to the existing group search optimizer algorithm with multiple
producers (GSOMP) and multi-objective multi-verse optimization (MOMVO) algorithms.

Keywords: air pollution; metaheuristics; pollution control; pareto optimal solutions; power generation
economics; power generation dispatch; random forest

1. Introduction

Using coal in power stations to produce electricity is inefficient, resulting in greenhouse
gases and other harmful gas emissions to the atmosphere [1]. For sustainable development
and to meet the stringent regulatory requirements, power plants that produce power using
coal or other fossil fuels are forced to reduce air pollution levels and minimize fuel costs.
To achieve these requirements, a multi-objective dynamic economic emission dispatch
(DEED) model was formulated in the literature to minimize the conflicting objectives of
the fuel cost and emission levels. When compared to the combined economic emission
dispatch (CEED) problem, a DEED problem is more complicated as it incorporates a time-
varying load pattern along with ramp-up and ramp-down limits of the generator. Finding
a solution to a DEED problem involves solving nonlinear and non-differentiable equations.
Traditional mathematical models that rely on solving derivatives will fail to solve the
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DEED problem when generator valve-point effects [2] are considered. Traditional methods
such as gradient-based optimization, linear programming, and heuristic methods struggle
with non-convex or large-scale DEED problems, where finding globally optimal solutions
becomes challenging. DEED is a bi-dimensional problem with linear and nonlinear equality
and inequality constraints. Finding a non-inferior solution for a specific time horizon in a
DEED problem requires a contemporary and robust multi-objective algorithm.

1.1. Solving Multi-Objective DEED Using Single-Objective Algorithm

The particle swarm optimization (PSO) algorithm using the goal attainment method
in [3], the evolutionary programming (EP) algorithm [4], and the pattern search (PS) method
used in [5] rely on the individual’s knowledge. Variants of the PSO in [6] named standard
PSO (SPSO), PSO with avoidance of worst location (PSOAWL), and PSO with gradually
increasing directed neighborhood (PSO GIDN), resulted in an improved information ex-
change between the particles of PSO. However, they considerably increased the complexity
of the algorithm. Variants of harmony search, such as NPAHS in [7] and enhanced harmony
search in [8], are capable of finding Pareto-optimal (PO) solutions to the DEED problem.
The efficient and enhanced differential evolution algorithm in [9] incorporates several local
parameters. However, tuning these local parameters is complicated. Normalized objective
functions were used in [8,9], along with an efficient strategy for constraint handling to
combine two objectives into a single-objective function. The real-coded genetic algorithm
in [10] combines multiple conflicting objectives using penalty factors which vary from one
test system to another. Hybrid algorithms have also been used to improve the capabilities
of the existing algorithms to solve the DEED problem. The hybrid algorithms in [11,12]
solve the complicated DEED problem considering periodic and seasonal loads. A single-
objective COOT optimization algorithm solves the DEED problem by combining conflicting
objectives using weights [13]. An improved mayfly algorithm was employed to solve the
CEED problem integrated with renewable energy sources [14].

The main drawback of employing single-objective algorithms to solve a bi-objective
DEED problem is that the conflicting objectives must be converted into an equivalent
single-objective function using penalty factors or weights. Furthermore, when PO solu-
tions are required, the single-objective algorithm must be run several times by changing
the weights during each run. Using a single-objective algorithm to solve a bi-objective
DEED problem introduces limitations in terms of Pareto optimality, objective prioritization,
solution diversity, and robustness. To address these drawbacks, employing multi-objective
optimization techniques specifically designed for bi-objective problems is essential to en-
sure a more comprehensive exploration of the solution space and to facilitate informed
decision-making.

1.2. Solving Multi-Objective DEED Using Multi-Objective Algorithm

The main advantage of using multi-objective algorithms to solve DEED problems is
that PO solutions are obtained in a single run. The real-coded genetic algorithm (RCGA)
and non-dominated sorting genetic algorithm II (NSGAII) in [15], and its improved version
in [16], have been used to obtain non-dominated solutions for a DEED problem in a single
run for a ten-unit system. The Pareto dominance-incorporated group search optimizer
algorithm with multiple producers (GSOMP) in [17] can successfully solve the DEED
problem. A multi-objective version of the single-objective differential evolution algorithm
in [18] and its enhanced version in [19] have employed a constraint handling management
technique that requires many computations to solve the DEED problem. A multi-objective
version of the differential evolution algorithm was hybridized with a simulated annealing
algorithm (MODE-SAT) [20] and employed to solve five-unit and ten-unit systems. To
reduce the computational burden in solving the DEED problem, a multi-objective proximal
policy optimization (MOPPO) algorithm was used in [21] along with the Markov decision
process, where most of the computations were transferred to offline. Furthermore, a trained
artificial neural network (ANN) and an improved fitness function were incorporated in [22]
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to solve the DEED problem. The drawbacks of the methods proposed in [21,22] are that
they require many hyperparameters to be tuned, and the PO solutions obtained are inferior
to many existing algorithms. A multi-objective salp swarm algorithm was employed in [23]
to obtain the PO solutions for 6-unit, 10-unit, and 14-unit test systems. The best compromise
solution was obtained using the fuzzy membership method. Many recent works have also
integrated renewable energy sources with DEED [24–26].

1.3. Modeling Transmission Loss in DEED Formulation

The two most widely used methods of transmission loss modeling are to use a single
B-loss coefficient for the 24 h in a day, as in [3–9,11,12,15,17,21,22]; or to solve load flow
equations, as in [16,18–20,27]. Both these models have a significant drawback when applied
to the DEED formulation. As load varies from hour to hour, using a single B-loss coefficient
for 24 h will result in an inaccurate transmission loss calculation. Solving the complex
power flow equations during each iteration to find the power loss dramatically increases
the computational efforts, increasing the convergence time. Various other approaches, such
as modeling using the quadratic equation in [28], loss prediction using an ANN in [29], and
other different methods are investigated in detail in [30]. This research tries to integrate a
machine learning-based algorithm to predict the transmission loss without increasing the
computational complexity. The literature survey indicates that the random forest algorithm
has not been used for transmission loss prediction so far; hence, this research attempts to
integrate transmission loss prediction using random forest in the DEED formulation.

2. Contribution

Traditionally, solving DEED problems involved incorporating losses computed using
intricate nonlinear load flow equations or by using approximate loss formulas, both of
which could be computationally expensive and the loss formula might not precisely capture
actual transmission losses. The authors have employed powerful algorithms to solve the
various economic dispatch formulations including the DEED problem in [31–38]. The
integration of the machine learning model into the DEED problem is not widely explored
in the literature. The authors were the first to attempt the integration of ANN into the
DEED formulation using multi-objective multi-verse optimization (MOMVO) [29].

Random forest is a powerful machine learning algorithm that has been effective for a
variety of prediction tasks. Thus, the innovation in this research lies in the integration of a
random forest machine learning model to predict transmission losses and its integration
in the dynamic economic emission dispatch (DEED) formulation. While DEED problems
are not new and have been tackled using various optimization methods, the introduction
of machine learning to accurately predict transmission losses is a novel approach. This is
the first attempt to integrate random forest into the DEED formulation that the authors are
aware of.

The use of a random forest machine learning model, offline-trained to predict these
losses, is a unique and innovative solution. In doing so, the method eliminates the need
for repeated calculations of transmission losses during each iteration of the optimization
process, significantly reducing the computational burden and improving efficiency. As
the transmission loss is predicted only once by the random forest model during a period
of dispatch, the proposed method reduces the algorithm’s complexity when compared
to employing B-loss coefficients or power flow equations. This integration significantly
reduces the computational burden of the DEED problem and improves its efficiency. The
novelty of the proposed approach lies in integrating the random forest-based transmission
loss prediction into the DEED formulation.

Further, the authors were motivated by the fact provided in [39] that there is always
room to create potent algorithms to tackle challenging problems. This fact inspired the
authors to utilize a newly developed MOSPO algorithm integrated with random forest
to find the Pareto-optimal solution to a very tough and highly challenging DEED prob-
lem. The integration of a powerful multi-objective stochastic paint optimizer and a fuzzy
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membership-based approach to determine the best compromise Pareto-optimal solution fur-
ther adds to the innovation. These elements collectively contribute to a more effective and
efficient solution to the DEED problem compared to existing algorithms in the literature.

3. Dynamic Economic Emission Dispatch Integrating Transmission Loss Prediction

In the dynamic economic emission dispatch model, the comparison of both objec-
tive functions holds significant importance in understanding the dual considerations of
economic efficiency and environmental impact. The economic objective focuses on min-
imizing the operational costs associated with power generation, such as fuel expenses
and maintenance costs. On the other hand, the emission objective aims to reduce the
ecological footprint by minimizing pollutant emissions during power generation. While
each objective serves a distinct purpose, the synergy between economic and emission con-
siderations becomes crucial for achieving a balanced and sustainable solution. Combining
both objectives allows decision-makers to identify a compromise that optimizes economic
efficiency while simultaneously adhering to environmental sustainability goals. The joint
optimization ensures that the power system operates with minimal cost and reduced emis-
sions, contributing to a more resilient and environmentally conscious energy infrastructure.
Therefore, the significance lies not only in evaluating each objective independently, but
also in recognizing the intricate balance achieved when both economic and environmental
factors are harmoniously integrated into the decision-making process.

3.1. Mathematical Model

DEED is a bi-objective optimization problem that tries to minimize the conflicting
fuel cost objective function f1(x) given in (1) and emission level function f2(x) given in (2)
during the time horizon T.

f1(x) = ∑ T
t=1

Np

∑
i=1

aiP2
i,t + biPi,t + ci +

∣∣∣disin
{

ei

(
Pmin

i − Pi,t

)}∣∣∣ (1)

f2(x) = ∑ T
t=1

Np

∑
i=1

[
kiP2

i,t + liPi,t + mi + niexp(qi Pi,t)
]

(2)

where x is a decision vector and the elements contain the schedules of the Np thermal
power generators given in (3):

x =
[
P1, P2, P3, · · · , PNp

]T (3)

For each generator in the objective function (1), the quadratic coefficient of the real
power is given by ai, the linear coefficient is given by bi, and ci is a constant. The coefficients
di and ei are used in (1) to model the valve point effect. Including the valve point effect
in (1) makes it nonlinear and non-convex. The coefficients ki, li, mi, ni, and qi are used to
model the pollution created by sulfur and nitrogen oxide emissions (2) [28].

During every hour t of the dispatch period, the conflicting objectives are minimized to
find the non-inferior solutions subject to equality and inequality constraints given in (4),
(6), and (7).

The constraint given in (4) ensures that at each hour t, the real power produced by
each thermal unit given by Pi,t must exactly match with the total demand Pdt plus the total
transmission loss at time t given by Plt. The transmission loss can be precisely computed
using complex load flow equations. To reduce the computation burden, the approximate
Kron’s formula given by (5) is used. The elements of the B-loss matrix of dimension NpxNp
are represented using B with subscripts in (5). In this research work, a random forest-based
loss prediction model replaces (5) to improve the loss modeling.

Np

∑
i=1

Pi,t − Pdt − Plt(x) = 0 (t = 1, 2, . . . , T) (4)
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Plt(x) =
Np

∑
i=1

Np

∑
j=1

Pi,tBijPj,t++
Np

∑
i=1

B0iPi,t+B00 (t = 1, 2, . . . , T) (5)

The ramp rate limits of the thermal units for the dispatch interval ∆t are given by (6).
URi is the ramp-up limit of the ith generator and DRi is the ramp-down limit of the
ith generator. {

Pi,t − Pi,t−1 ≤ URi∆t
Pi,t−1 − Pi,t ≤ DRi∆t

(6)

Each decision variable should lie between the lower bound Pmin
i and the upper bound

Pmax
i . This constraint is given by (7):

Pmin
i ≤ Pi,t ≤ Pmax

i ; i = (1, 2, · · · , Np), (t = 1, 2, . . . , T) (7)

3.2. Constraint Handling Mechanism

At each hour of the dispatch period and during each iteration of the multi-objective
algorithm, we must ensure that the schedule of the thermal generators lies within their
bounds. To achieve this, we need an efficient strategy to ensure the constraints are always
satisfied. Incorporating transmission losses and ramp-up and ramp-down constraints will
make it even more difficult to ensure they are satisfied during the entire time horizon.
The efficient constraint-handling strategy which randomly distributes the real power
transmission loss to increase the quality and diversity of the solution in [29] was employed
in this research work.

3.3. Fuzzy Decision-Making Approach to Select the Best Compromise Solution

Applying MOSPO to solve the DEED problem will result in multiple non-inferior
solutions, and we need to provide the operator with one compromise solution. To enable
this, the fuzzy decision-making approach available in [15–17,34] was employed in this
research work and the steps involved are shown below.

Step 1: Determine the minimum and maximum value of each objective. Let fm,min and
fm,max denote the minimum and maximum value of the mth objective.

Step 2: The membership function µim of the mth objective of the ith solution is deter-
mined using (8):

µim =


1 i f fim ≤ fm,min

fm,max− fim
fm,max− fm,min

0 i f fim ≥ fm,max

i f fm,min < fim < fm,max (8)

Step 3: The normalized membership function µi for each PO solution is calculated
using (9):

µi =
∑ M

m=1µim

∑I
i=1 ∑ M

m=1µim
(9)

Step 4: The PO solution with the maximum value of µi is selected as the best compro-
mise solution.

4. Multi-Objective Stochastic Paint Optimizer Algorithm

A stochastic paint optimizer (SPO) [40] algorithm to solve a single-objective problem
is inspired by painting on a canvas. The idea of the SPO is to find the ideal color to
be applied on the canvas (search space) by applying different color combinations using
complementary, analogous, tetradic, and triadic mixing. The main advantage of SPO is
that it has no internal parameters. SPO has been incorporated with an external archive,
grid mechanism, and leader selection mechanism to solve the multi-objective problem. The
multi-objective stochastic paint optimizer (MOSPO) [41] can solve multi-objective problems.
It has excellent exploration and exploitation characteristics. The archive-handling process



Energies 2024, 17, 860 6 of 24

and leader selection of the MOSPO algorithm are similar to the widely used multi-objective
particle swarm optimization algorithm proposed in [42]. The archive-handling process
involves the initialization of the archive, dominance check, archive update, and archive
size control. The leader selection process involves random initialization of leaders from the
archive, diversity calculation, the selection of new leaders, and replacement.

The selection of a multi-objective stochastic paint optimizer (MOSPO) to address
the dynamic economic emission dispatch (DEED) model was driven by its inherent ca-
pabilities to manage the stochastic and multi-objective complexities of the optimization
problem. MOSPO excels in providing robust solutions under the dynamic and uncertain
operating conditions commonly found in power systems. By simultaneously consider-
ing multiple conflicting objectives and efficiently exploring the solution space, MOSPO
identifies a diverse set of Pareto-optimal solutions. Its adaptability to changing conditions,
capacity to handle complex system constraints, and robust performance in navigating high-
dimensional optimization landscapes make MOSPO a well-suited and effective optimizer
for DEED, enabling a comprehensive exploration of economic and environmental trade-offs.

MOSPO is applied to obtain the PO solutions of the complicated and strenuous DEED
problem in this research work. Section 6 provides the procedure for obtaining the PO
solutions of the DEED problem using MOSPO. For each time t of the disptch period, the
MOSPO algorithm is carried out, incorporating the constraint handling procedure in [29].

5. Random Forest Machine Learning Model to Predict the Transmission Loss

Transmission loss prediction is a problem where the output is a continuous variable.
Decision trees are machine learning techniques that are pretty simple and very powerful
for regression problems with a continuous output. Decision trees segregate the decision
space into several simpler regions until a specific result is obtained. The end nodes have
continuous numbers in the case of regression problems. The decision tree algorithm
follows a top–down approach, and at each step, a variable from a dataset that splits the
decision spaces into regions is chosen. Different metrics are used for splitting nodes, and
these metrics measure the impurities of the region. Random forest algorithms are used
to overcome the problem of overfitting in decision trees, as it reduces the variance and
bias error. The random forest algorithm is an ensemble learning technique that consists of
multitudes of decision trees. The output of the random forest regressor is the mean of all
the values the different decision trees predict. Random forest regressors are very popular
in many fields, such as weather prediction, stock market prediction, and medical analysis.
In this research work, random forest regressors were used to predict the transmission
loss of a power system using the schedules of the generators as attributes. The MOSPO
algorithm and random forest-based loss prediction were carried out using MATLAB 8
on an H.P. Pavilion laptop, 1.8 GHz, Intel i7 processor, 16 GB RAM with WINDOWS 10
operating system.

5.1. Dataset for an IEEE 30 Bus System

The dataset was generated by repeatedly running a lossless DEED dispatch. To
repeatedly run the DEED, existing load profiles in [17,18] and randomly generated load
profiles which varied from a 3 per unit base load to 5.75 per unit base load were used. For
each hour of the dispatch, 100 Pareto-optimal solutions were generated. The schedules
obtained using the lossless dispatch will exactly match with the load demand Pdt at time
t. These Pareto-optimal solutions were used as the schedule for the generators while
solving the load flow analysis. The demand in each bus was proportionately changed to
match the demand of the DEED Pdt at time t. The load flow analysis was solved using
the Newton–Raphson algorithm 12,000 times to generate the dataset, and for each run, the
transmission loss was evaluated. For each run of the load flow analysis, the schedule of the
generators and the corresponding transmission loss were stored in an Excel file. During
load flow analysis, the voltage profile of the generators was 1.05 per unit. The effect of
the capacitor banks and tap-changing transformer were neglected. The box plot shown
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in Figure 1 captures the variation in the schedules of the generators and it also indicates
that for each generator the schedules lied within their respective maximum and minimum
limits. The training data are available in [29].
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Figure 1. Box plot of the dataset used for the training and testing of random forest model.

Table 1 provides a sample of the dataset with seven attributes and 12,000 rows.
The maximum and minimum value of the transmission loss Pl were 0.1363 p.u. and
0.0264 p.u., respectively.

Table 1. Sample data for training the random forest model to predict the transmission loss.

Row P1 P2 P3 P4 P5 P6 Pl

100 0.257 0.399 0.636 0.904 0.586 0.466 0.032
200 0.397 0.494 0.759 0.874 0.764 0.609 0.048
300 0.309 0.434 0.690 0.894 0.688 0.482 0.037
400 0.298 0.400 0.591 0.640 0.559 0.509 0.027
500 0.270 0.400 0.653 0.916 0.643 0.466 0.034

. . . . . . . . . . . . . . . . . . . . .
8000 0.184 0.363 0.597 0.949 0.579 0.413 0.029
9000 0.329 0.484 0.792 1.015 0.846 0.580 0.059

10,000 0.549 0.613 0.836 0.795 0.850 0.712 0.064
11,000 0.592 0.673 1.134 1.346 1.136 0.781 0.112
12,000 0.389 0.487 0.850 1.087 0.863 0.554 0.056

5.2. Random Forest Machine Learning Model

A random forest is a supervised machine-learning model that consists of multiple
decision trees [43]. Decision tree models are known to overfit, and hence to reduce the
problem of overfitting, an ensemble of decision trees called random forests is used for
prediction. The output of the random forest is the mean value of the output from all
the individual learners or the decision trees. Random forests employs a technique called
feature bagging, where only a subset of features is used during the growth of the individual
decision trees. A random forest regression model is an ensemble learning technique that
makes accurate predictions compared to any machine learning model [44].

The random forest model in MATLAB has been developed using the regression learner
app, which enables automated training to choose the best ensemble model. The train–test
split ratio was 70:30. In the dataset, a random split of 8600 data was used for training the
random forest model and the remaining 3400 data were used for testing the model. An
optimizable ensemble preset model in the application was used for model development,
including the option for hyperparameter tuning using Bayesian optimization and five-fold
cross-validation. Even though the K-fold cross-validation scheme needs multiple fits to
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access the predictive accuracy, it is preferred as it uses the available data efficiently and
works very well for a small dataset. Furthermore, Bayesian optimization techniques were
preferred over the most commonly used grid research or random search method, as these
techniques independently explore the whole range of possible parameter values without
considering the previous outcomes. Furthermore, as the number of hyperparameters
increases, the search time for the grid search and random search methods also increases
exponentially. To overcome these drawbacks, Bayesian optimization techniques, which
focus on promising areas of hyperparameter space, are employed, and this technique,
based on the information encountered so far, predicts the next set of hyperparameters [45].
The list of hyperparameters and their values are shown in Table 2. The value of the
hyperparameters during tuning using the Bayesian algorithm is shown in Table 3. The
maximum objective function evaluations were set to 30. The best hyperparameter, which
reduced the objective function value, is shown in bold. The mean squared error (MSE)
obtained during tuning of hyperparameters is shown in Figure 2. The total time taken for
hyperparameter tuning was 430 s.

Table 2. List of hyperparameters and their value employed during tuning using Bayesian
optimization.

Hyperparameters Values

Ensemble Method Bagging, LSBoost
Number o f Learners 10–500

Learning Rate 0.001–1
Minimum Lea f size 1–6000

Number o f predictors to sample 1–6

Table 3. Values of the hyperparameters during each iteration of tuning.

Iteration Ensemble Method Number of Learners Learning Rate Minimum Leaf Size Number of Predictors
to Sample Observed MSE

1 Bagging 38 - 2 1 1.4 × 10−6

2 LSBoost 32 0.00105 51 4 1.4 × 10−6

3 LSBoost 12 0.00486 2158 1 1.4 × 10−6

4 LSBoost 13 0.99533 4 4 1.4 × 10−6

5 Bagging 231 - 73 3 1.4 × 10−6

6 LSBoost 118 0.0378 2 6 1.4 × 10−6

7 Bagging 96 - 11 3 1.4 × 10−6

8 LSBoost 373 0.3402 3233 5 1.4 × 10−6

9 LSBoost 113 0.0627 12 4 1.4 × 10−6

10 Bagging 174 - 2 4 1.2 × 10−6

11 Bagging 40 - 3 4 1.2×10−6

12 Bagging 35 - 2 1 1.2 × 10−6

13 LSBoost 389 0.5535 595 5 1.2 × 10−6

14 LSBoost 243 0.2233 2 6 7.9 × 10−7

15 LSBoost 42 0.00352 21 5 7.9 × 10−7

16 LSBoost 248 0.2223 1 5 7.9 × 10−7

17 LSBoost 349 0.6527 35 3 7.9 × 10−7

18 LSBoost 21 0.0186 3557 5 7.9 × 10−7

19 LSBoost 123 0.37415 59 3 7.9 × 10−7

20 LSBoost 299 0.0014 4 2 7.9 × 10−7

21 LSBoost 23 0.95046 2031 1 7.9 × 10−7

22 LSBoost 34 0.02568 33 2 7.9 × 10−7

23 Bag 65 - 1 4 7.9 × 10−7

24 LSBoost 24 0.0384 6 3 7.9 × 10−7

25 LSBoost 55 0.001022 3 6 7.9 × 10−7

26 LSBoost 36 0.001024 28 6 7.9 × 10−7

27 LSBoost 14 0.21566 2 6 7.9 × 10−7

28 LSBoost 10 0.9655 1 6 7.9 × 10−7

29 LSBoost 11 0.06552 5203 6 7.9 × 10−7

30 LSBoost 11 0.0189 63 6 7.9 × 10−7
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The best model had a root mean square of 0.0011571, an R-squared value almost equal
to one, and a mean squared error value of 1.22 × 10−6, which was very close to the ANN
model [29] whose mean squared error value was 1 × 10−8. These statistical measures
indicate that the random forest model could accurately predict transmission loss. The
accuracy of the prediction of the trained model is indicated by the response plot shown in
Figure 2.

A 45-degree line in Figure 3 indicates that the random forest ensemble was able to ac-
curately predict the transmission loss. Furthermore, the variable plots shown in Figures 4–9
indicate that the error was significantly less between actual and predicted values.
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The random forest regression model, meticulously developed and fine-tuned using
MATLAB’s regression learner app, emerged as a powerful tool for predicting transmission
loss. Its ensemble nature, composed of multiple decision trees, effectively mitigates the
risk of overfitting associated with individual tree models. Through the use of feature
bagging and Bayesian optimization with five-fold cross-validation, the model demonstrated
robustness and efficiency in training. The careful selection of hyperparameters detailed in
Table 3 resulted in a mean squared error of 1.22 × 10−6, showcasing the model’s exceptional
accuracy. Key statistical measures, including a root mean square of 0.0011571 and an R-
squared value approaching unity, affirmed the precision and reliability of the model. Visual
representations, such as the response plot in Figure 2 and variable plots in Figures 4–9,
further underscore the proficiency of the random forest ensemble in accurately predicting
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the transmission loss. The thorough evaluation from hyperparameter tuning to statistical
metrics and visual representations collectively supported the assertion that the meticulously
crafted and optimized random forest regression model stands as a robust and accurate tool
for predicting the transmission loss, contributing both to predictive modeling advancements
and practical insights into transmission loss dynamics in the studied dataset.
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6. Proposed Algorithm for DEED Incorporating Random Forest Based Loss Prediction

The lossless dispatch DEED problem is easier to solve and converges rapidly com-
pared to the DEED problem incorporated with real power transmission losses. Hence, the
MOSPO algorithm was developed only to solve a lossless dispatch to satisfy the demand
Pdt at any moment t of the dispatch period until the algorithm reaches a quarter of the
maximum iteration value. When the iteration counter is equal to a quarter of the maximum
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iteration value, the MOSPO algorithm using the fuzzy decision approach [18–20,46] selects
the best compromise solution from the list of available compromise solutions. The schedule
of the generators available in the best compromise solution is used as an input to the
trained random forest model to predict the transmission loss Plt. Until the iteration counter
reaches the maximum value, the MOSPO algorithm will only run a lossless dispatch, with
the demand increased to demand plus losses Pdt + Plt. Once the MOSPO algorithm is
completed, the best compromise solution is selected based on the fuzzy decision-making
approach. The main advantage of the proposed algorithm lies in the fact that load flow
equations are not solved to find the transmission loss, nor are B-loss coefficients used, but
only an offline-trained random forest model predicts the transmission loss once during the
algorithm. The algorithmic steps of the proposed algorithm using MOSPO are provided in
Figure 10 with the novelty indicated in orange color. The main advantage of the MOSPO
algorithm compared to widely used algorithms, such as MOPSO and hybrid NSGAII-
MOPSO algorithms, is that it has the fewest parameters compared to any other algorithm.
When the number of parameters increases, finding the ideal combination becomes cum-
bersome. MOSPO has only 6 parameters, MOPSO has 9, and the hybrid NSGAII-MOPSO
algorithm has 14 parameters.

Energies 2024, 17, 860 13 of 26 
 

 

NSGAII-MOPSO algorithms, is that it has the fewest parameters compared to any other 
algorithm. When the number of parameters increases, finding the ideal combination be-
comes cumbersome. MOSPO has only 6 parameters, MOPSO has 9, and the hybrid 
NSGAII-MOPSO algorithm has 14 parameters. 

Figure 10. Cont.



Energies 2024, 17, 860 13 of 24Energies 2024, 17, 860 14 of 26 
 

 

 

Figure 10. Proposed algorithm to solve the dynamic economic emission dispatch. 

The proposed algorithm for dynamic economic emission dispatch (DEED) embodies 
a strategic approach, leveraging the multi-objective stochastic paint optimizer (MOSPO) 
framework and integrating a random forest-based loss prediction to efficiently address 
real power transmission complexities. Initially employing lossless dispatch for rapid con-
vergence, MOSPO dynamically transitions to consider transmission losses using a trained 
random forest model. The algorithm’s distinctive feature lies in its ability to bypass load 
flow equations and B-loss coefficients, relying solely on the predictive capabilities of the 
random forest model. This streamlined approach not only enhances computational effi-
ciency but also minimizes the need for iterative calculations. Illustrated in Figure 10, the 
algorithmic steps showcase the novelty in orange, emphasizing the unique contributions. 

Figure 10. Proposed algorithm to solve the dynamic economic emission dispatch.

The proposed algorithm for dynamic economic emission dispatch (DEED) embodies
a strategic approach, leveraging the multi-objective stochastic paint optimizer (MOSPO)
framework and integrating a random forest-based loss prediction to efficiently address
real power transmission complexities. Initially employing lossless dispatch for rapid
convergence, MOSPO dynamically transitions to consider transmission losses using a
trained random forest model. The algorithm’s distinctive feature lies in its ability to bypass
load flow equations and B-loss coefficients, relying solely on the predictive capabilities of
the random forest model. This streamlined approach not only enhances computational
efficiency but also minimizes the need for iterative calculations. Illustrated in Figure 10, the
algorithmic steps showcase the novelty in orange, emphasizing the unique contributions.
Critically, MOSPO’s simplicity shines through with a minimal parameter set—only six
parameters—setting it apart from more complex algorithms such as MOPSO and hybrid
NSGAII-MOPSO. This simplicity expedites the search for optimal parameter combinations
and positions MOSPO as an efficient and effective tool for solving the DEED problem with
real-world power system constraints.
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7. Case Studies

In this section, the efficacy of the MOSPO algorithm in solving the DEED problem
with B-loss coefficients and using the proposed random forest regressor model is carried
out. First, the effectiveness of the MOSPO and its competitive performance is established
using 5 and 10 thermal units with valve point effects and a B-loss coefficient. Furthermore,
MOSPO is tested with an IEEE 30 bus test system consisting of six thermal units using
the proposed random forest-based loss prediction algorithm. The chosen case studies,
involving 5 and 10 thermal units with valve point effects, and the IEEE 30 bus test system
with 6 thermal units, are widely utilized in the literature. This selection allows for an easy
comparison of results with existing techniques, ensuring a comprehensive evaluation of the
MOSPO algorithm’s performance in addressing the DEED problem with B-loss coefficients.

Unless specified in the case study, the parameters of the MOSPO algorithm were set
as shown in Figure 10 and this was based on the recommendation in [41] demonstrating its
effectiveness in complex benchmark functions and also on the complexity of the test system
adopted. To ensure fairness, the parameters of the competing algorithms were obtained
from their respective research work and are summarized in Table 4 along with the MOSPO
algorithm. As seen from Table 4, the population of MOSPO was very reasonable and the
iteration count was the least when compared to any other algorithm.

Table 4. Parameters of the competing algorithms along with MOSPO.

Algorithm Parameters

PSO [3] Iterations = 300

EP [4] Iterations = 100 Population = 50

SPSO [6] Iterations = 3000 Acceleration coefficients C1 and C2 = 2.05
Constriction factor = 0.72984

PSOAWL [6] Iterations = 3000

Acceleration
coefficients C1 and

C2 = 1.845
Acceleration

coefficients C3 and
C4 = 0.205

Constriction
factor = 0.72984

Neighborhood
expansion speed

γ = 2

Initial number of
connections between

particles b = 3.

NPAHS [7] Iterations = 50,000 Harmony memory
size = 5

Harmony memory
consideration

rate = 0.99

Pitch adjustment
rate = 0.01 Width = 0.001

NEHS [8]

Iterations = 50,000 for
5 unit

Iterations = 100,000 for
10 unit

Harmony memory
size = 10

Harmony memory
consideration rate

close to 1

Pitch adjustment
rate = 0.3

Band width = 0.05,
0.0125, and 0.003125

EFDE [9]

Iterations = 5000 for
5 unit

Iterations = 20,000 for
10 unit

Population = 20 Adaptive mutation factor
Adaptive scaling and crossover probability

DE-SQP
PSO-SQP [12]

Iterations = 20,000
Population = 60

Mutation
factor = 0.423

Crossover
probability = 0.885

Acceleration
coefficients C1 and

C2 = 2.25

Adaptive inertial and
constriction factor

NSGAII [15] Iterations = 100 Population = 20 Crossover
probability = 0.9 Mutation probability = 0.2

MODE [20] Iterations = 500,000 Population = 100
Adaptive scaling
factor between

0.3 and 0.9
Adaptive crossover rate between 0.1 and 0.9

MOPPO [21] Episode number = 1000 Epoch number = 10 Function
coefficient = 0.5

Entropy
coefficient = 0.01

Exploration standard
deviation = 0.5

MOMVO [29] Max Time = 400 Population = 100
Archive Size = 100

Exploitation
accuracy = 6

Wormhole existence probability between
0.2 and 1

MOSPO
Iterations = 40 for 5-unit system, IEEE

30 bus system
Iterations = 100 for 10-unit system

Population = 100 Archive size = 100 Alpha = 0.1 Beta = 4
Gamma = 2
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7.1. Case 1—Five-Unit Test System

The five-unit test system considered in [4] was employed in this case study. A dy-
namic economic dispatch was considered for a day with a dispatch interval of 1 h. The
transmission loss was modeled using the B-loss coefficients that are available in [4]. The
up-ramp limits for generators 1 to 5 were 30 MW/h, 30 MW/h, 40 MW/h, 50 MW/h,
and 50 MW/h respectively. The down-ramp limits for generators 1 to 5 were 30 MW/h,
30 MW/h, 40 MW/h, 50 MW/h, and 50 MW/h respectively. The proposed algorithm was
run 20 times. The time elapsed for each run, the total emission, and the total fuel cost
obtained for each run are summarized in Table 5. As seen from Table 5, the average time
required by the proposed algorithm to find the PO solutions for a 24 h dispatch with 1 h
intervals was 933.914 s. This time includes the convergence time of the algorithm along
with time for plotting the PO solutions for each hour, and the printing of results.

Table 5. Summary of the results obtained for five-unit test system.

Run Time Emission
(lbs) Fuel Cost ($)

1 1049.723 18,523.9 47,786.58
2 890.4258 18,572.14 47,384.56
3 1028.585 18,672.82 47,218.9
4 1006.217 18,552.32 47,238.85
5 945.2438 18,865.26 46,298.08
6 924.1873 18,690.57 47,746.91
7 900.312 18,592.19 47,165.49
8 897.8754 18,794.08 46,871.81
9 916.1342 18,451.84 48,379.4
10 912.8549 18,857.35 46,570
11 941.0269 18,436.18 48,221.11
12 942.2903 18,599.01 47,217.86
13 932.938 18,466.96 48,203.98
14 931.0885 18,525.5 47,337.87
15 891.3465 18,772.47 47,183.07
16 884.0648 18,626.94 47,082.39
17 974.1892 18,537.08 47,498.67
18 898.1882 18,533.54 47,399.39
19 887.9814 18,607.79 47,248.88
20 923.6068 18,487.68 47,783.05

Max 1049.723 18,865.26 48,379.4
Min 884.0648 18,436.18 46,298.08

Average 933.914 18,608.28 47,391.84

The PO solutions obtained using the MOPSO algorithm for the first twenty runs are
shown as red dots and the non-Pareto solutions are shown as black dots in Figure 11. The
compromise solution obtained using the fuzzy membership method is shown as a blue
dot in Figure 11. The generator schedules of the compromise solution are tabulated in
Table 6 along with the demand, the total generation, and the transmission loss for each
hour. The emission levels and fuel cost obtained for each hour are also tabulated. From the
schedules obtained we can observe that the minimum and maximum generator limits for
all generators were satisfied, along with the ramp limit constraints for the entire dispatch.

From Table 6, we can infer that the minimum demand of 410 MW occurred at 1 AM
and the maximum demand of 740 MW occurred at 12 noon. Even though the demand
pattern changed throughout the day, only one B-loss coefficient was used during the
dispatch period. As the B-loss coefficients are determined for a specific load level, use
of these coefficients will only result in an approximate loss calculation at all other load
levels. The main idea of this research is to overcome this drawback and to replace this
approximate B-loss formula with a transmission loss prediction. In this case study, the
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MOSPO algorithm was used along with approximate B-loss formula only to ensure the
fairness of the comparison with the existing algorithm
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Table 6. The schedules of the generators obtained for the dynamic dispatch for the five-unit system.

t
(h)

P1
(MW)

P2
(MW)

P3
(MW)

P4
(MW)

P5
(MW)

5
∑
i=1

Pi
Pdt

(MW)
Pl

(MW)
Emission

(lbs)
Fuel Cost

($)

1 22.07 98.39 116.35 126.77 50.00 413.58 410.00 3.58 407.62 1307.2
2 52.07 68.39 106.97 161.55 50.00 438.98 435.00 3.98 417.71 1535.1
3 75.00 87.00 146.97 111.55 59.11 479.63 475.00 4.63 470.85 1689.8
4 47.95 57.00 174.99 146.60 109.11 535.65 530.00 5.65 580.14 1778.4
5 74.99 86.98 134.99 180.19 87.23 564.38 558.00 6.38 614.37 1923.7
6 75.00 98.02 174.99 130.19 137.23 615.43 608.00 7.43 740.38 1970.9
7 75.00 85.58 134.99 165.15 173.19 633.91 626.00 7.91 810.86 1948.2
8 48.93 115.57 174.99 200.05 123.19 662.73 654.00 8.73 872.4 1926.2
9 75.00 88.42 164.73 209.06 162.42 699.63 690.00 9.63 961.05 2277.2

10 64.83 118.42 175.00 243.55 112.42 714.22 704.00 10.22 1037.2 2257.7
11 75.00 125.00 175.00 203.15 152.39 730.54 720.00 10.54 1039.2 2435.1
12 75.00 95.00 163.93 238.03 179.13 751.09 740.00 11.09 1147.5 2343.8
13 75.00 124.99 175.00 209.96 129.13 714.08 704.00 10.08 990.99 2407.1
14 75.00 100.46 175.00 180.31 168.80 699.57 690.00 9.57 957.73 2304.1
15 71.72 122.11 135.00 215.26 118.80 662.89 654.00 8.89 874.36 2024.9
16 75.00 92.11 174.98 165.26 79.53 586.87 580.00 6.87 669.66 1834.1
17 68.50 68.21 134.98 163.04 129.53 564.26 558.00 6.26 616.28 1936.5
18 65.24 98.21 174.98 197.65 79.53 615.61 608.00 7.61 751.75 1909.4
19 75.00 91.06 134.98 232.26 129.53 662.83 654.00 8.82 883.5 2093.3
20 66.38 121.06 174.98 182.26 169.36 714.04 704.00 10.04 1010.2 2114.2
21 75.00 102.51 175.00 217.54 119.36 689.41 680.00 9.41 922.46 2203
22 75.00 84.05 145.34 167.54 140.44 612.37 605.00 7.37 718.32 2029
23 75.00 59.85 105.34 202.17 90.44 532.80 527.00 5.80 595.5 1642.5
24 45.00 74.95 145.34 152.17 50.00 467.46 463.00 4.46 459.2 1507.2

Total 18,549.23 47,398.6

Figure 12 compares the total emission and total fuel cost of the dispatch obtained
using the MOSPO algorithm with several existing algorithms. In Figure 12, the red color
and bold indicate that the MOSPO algorithm could outperform the existing algorithms
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in that specific objective. Out of the 14 algorithms compared, MOSPO could outperform
five algorithms in both objectives, six algorithms in at least one objective, and it could not
outperform three algorithms in any objective.
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Figure 12. Comparison of the fuel costs and emissions obtained using the MOSPO algorithm with
the MOPPO [21], DE-SQP [12], PSO-SQP [12], PSO [3], NPAHS [7], EP [4], SA [5], PS [5], MODE [20],
MOHDE-SAT [20], EFDE [9], NEHS [8], MONNDE [22] and MOMVO [29] for the five-unit systems.
The red color and bold indicate that the MOSPO algorithm could outperform the existing algorithms
in that specific objective.

7.2. Case 2—Ten-Unit Test System

A widely used 10-unit test system was employed in this case study. The fuel cost
data for the ten thermal generators, the load profile, and a single B-loss coefficient for the
entire time horizon are available in [15], and the maximum iteration count for the MOSPSO
algorithm was set to 100. The stacked bar plot of the generator schedules is shown in
Figure 13. The schedule of the ten generators for each hour obtained using the MOSPO
algorithm is tabulated in Table 7.
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Table 7. The schedules of the generators obtained for the DEED for the ten-unit system.

t
(h)

P1
(MW)

P2
(MW)

P3
(MW)

P4
(MW)

P5
(MW)

P6
(MW)

P7
(MW)

P8
(MW)

P9
(MW)

P10
(MW)

10
∑
i=1

Pi
Pdt

(MW)
Pl

(MW)

1 150.00 135.00 73.61 103.96 124.22 129.81 92.53 120.00 80.00 45.93 1055.06 1036.00 19.06
2 150.00 135.00 86.67 119.75 135.46 147.10 102.68 120.00 80.00 55.00 1131.65 1110.00 21.65
3 150.00 135.00 138.54 131.34 185.46 160.00 130.00 120.00 79.93 55.00 1285.27 1258.00 27.27
4 150.00 192.57 168.70 148.32 235.46 160.00 130.00 120.00 80.00 55.00 1440.05 1406.00 34.05
5 150.19 217.50 201.50 160.59 243.00 160.00 130.00 120.00 80.00 55.00 1517.77 1480.00 37.77
6 218.88 224.81 231.74 210.59 243.00 160.00 129.99 120.00 80.00 55.00 1674.01 1628.00 46.01
7 226.13 230.30 261.42 246.40 243.00 160.00 130.00 120.00 80.00 55.00 1752.25 1702.00 50.25
8 225.95 256.09 291.47 269.39 243.00 160.00 130.00 120.00 80.00 55.00 1830.90 1776.00 54.90
9 296.83 280.69 323.70 300.00 243.00 160.00 130.00 120.00 80.00 55.00 1989.23 1924.00 65.23
10 325.68 341.14 340.00 300.00 243.00 160.00 130.00 120.00 80.00 55.00 2094.83 2022.00 72.83
11 350.57 407.43 340.00 300.00 243.00 160.00 130.00 120.00 80.00 55.00 2186.00 2106.00 80.00
12 390.77 415.12 340.00 300.00 243.00 160.00 130.00 120.00 80.00 55.00 2233.90 2150.00 83.90
13 325.28 395.93 340.00 300.00 243.00 160.00 130.00 120.00 80.00 55.00 2149.21 2072.00 77.21
14 296.97 315.93 288.76 300.00 243.00 160.00 130.00 120.00 80.00 55.00 1989.65 1924.00 65.65
15 242.11 244.03 291.89 265.11 243.00 160.00 130.00 120.00 80.00 55.00 1831.14 1776.00 55.14
16 162.11 164.03 211.89 269.39 243.00 160.00 130.00 120.00 80.00 55.00 1595.42 1554.00 41.42
17 150.00 156.65 203.33 219.39 243.00 160.00 130.00 120.00 80.00 55.00 1517.37 1480.00 37.37
18 196.19 219.10 237.51 233.03 243.00 160.00 130.00 120.00 80.00 55.00 1673.84 1628.00 45.84
19 233.04 273.82 268.06 268.20 243.00 160.00 130.00 120.00 80.00 55.00 1831.12 1776.00 55.12
20 306.37 306.39 340.00 300.00 243.00 160.00 130.00 120.00 80.00 55.00 2040.76 1972.00 68.76
21 291.75 307.42 302.21 300.00 243.00 160.00 130.00 120.00 80.00 55.00 1989.37 1924.00 65.37
22 211.75 227.42 222.21 250.00 243.00 160.00 130.00 120.00 55.05 55.00 1674.43 1628.00 46.43
23 150.00 147.42 147.60 200.00 193.00 160.00 130.00 120.00 59.39 55.00 1362.41 1332.00 30.41
24 150.00 135.00 106.45 150.00 143.00 160.00 129.45 120.00 59.36 55.00 1208.25 1184.00 24.25

Figure 14 compares the results obtained using the MOSPO algorithm with several
existing algorithms. In Figure 14, the red color and bold indicate that the MOSPO algorithm
could outperform the existing algorithms in that specific objective. The MOSPO algorithm
outperformed the following nine state-of-the-art algorithms: MOPPO [21], SPSO [6], NSGA-
II [15], IBFA [47], RCGA [15], MAMODE [19], CRO [11], HCRO [11], and MODE [20] in
both objectives. The MOSPO algorithm can outperform the following existing algorithms
MOMVO [29], PSOAWL [6], MOHDE-SAT [20], DE-SQP [12], PSO-SQP [12], EFDE [9],
NEHS [8], and MONNDE [22] in at least one objective.

Energies 2024, 17, 860 20 of 26 
 

 

Table 7. The schedules of the generators obtained for the DEED for the ten-unit system. 𝒕 (𝐡) 
𝑷𝟏 (𝐌𝐖) 

𝑷𝟐 (𝐌𝐖) 
𝑷𝟑 (𝐌𝐖) 

𝑷𝟒 (𝐌𝐖) 
𝑷𝟓 (𝐌𝐖) 

𝑷𝟔 (𝐌𝐖) 
𝑷𝟕 (𝐌𝐖) 

𝑷𝟖 (𝐌𝐖) 
𝑷𝟗 (𝐌𝐖) 

𝑷𝟏𝟎 (𝐌𝐖)  𝑷𝒊𝟏𝟎
𝒊ୀ𝟏  𝑷𝒅𝒕 (𝐌𝐖) 

𝑷𝒍 (𝐌𝐖) 

1 150.00 135.00 73.61 103.96 124.22 129.81 92.53 120.00 80.00 45.93 1055.06 1036.00 19.06 
2 150.00 135.00 86.67 119.75 135.46 147.10 102.68 120.00 80.00 55.00 1131.65 1110.00 21.65 
3 150.00 135.00 138.54 131.34 185.46 160.00 130.00 120.00 79.93 55.00 1285.27 1258.00 27.27 
4 150.00 192.57 168.70 148.32 235.46 160.00 130.00 120.00 80.00 55.00 1440.05 1406.00 34.05 
5 150.19 217.50 201.50 160.59 243.00 160.00 130.00 120.00 80.00 55.00 1517.77 1480.00 37.77 
6 218.88 224.81 231.74 210.59 243.00 160.00 129.99 120.00 80.00 55.00 1674.01 1628.00 46.01 
7 226.13 230.30 261.42 246.40 243.00 160.00 130.00 120.00 80.00 55.00 1752.25 1702.00 50.25 
8 225.95 256.09 291.47 269.39 243.00 160.00 130.00 120.00 80.00 55.00 1830.90 1776.00 54.90 
9 296.83 280.69 323.70 300.00 243.00 160.00 130.00 120.00 80.00 55.00 1989.23 1924.00 65.23 

10 325.68 341.14 340.00 300.00 243.00 160.00 130.00 120.00 80.00 55.00 2094.83 2022.00 72.83 
11 350.57 407.43 340.00 300.00 243.00 160.00 130.00 120.00 80.00 55.00 2186.00 2106.00 80.00 
12 390.77 415.12 340.00 300.00 243.00 160.00 130.00 120.00 80.00 55.00 2233.90 2150.00 83.90 
13 325.28 395.93 340.00 300.00 243.00 160.00 130.00 120.00 80.00 55.00 2149.21 2072.00 77.21 
14 296.97 315.93 288.76 300.00 243.00 160.00 130.00 120.00 80.00 55.00 1989.65 1924.00 65.65 
15 242.11 244.03 291.89 265.11 243.00 160.00 130.00 120.00 80.00 55.00 1831.14 1776.00 55.14 
16 162.11 164.03 211.89 269.39 243.00 160.00 130.00 120.00 80.00 55.00 1595.42 1554.00 41.42 
17 150.00 156.65 203.33 219.39 243.00 160.00 130.00 120.00 80.00 55.00 1517.37 1480.00 37.37 
18 196.19 219.10 237.51 233.03 243.00 160.00 130.00 120.00 80.00 55.00 1673.84 1628.00 45.84 
19 233.04 273.82 268.06 268.20 243.00 160.00 130.00 120.00 80.00 55.00 1831.12 1776.00 55.12 
20 306.37 306.39 340.00 300.00 243.00 160.00 130.00 120.00 80.00 55.00 2040.76 1972.00 68.76 
21 291.75 307.42 302.21 300.00 243.00 160.00 130.00 120.00 80.00 55.00 1989.37 1924.00 65.37 
22 211.75 227.42 222.21 250.00 243.00 160.00 130.00 120.00 55.05 55.00 1674.43 1628.00 46.43 
23 150.00 147.42 147.60 200.00 193.00 160.00 130.00 120.00 59.39 55.00 1362.41 1332.00 30.41 
24 150.00 135.00 106.45 150.00 143.00 160.00 129.45 120.00 59.36 55.00 1208.25 1184.00 24.25 

 

2,
49

3,
22

1 

2,
50

3,
80

0 

2,
67

9,
50

0 

2,
60

4,
40

0 

2,
54

6,
30

0 

2,
52

2,
60

0 

2,
51

7,
10

0 

2,
52

5,
10

0 

2,
51

4,
10

0 

2,
51

7,
80

0 

2,
51

7,
10

0 

2,
52

7,
60

0 

2,
52

8,
00

0 

2,
46

8,
80

0 

2,
47

0,
10

0 

2,
53

2,
70

0 

2,
53

3,
20

0 

2,
56

0,
00

0 

29
8,

33
8 

29
6,

88
0 

31
4,

82
0 

31
0,

75
0 

29
4,

55
0 

30
9,

94
0 

29
9,

04
0 

31
2,

46
0 

30
2,

74
0 

30
1,

94
0 

29
9,

07
0 

29
8,

05
0 

29
7,

76
0 

31
5,

64
0 

31
5,

07
0 

29
4,

99
0 

29
5,

12
0 

29
7,

82
0 

Fuel Cost in $ Emission in lbs

Figure 14. Comparison of the fuel costs and emissions obtained using the MOSPO algorithm with
the existing algorithms for the ten-unit systems. The red color and bold indicate that the MOSPO
algorithm could outperform the existing algorithms in that specific objective.
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7.3. Case 3—IEEE 30 Bus Test System

An IEEE 30 bus power system with six thermal generators was used in this case study.
The fuel cost and emission data are available in [17,18]. The ramp-up and ramp-down
limits were set at 0.5 p.u. The offline-trained random forest regression model presented in
Section 5 was used to predict the transmission loss during each hour of the dispatch period.
A base value of 100 MW was used for the per-unit calculations. All existing algorithms
except [29] use only one B-loss coefficient for the demand, which varies widely from a
based load of 3 p.u. to the peak load of 5.75 p.u. Using one B-loss coefficient for the entire
dispatch period will not provide an accurate transmission loss, but the trained random
forest model will be able to predict the loss accurately.

The proposed algorithm integrated with loss prediction was run 20 times and the
results obtained are summarized in Table 8. The load demand shown in column 2 of Table 9
was considered to obtain a comprehensive analysis. The average time the algorithm took to
converge was 1038.847 s. This time included the convergence time of the algorithm along
with loss prediction, time for plotting the PO solutions for each hour, and the printing of
results. The results indicate the robustness and consistency of the proposed algorithm in
obtaining reliable and feasible results. Comparing the maximum, minimum, and average
values of the time, emission, and fuel cost indicated the high level of convergence obtained
using the proposed algorithm in obtaining the PO solutions.

Table 8. Summary of the results obtained for IEEE 30 bus test system.

Run Time Emission
(lbs) Fuel Cost ($) Run Time Emission

(lbs) Fuel Cost ($)

1 1053.325 5.994373 25,824.72 11 1025.34 5.958727 25,846.53
2 1017.908 5.950465 25,861.09 12 1138.781 6.002332 25,814.56
3 1012.752 5.965218 25,841.02 13 1102.976 5.972242 25,839.13
4 1018.667 5.974769 25,844.07 14 1037.276 6.010266 25,816.18
5 1013.71 5.955149 25,857.12 15 1040.52 6.009722 25,823.46
6 1014.724 5.965142 25,841.33 16 1034.59 5.985644 25,833.88
7 1015.476 5.963196 25,848.1 17 1035.014 5.975186 25,833.62
8 1014.505 5.986876 25,820.08 18 1038.629 5.994643 25,823.39
9 1020.026 5.978975 25,832.06 19 1059.743 5.978423 25,836.58
10 1017.071 5.98509 25,824.91 20 1065.911 5.948667 25,850.73

Max 1138.781 6.010266 25,861.09
Min 1012.752 5.948667 25,814.56

Average 1038.847 5.977755 25,835.63

The results obtained for the 21st run of the proposed algorithm are shown in Table 9.
The maximum iteration count for the MOSPO algorithm was set as 40. Until the iteration
count reached 10 during every hour of the dispatch period, a lossless dispatch was carried
out, and when the count reached 10 the compromise solution obtained using the MOSPO
algorithm was used by the random forest model to predict the transmission loss. Using
this transmission loss, the total demand at that hour Pdt is increased to Pdt + Pl . Starting
from the iteration count 11 to 40, the MOSPO algorithm solves a lossless dispatch to satisfy
the demand Pdt + Pl . The fuzzy membership function is used at the end of the iteration
to find the best compromise solution. For example, let us take hour 5. Until the iteration
count reaches ten, the MOSPO algorithm solves a lossless dispatch to satisfy the demand
Pd5 = 3.35 p.u. When the count reaches 10, the random forest algorithm predicts the loss
for the compromise solution as 0.0357 p.u. From iteration count 11 to 40, the MOSPO
algorithm solves a lossless dispatch to satisfy a demand of 3.3857 p.u. A fuzzy membership
approach is applied to find the compromise solution at the end of the iteration, and the
schedules of the generators are shown in Table 8. The transmission loss obtained during
each hour of the dispatch period was cross-verified using power flow analysis, and the
loss obtained using power flow analysis exactly matches the loss predicted by the random
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forest algorithm. The PO solutions (red dot) and compromise solution (blue dot) for each
hour of the dispatch period for the IEEE 30 bus system are shown in Figure 15.

Table 9. The schedules of the generators obtained for the DEED using the MOSPO algorithm for the
IEEE 30 bus test system.

t
(h)

Pdt
(p.u.)

Pl
(p.u.)

P1
(p.u.)

P2
(p.u.)

P3
(p.u.)

P4
(p.u.)

P5
(p.u.)

P6
(p.u.)

6
∑
i=1

Pi
Emission

(ton)
Fuel Cost

($)

1 3.25 0.0332 0.2584 0.4633 0.6321 0.8005 0.6685 0.4604 3.2832 0.204574 710.313
2 3.9 0.0508 0.3811 0.5459 0.7808 0.8694 0.8058 0.5678 3.9508 0.211471 874.0063
3 3.5 0.0382 0.3352 0.4276 0.6987 0.8198 0.7326 0.5243 3.5382 0.205828 771.4103
4 3 0.0299 0.2533 0.4219 0.5394 0.7462 0.6075 0.4616 3.0299 0.201993 653.1154
5 3.35 0.0357 0.3006 0.4553 0.6967 0.7761 0.6549 0.5021 3.3857 0.203341 736.4617
6 4 0.049 0.425 0.5022 0.8152 0.9131 0.8075 0.586 4.049 0.214282 896.9822
7 4.75 0.0742 0.4919 0.5836 0.9437 1.1061 0.9829 0.716 4.8242 0.242413 1094.734
8 5.05 0.0821 0.5132 0.604 1.0204 1.2682 1.0245 0.7018 5.1321 0.26429 1172.912
9 5.45 0.1072 0.5878 0.6588 1.1086 1.3227 1.0941 0.7852 5.5572 0.28898 1293.243

10 5.2 0.0908 0.6152 0.6861 1.0208 1.2238 1.0195 0.7254 5.2908 0.264559 1224.479
11 5.5 0.1067 0.622 0.6602 1.0992 1.3169 1.1 0.8084 5.6067 0.289811 1309.338
12 5.75 0.1142 0.5922 0.7005 1.1992 1.4232 1.1176 0.8315 5.8642 0.319458 1379.691
13 5.25 0.0939 0.5444 0.5955 1.1011 1.2695 1.0676 0.7658 5.3439 0.276959 1231.984
14 5.15 0.0931 0.5868 0.6452 1.0503 1.1898 1.0199 0.7511 5.2431 0.262543 1209.895
15 4.75 0.0746 0.5177 0.5604 0.9733 1.121 0.9695 0.6827 4.8246 0.243563 1093.792
16 5.3 0.0985 0.5455 0.6467 1.042 1.3024 1.0978 0.7641 5.3985 0.279045 1247.837
17 5.15 0.0891 0.5574 0.6923 1.027 1.2146 1.0548 0.693 5.2391 0.264878 1207.298
18 5.75 0.1153 0.5982 0.713 1.1976 1.3999 1.1086 0.848 5.8653 0.316635 1381.709
19 5.25 0.0996 0.5382 0.665 1.0782 1.2492 1.0192 0.7998 5.3496 0.271746 1237.494
20 5.25 0.0968 0.5777 0.6798 1.0529 1.1919 1.0612 0.7833 5.3468 0.268065 1239.555
21 4.55 0.0677 0.4272 0.556 0.9101 1.1051 0.9212 0.6981 4.6177 0.236224 1038.153
22 4.25 0.058 0.4458 0.5249 0.9281 0.9673 0.836 0.6059 4.308 0.222762 961.2564
23 4.25 0.055 0.4314 0.5151 0.8731 0.9723 0.8996 0.6135 4.305 0.223021 959.5195
24 4 0.0503 0.4301 0.5327 0.763 0.9523 0.7995 0.5727 4.0503 0.214938 896.9213

Total 5.991378 25,822.1
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The results obtained using the MOSPO algorithm were compared with the GSOMP
algorithm in [17] and the MOMVO algorithm in [29]. The fuel cost and emission levels
obtained for the best compromise solution using the GSOMP algorithm and MOMVO algo-
rithm were USD 25,924.4 and 6.0041 ton, and USD 25,831.48 and 5.9666 ton, respectively.
The emission level obtained using the MOSPO algorithm was 5.9913 ton, which was almost
the same as the other existing algorithms. The savings in the fuel cost obtained using the
MOSPO algorithm are compared in Table 10. Table 10 shows the yearly savings obtained
using the MOSPO algorithm compared to the GSOMP algorithm and MOMVO algorithm,
and these were USD 37,339.5 and USD 3423.7, respectively. The time taken by the GSOMP
algorithm was 1262.93 s, and this algorithm could outperform the NSGAII and MOSPO al-
gorithms, as shown in [17]. The average time taken by the MOSPO algorithm was 1038.47 s,
and it was much faster when compared to the time taken by the GSOMP algorithm.

Table 10. Fuel cost savings obtained using the MOSPO algorithm for the IEEE 30 bus system.

Duration Compared Algorithms Fuel Cost
Savings in $

One day Proposed MOSPO with GSOMP [17] 102.3
One day Proposed MOSPO with MOMVO [29] 9.38

One Month Proposed MOSPO with GSOMP [17] 3069
One Month Proposed MOSPO with MOMVO [29] 281.4

One Year Proposed MOSPO with GSOMP [17] 37,339.5
One Year Proposed MOSPO with MOMVO [29] 3423.7

8. Conclusions and Future Research Direction

In conclusion, this study presents a pioneering approach to tackling the highly stren-
uous and challenging bi-objective dynamic economic emission dispatch (DEED) model.
The integration of a potent multi-objective stochastic paint optimizer (MOSPO) algorithm
proved effective in addressing the complexities of the DEED problem, showcasing its
superiority in solving both the fuel cost minimization and the pollutant emission reduction
objectives. A key innovation lies in the incorporation of a random forest regression model,
trained to predict the transmission loss specifically for the IEEE 30 bus system. This novel
integration of machine learning into the DEED model overcomes the challenges associated
with solving complex B-loss coefficients or conducting load flow analysis during each itera-
tion. The elimination of these computational burdens significantly enhances the efficiency
of the MOSPO algorithm.

This study initially establishes the effectiveness and superiority of the MOSPO al-
gorithm by comparing its performance on five-unit and ten-unit systems. The results
demonstrated that MOSPO outperforms most algorithms in at least one objective, affirming
its robustness in solving the DEED problem. Notably, the MOSPO algorithm exhibited
a faster convergence compared to the existing algorithms, further highlighting its effi-
ciency. Subsequently, the random forest model, incorporated into MOSPO, was applied
to solve the DEED for the IEEE 30 bus system. The achieved yearly fuel cost savings of
USD 37,339.5 (0.396%) and USD 3423.7 (0.036%) when compared to existing GSOMP and
MOMVO algorithms, respectively, underscoring the economic benefits of the MOSPO algo-
rithm. Beyond cost savings, the algorithm’s faster convergence adds another dimension to
its practical applicability in real-time power system operations.

Looking ahead, future research endeavors could delve into expanding the algorithm’s
applicability to even larger and more complex power systems. The integration of addi-
tional machine learning techniques or optimization algorithms could further enhance the
algorithm’s performance and broaden its scope. Improving the predictive capabilities of
the random forest model by incorporating real-time data and accommodating dynamic
changes in the power system remains an avenue worth exploring. Additionally, extending
the application of the proposed approach to address other optimization challenges within
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power systems, such as unit commitment or economic dispatch with renewable energy
sources, could contribute to a more comprehensive understanding of its capabilities.

In summary, future research should aim at advancing the algorithm’s adaptability,
refining its predictive capabilities, and exploring new domains within power system
optimization. These efforts would further solidify the MOSPO algorithm’s position as a
robust and efficient solution for dynamic economic emission dispatch problems, fostering
sustainability and efficiency in power system operations.
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