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Stability and dynamic analyses of hybrid laminates using refined 
higher-order zigzag theory

Dhiraj Biswasa, Rudraprasad Bhattacharyyab, and Chaitali Rayc 

aUniversity of Salford, Salford, UK; bCronus Technology Inc, Houston, Texas, USA; cIndian Institute of Engineering Science and 
Technology Shibpur, Shibpur, India 

ABSTRACT 
This article presents a comparative study on the stability and dynamic response of hybrid 
laminated composite plates over monolithically produced laminated composite plates. A 
Refined Higher-order Zigzag Theory (RHZT) is formulated and implemented using finite 
element method for the analysis of hybrid laminates. This formulation considers both the 
interlaminar shear stress continuity and shear-free boundary conditions at surfaces of the 
plates. The numerical implementation employs C0 continuous eight-noded isoparametric 
plate elements considering geometric nonlinearity. The element stiffness matrix is formu-
lated to consider both the linear and nonlinear terms of the strain-displacement equations. 
Derivation of the consistent mass matrix for a plate element is presented following the 
approximation of total kinetic energy and utilising Hamilton’s principle. Numerical examples 
are provided to demonstrate buckling and free vibration analyses (as eigenvalue problems). 
The results are numerically verified and validated using data from published literature. 
Finally, parametric studies are presented to demonstrate the effectiveness of fibre hybridisa-
tion approach on the buckling and free vibration behaviour of laminated composites.

KEYWORDS 
Hybrid laminated plate; 
refined higher-order zigzag 
theory; finite element 
method; buckling analysis; 
free vibration analysis   

1. Introduction

In the cost-effective smart design of laminated fibre com-
posite structures, hybridisation of fibre appears to be one 
of the promising approaches. In this approach incorporat-
ing layups with different materials and fibre orientations 
enables enhancement of tailor-made properties that can-
not be achieved by single filamentary of material. These 
properties may include superior strength to weight ratio, 
durability, corrosion resistance and adaptability. However, 
the laminated composites are weak in shear as compared 
to the extensional rigidity. This inevitable limitation along 
with multiple filamentary combination within hybrid lam-
inates increases the complexities to analyse this kind of 
structure accurately. As a consequence, the effect of shear 
deformations of laminated structures requires a complex 
numerical model to evaluate the realistic responses. 
Typically implementation of shear deformation formula-
tion within the computational framework makes the anal-
yses more challenging as that brings in additional 
degrees-of-freedom. Moreover, in engineering applica-
tions, such as automotive and marine and civil 

infrastructure sectors, laminated composite structures are 
not only subjected to static loads, but also to dynamic 
loads. Therefore, for the purpose of safe structural design, 
both stability and dynamic analyses need to be performed 
before practical application of hybrid laminated compo-
sites. In the stability analysis the buckling response of the 
composite structure is evaluated. On the other hand, free 
vibration analysis is performed to calculate the natural 
frequencies of the structure.

The Classical Laminate Theory (CLT) of Love- 
Kirchhoff [1] was significantly improved upon by several 
researchers in the second half of the last century. The 
problem of buckling and vibration response of laminates 
were evaluated using three-dimensional elasticity theory 
[2, 3]. However, two-dimensional theories gained signifi-
cant popularity due to the prohibitive computational 
cost of three-dimensional theories [4]. After the intro-
duction of the First-order Shear Deformation Theory 
(FSDT) [5, 6] composite laminates were analysed using 
two-dimensional methods (for example, plate theory), 
under different geometric and material effects [7–9], 
strain states [10] and boundary conditions [11, 12]. 
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However, due to dependence on the magnitude of the 
shear correction factor FSDT is unable to accurately pre-
dict laminate response. To overcome this limitation, 
Higher-order Shear Deformation Theory (HSDT) 
[13–15] was introduced by considering the higher order 
terms of Taylor’s series expansion of the displacement 
fields within the laminate. After implementing the 
HSDT in Finite Element Method (FEM), researchers 
performed buckling and free vibration analysis of com-
posite laminates with different geometric conditions and 
consideration of material heterogeneity and nonlinearity 
[16–22]. Over the past couple of decades the HSDT has 
been further refined to increase numerical accuracy 
[23–26]. The HSDT was developed based on the 
assumptions that lead to discontinuity of transverse 
shear stress in the laminate towards the through-thick-
ness direction. This through-thickness transverse shear 
stress discontinuity has an insignificant impact on the 
numerical solution of thin laminates. But this stress dis-
continuity leads to erroneous results for thick plates and 
hybrid laminates as the interlaminar stress equilibrium 
condition is not satisfied.

To alleviate the issue of discontinuity in the trans-
verse shear stress researchers proposed several methods 
such as layer-wise plate models [27–30], Discrete Layer 
Theory (DLT) [27–31]. These approaches are computa-
tionally expensive to employ for thicker laminates due 
to increase in the number of unknown variables. The 
complexity in numerical analysis was reduced by the 
introduction of various zigzag (ZZ) models, developed 
by Di Sciuva [32, 33], Liu and Li [34], Murakami [35], 
Tessler et al. [36–39].

In most of the zigzag models the in-plane displace-
ment field is represented with a combination of global 
and local displacement function. The major benefit of 
this type of model is that it satisfies the transverse shear 
stress continuity conditions at the layer interfaces. In 
addition, the number of unknowns in these plate models 
remain independent of the number of layers. The funda-
mental features of all the Refined ZZ plate theories are 
similar, but varies only in the mathematical expression 
of the refinement. Earlier development of the zigzag for-
mulations primarily considered FSDT as the global dis-
placement field. The FE implementation of the higher- 
order zigzag theories require C1 continuity of transverse 
displacements at the nodes. However, in practice, C0 

continuity is encouraged [40]. Thus, it is necessary to 
develop a FE model as a combination of HSDT and a 
layer-wise (LW) linear zigzag displacement field using 
isoparametric plate bending element for the analysis of 
composite laminates efficiently. In the present state of 
knowledge several variants of ZZ models have been 

employed in the prediction of buckling loads [41–45] 
and natural frequency [46–51] for laminated composite 
structures. These studies focused only on a single type 
of composite material. To the best of authors’ know-
ledge, investigation on buckling and free vibration ana-
lysis of hybrid laminates due to the effect of fibre 
hybridisation has remained unexplored. This article 
employs a Refined Higher-order Zigzag Theory (RHZT) 
by considering the warping effect [52] which is numeric-
ally implemented considering C0 continuity at the layer 
interfaces of hybrid laminates. The hybrid laminate ana-
lysed in this study comprises carbon and glass fibres 
with epoxy resin base. Being stronger and stiffer, the 
carbon fabrics are chosen to be placed at the outermost 
laminate surfaces, whereas glass fabrics in the inner lay-
ups of the laminate. In this article, the framework is fur-
ther extended to calculate geometric stiffness and mass 
matrices of the plate bending element by incorporating 
nonlinear strain components. The hybrid laminate is 
modelled with the eight-noded isoparametric quadratic 
element during finite element (FE) formulation. Two 
examples of parametric studies are carried out by con-
sidering the variations in number of layers, layer thick-
ness, layup sequence, aspect ratio and percentage of 
hybridisation of the hybrid laminates. The numerical 
solutions obtained using the proposed framework are 
compared with data available in published literature. 
Finally, the efficiency of the fibre hybridisation approach 
is evaluated for laminated composite plates.

This article is organised as follows. A brief outline of 
the refined higher-order theory is discussed in Section 2. 
Numerical implementation of the proposed formulation 
is discussed in Section 3. The description of numerical 
verification using two types of cross-ply laminates is 
provided in Section 4. Parametric studies on the effect-
iveness of hybrid laminates are discussed in Section 5. 
Section 6 provides concluding remarks and directions 
for future research.

2. Mathematical formulation

Let a hybrid laminate of width a, length b, and thick-
ness h be presented in a Cartesian coordinate system X 
as shown in Figure 1. The in-plane displacement fields 
(u) of the laminate due to loading can be obtained ana-
lytically by considering the global and local contribu-
tions of the displacement fields as Eq. (1).

uðkiÞðXÞ ¼ uðiÞg ðXÞ þ �uðkÞl ðXÞ (1) 

where, the global contribution is expressed as a cubic 
polynomial function through the thickness of laminate 
and denoted as uðiÞg : On the other hand, the local 
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contribution of the displacement fields is captured by 
the ZZ function (denoted by �uðkÞl ). The superscript k 
denotes the sequence of layups in the laminate. The 
cubic polynomial function for global displacement 
field calculation is based on the third-order shear 
deformation theory (HSDT), which is obtained by the 
Taylor series expansion as Eq. (2).

uðiÞg ðXÞ ¼ uð0ÞðXÞ þ ðzuð1ÞðxÞ þ z2uð2ÞðxÞ þ z3uð3ÞðxÞÞ

¼ vðXÞ þ ziuðiÞðxÞ
(2) 

Here, vðXÞ is used to substitute the term uð0ÞðXÞ
and the remaining part is written in a generalised nota-
tion. The field variables that vary along all three axes 
directions are denoted by X, whereas the variables 
which vary only in the directions x1 and x2 are denoted 
by x. The local displacement fields are calculated 
according to the RHZT and can be written as Eq. (3).

�uðkÞl ðXÞ ¼ /ðkÞðx3ÞwðxÞ (3) 

Consider, zk is the vertical coordinate of the k-th 
interface (k ¼ 1 � � � nt), where zk � z � zkþ1 and nt is 
the total number of layups. Considering the displace-
ment field within the elastic limit of the material, the 
transverse shear stresses should vanish at the top and 
bottom surfaces of the laminate. Hence, the corre-
sponding transverse shear strain components need to 
be zero at the boundary surfaces. Similarly, the zigzag 
function assumes zero values at top and bottom surfa-
ces of the laminate. Satisfying the condition of no trans-
verse shear stress and zigzag effect at the free surfaces 
of the laminate, the Eq. (1) can be written as Eq. (4).

uðkiÞðXÞ ¼ vðXÞ þ zhðxÞ þ cz3gðxÞ þ /ðkÞðx3ÞwðxÞ (4) 

where, vðXÞ are the displacement components along 
the axes x1, x2 and x3 and can explicitly be written as 
v1,v2 and v3. In Eq. (4), c ¼ − 4

3h2 : The rotational com-
ponents about coordinate axes x1 and x2 are denoted 
by the variable h: The warping function (g) is used in 
the higher-order theory to maintain the desired C0 

continuity. The components /ðkÞ denote a layerwise 

Figure 1. Schematic diagram of a hybrid FRP laminate.
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linear ZZ function and w is a primary kinematic vari-
able defining the amplitude of the ZZ function on the 
plate. The last term of Eq. (4) defines the zigzag dis-
placements (as shown in Figure 1) which includes the 
corrections to the in-plane displacement fields associ-
ated with heterogeneity of laminate across the thick-
ness direction. The linear strain vectors associated 
with the governing displacement fields (written in the 
Eq. (4)) are given by,

eðkÞðXÞ ¼ ruðkiÞðXÞ

¼ rvðXÞ þ zrhðxÞ þ cz3rgðxÞ

þ r/ðkÞðx3ÞrwðxÞ (5) 

Now, the in-plane (ep) and transverse shear (et) 
strain components can be defined as,

eðkÞðXÞ ¼
ep

et

( )ðkÞ

¼
em

0

( )

þ
eb

es

( )

þ
ew

esw

( )

þ
emb/

es/

( )ðkÞ

¼
SðkÞp 0

0 SðkÞt

2

4

3

5
êp

êt

( )ðkÞ

(6) 

where, the strain vectors associated to the membrane, 
bending and warping effects are represented by 
em, eb and ew, respectively. The transverse shear 
strain vectors are defined by es and esw: The longitu-
dinal and transverse shear strain vectors derived from 
the zigzag effect are represented by emb/ and es/, 
respectively. The generalised in-plane and transverse 
shear strain vectors at each layer are represented as,

fêpg
ðkÞ
¼ êm êb êw ê

ðkÞ
mb/

n o>
(7) 

and

fêtg
ðkÞ
¼ ês êsw ê

ðkÞ
s/

n o>
(8) 

Similarly, the corresponding coefficient terms rep-
resented as blocks and are defined as,

SðkÞp ¼ Sm Sb Sw SðkÞmb/

h i
(9) 

and

SðkÞt ¼ Ss Ssw SðkÞs/

h i
(10) 

where, Sm ¼

1 0 0
0 1 0
0 0 1

2

4

3

5, Sb ¼

z 0 0
0 z 0
0 0 z

2

4

3

5, Sw ¼

z3 0 0
0 z3 0
0 0 z3

2

4

3

5, SðkÞmb/ ¼

/
ðkÞ
1 0 0 0
0 /

ðkÞ
2 0 0

0 0 /
ðkÞ
1 /

ðkÞ
2

2

6
4

3

7
5, 

Ss ¼
1 0
0 1

� �

, Ssw ¼
z2 0
0 z2

� �

, and,  

SðkÞs/ ¼
b
ðkÞ
1 0
0 b

ðkÞ
2

" #

:

Now the constitutive relation for the stress tensors 
can be expressed as,

rðkÞ ¼
r̂p

r̂t

( )ðkÞ

¼
Dp 0

0 Dt

" #
êp

êt

( )ðkÞ

¼ DeðkÞ

(11) 

where, r̂p and r̂t are in-plane and transverse shear 
stress tensors, respectively. The generalised constitu-
tive tensor related to the in-plane and transverse shear 
stress and strain, Dp and Dt , are given by Eqs. (12)
and (13).

Dp ¼

Ð

zðSmÞ
>DðkÞp Smdz

Ð

zðS
ðkÞ
mb/Þ

>DðkÞp SðkÞmb/dz
Ð

zðSmÞ
>DðkÞp Swdz

Ð

zðSmÞ
>DðkÞp SðkÞmb/dz

Ð

zðSbÞ
>DðkÞp Smdz

Ð

zðSbÞ
>DðkÞp Sbdz

Ð

zðSbÞ
>DðkÞp Swdz

Ð

zðSbÞ
>DðkÞp SðkÞmb/dz

Ð

zðSwÞ
>DðkÞp Smdz

Ð

zðSwÞ
>DðkÞp Sbdz

Ð

zðSwÞ
>DðkÞp Swdz

Ð

zðSwÞ
>DðkÞp SðkÞmb/dz

Ð

zðS
ðkÞ
mb/Þ

>DðkÞp Smdz
Ð

zðS
ðkÞ

mb/Þ
>DðkÞp Sbdz

Ð

zðS
ðkÞ
mb/Þ

>DðkÞp Swdz
Ð

zðS
ðkÞ
mb/Þ

>DðkÞp SðkÞmb/dz

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

(12) 

Dt ¼

Ð

zðSsÞ
>DðkÞt Ssdz

Ð

zðSsÞ
>DðkÞt Sswdz

Ð

zðSsÞ
>DðkÞt Ss/dz

Ð

zðSswÞ
>DðkÞt Ssdz

Ð

zðSswÞ
>DðkÞt Sswdz

Ð

zðSswÞ
>DðkÞt Ss/dz

Ð

zðSs/Þ
>DðkÞt Ssdz

Ð

zðSs/Þ
>DðkÞt Sswdz

Ð

zðSs/Þ
>DðkÞt Ss/dz

2

6
6
6
4

3

7
7
7
5

(13) 
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The ZZ function (Ref. [52]) along the thickness of 
the laminate employed in this study for each layup is 
defined as,

/ðkÞðx3Þ ¼
1
2
ð1 − nðkÞÞ�/

ðk−1Þ
þ

1
2
ð1þ nðkÞÞ�/

ðkÞ

¼
�/
ðkÞ
þ /ðk−1Þ

2
þ

�/
ðkÞ − /ðk−1Þ

2
nðkÞ (14) 

where, �/
ðkÞ and �/

ðk−1Þ are the ZZ function values at 
k-th and ðk − 1Þ-th interfaces, respectively. It is 
assumed that the ZZ function vanishes at the free sur-
faces, such as �/

ð0Þ
¼ �/

ðntÞ
¼ 0: Here, nðkÞ is calculated 

as nðkÞ ¼
2ðz−zðk−1ÞÞ

hðkÞ − 1: The slope of the ZZ function, 
bðkÞ, is constant at each layer and defined as,

bðkÞðx3Þ ¼ r/ðkÞðx3Þ ¼
�/
ðkÞ − �/

ðk−1Þ

hðkÞ
(15) 

3 Numerical implementation

The plate element has been formulated using an 
eight-noded isoparametric quadratic plate bending 
element considering nine degrees-of-freedom per 
node. The nodal deformations are expressed in terms 
of the nodal displacements and rotations as Eq. (16).

fdg ¼ fv1 v2 v3 h1 h2 g1 g2 w1 w2g
>
¼
X8

i¼1
N idi

(16) 

In Eq. (16), N i is the shape function at the associ-
ated node of the element and di is the nodal deform-
ation. The element stiffness matrix (Ke) for the plate 
element is obtained as,

Ke ¼

ð

A
B>DB dA (17) 

where, B and A are the generalised strain-displace-
ment matrix and the area of the element, respectively.

3.1. Stability analysis

The stability analysis is performed as an eigen-value 
problem. In this case the geometric stiffness matrix 
needs to be computed. For this purpose, the exact 
strain-displacement relations involving nonlinear 
terms are considered to derive the governing 

equilibrium equation. In order to study the stability 
problem of laminated plates, the second order 
potential energy of initially stressed plates has to be 
determined. The initial stress works for the nonlin-
ear gradient of displacements and can be expressed 
as,

V
ð2Þ
E ¼

ð

V
ðr0Þ

>
: eNL dV (18) 

where, Vð2ÞE is the second order potential energy, r0 ¼

½r0
11 r0

22 s0
12�
>and eNL represents the nonlinear 

strains. The nonlinear strains used in this paper are 
derived by using the Von K�arm�an nonlinear strains 
which can be expressed as,

eNL ¼
1
2
ðruÞðruÞ> (19) 

Finally, the potential of second order displacement 
is calculated by substituting Eq. (19) into Eq. (18) and 
can be expressed as:

V
ð2Þ
E ¼

1
2

ð

V
ðr0Þ

>
: ðruÞðruÞ> dV (20) 

By substituting the individual terms in Eq. (20) and 
rearranging them, the second order potential energy 
can be written as,

V
ð2Þ
E ¼

1
2

ð

V

h
ðrvÞ>r̂0rv þ z2rh>r̂0rh

þ c2z6rg>r̂0rgþ ð/ðkÞÞ
2
rw>r̂0rw

i
dV

(21) 

Finally, the second order potential energy is 
obtained as

V
ð2Þ
E ¼

1
2

ð

A

"

zðrvÞ>r̂0rv þ
z3

3
rh>r̂0rh

þ c2 z7

7
rg>r̂0rg

þ

ð

ð/ðkÞÞ
2dz

� �

rw>r̂0rw

#

dA (22) 

Here, dA represents the area of the laminate and 

r̂0 ¼
r0

11 s0
12

s0
12 r0

22

� �

: By collecting all the terms of the 

Eq. (22) in matrix form, it can be expressed as,

INTERNATIONAL JOURNAL FOR COMPUTATIONAL METHODS IN ENGINEERING SCIENCE AND MECHANICS 5



where, S0 is a banded matrix of size 18� 18 as

where, 0 is a null matrix of size 2� 2: Since the scope 
is to introduce the finite element approximation, it is 
convenient to convert the vector of symmetric gra-
dients as ru ¼ rsd: Finally, the second order poten-
tial energy (Eq. (23)) can be expressed in matrix form 
by implementing the finite element approximation as,

V
ð2Þ
E ¼

1
2

ð

A
ðruðkÞÞ>S0ðruðkÞÞdA

¼
1
2
rd>

ð

A
ðrNÞ

>S0ðrNÞdA
� �

rd ¼
1
2

ð

A
G>S0GdA

� �

rd

(25) 

Thus, the geometric stiffness matrix Ke
g is defined 

by,

Ke
g ¼

ð

A
G>S0G dA (26) 

Combining geometric stiffness matrix and elastic 
stiffness matrix, the dynamic equilibrium equation 
leads to the governing equations for dynamic analysis.

ð K½ � − k KG½ �Þfdg ¼ 0 (27) 

in which, ½K� and ½KG� are the global elastic stiff-
ness matrix and geometric stiffness matrix, fdg is the 
buckling mode shape vector and k is the critical buck-
ling load parameter, respectively.

3.2. Dynamic analysis

In the case of vibration analysis the governing equa-
tions of motion are solved as an eigen-value problem. 
The mass matrix can be determined directly from the 
kinetic energy. This is computed in the finite element 

V
ð2Þ
E ¼

1
2

ð

A
½ ðrv1Þ

>
ðrv2Þ

>
ðrv3Þ

>
ðrh1Þ

>
ðrh2Þ

>
ðrg1Þ

>
ðrg2Þ

>
ðrw1Þ

>
ðrw2Þ

> �S0

rv1
rv2
rv3
rh1
rh2
rg1
rg2
rw1
rw2

2

6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
5

dA

(23) 

S0 ¼

zr̂0 0 0 0 0 0 0 0 0
zr̂0 0 0 0 0 0 0 0

zr̂0 0 0 0 0 0 0
z3

3
r̂0 0 0 0 0 0

Symm:
z3

k
3

r̂0 0 0 0 0

z7
k

7
r̂0 0 0 0

z7
k

7
r̂0 0 0

Ð zk
zk−1
ð/
ðkÞ
1 Þ

2dz
h i

r̂0 0
Ð zk

zk−1
ð/
ðkÞ
2 Þ

2dz
h i

r̂0

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

(24) 
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framework by employing the Hamilton’s Principle. 
Finally, the element mass matrix is expressed in the 
natural coordinate system as Eq. (28),

Me ¼
Xnt

1

ð

A
S>MISqk dA (28) 

where, qk represents the density of composite lamina. 
The value of S matrix is computed using the shape 
functions. The inertia matrix (MI) for the k-th layer 
is calculated as,

The eigenvalues and eigenvectors obtained from 
the solution are the natural frequencies and corre-
sponding mode shapes of the laminate. In this work 
an undamped free vibration is performed. The equa-
tions of motion for undamped free vibration are given 
by Eq. (30),

x2 M½ �fdg ¼ K½ �fdg (30) 

where, ½M� and ½K� are global mass and stiffness 
matrices, respectively. The relative displacement mode 
corresponding to the natural frequency is represented 
as fdg:

The global elastic stiffness matrix is used in both 
stability and dynamic analyses. In the case of stability 
analysis, the global geometric stiffness matrix and glo-
bal geometric stiffness matrix are employed to evalu-
ate the critical buckling load. On the other hand, in 
the dynamic analysis global mass and global elastic 
stiffness matrices are utilised to solve the free vibra-
tion problem and obtain the natural frequency. All 

the numerical studies presented in this article are per-
formed using MATLAB. The numerical implementa-
tion of each of the above-mentioned problems is 
schematically shown in Figure 2.

4. Numerical verification

At first the proposed framework is numerically veri-
fied with published data. Numerical specimens of two 
cross-ply laminates—½0�=90�=0� � and ½0�=90� �s, are 

employed for this purpose. In this article these lami-
nates are referred to as three-layered and four-layered 
laminates, respectively. The composite laminate is 
assumed to have the transverse elastic modulus (E2) of 
1 GPa and density of 1 kg=m3: The Poisson’s ratio along 
all three directions are assumed to be 0.25, i.e. �12 ¼

�13 ¼ �23 ¼ 0:25: The longitudinal elastic modulus (E1) 
of the composite is obtained based on the E1=E2 ratio. 
In this study five different E1=E2 ratio are considered, 
such as, 3, 10, 20, 30 and 40. The shear moduli of the 
composite are also considered as functions of the trans-
verse elastic modulus, G12 ¼ G13 ¼ 0:6E2; G23 ¼ 0:2E2:

In this numerical verification several types of boundary 
conditions are considered. In the first case it is assumed 
that the laminate is simply-supported along all four 
edges and denoted by SSSS. In the second case all four 
edges are assumed to be clamped and referred to as 
CCCC. A third case considered simply-supported and 
clamped boundaries in adjacent alternate edges. Finally, 
clamped and free boundary conditions are assumed in 
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alternate adjacent laminate edges. The last two cases of 
boundary conditions are denoted as SCSC and CFCF, 
respectively. The kinematic boundary conditions 
employed in both the cases are given in Table 1.

The numerical verification of the proposed formula-
tion is evaluated by performing stability and dynamic 
analyses. In the stability analysis evaluation of the criti-
cal buckling strength is the parameter of interest. In 
the dynamic analysis the problem is solved for a free- 
vibration case yielding multiple natural frequencies and 
mode shapes. The verification is intended to evaluate 
the prediction of natural frequencies of laminates. 
The stability and dynamic analyses are described in 
Section 4.1 and Section 4.2, respectively.

4.1. Stability analysis

Simply supported square cross-ply laminates are ana-
lysed in this section for the numerical verification. At 
first a mesh convergence study is performed to obtain 
mesh objectivity in the prediction. The square plate is 

discretised with uniform mesh along adjacent edges. 
In this study five different discretizations are eval-
uated. In those five discretisation cases the number of 
mesh along each edge is varied as 8, 10, 12, 16 and 
20. The relative percentage (e) error in the numerical 
solution of a laminate is compared to the reference 
3D solution and calculated as,

eð%Þ ¼
k3D

cr − kcr

k3D
cr

� 100 (31) 

where, k3D
cr represents the normalised critical buckling 

strength obtained from the 3D elastic solution [3] and 
kcr is the normalised critical buckling strength obtained 
from RHZT or RFZT formulation by changing total 
number of elements. The normalised critical buckling 
strength [3] is obtained using the following equation,

kcr ¼ k
a2

E2h3 (32) 

where, k is the buckling strength obtained from the 
present analysis. h is the total thickness of the plate 

Figure 2. Flowchart showing numerical implementation to solve stability and dynamic problems.

Table 1. Boundary conditions.
Boundary condition Edges along x1 Edges along x2

SSSS v2 ¼ v3 ¼ 0 
h2 ¼ g2 ¼ w2 ¼ 0

v1 ¼ v3 ¼ 0 
h1 ¼ g1 ¼ w1 ¼ 0

CCCC v1 ¼ v2 ¼ v3 ¼ h1 ¼ h2 ¼ g1 ¼ g2 ¼ w1 ¼ w2 ¼ 0
SCSC v2 ¼ v3 ¼ 0 

h2 ¼ g2 ¼ w2 ¼ 0
v1 ¼ v2 ¼ v3 ¼ h1 ¼ h2 ¼ 0 

g1 ¼ g2 ¼ w1 ¼ w2 ¼ 0
CFCF v1 ¼ v2 ¼ v3 ¼ h1 ¼ h2 ¼ 0 

g1 ¼ g2 ¼ w1 ¼ w2 ¼ 0
–
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and a indicates the length of plate along x1 direction. 
The uniaxial compression is verified using a three- 
layer and a four-layer square laminate and are 
described in Section 4.1.1. A constant span to thick-
ness ratio ða=hÞ of 10 is used under uniaxial compres-
sion. Following the verification under uniaxial 
compression the biaxial compression case is provided 
in Section 4.1.2. In the biaxial compression case three 
different span to thickness ratios (10, 20 and 50) are 
evaluated.

4.1.1. Verification: Critical buckling strength under 
uniaxial compression

First the numerical verification is performed for the 
three layer laminate. The normalised (non-dimen-
sional) critical buckling strengths under uniaxial 
compression are computed based on the proposed ZZ- 
based formulations, i.e. RFZT and RHZT. The normal-
ised critical buckling strength are compared with 3D 
elastic solution (as a reference) from published litera-
ture [3]. Additionally, the prediction of the proposed 

formulation is evaluated with published data from 
non-ZZ-based model-based shell theories. The numer-
ical solution appears to converge with 256 elements 
(discretisation of 16� 16). The verification study for 
three-layered laminate subjected to uniaxial compres-
sion is shown in Table 2. In this table the results with 
a discretisation of 16� 16 are shown in bold fonts. In 
in Table 2 it can be observed that the proposed RHZT 
and RFZT formulations have the capability to provide 
comparable prediction with the 3D elastic results with 
0.4% and 3.5% accuracy, respectively. This clearly 
shows that RHZT is capable of predicting critical 
buckling strength with better accuracy as compared to 
the first-order theory (RFZT).

Next, the formulation is verified with the four-layer 
cross-ply laminate. Same material properties, bound-
ary conditions and a=h ratio are used as in the three- 
layer laminate case. The results of four-layer laminate 
are presented in Table 3. Similar to the three-layer 
laminate, the critical buckling strengths tend to con-
verge at a discretisation of 16� 16: Due to lack of 

Table 2. Non-Dimensional buckling strengths of ½0
�

=90
�

=0
�

� square laminate under uniaxial compression.

Model Mesh

E1=E2

3 10 20 30 40

kcr e (%) kcr e (%) kcr e (%) kcr e (%) kcr e (%)

RHZT 8� 8 5.3187 0.27 9.7455 0.17 14.9782 0.27 19.2544 0.26 22.8088 0.31
10� 10 5.3185 0.27 9.7435 0.19 14.9776 0.28 19.2509 0.27 22.8065 0.32
12� 12 5.3185 0.27 9.7423 0.20 14.9764 0.28 19.2491 0.28 22.8065 0.32
16� 16 5.3184 0.26 9.7422 0.20 14.9748 0.29 19.2470 0.30 22.8019 0.34
20� 20 5.3184 0.26 9.7422 0.20 14.9748 0.29 19.2470 0.30 22.8019 0.34

RFZT 8� 8 5.1596 2.73 9.4526 3.17 14.5276 3.27 18.6752 3.26 22.1223 3.31
10� 10 5.1594 2.73 9.4507 3.19 14.5270 3.28 18.6718 3.27 22.1200 3.32
12� 12 5.1593 2.73 9.4495 3.20 14.5258 3.28 18.6700 3.28 22.1200 3.32
16� 16 5.1593 2.74 9.4494 3.20 14.5242 3.29 18.6679 3.30 22.1154 3.34
20� 20 5.1593 2.74 9.4494 3.20 14.5242 3.29 18.6679 3.30 22.1154 3.34

3D Elasticity [3] 5.3044 – 9.7621 – 15.0191 – 19.3040 – 22.8807 –
Anish et al. [25] 5.3142 0.18 9.6982 0.65 14.6927 2.17 18.6343 3.47 21.8415 4.54
Reddy and Phan (HSDT) [16] 5.3933 1.68 9.9406 1.83 15.2980 1.86 19.6740 1.92 23.3400 2.01
Reddy and Phan (FSDT) [16] 5.3931 1.67 9.9625 2.05 15.3510 2.21 19.7560 2.34 23.4530 2.50

Table 3. Non-Dimensional buckling strengths of ½0
�

=90
�

�s square laminate under uniaxial compression.

Model Mesh

E1=E2

3 10 20 30 40

kcr e (%) kcr e (%) kcr e (%) kcr e (%) kcr e (%)

RHZT 8� 8 5.3218 0.04 9.8367 0.29 15.1767 0.49 19.5544 0.64 23.2337 0.77
10� 10 5.3216 0.04 9.8364 0.28 15.1762 0.49 19.5538 0.64 23.2331 0.77
12� 12 5.3215 0.03 9.8363 0.28 15.1760 0.49 19.5536 0.64 23.2329 0.77
16� 16 5.3215 0.03 9.8363 0.28 15.1759 0.49 19.5535 0.64 23.2327 0.76
20� 20 5.3215 0.03 9.8362 0.28 15.1759 0.49 19.5535 0.64 23.2327 0.76

RFZT 8� 8 5.4889 3.18 9.9741 1.69 15.1117 0.06 19.2273 1.04 22.6441 1.79
10� 10 5.4887 3.18 9.9738 1.68 15.1113 0.06 19.2268 1.04 22.6435 1.79
12� 12 5.4887 3.18 9.9737 1.68 15.1111 0.06 19.2266 1.04 22.6433 1.79
16� 16 5.4886 3.17 9.9736 1.68 15.1110 0.06 19.2265 1.04 22.6432 1.79
20� 20 5.4886 3.17 9.9736 1.68 15.1110 0.06 19.2265 1.04 22.6432 1.79

Anish et al. [25] 5.3197 – 9.8087 – 15.1025 – 19.4295 – 23.0565 –
Nguyen-Van et al. [8] 5.3210 0.02 9.8090 0.01 15.0640 0.25 19.3390 0.47 22.9120 0.63
Liu et al. [53] 5.4120 1.74 10.0130 2.08 15.3090 1.37 19.7780 1.79 23.4120 1.54
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published data performing 3D elastic analysis using 
four-layer laminate, results from Anish et al. [25] are 
used as the reference of the verification. It can be 
noted that the predictions from the present RHZT 
formulation are in good agreement with the relevant 
published results.

4.1.2. Verification: Critical buckling strength under 
biaxial compression

The verification under biaxial loading is performed 
using the three-layer square laminate with all edges 
simply supported (SSSS boundary condition). The 
span to thickness ratios ða=hÞ are considered to be 10, 
20 and 50 and the E1=E2 ratios are 10 and 20. 
Discretisation of 16� 16 is only used for verification 
under biaxial compression. The critical buckling 
strengths obtained from the proposed formulation are 
compared with those published data [25] as reference. 
Additionally, the performance of the proposed model 
is evaluated with the results by Vescovini and Dozio 
[44]. The results shown in Table 4 demonstrate the 
accuracy of the proposed RHZT formulation in pre-
dicting the critical buckling strengths of laminated 
composites.

4.2. Dynamic analysis

In this section the proposed formulation is numeric-
ally verified for free-vibration problem, also referred 
to as modal analysis. The mesh objectivity is ensured 
using a mesh convergence study for a simply-sup-
ported square cross-ply laminate. The natural frequen-
cies are reported six different the span-to-thickness 
ratio (a=h) of the laminate. The normalised value 
of fundamental frequency [12] obtained from the pre-
sent formulation is calculated by using the following 
equation:

x� ¼
xa2

h

ffiffiffiffiffi
q

E2

r

(33) 

where, x is the calculated fundamental frequency and 
q is the density. First, the predicted fundamental fre-
quencies obtained using proposed formulation are 
verified with data from published literature [12]. This 
reference data is obtained using the p-Ritz method.

4.2.1. Verification: Natural frequencies of laminate
First, the four-layered square laminate with simply 
supported boundary conditions is employed for 
numerical verification. Similar to the stability analysis, 
the dynamic analysis leads to the converged solution 

Table 4. Non-Dimensional buckling strengths of ½0
�

=90
�

�s square laminate under biaxial compression.

E1=E2 Model

a/h

10 20 50

kcr e (%) kcr e (%) kcr e (%)

10 RHZT 4.8704 0.54 5.4984 0.17 5.7068 0.03
RFZT 4.9029 1.21 5.5071 0.33 5.7101 0.03
Anish et al. [25] 4.8441 – 5.4890 – 5.7084 –
Vescovini and Dozio [44] 4.9095 1.35 5.5082 0.35 5.7063 0.04

20 RHZT 8.0049 1.24 9.9523 1.32 10.7116 0.07
RFZT 8.0783 2.17 9.9718 1.12 10.7233 0.18
Anish et al. [25] 7.9066 – 10.0852 – 10.7040 –
Vescovini and Dozio [44] 8.6820 9.81 10.8768 7.85 11.7320 9.60

Table 5. Normalised fundamental frequency of square ½0
�

=90
�

�s laminate with varying a=h ratio.

Model Mesh

a/h

5 10 20 25 50 100

x� e (%) x� e (%) x� e (%) x� e (%) x� e (%) x� e (%)

RHZT 8� 8 10.331 4.83 14.632 3.38 17.631 0.16 18.179 0.59 19.022 1.87 19.257 2.23
10� 10 10.331 4.83 14.632 3.38 17.630 0.16 18.178 0.59 19.021 1.86 19.256 2.23
12� 12 10.331 4.83 14.632 3.38 17.630 0.16 18.178 0.59 19.021 1.86 19.255 2.23
16� 16 10.330 4.83 14.631 3.38 17.630 0.16 18.178 0.59 19.021 1.86 19.255 2.23
20� 20 10.330 4.83 14.631 3.38 17.630 0.16 18.178 0.59 19.020 1.86 19.255 2.23

RFZT 8� 8 10.878 0.21 15.209 0.44 17.694 0.20 18.095 0.13 18.682 0.05 18.839 0.02
10� 10 10.878 0.21 15.209 0.43 17.693 0.20 18.095 0.13 18.681 0.04 18.838 0.01
12� 12 10.878 0.21 15.209 0.43 17.693 0.20 18.094 0.13 18.681 0.04 18.838 0.01
16� 16 10.878 0.21 15.209 0.43 17.693 0.20 18.094 0.13 18.681 0.04 18.838 0.01
20� 20 10.878 0.21 15.209 0.43 17.693 0.20 18.094 0.12 18.681 0.04 18.838 0.01

Liew [12] 10.855 – 15.143 – 17.658 – 18.072 – 18.673 – 18.836 –
Reddy and Phan [16] 10.989 1.24 15.269 0.83 17.667 0.05 18.049 0.13 18.462 1.13 18.756 0.42
Cho et al. [30] 10.673 1.68 15.066 0.51 17.535 0.70 18.054 0.10 18.670 0.02 18.835 0.01
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with 16� 16 Discretisation. The mesh convergence 
study and numerical verification based on the normal-
ised fundamental frequency are given in Table 5. 
Additionally, the results obtained based on ZZ-theory 
are compared with published data that employed HSDT 
[16] and higher-order individual layer theory [30]. It 
can be seen that the results obtained using proposed for-
mulation are in closer agreement with the reference 
data. It is to be noted that the span-to-thickness ratio 
(a=h) has a considerable effect on the fundamental fre-
quency of plates at lower a=h ratios. At higher a=h 
ratios (a=h > 25), the influence on the fundamental fre-
quency is insignificant. However, the error calculated 
from the solution using RHZT is higher compared to 

the RHZT. This is due to the fact that higher-order the-
ory considers additional degrees-of-freedom in each 
element which makes the element more flexible than 
those using first-order approximation.

Finally, the three-layered cross-ply square laminate 
is analysed to estimate the first five modal frequencies 
under different boundary conditions. For each bound-
ary condition the natural frequencies are estimated 
due to four different span-to-thickness ratios (a=h). 
The first five normalised natural frequencies are com-
pared with data from published literature [12] and 
given in Table 6. This numerical verification ensures 
that the proposed model has the capability to predict 
natural frequencies with significant accuracy.

Table 6. Normalised natural frequencies of ½0
�

=90
�

=0
�

� square laminate with different boundary conditions.

Boundary a=h Model

Mode sequence

I II III IV V

SSSS 5 RHZT 9.9329 15.1754 21.7003 24.6384 25.7845
RFZT 10.4728 15.9741 22.1948 24.5097 25.3353
Liew [12] 10.2560 16.4626 21.1083 24.7924 26.0965

10 RHZT 14.2556 21.1860 35.0776 37.1675 40.7378
RFZT 14.9126 21.9336 36.4975 38.3663 41.8968
Liew [12] 14.7419 22.1356 36.8547 37.2371 41.0238

20 RHZT 17.4539 25.1768 42.1178 55.6697 57.0349
RFZT 17.5778 25.3051 42.5588 55.9894 59.6597
Liew [12] 17.5156 25.3631 43.1184 55.2292 58.9703

1000 RHZT 19.3355 27.0313 46.3139 71.6658 75.6774
RFZT 18.8913 26.9486 46.2969 71.6286 75.6532
Liew [12] 18.9053 26.9583 46.2431 71.6719 75.6156

CCCC 5 RHZT 12.6939 17.9464 21.8872 25.8062 26.3023
RFZT 13.0267 18.6220 22.2532 26.8680 26.9253
Liew [12] 12.6901 18.9538 21.9730 26.2106 27.7887

10 RHZT 20.7466 28.1314 40.2180 44.4984 44.7698
RFZT 21.7203 29.3755 41.5349 45.4145 46.2986
Liew [12] 21.1483 29.6578 39.7026 44.0287 45.1045

20 RHZT 30.3852 39.8152 57.6348 65.4973 70.3976
RFZT 31.7488 40.1177 57.2977 67.0787 72.8800
Liew [12] 31.2559 40.0308 58.1799 66.1929 71.2781

1000 RHZT 42.0161 50.1570 69.9143 101.5622 111.8178
RFZT 41.9379 50.2740 70.0605 101.6017 112.0340
Liew [12] 41.8514 50.2639 69.9454 101.3953 111.7397

SCSC 5 RHZT 11.1910 17.5419 22.2846 25.5091 26.4880
RFZT 11.5732 17.2720 22.7141 25.7260 26.1644
Liew [12] 11.8055 18.4744 21.8703 26.1364 27.5176

10 RHZT 16.3447 25.6133 37.2626 41.2411 42.3107
RFZT 17.2168 25.6550 39.0776 42.0176 44.1704
Liew [12] 16.7537 26.9783 38.0675 42.4564 43.7747

20 RHZT 19.7386 31.8235 52.7413 55.0812 63.3474
RFZT 20.4627 32.5198 53.9307 56.3719 64.5489
Liew [12] 19.6615 32.0920 53.2602 55.9854 62.2121

1000 RHZT 21.2741 34.5129 59.3671 72.4189 79.2202
RFZT 21.1918 34.5069 59.5545 72.3652 79.3327
Liew [12] 21.1055 34.6545 59.4726 72.3824 78.9629

CFCF 5 RHZT 4.2153 4.4195 9.3275 13.8967 13.0467
RFZT 4.8457 4.5941 9.6505 14.2719 14.5398
Liew [12] 4.1207 4.4089 9.8907 13.3750 13.8687

10 RHZT 5.1458 5.8375 11.9379 22.1136 22.9814
RFZT 5.8246 5.9368 11.1372 23.0848 23.7095
Liew [12] 5.4733 6.0012 11.9510 22.1356 22.7178

20 RHZT 6.0148 6.5904 12.3578 27.4661 31.2222
RFZT 6.5486 6.5383 12.3356 27.6860 32.3002
Liew [12] 6.0697 6.7603 13.0097 28.6505 31.5897

1000 RHZT 6.4528 7.0844 13.5062 30.0306 39.8101
RFZT 6.3988 7.0164 13.6932 30.0473 39.9007
Liew [12] 6.3122 7.1027 13.5633 30.0687 39.5514
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5. Numerical examples: Analysis of hybrid 
laminates

In the case of composite laminates, the concept of hybrid-
isation involves replacing layups of weaker fibre material 
with stronger fibre material. To enhance structural per-
formance often Carbon Fibre Reinforced Polymer 
(CFRP) composite layups are incorporated in Glass Fibre 
Reinforced Polymer (GFRP) laminates to make it a 
Hybrid Fibre Reinforced Polymer (HFRP) composite 
laminate. Therefore, in a hybrid laminate, during manu-
facturing individual GFRP layups are replaced with 
CFRP layups of same thickness. The “percentage of 
hybridisation” is defined as a ratio of the volume of 
CFRP content to the total volume of the laminate.

The performance of a HFRP laminate is evaluated 
with respect to laminates of pure GFRP laminates of 
equivalent volume. It is to be noted that replacement 
of GFRP layups with CFRP layups (with same fibre 
orientation) would lead to change in the total number 
of layups. In this study, following example laminates 
with two different layup sequences are considered. 
The black and magenta colours in Figure 3 indicate 
CFRP and GFRP layups, respectively.

� HFRP-1: A six-layered laminate with layup 
sequence ½0�=0�=90� �s

� HFRP-2: An eight-layered laminate with layup 
sequence ½0�=0�=90�=90� �s

Following the numerical verification, the proposed 
framework is employed to investigate the response of 
HFRP laminates. The mechanical properties of the 
CFRP and GFRP composites used in this study are 
given in Table 7.

At first four-layered GFRP laminates with equal 
thickness are analysed, followed by the HFRP lami-
nates. In both the examples, parametric studies are 
performed based on the laminate geometry, laminate 
boundary conditions and percentage hybridisation. 
Following parameters are considered for the laminate 
geometry and boundary conditions.

i. Aspect ratio (a=b): 0.25, 0.50, 0.75, and 1.00,
ii. Span to thickness ratio (a=h): 10, 20, 50, 

100, and
iii. Boundary conditions: SSSS and CCCC

The stability and dynamic analyses of hybrid lami-
nates are discussed in Section 5.1 and Section 5.2, 
respectively.

5.1. Stability analysis

At first, square-shaped hybrid laminates are studied 
for the effect of change in the percentage of hybridisa-
tion. Next, keeping percentage of hybridisation as 
constant, the effect of hybridisation on critical 

Figure 3. Schematic representation showing cross-sections of two HFRP laminates.

Table 7. Mechanical properties of CFRP and GFRP.
Elastic parameters CFRP GFRP Unit

E1 137.0 41.6 GPa
E2 12.4 8.78 GPa
�12 0.33 0.274 –
�13 0.33 0.274 –
�23 0.214 0.314 –
G12 4.66 3.45 GPa
G13 4.66 3.45 GPa
G23 54.6 15.8 GPa
Density 1710 2065 kg=m3

12 D. BISWAS ET AL.



buckling strength is evaluated based on the geometric 
parameters and boundary conditions.

5.1.1. Effect of hybridisation on critical buckling 
strength

The objective of this study is to understand the effect 
of hybridisation on critical buckling strength of 
square-shaped HFRP laminate. The HFRP-1 and 
HFRP-2 laminates are analysed by increasing the per-
centage of hybridisation from 0% up to 50%. The 
variation of the buckling strengths for HFRP-1 and 
HFRP-2 are shown in Figures 4 and 5, respectively. It 
is noted that both the HFRP laminates possess nearly 
similar buckling strength while other parameters 
remain constant. Additionally, the buckling strength 
of thicker plates are significantly higher compared to 
thinner plates.

To quantify the improvement in buckling strength 
the critical buckling strengths are normalised by using 
the following expression (as a modified form of 
Eq. (32)):

kcr ¼ k
a2

EGFRP
2 h3 (34) 

Next, the percentage increase (I b) in the normal-
ised critical buckling strength of HFRP laminates is 

determined as:

Ibð%Þ ¼
kHFRP

cr − kGFRP
cr

kGFRP
cr

� 100 (35) 

A comparison showing the percentage increase of 
critical buckling strengths of HFRP and pure GFRP 
laminates are shown in Figures 6 and 7. Laminates 
with simply-supported boundary conditions demon-
strate a similar trend under uniaxial and biaxial load-
ing. It is apparent that HFRP-1 laminates reach much 
higher percentage increase compared to HFRP-2 lami-
nates. On the other hand, clamped laminates demon-
strate a different behaviour. It can be seen that with 
HFRP-1 laminate an improvement up to 150% be 
achieved, whereas with HFRP-2 laminate improve-
ment observed up to 120% for same percentage of 
hybridisation. The buckling strength of HFRP-1 is 
higher than HFRP-2 laminate as larger quantity of 
carbon fibre is aligned in loading direction in HFRP- 
1. Additionally, for very thick laminates (i.e. a/h value 
of 10) under uniaxial compression with clamped 
boundary condition, the improvement in buckling 
strength is significantly less. During biaxial loading 
condition with clamped boundary condition, improve-
ments in both the HFRP laminates are very similar 
performance. Therefore, it can be concluded that the 

Figure 4. Variation of buckling strengths of HFRP-1 laminate due to hybridisation and a/h ratio.
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Figure 5. Variation of buckling strengths of HFRP-2 laminate due to hybridisation and a/h ratio.

Figure 6. Percentage increase in critical buckling strength of HFRP-1 laminate to GFRP laminate.
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effect of laminate configuration is insignificant when 
the effect of hybridisation is studied.

5.1.2. Effect of aspect ratio on buckling analysis of 
hybrid laminates

Next, the effect of laminate aspect ratio is studied consid-
ering 50% fibre hybridisation. Similar to the previous 
analysis the specimens are studied for both uniaxial and 
biaxial compression. The assumption of equal layup 
thickness for each material remains valid, too. The 
strength comparison performed in this section is with 
various geometric parameters, i.e. aspect ratio and span 
to thickness ratio. The percentage increase in the normal-
ised critical buckling strength is given in Tables 8 and 9. 
Under uniaxial compression the normalised critical 
buckling strength of HFRP-1 and HFRP-2 laminates 
with simply-supported boundary condition increases 
approximately 1.3 and 1.5 times, respectively, with the 
increase in the aspect ratio. In the case of clamped 
boundary condition the increase in aspect ratio of thin-
ner laminates leads to 1.2 and 1.3 times, respectively. 
During biaxial compression, even with low aspect ratio, 
the hybrid laminates cannot achieve the same buckling 
strength as under uniaxial loading. This is attributed to 
the lower buckling resisting capacity of the layups along 

the transverse direction. Additionally, loss in critical 
buckling strength is observed in the thinner laminates. 
Laminates with the clamped boundary condition demon-
strate approximately four times higher buckling strength 
under uniaxial compression. It is observed that under 
biaxial loading with clamped boundary condition 
increase in the laminate aspect ratio affects the increase 
in buckling strength for HFRP-1 laminate. It is evident 
that the addition of the CFRP layup in the transverse dir-
ection of the HFRP-2 laminate contributed towards the 
strength enhancement. It is to be noted that under the 
uniaxial compression, Ib in HFRP laminates decreases 
with the increase of aspect ratio. On the other hand, the 
I b increases with increase of span-to-thickness ratio 
ða=hÞ: For thinner plates the increase in the buckling 
strength reached up to a certain limit. Beyond that limit 
I b will become constant. This orthotropic change in the 
buckling load carrying capacity is due to the presence of 
high strength CFRP along the x1 direction. However, 
under biaxial compression the effect of a=b becomes 
insignificant during biaxial compression. It is observed 
that as the a=b increases, the biaxial critical buckling 
strength increases for both GFRP and HFRP. As a result, 
the percentage increase in the critical buckling strength 
remains constant for biaxial compression.

Figure 7. Percentage increase in critical buckling strength of HFRP-2 laminate to GFRP laminate.
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Based on the parametric study following salient fea-
tures of a hybrid laminate are observed:

1. Normalised critical buckling strength for all types 
of laminates with a constant span to thickness 
ratio ða=hÞ increases with increase in aspect 
ratio ða=bÞ:

2. Normalised critical buckling strength for all types 
of laminates of constant aspect ratio ða=bÞ also 
increases with increase in span to thickness 
ratio ða=hÞ:

3. Normalised critical buckling strengths for both 
HFRP laminates are found significantly higher 
than corresponding GFRP laminates.

Figure 8. First natural frequency of HFRP laminates for change of hybridisation and a/h ratio.

Table 8. Percentage increase (I b) in normalised critical buck-
ling strength of HFRP-1.

Loading 
type

Boundary 
Condition a/h

a/b

0.25 0.50 0.75 1.00

Uniaxial 
compression

SSSS 10 202.39 185.66 158.49 126.46

20 211.71 194.46 166.46 133.28
50 214.75 197.34 169.06 135.50

100 215.20 197.76 169.45 135.83
CCCC 10 83.36 74.71 53.95 30.57

20 206.02 197.99 178.92 149.34
50 216.74 208.52 188.95 158.01

100 218.48 210.25 190.59 159.44
Biaxial 

compression
SSSS 10 124.67 122.34 129.55 126.45

20 131.30 128.73 136.11 133.28
50 134.76 130.92 138.34 135.50

100 139.61 131.40 138.70 135.83
CCCC 10 95.20 89.42 84.97 88.84

20 110.04 101.61 100.35 98.42
50 127.18 108.22 106.21 103.46

100 137.68 111.35 107.66 104.51

Table 9. Percentage increase (I b) in normalised critical buck-
ling strength of HFRP-2.

Loading 
type

Boundary 
condition a/h

a/b

0.25 0.50 0.75 1.00

Uniaxial 
compression

SSSS 10 128.71 119.59 107.37 96.05

20 140.90 131.06 117.43 104.13
50 145.00 134.93 120.85 106.92

100 145.62 135.51 121.37 107.34
CCCC 10 80.58 72.06 51.62 28.60

20 131.02 127.49 121.00 112.66
50 145.06 141.11 133.45 123.11

100 147.44 143.42 135.57 124.91
Biaxial 

compression
SSSS 10 102.46 96.04 107.36 96.05

20 110.80 104.12 117.43 104.13
50 113.93 106.91 120.85 106.92

100 115.21 107.33 121.37 107.34
CCCC 10 85.98 86.22 86.77 91.10

20 102.21 100.98 99.72 109.20
50 112.79 109.36 107.28 118.95

100 118.51 110.85 108.62 120.66
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4. Hybridisation scheme plays an important role 
while designing, such as, under uniaxial loading 
condition HFRP-1 demonstrates better perform-
ance over HFRP-2.

5.2. Dynamic analysis

Similar to stability analysis, the effect of the percent-
age of hybridisation is studied during the dynamic 
analysis, specifically focusing on the natural frequen-
cies of laminates. In addition to the effect of hybrid-
isation on fundamental frequency, two other 
frequencies are also studied for the laminate geome-
tries and boundary conditions.

5.2.1. Effect of hybridisation on modal behaviour in 
hybrid laminate

In the case of free vibration analysis, the percent of 
hybridisation of square-shaped laminate is varied 
from 0% to 50%. Significant improvement of natural 
frequencies is observed in both HFRP laminates com-
pared to the pure GFRP laminate (Figure 8). From 
Figure 8, it can be seen that irrespective of thickness 
ratio, with increase in percentage of hybridisation a 

clear sign of increase in modal frequency is observed 
in both the HFRP laminates.

To quantify the competitive performance between 
HFRP-1 and HFRP-2, the percentage improvement of 
natural frequency (I f ) in HFRP laminates are com-
pared to original GFRP laminate and is calculated 
using the following equation

I f ð%Þ ¼
xHFRP − xGFRP

xGFRP � 100 (36) 

The results of increase in natural frequencies for 
HFRP-1 and HFRP-2 laminates are shown in 
Figures 9 and 10, respectively. It is evident that the 
increase in the percentage of hybridisation in HFRP 
laminates would increase in natural frequency com-
pared to GFRP laminate. Based on the results, it is 
clear that for HFRP-1 laminates the fundamental fre-
quency can be increased over 50% (for all a/h ratio). 
On the other hand, for HFRP-2 laminates increase in 
fundamental frequency does not exceed 50%. In 
HFRP-1 laminates the rate of increase does not show 
a steady trend for all three modal frequencies. This 
trend could be attributed to the alignment of carbon 
fibres only along the longitudinal direction of HFRP-1 
laminate, resulting in the transverse direction weaker 

Figure 9. Increase of natural frequencies of HFRP-1 laminate tor GFRP laminate.
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in stiffness and formation of low magnitude second 
and third modal frequencies. Contrary to the HFRP-1 
laminate, it is noted that the rate of increase is very 
consistent for HFRP-2 laminates. This is due to uni-
form distribution of carbon fibre across both longitu-
dinal and transverse directions.

5.2.2. Effect of aspect ratio on natural frequencies 
of hybrid laminates

Finally, the effect of laminate aspect ratio is studied 
considering 50% fibre hybridisation. Similar to the 
previous analysis the specimens are studied for both 
the boundary conditions keeping the percentage of 
hybridisation 50% and the assumption of equal lamin-
ate thickness. A comparison between the natural fre-
quencies of the HFRP laminates and pure GFRP 
laminate is performed and given in Tables 10 and 11. 
It is to be noted that the I f in HFRP laminates 
decreases with the increase of aspect ratio. The only 
exception is identified for thick plate with lowest 
aspect ratio (0.25) for simply support boundary condi-
tion. This could be due to formation of new modes at 
lower frequencies. At this geometric configuration the 
laminate will behave more of 3D beam than a plate. 
On the other hand, the I f increases with increase in 

the span-to-thickness ratio ða=hÞ: This indicates that 
for thinner plates the fundamental frequency can be 
improved significantly. Additionally, it is observed 

Figure 10. Increase of natural frequencies of HFRP-2 laminate tor GFRP laminate.

Table 10. Percentage increase (I f ) in natural frequency of 
HFRP-1 laminate over pure GFRP laminate.

Boundary 
condition a/h

a/b

0.25 0.50 0.75 1.00

SSSS 10 13.37 76.83 68.24 57.50
20 82.62 79.49 70.75 59.77
50 85.55 80.34 71.56 60.50

100 85.68 80.47 71.68 60.61
CCCC 10 74.78 72.43 66.37 56.54

20 82.33 79.93 73.93 63.89
50 85.99 83.57 77.53 67.34

100 86.61 84.18 78.14 67.92

Table 11. Percentage increase (I f ) in natural frequency of 
HFRP-2 laminate over pure GFRP laminate.

Boundary 
condition a/h

a/b

0.25 0.50 0.75 1.00

SSSS 10 13.37 55.02 50.66 46.50
20 62.33 58.99 54.23 49.44
50 63.70 60.30 55.43 50.44

100 63.91 60.50 55.61 50.59
CCCC 10 47.59 46.76 45.59 44.57

20 58.04 56.87 54.68 51.84
50 63.50 62.20 59.60 55.97

100 64.46 63.13 60.48 56.72
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that the magnitude of increase in natural frequency is 
higher in HFRP-1 laminates than HFRP-2 laminates. 
This indicates placing carbon fibre layups at the outer 
most surface which results in better dynamic perform-
ance in the HFRP-1 laminates.

6. Conclusion

This article highlights the advantage of fibre hybrid-
isation in laminated composites as a cost-effective, 
smart, and sustainable design solution to practical 
structural applications. Application of hybrid lami-
nates is still underrated in the industrial setting. 
However, in many industry sectors, hybrid laminates 
have the potential to improve structural performance 
over lower strength composite laminates; in particular 
to a sustainable implementation of bio-fibre based 
composites in structural application. Bio-fibre based 
composites are not yet well accepted in many indus-
tries due to their poor strength and quicker rate of 
environmental degradation. Often three-dimensional 
models are required to appropriately capture the 
structural response of hybrid laminates due to fibre 
hybridisation. One of the major challenges in the use 
of hybrid laminate lies in the computation cost 
involved while performing numerical analysis. Static 
analysis of composite laminates using zigzag effect is a 
popular approach over three-dimensional analysis of 
laminates. However, the zigzag theory is not much 
explored for stability and dynamic analysis due to 
additional complexity to compute geometric stiffness 
and mass matrices. In this article, the existing zigzag 
formulation [52] is further extended to perform stabil-
ity and dynamic analysis. A methodology is presented 
to formulate and implement the mass and geometric 
stiffness matrices for computation considering the zig-
zag effect. Finally, the formulation is numerically 
implemented in a two-dimensional framework to 
solve stability and free-vibration problems. A C0 con-
tinuous RHZT-based formulation ensured the con-
tinuity of transverse shear stresses at the layer 
interfaces. The proposed formulation is numerically 
implemented in the finite element framework using 
an eight-noded isoparametric quadratic plate bending 
element. First, the formulation is numerically verified 
for its accuracy with respect to published results. Two 
cross-ply laminates are used in the verification study. 
Mesh objectivity in the numerical solution is verified 
using five discretisations. Based on this study, com-
pared to RFZT formulation, the proposed RHZT for-
mulation provides more accurate numerical results in 
predicting buckling strengths and natural frequencies. 

Additionally, the higher efficiency of the framework 
for different boundary conditions have been verified. 
Next, an extensive parametric study is performed by 
considering parameters such as aspect ratio, span-to- 
thickness ratio, boundary conditions and percentage 
of hybridisation. For this purpose two different HFRP 
laminate configurations with same percentage of 
hybridisation are compared. Significant increase in 
critical buckling strengths and natural frequencies is 
observed in the both hybrid laminates compared to 
pure GFRP laminates. The parametric study involving 
the percentage of hybridisation clearly demonstrates 
enhancement in the structural performance of hybrid 
laminates. The comparison between the performance 
of two HFRP laminates enables the capability of tai-
loring laminates for intended application which will 
lead to sustainable and cost-effective design. 
Therefore, prior numerical analysis is strongly recom-
mended before manufacturing laminates, specially the 
sequence of CFRP layups in a HFRP laminate.

Based on the analysis results, the following needs 
are identified for future work.

1. The parametric study identified that the perform-
ance of a hybrid laminate can be further tailored. 
Based on the application requirement, necessary 
optimisation techniques need to be employed.

2. In this study the material is assumed to be linear 
elastic. However, in reality materials demonstrate 
nonlinear and inelastic behaviour under service 
conditions. Therefore, an appropriate constitutive 
model can be incorporated to capture the nonlin-
ear and inelastic effect within the material.

3. The proposed framework is developed in a deter-
ministic setting. Defects in laminates due to 
material variability, manufacturing imperfection 
has significant effects on the performance of com-
posite laminates. Therefore, stochastic aspects of 
the analysis remain an open area of future 
research [54, 55].

4. Finally, to reliably employ the proposed model in 
practice the model parameters can be calibrated 
and validated with experimental data. Uncertainty 
quantification of this computational model needs 
to be further performed.
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