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Abstract
Breast cancer has become the leading cause of cancer mortality among women worldwide. The timely diagnosis of such 
cancer is always in demand among researchers. This research pours light on improving the design of computer-aided detec-
tion (CAD) for earlier breast cancer classification. Meanwhile, the design of CAD tools using deep learning is becoming 
popular and robust in biomedical classification systems. However, deep learning gives inadequate performance when used 
for multilabel classification problems, especially if the dataset has an uneven distribution of output targets. And this problem 
is prevalent in publicly available breast cancer datasets. To overcome this, the paper integrates the learning and discrimina-
tion ability of multiple convolution neural networks such as VGG16, VGG19, ResNet50, and DenseNet121 architectures for 
breast cancer classification. Accordingly, the approach of fusion of hybrid deep features (FHDF) is proposed to capture more 
potential information and attain improved classification performance. This way, the research utilizes digital mammogram 
images for earlier breast tumor detection. The proposed approach is evaluated on three public breast cancer datasets: mam-
mographic image analysis society (MIAS), curated breast imaging subset of digital database for screening mammography 
(CBIS-DDSM), and INbreast databases. The attained results are then compared with base convolutional neural networks 
(CNN) architectures and the late fusion approach. For MIAS, CBIS-DDSM, and INbreast datasets, the proposed FHDF 
approach provides maximum performance of 98.706%, 97.734%, and 98.834% of accuracy in classifying three classes of 
breast cancer severities.
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1 Introduction

Breast cancer, noticed in the breast part of humans, is the 
second most affecting cancer worldwide. According to the 
statistics released by World Health Organization (WHO), 
approximately 2 million women were diagnosed with 
this cancer type, resulting in the global deaths of almost 
685,000 in 2020 [1]. At the end of the same year, it was 
around 7.6 million women survived who were under-diag-
nosis in the past five years. This makes breast cancer the 
earth's most predominant cancer type. And it is revealed 
that this type of cancer affects women much more as com-
pared with men. Additionally, this cancer type affects 
women of any age group in every nation after puberty [2]. 
And the impact of this cancer type is more in women's 
later life. Furthermore, around half of tumors developed in 
the breast part have no recognizable and no common risk 
factors other than gender (women) and ageing. This makes 
breast cancer deadly for women since those who have it do 
not experience any symptoms. [3]

The improvements in survival of people with breast can-
cer began in the late 1980s due to earlier detection of the 
disease combined with advanced diagnosis modes. Thus 
early identification and appropriate diagnosis of breast 
cancer play a significant part in minimizing mortality and 
ensuring improved survival rates. This could be possible 
because of computer-aided diagnosis (CAD) tools. Nowa-
days, researchers are continuously working towards design-
ing robust CAD tools for efficient and adequate diagnosis 
of this cancer type. Herein, medical imaging and analysis 
play a vital role in efficient diagnosis. For this, several imag-
ing modalities are employed using X-rays (digital mammo-
grams), imaging with magnetic resonance approach (MRI), 
imaging with acoustic waves (ultrasound), and imaging with 
infrared rays (thermography) [4]. In this, mammograms pro-
vide breast images with better visualization of the anatomy. 
This makes breast imaging using mammography the most 
often approach for early diagnosis [5]. Digital mammo-
gram images can provide a higher quality representation 
of masses, microcalcification, and structural deformities. 
Among these, microcalcifications and masses are impor-
tant in tumor detection at an earlier stage of breast cancer, 
whereas the last indicator is the least significant in tumor 
detection. Clinical people always encounter some difficulty 
in providing accurate evaluation during the diagnosis. This 
is especially because of the different shapes and sizes of the 
breast and the larger amount of mammograms implicated 
in the screening for breast cancer [6]. Consequently, there 
is always a demand for a robust CAD system for detecting 
and classifying breast cancer severities. The proposed CAD 
system for breast cancer problem is given in Fig. 1. From 
this, it is inferred that:

Step 1: The digital mammograms are first retrieved from 
publicly available datasets [mammographic image analysis 
society (MIAS), CBIS-DDSM (curated breast imaging sub-
set of digital database for screening mammography), and 
INbreast] and taken as training inputs. The details of the data-
bases will be illustrated in Sect. 4.1.

Step 2: The preprocessing of mammograms and image 
augmentation are done to attain the best classification perfor-
mance. The preprocessing and data augmentation details will 
be presented in Fig. 2 and Sects. 3.1 and 3.2.

Step 3: Next to preprocessing, the mammograms are 
applied to four convolutional neural networks (CNN) architec-
tures, namely VGG16. VGG19, ResNet50, and DenseNet121, 
where the deep features are extracted by fine-tuning the mod-
els. For example, as given in Step 3 of Fig. 1, the last convolu-
tion block (layer-13 to 18) is fine-tuned, whereas freezing the 
first fewer convolution blocks (layer-0 to 12), together with 
the top-level classifier. The details of transfer learning-based 
feature extrication will be discussed in Sect. 3.3.

Step 4: Here, the features are extracted from the last layer 
before the softmax layers of every CNN architecture, and 
then the feature arrays of 1024 feature vectors are created. 
Afterwards, these arrays are applied further into the sequen-
tial model for performing classification. The details about the 
feature fusion network will be presented in Sect. 3.3.

Step 5: The step involves the classification of unseen test 
mammograms.

Step 6: The classification performance of the proposed 
approach is finally evaluated using the standard performance 
measures, and a comparative analysis is done.

In CAD frameworks, feature-based approaches are com-
monly adopted for medical classification problems by fea-
ture extraction; these feature vectors will be used to train the 
classifiers. The outcomes of classification models are highly 
dependent on the extracted feature vectors, so several research 
works primarily emphasize two things: (i) developing quali-
tative feature descriptors and (ii) extracting better feature 
vectors. As compared with conventional handcrafted feature-
based approaches, CNNs can automatically extricate more 
abstract features. Furthermore, deep feature fusion approaches 
are emerging in order to enhance the better feature representa-
tion of applied images. In this way, the paper proposed a fusion 
of hybrid deep features (FHDF) approach for capturing more 
potential information and thereby improving the classification 
performance of breast cancer.

2  Related Works

The section gives an overview of deep learning techniques 
used for the problem of breast cancer classification and dif-
ferent feature fusion approaches used for computer vision 
tasks.
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2.1  Deep Learning for Breast Cancer Classification

In recent days, several machine learning (ML) and deep 
learning (DL) techniques have emerged for classifying 
breast tumors using different input datasets. In the year of 
2017, Neeraj et al. [7] developed a CAD system for breast 
mass detection and classification of mammograms. For the 
classification part, they used a DL architecture which was 
pretrained with hand-crafted features. And they used mam-
mograms from the INbreast database for implementation. 

The result of the work revealed that the model provided a 
classification performance of 90% accuracy. Here, the study 
investigates on providing solutions for a binary classification 
task (benign vs malignant). In the same year, Thijs et al. [8] 
presented the design of large-scale DL for the classification 
problem of breast cancer.

The authors presented a detailed comparison between the 
recently evolved mammographic CAD tool, which relies on 
manually extracted features and a CNN. The authors trained 
the above systems using privately obtained mammogram 

Fig. 1  Proposed workflow for the three-class classification of breast cancer
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data of around 45,000 images. And concluded that the deep 
CNN architectures performed well in classification and 
obtained results of 85.2% accuracy. Here, the study involves 
the investigation of a binary classification task. In the year 
of 2018, Xiaofei et al. [9] evaluated ten distinct deep CNN 
models and revealed that integrating both image augmenta-
tion and CNN-based transfer learning techniques is the most 
efficient way to improve classification performance in breast 
cancer problems. For this, the authors utilized privately 
obtained mammogram datasets. Here, the study analyses the 
binary classification problem. In the same year, Yemini [10] 
developed a CAD tool using CNN based transfer learning 
approach with Google Inception-V3 as a base model. They 
evaluated this using the digital mammograms taken from the 
INbreast dataset and obtained a result of 0.78 AUC. Here, 
the study investigates on providing solutions for a binary 
classification task (normal vs abnormal).

Chougrad et al. [11], in the year 2020, proposed a CAD 
system that intends to portray spontaneous label correlation 
relationships for mammogram classification. For this, they 
utilized the pretrained CNN models for the attractive nature 
of transfer learning. The authors used a different approach 
for fine-tuning the models by utilizing an optimization tech-
nique that uses Stochastic gradient descent (SGD) adopted 
with a decaying learning rate. The work resulted in 0.687 
and 0.617 of F1 score performance as obtained for the classi-
fication problem using INbreast and MIAS databases. Here, 
the study investigates on providing solutions for a multi-
label classification task using transfer learning. In the same 
year, Shu et al. [12] presented a CAD system using CNNs 
for breast cancer classification using two pooling struc-
tures that are different from the conventional one. Here, the 
extraction of features is done, and the pooling structures are 
used in dividing the mammogram input regions with higher 

Fig. 2  Sample Pre-processing of a digital mammogram in MIAS database (mdb021)
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malignant probabilities in accordance with the extricated 
features. The researchers used the DenseNet169 architecture 
for feature learning. In addition, they modified the architec-
ture’s last layer in accordance with the pooling structure for 
classifying the input feature vectors. The work was tested 
using the INbreast dataset and attained a classification result 
of 92.2% accuracy. Here, the study investigates on providing 
solutions for a multi-label classification task.

In addition to the above works, we the authors did some 
experimentations using transfer learning approaches for 
binary and multi-class classification problems. In the 
year 2021 [13], the deep features from mammograms are 
extracted using AlexNet, DarkNet19, GoogleNet, VGG16, 
and ResNet CNN models where classification is done typical 
ML algorithms such as K-nearest neighbour (KNN), Naïve 
Bayes (NB), Ensemble, and support vector machines (SVM) 
algorithms. Here, the hyperparameters are tuned automati-
cally using the Bayes optimization techniques. In the year 
2022 [14], ResNet18-based deep feature extraction is done, 
and the classification is further proceeded using extreme 
learning machine (ELM) model optimized with an enhanced 
crow-search algorithm. In the same year of 2022 [15], exper-
imentations using transfer learning approaches are done with 
different strategies used for deep feature extraction, feature 
selection, feature fusion, and feature classification. And all 
these works were carried out using MIAS, CBIS-DDSM, 
and INbreast datasets with a maximum performance of 95% 
classification accuracy. In the same way, a new approach of 
feature fusion (FHDF) is proposed in this paper to enhance 
the performance of multi-class classification problems 
further.

From the literature [7–14], it is inferred that most 
researchers have focused on the problem of binary classi-
fication; however, multi-class classification is significant 
in real-time scenarios. And noted that some researchers 
employed pre-segmented image inputs for performing clas-
sification tasks. Furthermore, the transferred architecture is 
often incapable of capturing the representations of image 
inputs, and conventional feature vectors cannot provide the 
optimality of CAD systems in a promising manner. Thus, 
this work examines the hybrid fusion approach to address 
the above-said problems.

2.2  Related Works in Computer Vision Tasks Using 
Feature Fusion Approach

Several research works employ the fusion of extracted 
features, some of which are given below. In the work 
of [16], the researchers developed a hybrid fusion CAD 
model based on the integration of early and late fusion for 
the problem of glaucoma classification. Here, the central 
and Hu moments, and gray level co-occurrence matrix 

(GLCM) features are fused with CNN features, whereas 
classification is performed using the SVM algorithm. 
Another work of [17] portrays that the authors employed 
multi-structure-based fusing of CNN features used for 
the classification of satellite remote sensing scenes. 
Here, GoogLeNet, VGG-16, and CaffeNet are adopted 
for extracting the feature vectors and are fused using the 
fusion network. In the research of [18], an ensemble of 
multiple deep architectures is fused for classifying the 
medical image inputs. The results of this work revealed 
that the ensemble technique provides better classification 
when combined with fused features. And in the research 
work of [19], they developed a CAD model for the clas-
sification of skin lesions using the fused features from 
VGG16 and AlexNet models. The researchers found that 
the classification performance of fused features provides 
better accuracy than the individual feature vectors. The 
research works of [16–19] reveal that deep learning using 
CNNs emerges as one of the most substantial machine 
learning tools in medical classification problems. It has 
outpaced the classification performance of conventional 
classification models and human recognition. The con-
volution operation in CNNs simplifies an input image 
from several thousands of pixels to smaller feature maps. 
This makes the input dimension as a reduced one with 
significant representations. Here, it is also noted that the 
employment of the transfer learning concept is much more 
helpful in extracting deep features. It is one of the machine 
learning approaches where a CNN architecture trained on 
solving one problem is re-used on an another related prob-
lem. Moreover, the mentioned research works utilized the 
concept of feature fusion for improved and better feature 
representation of applied images. As a result, these deep 
feature fusion-based approaches provide supreme classi-
fication results as compared with the conventional hand-
crafted and individual deep features.

The summary of significant contributions of the pro-
posed work are:

1. To the extent of our knowledge, this paper is the first one 
to use the FHDF approach for the three-class classifica-
tion of breast cancer.

2. A better preprocessing approach is employed for pecto-
ral muscle removal in mammograms.

3. The deep learning models with improved architecture, 
namely VGG16, VGG19, ResNet50, and DenseNet121, 
are presented for extricating the complementary feature 
vectors pertaining to the different depths of the CNN 
models.

4. An enhanced FHDF approach is proposed to adaptively 
fuse the CNN features through dense layer combined 
with softmax, batch normalization, and dropout layers.
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3  Proposed Framework

This section presents information on how the mammogram 
inputs are preprocessed for further stages. How are the 
resultant mammograms augmented? How deep features are 
extracted from these augmented data? How is the proposed 
fusion of hybrid deep features network constituted?

3.1  Preprocessing of Mammograms

In MIAS and CBIS-DDSM databases, the dark and thick-
ened borders on either side of mammogram images are 
cropped manually. In this dataset, the mammograms are 
obtained with medio-lateral oblique (MLO) viewpoint. 
Herein, the significant part of preprocessing lies in the 
removal of pectoral muscles (PM). These PMs are the 
regions located on either the top right or left side of the 
breast and quite the opposite to the direction of nipple 
location. For successful PM removal, the left-view mam-
mogram images are flipped in an uniform manner. This 
flipping of images is done to make all the inputs as right-
MLO view mammogram images so that the PM is located 
uniformly at the upper-left-side portion. A quite rudimen-
tary idea for automatic mammogram flipping is detect-
ing the image orientation. This could be easier since the 
background pixel areas of inputs are totally black and con-
sequently provides us with the breast orientation on either 
half of the mammograms. Before proceeding further, the 
impulse noise present in the images is filtered with an 
adaptive median filter [23] approach without disturbing 
the non-affected pixels. In addition, the contrast of the 
mammograms is adaptively enhanced using the adaptive 
histogram equalization (AHE) [24] technique. After noise 
removal and appropriate contrast enhancement, Sobel [25] 
filter with canny edge detection [26] is employed with a 
threshold value of 1.8 for better detection of edges. Then 
Hough transform [27] technique is applied to obtain a list 
of output lines. Here, every detected line is characterized 
by an object using three parameters: the first one is the dis-
tance (dist) i.e. calculating the perpendicular distance of 
lines from the origin, the second one is the angle (degrees) 
i.e. calculating the degree made by the perpendicular from 
the x-axis on the positive side (nearer to the origin), and 
the third one is calculating the two points (point1 and 
point2) on the detected line. Now possible lines for PM 
segmentation can be shortlisted by examining a simple 
condition of whether the values of two parameters (dist 
and angle) of each line lie inside the below-given intervals;

MIN_ANGLE < = angle < = MAX_ANGLE and
MIN_DIST < = dist < = MAX_DIST.

If more than one line is obtained by using the above pro-
cedure, then the line which provides the least loss of infor-
mation will be selected. Finally, the values of pixels that are 
covered by the shortlisted lines will be set as zero (black), 
and thus the PM is removed. A sample illustration of PM 
removal in mdb021 mammogram of MIAS dataset is pre-
sented in Fig. 2. Furthermore, the mammogram images of 
INbreast database are FFDM, so every finding and its details 
are substantial for further classification stage; however, the 
above-used approach of adaptive median filtering [23] is 
adopted for impulse noise removal in the mammograms of 
INbreast dataset.

3.2  Data Augmentation

The architecture of deep learning models works well if the 
models are trained using a larger sample of input images 
[28]. However, the adopted mammogram databases are com-
posed of fewer hundred samples due to limited patient avail-
ability. Moreover, the overfitting problem of the employed 
classification problem needs to be addressed. And the above 
issues are taken care of using the process of image aug-
mentation that intends to focus on increasing the amount of 
mammograms using existing samples. These newly gener-
ated mammograms are actually distinct variants of the origi-
nal mammograms. The proposed work employs augmenta-
tion utilising the rotation of mammograms by the degrees of 
45, 90, 135, 180, 235, and 270 and through horizontal and 
vertical flipping of inputs. In this way, each input sample for 
every class is augmented eight times which can be illustrated 
graphically in Fig. 3.

3.3  Feature Extraction

3.3.1  Transfer Learning Approach

In recent days, DL has been the emerging approach for solv-
ing several real-time classification and recognition problems. 
Here, CNNs are vital in providing real-time solutions for 
biomedical allied fields [29]. CNNs are the key network of 
deep learning and are prevalent for research in wider areas. 
Compared to conventional machine learning (ML) algo-
rithms, CNNs are much more robust to noise and uneven 
transformation. And this makes it more popular in solving 
problems of biomedical image analysis [30]. The CNNs are 
composed of tens or hundreds of layers in which each layer 
can learn to detect distinct features of an input image. Here, 
the filters play a major role in applying them to every train-
ing image with a distinct resolution, and the obtained output 
is applied to further layers [31]. In this way, the architecture 
of CNN is composed of convolution layers (learning low 
and high-level features), pooling layers (for reducing the size 
of the convoluted feature vectors either through average or 
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max-pooling), and a fully connected (fc) layer that connects 
each neuron of every layer to its succeeding ones for image 
analysis based on the multilayer perceptron [32].

For training a CNN from scratch, it always claims more 
time with higher computing power and data. In the bio-
medical field, the imaging databases are generally in the 
order of 102 to 104 since sorting a larger annotated database 
is quite impractical. In addition, the quality of the image 
will also become substandard. For this, the solution uses an 
interesting part of DL, the transfer learning (TL) approach, 
which intends to utilise knowledge gained while generat-
ing a solution for one task and employing it on another but 
related task [34]. In place of learning from scratch, TL uses 
patterns already trained on the related task. Herein, the 
approach has two phases: the first one involves the selec-
tion of a pretrained network trained on a larger volume of a 
standard database, which is necessarily related to the task 
that we need to solve; and the second one is fine-tuning of 
the selected model in accordance with the size and similar-
ity of the considered problem (image inputs) [35]. Since the 
input datasets differ from the input of the pretrained model, 
the work fine-tuned and freeze some layers in the employed 
deep CNN models as given in Fig. 1.

The work involves the training and testing of some 
advanced pretrained DL architectures, namely VGGNet, 
InceptionNet, ResNet, ResNet-V2, Inception-ResNet-V2, 
NasNet, XceptionNet, and DenseNet models and noted 
that the combination of VGG16, VGG19, ResNet50, and 
DenseNet121 gives the superior performance for this breast 
cancer classification problem in ablation analysis presented 
in Sect. 4.2. Here, the principle of VGG models is the use of 
smaller-sized convolutional filter kernels, which allow the 
networks to possess a larger amount of weight layers [30]. 
This means that more layers will result in enhanced perfor-
mance. The concept of both VGG16 and VGG19 models is 
the same, except that VGG16 has three fewer convolution 

layers than VGG19. For reducing the errors, ResNet models 
use shortcut or skip connections that merely perform identity 
mapping [31]. ResNet50 is one variant with 48 convolu-
tional, one maxpooling and one average pooling layer. The 
skip connections in ResNet50 bypass some layers and send 
the output as an input to the subsequent layers. Thus, provid-
ing an alternate path for the gradient with backpropagation. 
Rather than deriving representational power from highly 
wider or deeper models, DenseNet architectures utilize the 
potential of the network through the concept of feature reuse 
[33]. The layers in DenseNet121 model spread their weights 
across several inputs and thus make use of deep layers to 
reuse features that are extricated earlier. The degradation 
problem [30] encountered in deep learning is alleviated by 
using skip connections in ResNet50 and feature reusability 
in DenseNet121 models. The structure of the four transfer 
learning models is illustrated in Fig. 1.

The work employed the VGG series, ResNet50, and 
DenseNet121 models in the transfer learning approach 
where the weights were pre-trained originally in the database 
of ImageNet [33]. This database comprises a training set of 
about 1.2 million images, a validation set of about 50,000 
images, and a testing set of about 1,00,000, and all these 
inputs correspond to 1000 class labels. As illustrated in step 
3 of Fig. 1, the early layers of each DL architecture are fro-
zen where more generic features are captured. And the suc-
cessive layers of the architectures are retrained using fine-
tuning by training on digital mammogram inputs to further 
acquire more database-specific features. In the end, the work 
fine-tuned the own FC classifier as shown in step 3 of Fig. 1. 
For example, as illustrated in Fig. 4, the VGG16 model is 
considered where the first fewer convolutional blocks utilize 
the parameters (W1,W2,…Wk) that are already trained (pre-
trained) on the ImageNet database.

The size of the preprocessed mammograms for all four 
TL models is (224 × 224 × 3) as shown in Fig. 4b. The 

Fig. 3  Mammogram inputs 
before and after augmentation
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learning rate is tuned as 10−3 for the first fifty epochs and 
further, the training is continued for another fifty epochs 
with 10−5 as the learning rate. The batch size for the train-
ing data is kept as 32 whereas for testing data, the batch 
size is considered as 1, and adaptive moment estimation, 
Adam approach [36] is used for optimization. Figure 4a 
illustrates the entire transfer learning approach using 
the VGG TL model where the first fewer layers are fro-
zen i.e., pre-trained on the ImageNet database, and later 

convolutional block layers followed by FC layers are fine-
tuned in the proposed work. Figure 4b shows a sample 
feature map visualization of the VGG16 model where the 
output of the first convolutional layer (224 × 224 × 64) is 
visualized. The 64 feature maps are plotted as an 8 × 8 
square of images. These feature maps illustrate how deep 
the mammogram's interior parts, edges, and other fine 
details are learned for further classification. Herein, for 
better visualization of feature maps, the cmap of ‘hot’ is 
used in matplot library as given in Fig. 4b.

Fig. 4  a Visualization of transfer learning approach where parameters 
are transferred from pre-trained CNN and fine-tuned on digital mam-
mogram databases [fully connected layer (FC), pooling (P), convo-

lution (C)], b visualization of the feature maps of first convolutional 
layer (224 × 224 × 64) of VGG16 as an 8 × 8 image matrix
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3.3.2  Late Fusion (LF) Approach

The approach of the late fusion technique is one of the 
ensemble methods of classification where the final output 
is based on the maximum number of decision by individual 
classifiers and weights. This approach is generally used in 
ML problems to improve classification performance. In the 
proposed work, the final classification result obtained using 
the four distinct TL networks (VGG16, VGG19, ResNet50, 
and DenseNet121) is integrated by adopting a majority vot-
ing approach. Here, each output class is calculated according 
to the majority of votes obtained for that particular class tar-
get. If m = 1,2, 3,…X and n = 1,2, 3,…Y , then the decision 
of ith classifier can be given as E(m, n) ∈ (0, 1) . Thus, the LF 
approach for majority voting is illustrated as

where m and n represent the number of classifiers used and 
output classes; X and Y  represent the maximum available 
classifiers and output classes.

3.3.3  Proposed Fusion of Hybrid Deep Features (FHDF) 
Network

In the problems of image analysis and classification, the role 
of feature representation is significant in improving clas-
sification performance. As from the literature [16–19], the 
approach of feature fusion (FF) is found to be a noteworthy 
and efficient one in biomedical image classification. This 
approach integrates multiple related feature vectors into a 
single one, which includes rich information and provides 
more contribution (representation) as compared with the 
initial feature inputs. In the literature, there are two tech-
niques followed for feature fusion namely serial and parallel 
approaches [18]. In the first approach, the idea is to concat-
enate two feature sets into a union vector. For example, for 
an image with a dimension of (x, y) , if F1 and F2 are the two 
feature sets extricated, then the serially fused one can be rep-
resented as FS = (x + y) . In the latter approach, the idea is to 
concatenation of feature sets using a complex vector. For the 
above example, the parallel feature fusion with an imaginary 
component (i) can be represented as FP = F1 + iF2.

The above two feature fusion approaches have the limi-
tation of being unable to utilize the original feature inputs 
because the two methods are aimed at creating a new feature 
set, either FS or FP . And the above approaches suffer from 
the idea of concatenating multiple feature vectors. In the 
proposed work, an idea of the fusion of hybrid deep fea-
tures (FHDF) is employed by combining feature inputs extri-
cated from multiple deep-TL models. Figure 5 illustrates 

(1)
x
∑

m=1

E(m, n) = max
y

n=1

x
∑

m=1

E(m, n),

the outline of the proposed FHDF network. In this figure, 
FV16,FV19,FRes, and FDen represent the normalized features 
extricated from the dense layer (FCL) with 1024 neurons of 
the four employed TL models: VGG16, VGG19, ResNet50, 
and DenseNet121. The proposed network is composed of 
a concatenation layer and a fully connected layer with an 
activation function as softmax for integrating distinct fea-
tures. Furthermore, batch normalization and dropout lay-
ers are utilized between the above two layers for avoiding 
overfitting and to optimize the performance during training 
of data. Herein, the concatenation layer provides the fused 
feature vectors with a size of 4096 . This way of effective 
feature fusion can be represented as

where 
⋃

 indicates the concatenation operation, Fn(i) rep-
resents the nth feature vector, and F(i) denotes the output 
vector of ith fused features.

4  Experiments and Analysis

4.1  Preparation of Input Data for Evaluation

The research evaluation considers three different mam-
mogram datasets, namely mammographic image analysis 
(MIAS) [20], curated breast imaging subset of digital data-
base for screening mammography (CBIS-DDSM) [21] and 
INbreast [22] databases. Here, the MIAS database is con-
stituted by a UK research crew. The digital mammograms 
available in this dataset are publicly accessible in peipa 
archive of Essex University [20] and downloaded in.pgm 
format. Here, during the acquisition, the digitization of 
films is done with a fifty-micro-meter pixel edge, creating 
the mammogram output of 1024 × 1024. The image cor-
pus consists of a sum of 322 digital mammogram images 
corresponding to both side breast parts. The dataset is 

(2)F(i) =

4
⋃

i=1

Fn(i),

Fig. 5  Proposed framework of fusion of hybrid deep features (FHDF) 
network
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composed of a Mediolateral oblique (MLO) view of acqui-
sition. These mammograms are separated in the dataset as 
either normal or abnormal samples. In this, well-defined, 
spiculated, ill-defined, architectural distortion, calcifica-
tion masses, and asymmetry are characterized as abnormal 
lesions. In addition, the benign and malignant severities 
are characterized as abnormal samples.

The second dataset taken for evaluation is the DDSM 
database which is constituted by the University of South 
Florida [21]. The database is acquired using 2500 approxi-
mate cases with forty-three volumes. In addition, the data-
set is constituted using 2 basis views of angles: cranio-
caudal (CC) and MLO for every patient. The work adopts 
an MLO view of acquired images as found in the MIAS 
dataset. Moreover, the research employs the mammogram 
images from the updated DDSM i.e., the CBIS-DDSM 
database. The last one is the INbreast dataset [22] where 
the acquisition device used is Mammo-Novation Siemens 
which employed amorphous selenium-based solid-state 
detectors for supporting the resolution of 14-bit with 
70-mm pixel sizes. Here, the breast images are available 
in DICOM format and obtained at an imaging center in 
association with the National Committee of Data Protec-
tion from 2008 to 2010.

In the above-said datasets, standard and good-quality 
digital mammograms are available. However, the INbreast 
dataset contains breast images in the form of full-field 
digital mammograms—FFDM images, which provide bet-
ter recognition of microcalcification than digital mammo-
grams [22]. Herein, the MIAS and CBIS-DDSM datasets 
are commonly used benchmark databases that can be use-
ful for evaluating many research methods. In this work, 
we chose to use the INbreast database because it contains 
high-quality FFDM images. Furthermore, this dataset is 
the only available public dataset that comprises FFDM 
images that give precise and accurate information about 
every detail. By using these three datasets, the paper aims 
in classifying the mammogram inputs as either normal or 
benign or as malignant tumors. The number of mammo-
gram inputs taken for evaluating the proposed CAD system 
is given in Table 1.

After preprocessing and augmentation, the MIAS, 
CBIS-DDSM, and INbreast databases comprise of a total 
of 2576, 4560, and 1432 digital mammograms. The pro-
posed work involves the stratified fashion of data prepara-
tion where training and testing sets take 70% and 30% of 
inputs from both datasets. Herein, the testing set is fur-
ther subdivided for validation of the work. In addition, the 
work employed a fivefold cross-validation strategy which 
makes use of stratified partitioning for its split. This claims 
that the proposed work confirms that every mammogram 
input is being tested in an equal manner and thus avoiding 
any bias error.

4.2  Experimental Setup and Ablation Analysis

The proposed work is carried out in a computer system 
having 16 GB RAM, 1 TB Hard-disk, and an Intel Core 
i7 processor running on Windows 10 operating system. In 
addition, the employed system was equipped with a 2 GB 
configuration of NVIDIA GPU. Moreover, the work utilized 
Jupyter-based python IDE for implementation and evalua-
tion. The IDE is configured with many machine learning 
libraries such as Pandas, OpenCV, Sklearn, MatplotLib, 
Keras, TensorFlow, and PyTorch. For the evaluation of the 
work, the research adopted the standard overall accuracy and 
total misclassification cost as metrics for performance analy-
sis. Further, the results are validated using Cohen’s kappa (�) 
measurement [37]. The above metrics are calculated from 
the elements of the confusion matrix: TP, FP (true and false 
positives), TN, and FN (true and false negatives).

With the above experimental setup, an ablation study is 
carried out to further demonstrate the effectiveness of select-
ing the best combination of deep features. This is done by 
considering the fusion of different features, as illustrated 
in Step 4 of Fig. 1. The ablation experimentation results 
on the MIAS dataset are summarized in Table 2. Here, the 
results reveal that every deep feature we consider plays a 
key role in the classification performance, especially the 
fusion of all four features. Also reveals clearly that even if 
only one combination is used, the proposed approach can 

Table 1  Digital mammograms for evaluating the proposed work

Database Output class Mam-
mogram 
inputs

MIAS Normal 207
Benign 64
Malignant 51

CBIS-DDSM Normal 250
Benign 200
Malignant 120

INbreast Normal 66
Benign 56
Malignant 57

Table 2  Ablation experimentation on fusion of different features 
(MIAS dataset)

VGG16 ✓ ✓ ✓ ✓
VGG19 ✓ ✓ ✓ ✓
ResNet50 ✓ ✓
DenseNet121 ✓ ✓
Overall accuracy (%) 92.755 96.507 95.213 98.706
Kappa ( �) 0.861 0.933 0.909 0.975
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be very competitive compared to others. In this way, the 
work utilizes the fusion of appropriate deep features for the 
remaining two datasets, which has brought the classification 
performance supreme.

4.3  Results and Analysis

4.3.1  Overall Performance Analysis

The overall performance of classifiers for the three datasets 
along with the existing ones is listed in Table 3. This perfor-
mance is calculated for three-class breast cancer problems 
with normal, benign, and malignant targets. Moreover, the 
performance analysis is graphically illustrated in Fig. 6. 
Here, the total misclassification represents how often the 
classification model is incorrect in predicting the actual 
negative and positive output targets, i.e., it can be other-
wise termed as classification error. This metric is calculated 
as a concatenated result of normal vs benign and malig-
nant, benign vs normal, and malignant vs normal cases. 
The overall classification accuracy is calculated in percent-
age (%), which gives us the amount of correct outcomes in 
predicting the actual negative and positive targets. As from 
the literature [7–14], the overall classification accuracy 
could be very misleading since the metric does not con-
sider the class-imbalance of input datasets. To overcome 
this, a robust statistic metric, Cohen’s kappa (�) parameter 
( 0 → 1 ) is considered in this work. Here, the metric assesses 
the degree of agreement among the employed classification 
models by calculating the inter-rater reliability. In Fig. 6, 

the overall accuracy (%) is plotted in the primary axis under 
the total misclassification which is plotted in the secondary 
axis. And the obtained range ( 0 → 1 ) of the kappa statis-
tic measure is augmented into the range of ( 0 → 100 ) for 
better visualization of result comparison. As from Figure, 
VGG16 performs well as compared with the VGG19 model 
for all three datasets. That is, VGG16 provides better results 
of accuracy of 92.367% (MIAS), 89.839% (CBIS-DDSM), 
and 92.308% (INbreast) as compared to the performance of 
VGG19. The skip connections used in ResNet50 make it to 
provide a better classification accuracy of 94.049% (MIAS), 
93.202% (CBIS-DDSM), and 94.172% (INbreast) when 
compared with the above two models. Due to improved 
feature propagation and reduced vanishing-gradient abil-
ity, the DenseNet121 model provides a better classification 
accuracy of 94.825% (MIAS), 94.363% (CBIS-DDSM), 
and 95.338% (INbreast) as compared to the performance 
of the above three models. In addition, the ensemble-based 
LF-approach provides a higher classification accuracy of 
96.378% (MIAS), 96.199% (CBIS-DDSM), and 97.203% 
(INbreast) over the above-discussed models. Consequently, 
the proposed FHDF technique yields a supreme classifica-
tion accuracy of 98.706% (MIAS), 97.734% (CBIS-DDSM), 
and 98.834% (INbreast) over others. The above-attained 
results are validated further using the kappa coefficient 
where the highest value of the agreement is obtained for the 
proposed FHDF method, i.e., 0.975 (MIAS), 0.965 (CBIS-
DDSM), and 0.982% (INbreast). In addition, the graph in 
Fig. 6 shows that whenever the accuracy values are found 
to be higher, the misclassification rate will become lower. 

Table 3  Performance analysis 
of the proposed work

Database Classification models Total misclassifi-
cation

Overall classification 
accuracy (%)

Kappa ( �)

MIAS VGG16 38 92.367 0.854
VGG19 54 89.651 0.804
ResNet50 29 94.049 0.886
DenseNet121 25 94.825 0.901
LF 19 96.378 0.931
FHDF 6 98.706 0.975

CBIS-DDSM VGG16 94 89.839 0.842
VGG19 117 87.833 0.809
ResNet50 65 93.202 0.894
DenseNet121 52 94.363 0.912
LF 36 96.199 0.941
FHDF 22 97.734 0.965

INbreast VGG16 22 92.308 0.884
VGG19 32 90.21 0.853
ResNet50 18 94.172 0.912
DenseNet121 13 95.338 0.930
LF 7 97.203 0.958
FHDF 3 98.834 0.982
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Accordingly, the proposed method has the least misclassifi-
cation rate, corresponding to all three datasets.

4.3.2  Insight Performance Analysis

The above discussion based on Table 3 and Fig. 6 focussed 
on the overall performance analysis. However, the research 
focuses on both detection and classification of severities. 
That is, detecting the disease as either normal or abnormal, 
and further classifying the abnormal severities as either 
benign cases or malignant. This formulates the solution to 
a three-class classification problem where the mammogram 
inputs need to be classified into three output targets namely 
normal, benign, and malignant. Hence, the individual or 
insight performance analysis of all classification models 
should need to be done for each output target, respectively. 
Furthermore, the insightful analysis of the classifier’s perfor-
mance is significant because of the unavoidable class imbal-
ance problem in the employed input datasets.

Accuracy metric highlights how well the model correctly 
discriminates normal, benign, and malignant cases with 
respect to the total inputs [13]. Precision metric concen-
trates on providing how much fraction of predicted positive 
cases is actually positives [13]. Recall metric calculates how 
well the model predicts the positive cases correctly with 
respect to total actual positives [13]. F1 score is calculated as 
a harmonic mean of two metrics: recall and precision [14]. 
Here, accuracy metric is greater only if the input dataset is 
symmetric, i.e., the values of false negatives and false posi-
tives are almost the same [14]. But the research employed 
three different asymmetric datasets. When the amount of 

false negatives and false positives are not same, then preci-
sion and recall measures can be used. As from the precision 
and recall measures definition, both cannot be higher. For 
a model, if recall is increased, then precision will be lower 
and vice-versa. Thus, F1 score is a metric which gives a har-
monic mean of the above two measures. Here, the harmonic 
mean is more suitable for calculating ratios between recall 
and precision. So, F1 score will be higher only if both recall 
and precision are higher. Thus the research work utilizes the 
above-discussed metrics for assessing the employed models.

Table 4 illustrates the confusion matrix obtained for the 
test data of MIAS, CBIS-DDSM, and INbreast datasets 
using the proposed FHDF technique. In this way, the indi-
vidual performance analysis of classification models for the 
three-class classification is tabulated in Tables 5, 6, and 7, 
respectively. The third column (no. of classified outputs) 
represents the overall classified samples for each output 
class, as shown in Table 4. And Fig. 7 illustrates a plot that 
shows the performance analysis of LF and the proposed 
FHDF approach for each class of the MIAS, CBIS-DDSM, 
and INbreast databases.

From Tables 5, 6, and 7 for the employed mammogram 
databases, the VGG16, VGG19, ResNet50, DenseNet121, 
and LF models give their maximum performance of clas-
sification while classifying the normal cases. Hence, the 
substantial difficulty lies in discriminating the abnormal 
severities (benign/malignant), which is why these mod-
els provide overall poor performance as portrayed before. 
Accordingly, the VGG16 model yields the highest clas-
sification performance of accuracy (95.08%), precision 
(96.36%), recall (95.97%), and F1 score (96.12%) in 

Fig. 6  Graphical performance 
analysis of the proposed method
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discriminating the normal cases for the mammograms of 
the MIAS dataset. The VGG19 model yields the highest 
classification performance of accuracy (93.01%), preci-
sion (95.48%), recall (93.56%), and F1 score (95.44%) in 
discriminating the normal cases for the mammograms of 
the MIAS dataset. The ResNet50 model yields the highest 
classification performance of accuracy (96.25%), precision 
(97.36%), recall (96.78%), and F1 score (97.49%) in dis-
criminating the normal cases for the mammograms of the 
MIAS dataset. The DenseNet121 model yields the highest 

classification performance of accuracy (96.77%), precision 
(97.77%), recall (97.18%), and F1 score (97.57%) in dis-
criminating the normal cases for the mammograms of the 
MIAS dataset. But in the case of LF and FHDF models, 
their obtained classification result is good irrespective of 
the database type, i.e., in specific, the proposed FHDF 
approach of classification provides superior classification 
accuracy in the range of 98.17–99.3%. Furthermore, as 
compared with the four transfer learning models, Fig. 7 

Table 4  Test data confusion 
matrix for MIAS, CBIS-DDSM, 
and INbreast datasets using 
FHDF approach
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reveals that the proposed approach performs better for the 
input of FFDM images taken from INbreast data. In addi-
tion, the proposed approach provides superior results in 
discriminating both normal and abnormal severity cases 
for all data inputs. This only makes the proposed FHDF 
classification approach to yield supreme overall-classifi-
cation performance as illustrated in Fig. 6 and Table 3. 
Hence, from Tables 5, 6, 7 and Figs. 6, 7, the proposed 
methodology has outperformed in discriminating whether 
the mammogram is normal or abnormal and if there is 
any abnormality, then it is fine enough to discriminate 
further the severities as either benign case or malignant 
class. The above results are attained not only due to the 
use of the FHDF model but also because of the suitable 
preprocessing approach (Fig. 2) applied with the appro-
priate fusion of deep features. In addition to the above 
performance and comparative analysis, the ANOVA test 
is performed for the employed classification models for 
further statistical validation. Table 8 illustrates the analy-
sis of variance (ANOVA) results and its statistical exami-
nation for the employed problem. As listed, the higher F 
value (42.06386) and the very small P value (3.38E−07) 

illustrate the significance of the proposed methodology for 
multiclass breast cancer classification.

4.4  Performance Comparison of Proposed CAD 
Model with the Existing Research Models

While comparing the research on breast cancer classification 
problems with other biomedical research works, the research-
ers are actively endeavoring to give new solutions for early 
breast cancer diagnosis. However, the comparison among 
the research works is implicitly difficult due to several fac-
tors such as employed mammograms with distinct databases, 
the amount of data inputs, input samples chosen for assess-
ment, the approach of extricating and selecting feature vec-
tors, parameter tuning, classification strategy, and the way of 
evaluating the performance. The performance comparison of 
the proposed approach is listed and summarized from several 
findings as given in Table 9.

Table 5  Individual performance 
analysis of the classification 
models for MIAS dataset

Target label Mammogram 
inputs

No. of classi-
fied outputs

Acc (%) Pre (%) Recall (%) F1 score (%)

VGG16 model
 Normal 497 495 95.08 96.36 95.97 96.12
 Benign 154 159 94.70 85.53 88.31 87.43
 Malignant 122 119 94.95 84.87 82.78 84.59

VGG19 model
 Normal 497 487 93.01 95.48 93.56 95.44
 Benign 154 161 92.88 80.74 84.41 83.16
 Malignant 122 125 93.4 78.40 80.32 79.28

ResNet50 model
 Normal 497 494 96.25 97.36 96.78 97.49
 Benign 154 158 95.60 87.97 90.26 88.96
 Malignant 122 121 96.25 88.43 87.71 88.17

DenseNet121 model
 Normal 497 494 96.77 97.77 97.18 97.57
 Benign 154 155 96.25 90.32 90.90 91.42
 Malignant 122 124 96.64 88.71 90.16 89.76

LF technique
 Normal 497 498 97.54 97.99 98.18 98.31
 Benign 154 155 97.54 93.54 94.15 94.29
 Malignant 122 120 97.67 93.33 91.80 93.68

FHDF technique
 Normal 497 497 99.22 99.39 99.39 99.56
 Benign 154 155 99.09 97.41 98.05 98.49
 Malignant 122 121 99.09 97.52 96.72 97.34
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5  Discussion on the Findings

In recent years, the evolution of DL algorithms has helped 
more in solving real-time problems in the bio-medical field. 
Breast cancer classification using digital mammograms can 
support physicians in identifying the tumors in earlier stages, 
which is crucial to preventing cancer deaths.

The proposed work of three-class classification is evalu-
ated using three different mammogram datasets: MIAS, 
CBIS-DDSM, and INbreast. And these databases are pub-
licly available one for research purposes. In the preprocess-
ing stage, the unwanted noise is removed using a simple 
adaptive median filter. But in the literature [38–44], a few 
works have not employed any filtering techniques for noise 
removal, whereas some works employed filters such as sim-
ple median filters. But the thing to be noted is the noise has 
to be removed without disturbing the unaffected pixels. So, 
the work utilized an adaptive median filtering approach. In 
the next step, mammograms are enhanced using an adaptive 
histogram technique to improve the contrast of microcalci-
fication and pectoral muscle regions without overexposure. 
As a result, the Hough transform and canny edge detection 
provides clear pectoral removed mammograms with a better 
enhancement of microcalcification as shown in Fig. 2.

Then, the challenge is to detect whether the input is 
normal or abnormal; if found to be abnormal, it needs to 
be classified as benign or malignant. For this, the research 
proposes the FHDF approach using transfer learning to 
detect and classify breast cancer. Here, the important thing 
is the selection of deep CNNs used for feature extrication. 
The research performed a lot of ablation experiments and 
found that the fusion of VGG16, VGG19, ResNet50, and 
DenseNet121 gives a very competitive classification perfor-
mance, as illustrated in Tables 2 and 3. While assessing the 
overall performance, the results need to be validated through 
any consistent validation metric. The works of [38–44] note 
that the research findings should be properly validated. After 
validating using Cohen’s kappa (�) , the attained results were 
validated. The value for the proposed approach is highly 
closer to 1, representing that the proposed approach pro-
vides supreme classification performance for breast cancer 
problems. Since it is a multiclass classification, the insight 
performance analysis is presented in Tables 5, 6, and 7. The 
findings of these tables illustrate that the utilized classifi-
cation architectures are well at discriminating the normal 
and abnormal mammograms. And they lag in further clas-
sifying benign and malignant samples. However, the pro-
posed research of the FHDF approach provides superior 

Table 6  Individual performance 
analysis of the classification 
models for CBIS-DDSM dataset

Target label Mammogram 
inputs

No. of classi-
fied outputs

Acc (%) Pre (%) Recall (%) F1 score (%)

VGG16 model
 Normal 600 578 93.13 93.77 90.33 91.96
 Benign 480 484 93.27 90.08 90.83 90.44
 Malignant 288 306 93.27 82.02 87.15 85.28

VGG19 model
 Normal 600 571 91.45 92.29 87.83 90.39
 Benign 480 477 91.74 88.47 87.91 88.27
 Malignant 288 320 92.11 78.12 86.80 82.43

ResNet50 model
 Normal 600 593 95.25 95.11 94.00 95.24
 Benign 480 481 95.39 93.34 93.54 93.44
 Malignant 288 294 95.76 89.11 90.97 90.57

DenseNet121 model
 Normal 600 594 96.19 95.96 95.31 95.87
 Benign 480 483 95.97 96.99 94.58 94.51
 Malignant 288 289 96.56 91.69 92.01 92.39

LF technique
 Normal 600 596 97.37 97.31 96.67 97.49
 Benign 480 478 97.08 96.02 95.62 96.34
 Malignant 288 294 97.95 94.21 96.18 95.41

FHDF technique
 Normal 600 596 98.39 98.49 97.83 98.19
 Benign 480 483 98.17 97.10 97.70 97.46
 Malignant 288 289 98.90 97.23 97.56 97.33
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Table 7  Individual performance 
analysis of the classification 
models for INbreast dataset

Target label Mammogram 
inputs

No. of classi-
fied outputs

Acc (%) Pre (%) Recall (%) F1 score (%)

VGG16 model
 Normal 158 156 94.87 93.59 92.40 93.38
 Benign 134 134 95.34 92.53 92.53 93.29
 Malignant 137 139 94.41 90.64 91.97 91.63

VGG19 model
 Normal 158 158 92.54 89.87 89.87 90.22
 Benign 134 134 93.47 89.55 89.55 90.47
 Malignant 137 137 94.41 91.24 91.24 91.50

ResNet50 model
 Normal 158 158 95.80 94.30 94.30 94.19
 Benign 134 134 96.74 94.77 94.77 95.36
 Malignant 137 137 95.80 93.43 93.43 93.58

DenseNet121 model
 Normal 158 157 96.97 96.17 95.57 96.46
 Benign 134 136 97.20 94.85 96.26 96.39
 Malignant 137 136 96.50 94.85 94.16 95.27

LF technique
 Normal 158 157 98.37 98.08 97.46 98.39
 Benign 134 135 98.37 97.03 97.76 97.18
 Malignant 137 137 97.67 96.35 96.35 96.44

FHDF technique
 Normal 158 157 99.30 99.36 98.73 98.96
 Benign 134 135 99.30 98.51 99.25 99.47
 Malignant 137 137 99.07 98.54 98.54 98.83

Fig. 7  Individual performance 
analysis of LF and FHDF 
approaches for each class of 
DDSM, MIAS, and INbreast 
datasets
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classification performance as compared with the existing 
works. Finally, the paper compared the classification per-
formance of the proposed method with standard pretrained 
models, late fusion technique, and other existing approaches. 
It revealed that the proposed FHDF approach outperforms 
them, thus establishing the novelty of the framework. The 
potential limitations of the proposed work involve the com-
putational complexity involved during the fusion of deep 
features obtained from distinct models. In addition, as from 
Tables 5, 6, and 7, it is noted that the proposed approach 
modestly struggled to recognize the malignant mammo-
grams as compared with the other cases. The above limita-
tions will be looked out in our future proposals.

6  Conclusion and Future Work

The proposed study discusses the design of a robust CAD 
model for enhancing the multiclass classification of breast 
cancer data. For this, the work employed the recent emerging 
deep learning strategy, i.e., four distinct pre-trained convolu-
tional neural networks are employed. After freezing and fine-
tuning the pretrained models, each model's deep features are 
extricated. Before this task, the mammogram images are 
appropriately pre-processed for their removal of noise, pec-
toral muscle, and unwanted regions. In addition, pre-pro-
cessed mammograms are augmented enough and partitioned 
in a stratified manner to overcome the problem of overfitting 

and bias errors. In this way, the above work is evaluated 
using the digital mammograms of MIAS, CBIS-DDSM, 
and INbreast databases with VGG16, VGG19, ResNet50, 
DenseNet121, Late Fusion, and Fusion of Hybrid Deep Fea-
tures models. For evaluation, the overall and insight perfor-
mance analysis is done for better analysis of classification 
models. Accordingly, the proposed FHDF approach provides 
a supreme result of 98.70% (MIAS), 97.73% (CBIS-DDSM), 
and 98.83% (INbreast) classification accuracy as compared 
with the standalone and existing classification models. 
Moreover, the above results are validated properly through 
kappa analysis: 0.975 (MIAS), 0.965 (CBIS-DDSM), and 
0.982 (INbreast). The future direction will involve extending 
the FHDF approach for clinical mammograms with different 
preprocessing methods. The proposed approach involves an 
effective way of fusing deep features extracted from different 
mammogram datasets. Furthermore, the effectiveness of the 
proposed approach will be applied to the same breast cancer 
problem but for multimodal datasets.
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