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Abstract—Providing high quality of service (QoS) to mobile
end-users, and guaranteeing resilient connectivity for healthcare
wearables and other mobile devices is a critical component of
Industry 5.0. However, one of the biggest difficulties that network
operators encounter is the issue of mobility handover, as it can be
detrimental to end-users’ safety and experience. Although various
handover mechanisms have been developed to meet high QoS,
achieving optimum handover performance while maintaining
sustainable network operation is still an unreached goal. In this
paper, random linear codes (RLC) are used to achieve seamless
handover, where handover traffic is encoded using RLC and
then multicasted to handover destination(s) using a mobility
prediction algorithm for destination selection. To overcome the
limitations of current IP core networks, we make use of a revolu-
tionary IP-over-Information-Centric Network architecture at the
network core that supports highly flexible multicast switching.
The combination of the RLC, flexible multicast, and mobility
prediction, makes the communication resilient to packet loss
and helps to avoid handover failures of existing solutions while
reducing overall packet delivery cost, hence offering sustainable
mobility support. The performance of the proposed scheme is
evaluated using a realistic vehicular mobility dataset and cellular
network infrastructure and compared with Fast Handover for
Proxy Mobile IPv6 (PFMIPv6). The results show that our scheme
efficiently supports seamless session continuity in high mobility
environments, reducing the total traffic delivery cost by 44%
compared to its counterpart PFMIPv6, while reducing handover
delay by 26% and handover failure to less than 2% of total
handovers.

Index Terms—Sustainable Mobility, Handover, Industry 5.0,
Next Generation Networks, PFMIPv6, IP-over-ICN, Random
Linear Codes, Prediction, Markov Chain.

I. INTRODUCTION

DURING the last few years, we have faced a tremendous
growth of mobile data traffic demand which is projected

to reach 329 exabytes per-month by 2028 [1]. Evolving mobile
standards, such as 5G and 6G are promising a 1000 fold
capacity improvement to fulfill such a demand, which will
inventively lead to increased traffic and deployment costs.
Mobile network operators are already increasing the density
of their access networks by deploying Heterogeneous Cellular
Networks of small-cell base stations (SBSs) including pico-
cells and femto-cells that work together with conventional base
stations. However, as the SBSs deployment density increases,
mobile users experience more frequent handovers when they
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move from one SBS coverage area to another. These handovers
can take place within minutes or less considering the small
coverage range of SBSs’ (about 10 to 20 meters for femto-cells
and less than 200 meters for pico-cells) [2]. More frequent
handovers in high mobility environments, potentially, lead to
higher handover failure rates. The problem is manifested in
5G networks with the increasing deployment of millimeter
wave (mmWave) SBS’s that suffer high propagation losses
[3]. Therefore, for users frequently moving in and out of
the SBS range within short periods, new handover handling
mechanisms are required to ensure seamless handover with no
service disruption. In this context, we examine pre-emptive
handover to multiple destinations as a possible candidate to
resolve handover failures. To enable pre-emptive handover, we
propose a novel handover management scheme, which is based
on three techniques: (a) flexible multicast switching to dynam-
ically switch traffic to the (multiple) candidate destinations;
(b) Random Linear Codes (RLCs) that can efficiently protect
the data traffic from packet loss and help avoid transmission
of redundant data during handover periods; and, (c) mobility
prediction to select handover destination(s) in a proactive
manner (i.e., where it is most probable that a user will move).

In current mobile core networks, handover to multiple
destinations would require IP multicast solutions to transport
the handover traffic to the group of neighbouring base stations
(gNBs in case of 5G networks). This can be done through an
anchor point in the network core, that routes and encapsulates
user plane traffic towards mobile users. The necessity of an
anchor point arises from the restrictions of conventional IP
mobility, which closely associate addressing information with
physical location. However, tunneling through an anchor is
inefficient and results in sub-optimal (dog-leg) routing, and
hence wasting network resources. This is becoming a pressing
issue to solve, especially with Industry 5.0 requirements of
sustainable and resilient network deployment and operation.

To provide efficient and agile multicast, we adopt our previ-
ously proposed architecture for networking that involves link-
ing IP edge networks through an Information-Centric Network
(ICN) core [4]. The adopted IP-over-ICN architecture does
not impose any change in the way the end-users request their
data, and changes are limited to the information-centric core
network. The ICN core uses Publish and Subscribe (Pub/Sub)
messaging as described in [5], [6]. It separates forwarding
from addressing, as well as providing highly flexible stateless
multicast. As a result, it removes the requirement for tunneling
towards a central anchor point in the core network, thus
offering scalable and sustainable network operation.

While there are ICN solutions that introduce the use of
codes such as network codes or rateless codes to ICN architec-
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tures such as our previous work [7]–[9] and [10], [11] to im-
prove pipelining and enhance Interest messages aggregation;
these codes-enabled ICN architectures require modifications of
the vanilla ICN protocols and necessitate that all the network
is ICN based. Different from these solutions, we employ RLC
codes to facilitate seamless mobility management in IP-over-
ICN networks through multicasting RLC coded data during
handover.

The use of RLC codes is an efficient way to combat service
disruption during handover periods. This is possible as the
transmitted data can be recovered by receiving a number of
RLC encoded packets equal or slightly larger than that of the
source packets. This eliminates the need to specifically put
in mechanisms to cope with out of order packets, jitter or
even buffering resources. Therefore, in the adopted coding
approach, RLC handover traffic is broadcasted/multicasted
simultaneously to several destinations during the handover ex-
ecution. To decide which candidates to multicast the traffic, we
use prediction techniques, specifically first- and second-order
semi-Markov chains [12] to represent SBS/gNB handover
decisions arising from the distribution of Mobile Node (MN)
residence times. A Markov process can accurately predict
mobile users’ future locations and improve the resilience of
the handover process [13].

This paper extends our initial solution presented in [14] by
enabling prediction to decide the set of target handover can-
didates, in addition to an extensive analysis and evaluation of
the proposed handover solution. In summary, the contributions
of our work are as follows:

• the proposal of a make-before-break handover solution
based on RLC codes for IP-over-ICN networks that facil-
itates seamless handover, resilience to data loss and min-
imum handover failure. Different from [14], our improved
solution (termed IP-over-ICN handover for the remainder of
this paper) multicasts data to only a set of gNBs instead of
all neighboring gNBs;

• the introduction of an offline mobility prediction model
based on first- and second-order semi-Markov chains [12]
that can accurately predict mobile users’ future locations.
Although IP-over-ICN handover employs semi-Markov
chains, it is generic and transparent to the prediction method.
Thus, other prediction algorithms can be applied;

• theoretical analysis of the signaling, packet delivery, and
latency cost of IP-over-ICN handover and comparison with
the corresponding cost of the Proxy MIPv6 solution;

• extensive evaluation of IP-over-ICN handover through
simulations using a publicly available realistic mobility
dataset that describes vehicular mobility within the Cologne
metropolitan region in Germany, in addition to the actual
deployment of cellular infrastructure for the same region
[15]. Evaluation results show that the proposed solution
reduces the total traffic delivery cost by 44% compared to
its counterpart PFMIPv6, while reducing handover delay
by 26% and handover failure to less than 2% of total
handovers.

The remainder of the paper is organized as follows: Section
II presents an overview of the handover problem and related

work. Section III introduces IP-over-ICN handover, while a
formal modeling of the mobility cost analysis is provided in
Section IV. The evaluation of the proposal is presented in
Section V, where the simulation results are discussed. The
paper’s conclusions are presented in Section VI.

II. OVERVIEW OF HANDOVER PROBLEM AND RELATED
WORK

The process of mobility handover can significantly degrade
performance in cellular networks. As a result, standardization
bodies like the Third Generation Partnership Project (3GPP)
and the Internet Engineering Task Force (IETF) have devel-
oped different standardized handover mechanisms to improve
the quality of service provided to end-users. [16].

To enable mobility in cellular networks, 3GPP has defined
the General Packet Radio Service (GPRS) Tunneling Protocol
(GTP) [17], which anchors user plane and control plane traffic
at specific core entities. In 5G networks, the User Plane Func-
tion (UPF) serves as the anchor for user plane traffic, while the
Access and Mobility Management Function (AMF) anchors
control plane traffic [18]. Handover in 5G networks can be
accomplished in two ways. The first method is through the Xn
interface, which establishes a direct connection between gNBs.
Alternatively, handover can be performed through the N2
interface between the gNB and the AMF when an Xn handover
is not feasible, for example due to new radio conditions, load
balancing, lack of Xn connectivity to the target gNB, etc [19].
The decision to initiate a handover process is made by the
serving gNB. This process comprises three distinct phases,
namely handover preparation, execution, and completion. To
determine when a handover is necessary, the serving gNB
relies on measurement reports from the MN, which include
indicators of the radio signal strength of both the serving and
neighboring cells, as perceived by the MN. If the handover
is conducted over the Xn interface, the serving gNB sends
downlink packets to the target gNB over the interface to ensure
that there is no packet loss during handover execution [20],
[21].

IETF has proposed the Proxy-Based Fast Mobile IPv6
Protocol (PFMIPv6), an advancement of Proxy Mobile IPv6
(PMIPv6) [22], where the Local Mobility Anchor (LMA) is
the central topological anchor point for the MNs home network
prefix(es). In PFMIPv6, the Mobile Access Gateway (MAG)
is responsible for detecting MNs’ movements to and from the
access link and for binding registrations to the MNs LMA.
During handover, a bidirectional tunnel is created between the
serving MAG and the target MAG, which is used to transfer
packets intended for the MN [23]. The main disadvantage of
PFMIPv6 is that the tunneling cost explodes when preparing
multiple handover destinations. The authors of this paper have
shown, in an earlier work, that an IP-over-ICN architecture
can overcome these costs [14], [24]. Specifically, these works
demonstrated how the IP-over-ICN architecture can avoid the
tunneling through a fixed anchor point and, thus, generally
improving efficiency in the network. The method proposed in
this paper builds on this concept but uses flexible multicast and
handover prediction to overcome the disadvantages of earlier
approaches as explained in later sections.
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From the above discussion, it is apparent that there is
still a pressing need for new HO solutions that are able
to guarantee high QoS to the end-users. To achieve this, a
large number of research efforts focus on using Software
Defined Networking (SDN) for mobility management [25].
However, most of these SDN approaches cannot be directly
applied to large-scale networks due to the fact that mobile flow
entries are tested against matching rule fields through every
OpenFlow switch along the path. This imposes high costs
in mobile flow management. In [26], the authors propose a
software-defined seamless handover strategy based on passive
wireless link quality metrics. This strategy follows a handover
management algorithm composed of handover decision and
execution methods that improve the mobility experience and
provide make-before-break handover. Differently, in [27], a
mobility and available resource estimation strategy based on
SDN is presented so that seamless handover is supported.
In this system, a Markov chain formulation is utilized to
estimate the transition probabilities of mobile nodes between
neighbor base stations as well as their probabilities of resource
availability. By utilizing this approach, it becomes possible to
select the most suitable target base stations and assign them
virtually to the mobile nodes. All the connections are then
established using OpenFlow tables. Also in [28], a SDN based
5G core is proposed, that is based on the standard 3GPP
5G architecture. The work aims to bring about flexibility,
simplified management, and eliminate vendor dependence
within the network. Noticeably, all efforts described above
involve updating the OpenFlow rules in every SDN router
along the users path and require an individual rule for every
MN. This would lead to flow-table exhaustion in typical large-
scale deployments.

Other research studies have focused on optimizing HO
parameters such as ping-pong HO, radio link failure and HO
latency to facilitate seamless handover. In [29], the authors
propose a fuzzy-coordinated self-optimizing HO scheme to
achieve seamless HO while users move in multi-radio access
networks. The proposed scheme aims to resolve the conflict
between mobility robustness and load balancing functions by
utilizing a fuzzy system considering three input parameters:
signal-to-interference-plus-noise ratio, cell load and UE speed.
Also in [30], the authors present a new model for selecting the
best network during vertical handover based on a technique
known as Improved-MEREC-TOPSIS. The objective prior-
ity criteria weight and the TOPSIS multi-attribute decision-
making technique are combined in this work to rank potential
networks and select the optimal network using a threshold to
ensure an efficient and seamless handover decision. Although
the efforts discussed above improve the handover success rate
through parameter optimization, the evaluation results show
that achieving an acceptable balance between the handover
parameters unavoidably entails a considerable number of
handover failures, with unnecessary handovers reaching up
to 20% of total handovers. Differently, this paper proposes
a fundamental change in handover management where RLC
coded traffic is transmitted over the wireless link in the serving
gNB in addition to all/several neighbouring gNB’s during
handover. This enables the MN to receive all downlink packets

that are transmitted during handover from the serving gNB
or any of the potential target gNB’s over the wireless link
without having to worry about sequential transmission, out of
order packets, jittering or even buffering. Since no decision on
a single handover target is needed, handover failure rates are
reduced substantially and would only happen upon a handover
prediction error.

III. IP-OVER-ICN HANDOVER

This paper advocates the novel combination of three ap-
proaches to improve the handover performance: (a) RLC
to support make-before-break handover, (b) an Information-
Centric Core to allow efficient and agile multicast, and (c)
Semi-Markov mobility prediction to avoid multicasting to all
neighboring SBSs/gNBs. This section discusses these main
pillars of the solution in detail.

A. RLC Codes

RLC has been widely studied so only a brief discussion is
given here, and interested readers are referred to [31], [32].
In RLC, senders generate packets by combining linearly, at
random, packets from the same source (session) or multiple
sources (sessions) [33]. This allows maintaining high packet
diversity in the network. At the receivers, decoding is possible
once a set of coded packets is gathered that has rank equal
to the number of source packets. For example, if a source
consists of S packets, a receiver can acquire the original source
packets after receiving (K = S + ϵ) packets, where ϵ is a
small number. This happens when both the number of source
packets (S), and the Galois field GF (q) (which is the finite
field where the operations are conducted) are high enough
[31]. The extra packets are required to account for the fact that
the coded packets arriving to a receiver might be redundant
because of the random coding operations followed during RLC
encoding. To reduce the probability of generating redundant
packets, all the coding operations, i.e., packet combinations,
should be performed in high enough GF (q), where q stands
for the size of the Galois field.

In any case, a number of RLC coded packets larger than
S needs to be received by a user prior to being able to
recover the source packets. Theoretically, The number of
source packets forming a generation S can be unbounded, but
it practically depends on the application, for example, in video
streaming case, the number of packets can be equal to the
number of packets of a group of pictures, or in MPEG-DASH
systems the number of packets forming a chunk. In both
examples, the packets comprising a generation have similar
decoding constraints. In RLC codes, the higher the generation
size and field length is, the higher the encoding/decoding
complexity and delay will be, and at the same time, the
higher the probability of decoding will be. It is worth to note
the tradeoffs among the field size, the decoding probability,
the computational complexity and the delay [34], [35]. This
ensures that the set of encoding/decoding parameters would
be optimized for efficient mobility handover [36], [37].

In IP-over-ICN handover, RLC codes are utilized during
handover time, which means that the delay introduced by



4

Fig. 1: IP-over-ICN Handover.

Fig. 2: IP-over-ICN Handover Sequence Diagram.

RLC encoding/decoding operations should be considered. The
encoding/decoding delay increases with the GF (q) size and
generation length (coding window size). RLC decoding failure
can happen in extreme cases, where the extra delay to transfer
the additional packets may not be afforded. As shown in
[38], RLC outperforms all the other transmission schemes
in terms of delay with GF (24). Therefore, in our evaluation
(Section V), we restrict all coding operations to be performed
in GF (24) with a RLC generation of 100 packets and a
RLC coding overhead equal to 0.02. These parameters setting
ensure a decoding probability of 99.9%, as shown in [33] while
in parallel maintain the encoding/decoding delay and coding
complexity low.

B. Agile Multicast through ICN

The architecture that facilitates IP-over-ICN handover fol-
lows the gateway approach illustrated in Fig. 1. In our ar-

chitecture, the NAP is based on the IP protocol and serves
as an entry point to the ICN-based core network. Essentially,
the NAP maps the IP protocol abstraction to ICN [4]. The em-
ployed ICN architecture uses Publish and Subscribe (Pub/Sub)
messaging as described in [5]. This architecture maps ICN
“names” to Pub/Sub messages using a central network function
called rendezvous (RV). The RV works with a topology
manager (TM) that is responsible for the forwarding process in
the ICN. The TM issues senders with a forwarding ID (FID)
that then allows path-based forwarding that can be unicast
or multicast. There are also Forwarding Nodes (FN) that
simply forward the information object to the Receiver using
the specific FID generated for this transmission. It should be
noted that the ICN multicast solution is quite different from
IP and uses a path based approach where the FID uniquely
defines the multicast tree with no multicast state required in the
forwarding switches. It has been shown that this is realizable in
standard software defined switches without modification and
allows a multicast tree to simply be changed by a source
changing the FID it places on the outgoing packet without
any other signaling in the network [39]. The ICN core is
transparent to the IPv4/IPv6 MN through the convergence
function of a NAP collocated at the gNB. Therefore, IP
becomes a service enabled through the ICN core [4] and IP
addresses are ICN names rather than identifiers used directly
for routing.

With the proposed IP-over-ICN handover solution, when
a NAP detects a MN handover, mobility prediction is used
to identify handover targets from a set of neighbours (po-
tential handover candidates). Consequently, handover targets
are dynamically decided and can be narrowed down to a
single or small number of targets based on the prediction
accuracy confidence. This approach reduces the handover
traffic overhead compared to a naı̈ve approach such as [14]
that would send traffic to all neighbours.

To explain the proposed architecture let us assume two
devices, MN A and CN B, that communicate and are at-
tached to NAP A and NAP B, respectively. To complete the
attachment the following happen: NAP A subscribes to receive
packets sent to the IP address of MN A, and, likewise NAP B
subscribes to receive packets sent to CN B. For MN A to send
traffic to CN B, NAP A then publishes data to NAP B and
similarly for CN B sending to MN A. This Pub/Sub matching
is coordinated by the RV and then the TM allocates forwarding
IDs (FIDs) for unicast communication to take place.

When MN A moves towards NAP C, a handover is initiated.
There could be ambiguity regarding the next NAP towards
which MN A is actually transitioning (NAP C could be one of
a number of candidates, which are decided using the algorithm
presented in Section III-C). An example of the handover
process is shown in Fig. 2 where it is assumed that the initial
Pub/Sub matching for the unicast communication between MN
A and CN B has already occurred. The serving gNB A receives
regular measurement reports of signal quality from the MNs
which it uses to decide if a potential handover is about to
occur. When it detects a handover, gNB A triggers a handover
process that consists of three main phases: the first is Handover
Preparation, the second is Handover Execution and the third
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is Handover Completion.

During the Handover Preparation phase, the serving NAP
(NAP A which is collocated with gNB A) sends a handover
target(s) ID message to NAP B (collocated with gNB B)
that includes the ICN identifier of the target neighbouring
NAP/NAPs included in the Handover Preparation, in addition
to the ICN identifier of the source NAP itself. The local
RV situated at NAP B updates the FID from NAP B to
NAP A, replacing it with a multicast FID. This is because
there are now multiple destinations involved, including the
source and potential target NAP/NAPs for handover. If for
any reason, the local RV fails to create the FID, it can always
refer to the domain RV/TM that have global knowledge of
the network topology. Upon updating the FID, the NAP B
acknowledges receiving the handover target(s) ID message
and starts sending RLC coded traffic using the new multicast
FID. By sending the traffic by multicast to NAP A, and
the target neighbouring NAP/NAPs, the traffic can reach MN
A whichever neighbouring gNB/NAP it is destined to join.
During the handover process, RLC is employed to handle
packet losses or delays in packet arrival. When RLC is utilized,
the user requests RLC encoded packets instead of a particu-
lar uncoded source packet. Each coded packet incorporates
information from several original uncoded source packets.
Coded packets are useful when they contain novel information
compared to the previously received packets. The source data
is recovered by means of RLC decoding when a full rank
set of coded packets is received by the MN (MN A in this
example). The use of RLC removes the need for employing
ARQ mechanisms as these can lead to additional congestion
within the core network. Furthermore, NAP B transmits a
message via multicast with the Pub/Sub state to NAP A and
the target neighboring NAP/NAPs included in the handover
preparation. This state remains stored at the NAPs that are
involved until one of them assumes ownership of the state
when the MN enters its coverage zone.

During the execution phase of handover, the L2 link is
teared down at the previous serving NAP and established at the
new serving NAP. The handover completion phase begins once
the link at the new serving NAP is up. This phase involves
the re-establishment of the session, where the new serving
NAP (NAP C) uses DHCP to initiate IP address establishment
while preserving the MN’s current IP address. When the initial
packet is ready to be sent from MN A to CN B via gNB
C/NAP C, or slightly earlier when link-layer connectivity
is established, NAP C notifies NAP B that it is publishing
to /IP-Prefix/IP-B (an ICN name) and directs NAP B to
implicitly subscribe to the scope of MN A’s own IP address
/IP-Prefix/IP-A (we term this PubiSub). Upon receiving the
PubiSub message and acknowledging it, NAP B is prompted
to discontinue the use of multicast with RLC. Instead, NAP B
starts sending unicast responses to NAP C, allowing regular IP-
over-ICN traffic to resume between MN A and CN B. At this
point, the Pub/Sub state is dropped in all other neighbouring
NAPs that participated in the handover process. This is denoted
by the ”Flush Pub/Sub State” in Fig. 2.

C. Semi-Markov Prediction Model for Mobility

The IP-over-ICN handover solution multicasts RLC encoded
traffic to neighboring NAPs when a move to another NAP
is likely. This improves the resilience of the communication
process and lowers the load of the core network as the traffic
is not sent through an anchor point. When the resources are
constrained, it is desirable to send the RLC traffic only to a
selective set of NAPs where it is most probable that a user
will move. Towards this aim, mobility prediction methods
should be employed. Next, we discuss the adopted semi-
Markov prediction model [40] we used in our system.

1) First Order Markov Chains: The location of a user is
identified by a unique cell ID, as commonly used in cellular
networks. While the user location could also be identified
by other means such as geographic coordinates, here we
are interested in traffic tied to the base station, thus from
network’s perspective, the location identification via the cell
ID is sufficient. To train the mobility prediction, a history
of user mobility is recorded from the list of successive
visited cells during a user’s trip. Specifically, users’ mobility
history patterns are periodically recorded with: the cell-IDs;
the handover count to neighboring cells; and, the residence
time (the time spent in the current cell i before moving to
the next cell l). Based on that, the cell-transition probabilities
pi,l and the distribution of cell residence times can then be
directly computed for each location. We assume that each cell,
maintains a record of these session residence times and the cell
ID of the next-cell transition [12].

A semi-Markov process is used to predict the mobility by
using a Markov chain to represent decisions arising from
the distribution of residence times. Within the semi-Markov
process, time instants represent a user attaching to a new cell
whereas the successive state occupancy is described by the
transition probability pi,l of the Markov chain. The residence
time in a state within the Markov chain depends on the current
cell location and the next cell where the user will move.
The generalized semi-Markov kernel for a time-homogeneous
process is represented as Φi,l(t) [41], [42], the probability that
after making the transition into state i, there is a transition to
state l within time t. Φi,l(t) is defined as

Φi,l(t) = Pr
{
Xn+1 = l, Tn+1 − Tn ≤ t|Xn = i

}
(1)

where Xn and Xn+1 are the state of the system at the nth
and (n + 1)th transition, at times Tn and Tn+1. The kernel
can also be expressed as Φi,l(t) = Pi,lΨi,l(t), where

Ψi,l(t) = Pr
{
Tn+1 − Tn ≤ t|Xn+1 = l,Xn = i

}
(2)

Ψi,l(t) is the conditional probability that a transition from
i to l will take place within time t. The residence times in
this semi-Markov process can obey an arbitrary distribution.
This is a useful departure from the common assumption that
residence times are exponentially distributed, thus permitting
a more general representation of the temporal behavior [43].
In the limit as time tends to infinity, Ψi,l tends to one, we
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have Pi,l = limt→∞ Φi,l(t). Hence, the transition probability
matrix P = [Pij ], ∀ i, j ∈ [1, n] is given by

P =


p1,1 p1,2 p1,3 . . . p1,n
p2,1 p2,2 p2,3 . . . p2,n

...
...

...
. . .

...
pn,1 pn,2 pn,3 . . . pn,n

 (3)

We also define the kernel ϕi,l(t) = pi,lψi,l(t) where ψi,l(t)
represents the residence time given by

ψi,l(t) = Pr
{
Tn+1 − Tn = t|Xn+1 = l,Xn = i

}
(4)

and

ϕi,l(t) = Pr
{
Xn+1 = l, Tn+1 − Tn = t|Xn = i

}
(5)

The state transition probability matrix P is initialized as:

pi,l =
|Hi,l|
|Hi|

(6)

and the residence time distribution matrix Ψ is initialized as:

ψi,l(τ) =
|Hi,l,τ |
|Hi,l|

(7)

where Hi,l represents the count of handovers from cell i to l,
while Hi represents the overall count of handovers for users
from cell i. Hi,l,τ denotes the handover count of users from
i to l specifically within a residence time interval of τ . When
there is a handover from cell i to l, pi,l and ψi,l(τ) and ϕi,l(τ)
are updated. The cell with the highest probability, ϕi,l(τ),
is chosen as the predicted future destination when the time
spent in cell i falls within time interval τ . The prediction
algorithm can be utilized for both offline and online learning.
In the offline case, a training phase may be necessary before
implementing the learned prediction matrices. In the online
case, the probabilities are continuously updated based on the
recorded cell transitions. This ensures that any changes in the
mobility behavior directly update the prediction probabilities.
As operators are aware of the transition statistics which tend to
follow usual daily and weekly patters, we focus on the offline
prediction model here.

2) Second Order Markov Chains: After describing the
semi-Markov process above, a second-order Markov chain is
derived in which the occupancy of successive states is deter-
mined by the transition probabilities of the Markov process.
In this second-order Markov chain, the semi-Markov process
depends on the previous state, current state, and next state
transition, while the residence time spent in any state depends
on the previous state the user visited, as well as the current and
next states the user is expected to move to. In this context, we
assume that each cell in the network that is recording a profile
for mobility pattern consisting of the count of handovers to
neighboring cells, as well as the residence time (the time spent
in the current cell i before transition to the next cell l, given
that the previous cell attachment was h). Consequently, the
cell-transition probabilities ph,i,l and the distribution of cell
residence times at each cell can be directly computed.

The semi-Markov kernel for a second order time-
homogeneous process with transition probabilities ph,i,l is

given by Φ′
h,i,l(t), which denotes the probability that immedi-

ately after making the transition into state i from state h, the
process makes a transition to state l within time t. Φ′

h,i,l(t) is
defined as

Φ′
h,i,l(t) = Pr

{
Xn+1 = l, Tn+1 − Tn ≤ t|Xn = i,Xn−1 = h

}
(8)

where Xn−1, Xn and Xn+1 are the state of the system at
n − 1, n and (n + 1); Tn and Tn+1 are the times of the
nth and (n+1)th transitions. Therefore, as we have done for
first order Semi-Markov chains, the state transition probability
matrix P is initialized as:

ph,i,l =
|Hh,i,l|
|Hh,i|

(9)

and the residence time distribution matrix Ψ is initialized as:

ψh,i,l(τ) =
|Hh,i,l,τ |
|Hh,i,l|

(10)

where Hh,i,l is the handover count from i to l, given the
previous cell was h, and Hh,i is the total number of user
handovers from cell i, given that the previous attachment cell
was h. Hh,i,l,τ is the handover count of users from cell i to
l, given that attachment at the previous attachment cell, h,
was within a residence time of τ .

3) Natural breaks for Residence Time Clustering: In order
to classify users’ residence time within an optimum number of
finite residence time clusters, we use classes of natural breaks
[44]. Classes of natural breaks are data clustering methods
that find the optimum classification of values into distinct
classes. The objective is to reduce the average deviation of
every class from its respective class mean, while in parallel
maximizing the deviation of each class from the means of
the other groups. This reduces the in-class variance while
maximizing the variance between the classes. The method
identifies class boundaries (breaks) that best group convergent
values and separate the divergent ones.

The natural breaks clustering method (summarized in Al-
gorithm 1) requires an iterative process, where calculations
are repeated using different breaks in the dataset to determine
which set of breaks has the smallest in-class variance. The pro-
cess starts by arbitrarily dividing the numeric data (observed
residence times) into groups, and then the following steps are
repeated:

• Calculate the sum of squared deviations between classes
(SDBC).

• Calculate the sum of squared deviations from the array
mean (SDAM ).

• Calculate the squared deviations from the class means
(SDCM ), where:

SDCM = SDAM − SDBC (11)

• Calculate the goodness of variance fit (GVF) statistics as:

GV F = (SDAM − SDCM)/SDAM (12)

Note that GVF ranges from 0 (worst fit) to 1 (perfect fit)
and that SDAM is a constant value that does not change unless
the data changes. After the above calculations, the residence
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times are then moved from one class to another in an effort
to reduce the sum of SDCM and therefore increase the GVF
statistic. This process continues until the GVF value can no
longer be increased [45]. The Natural breaks method is used
because it identifies real classes within the data that have
accurate representations of trends. Many alternative cluster
analysis methods exist, i.e., Head/tail Breaks, Equal Interval,
Quantile, Standard Deviation, etc. However, investigating these
alternatives is out of this work’s scope.

Algorithm 1 Residence Time Clustering

1: Divide arbitrarily the observed residence times into a given
set of classes.

2: Initialize the Goodness of Variance Fit, GV F = 0.
3: Define a GV F target, e.g., GV Ft = 0.8.
4: while GV F < GV Ft do
5: Move residence times from one class to another
6: Compute the sum of the squared deviations between

classes SDBC.
7: Compute the sum of the squared deviations from the

array mean SDAM .
8: Compute the squared deviations from the class means

as SDCM = SDAM − SDBC.
9: Compute GV F = (SDAM − SDCM)/SDAM

10: end while

4) Computational Complexity: With Markov Chain pre-
diction, the accuracy of the prediction grows as the number of
states increases. Furthermore, the number of states grow when
the movement history (memory dimension) is increased, or
when the number of possible directions (direction dimension)
is increased. Increasing the memory dimension increases the
number of states exponentially, while increasing the direction
dimension increases it linearly. With the state-space growing,
the computational complexity of the Markov state calculations
also increases. As a generalization, the complexity is given by

O(ERdm) (13)

where E represents the number of events (handover pro-
cesses) in the network, R represents the number of residence
time clusters used, d represents the mean number of directions
at each cell, i.e., the mean number of neighboring cells, and m
represents the Markov chain order which defines the memory
length. Since the Markov chain prediction we examine in this
paper is of first and second order, the complexity stays rea-
sonable. Therefore, the proposed prediction requires relatively
moderate processing and storage capabilities. It should also
be pointed out that the prediction model can be created offline
using recent mobility statistics to tune the probabilities rather
than having to carry out the prediction tuning on every new
mobility event. The results in this paper shown in Section V
were generated using this offline approach.

IV. ANALYSING THE COST OF MOBILITY MANAGEMENT

This section analyzes the cost of mobility management for
IP-over-ICN Handover and compares it to the corresponding

cost of the IETF counterpart solution PFMIPv6 [46]. For sim-
plicity, it is assumed that only one end of the communication,
MN, is in motion, while the corresponding node, CN, remains
stationary. Therefore, the CN does not generate additional
mobility signaling.

A. Proxy-Based Fast Mobile IPv6

In PFMIPv6, when a MN moves from a previous MAG
(pMAG) to the next MAG (nMAG) and the Received Signal
Strength Indicator (RSSI) of the MN is detected to be less
than a pre-determined threshold, the serving gNB triggers the
Handover-Initiate process as described below [22]:
1) The MN finds the neighbouring gNB with the strongest

RSSI and reports this together with the strongest (new)
gNB to the previous serving gNB that it is about to leave
using an L2 report.

2) The previous serving gNB then indicates the MN’s han-
dover to the pMAG which starts to set up a new IP-in-IP
tunnel between the nMAG and itself.

3) Then the pMAG sends a Handover Initiation Request
message Hr containing the MN’s context information to
the nMAG. The nMAG acknowledges this to the pMAG.

4) When the acknowledgement is received, the pMAG starts
to forward data packets to the nMAG via the newly
created tunnel. Now, the nMAG can forward packets to
the next gNB once the MN is connected to the new access
network, packets may be buffered during the handover and
transmitted when it is complete.

The above is for Predictive Handover where the tunnel
between the pMAG and the nMAG is established prior to
the MN’s attachment to the next gNB. If the MN hands over
to the next gNB without transmitting a measurement report
to the previous gNB, a Reactive Handover is applied where
tunnel establishment takes place after the MN attachment to
the nMAG as described in the standard [46].

1) Mobility Signaling Cost: The signaling cost of PFMIPv6
[47] consists of the proxy binding updates PBU and proxy
binding acknowledgements PBA at the pMAG and nMAG
sent towards the LMA, along with the signaling overhead
of establishing a tunnel between the pMAG and nMAG for
forwarding handover packets. The total signaling cost for
successful PFMIPv6 handover (predictive or reactive) is given
by:

Υ =
{
hp,l(|PBU |+ |PBA|) (14)

+ hn,l(|PBU |+ |PBA|) + hp,n(|Hr|+ |Ha|)
}
,

where hp,l, hn,l, and hp,n represent the hop count between
pMAG and the LMA, the nMAG and the LMA, and the
pMAG and nMAG respectively. |Hr| 1 corresponds to the
message size in bytes of the handover initiation request sent
from pMAG to nMAG (in case of predictive handover) or from
nMAG to pMAG (in case of reactive handover). Similarly,
|Ha| corresponds to the message size in bytes of the handover
acknowledgment sent from nMAG to the pMAG (in case of
predictive handover) or from pMAG to the nMAG (in case

1In this paper, the length of message x is denoted as |x|.
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Fig. 3: PFMIPv6 handover time diagram.

of reactive handover). By setting |PB| = |PBU | + |PBA|,
equation (14) can be rewritten as:

Υ =
{
|PB|(hp,l + hn,l) + hp,n(|Hr|+ |Ha|)

}
(15)

2) Mobility Packet Delivery Cost: Λ is the packet delivery
cost necessary for facilitating Fast Handover in PMIPv6,
which encompasses the packet delivery overhead. This cost
is determined by multiplying the average packet arrival rate
in packets/sec, the size of each packet in bytes, and the hop
distance. In the case of PFMIPv6, the packet delivery cost is
measured in Bytes×Hops/Sec and expressed as:

Λ = RO, (16)

where R is the average packet arrival rate, and O is the direct
path packet cost in PFMIPv6. O is determined by:

O = (hc,l + hl,p + hp,n)(φ+ ζ), (17)

where hc,l, hl,p, and hp,n denote the hop count between the
CN and the LMA, the LMA and the pMAG, and the pMAG
and nMAG, respectively. Finally, φ is the tunneling overhead
and ζ is the average data packet length (both in bytes).

3) Handover Latency Cost: Handover latency cost is
mainly used to investigate the time duration of handover
phases (i.e., preparation, execution and completion). Fig. 3
illustrates the seamless handover timing diagram in PFMIPv6
where Γ is the duration of a layer 2 handover, which is the
time elapsed from when the MN sends an L2 report message
to the previous MAG to when the MN’s L2 connection with
the next MAG is established. Γ can be expressed as:

Γ = tH2 + ω, (18)

where tH2 represents the duration between the delivery of the
L2 report message and the occurrence of the L2 link down
event, while ω indicates the time between L2 link down event
at previous MAG, and L2 link up event at next MAG. We
also define γ to be the time duration for handover mode
transmission, which is the time from when the MN starts
receiving redirected traffic from the previous MAG, or buffered
traffic from the next MAG, to when normal traffic is resumed
at the next MAG. γ is expressed as:

γ = Γ− tH1, (19)

where tH1 represents the time duration of pre-handover prepa-
ration. Therefore, if tH2 > tH1, the MN will start receiving
buffered traffic after attaching to the next MAG. While if tH1

> tH2, the MN will start receiving forwarded (non-buffered)
traffic.

To allow a straightforward analysis, latency is analyzed in
terms of number of exchanged messages, required processes
and traversed hops to complete a successful seamless han-
dover. In this analysis, it is assumed that p represents the time
to process a message, m represents the time to exchange a
message, and h represents the message hop count as shown in
the timing diagrams in Fig. 3. For simplicity, we assume that
p and m are expressed in arbitrary time units, and both set
to 1 time unit. This implies that the link transmission delay
is comparable to the forwarding delay. Thus, in the case of
PFMIPv6, the cost of handover latency Tc can be expressed
as follows:

Tc = 7p+ 2m.hp,n + 2m.hn,l (20)

B. Seamless Handover in IP-over-ICN

This starts with a handover preparation process as illustrated
in Fig. 2. As part of this process, the RLC coded traffic
is multicast from the corresponding NAP to the handover
neighborhood of the MN before the handover execution. Based
on Layer 2 measurement reports at the serving access network,
i.e., the RSSI of the MN falls below a predefined threshold,
the handover preparation process is initiated for the MN, and
the subsequent operations are performed:
1) The NAP on the previous link (NAP A) signals the cor-

responding NAP B by sending a handover target(s) ID
message ℓs including the ICN identifier of the candidate
target handover NAP/NAPs, in addition to the identifier of
the source NAP itself.

2) NAP B replaces the previous FID with a multicast FID
and employs the new FID to transmit a multicast stream
of RLC coded traffic to the identified handover candidate
neighboring NAP/NAPs of NAP A in addition to NAP
A itself. Upon updating the FID, NAP B acknowledges
receiving the handover target(s) ID message by sending an
ACK message back to NAP A.

3) NAP B sends a multicasted state update message ℓu to
NAP A and the identified handover candidate neighboring
NAP/NAP’s. This message includes MN A’s Pub/Sub state
to be stored at the NAPs participating in the handover
process. This Pub/Sub state is used when MN A moves
into the coverage area of one of the participating NAPs.
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4) Once Layer 2 connectivity and IP address allocation have
been established between MN A and NAP C, the latter then
receives the first IP packet destined to the CN (at NAP
B), and locally looks up the FID needed to reach NAP
B. NAP C then uses this FID to send a PubiSub message
ℓi to NAP B. This PubiSub message includes the first data
packet sent from MN A to the CN in addition to an implicit
subscription to MN A’s own IP address scope.

5) After receiving the PubiSub message, NAP B utilizes its
local Rendezvous (RV) to maintain a match Pub/Sub rela-
tion for the mentioned scope and acknowledges receiving
the PubiSub message by sending an ACK message back to
NAP C. It then locally looks up the FID needed to reach
NAP C and uses it to start publishing data to the identified
subscriber.

After the above steps, MN A and the CN can start send-
ing/receiving data payload messages of size ζ.

1) Mobility Signaling Cost: The mobility signaling cost
Υ′ is the product of the signaling messages size in bytes
and the hop count it traverses. Hence, the signaling overhead
introduced to support seamless handover in IP-over-ICN is
calculated as follows:

Υ′ =
{
ha,b(|ℓs|+ACK) + hc,b(|ℓi|+ACK)

+hb,j |ℓu|+
∑
n∈Nc

hj,n|ℓu|
}
, (21)

where ha,b represents the hop count between the previous NAP
A (the serving NAP before handover) and the corresponding
NAP B, hc,b represents the hop count between the next NAP C
(the serving NAP after handover) and the corresponding NAP
B, hb,j represents the hop count between the corresponding
NAP B and the multicast route fan out node (i.e., the node that
branches out to reach all members of the multicast group) rep-
resented as node j. Nc is the set of neighboring NAPs where
handover will happen. Nc set is found by determining the
|Nc| maximum values of ϕi,l(t) (Φ′

h,i,l(t)) for 1st order (2nd
order) Semi-Markov chain prediction. Finally, hj,n represents
the hop count between the multicast route fan-out node j and
neighboring NAP n.

2) Mobility Packet Delivery Cost: The packet delivery cost
Λ′ refers to the packet delivery overhead of the RLC coded
stream that facilitates seamless mobility in IP-over-ICN. It is
calculated by multiplying the average packet arrival rate in
packets/sec, the packet size in bytes, and the hop distance,
and is expressed as follows:

Λ′ = R
′
O

′
, (22)

where O
′

represents the direct path overhead for a RLC coded
packet, and R

′
represents the average packet arrival rate of

RLC coded packets during handover. The latter is calculated as
R

′
= R(1+ ϵ), where ϵ represents the coding overhead which

is equal to K
N − 1 for K > N with K denoting the number

of received packets and N the number of source packets. Due
to the random structure of the employed RLC codes, each
packet is also equipped with a header containing the coding
coefficients that describe the coding operations employed to
generate the coded packet. The header size varies based on the
Galois field used for the operations and the number of source

Fig. 4: IP-over-ICN Handover Time Diagram

packets. The Galois field GF (q) is equal to K log2 q, where q
is the Galois field size. The coding header can be compressed
in only two bytes by following an approach similar to that used
in Raptor codes [48], where only the seed of the pseudorandom
generator used to produce the code is sent instead of sending
the coding coefficients, or by using the approach in [49].
O

′
in equation (22) can be obtained as follows:

O
′
= hb,j(φ

′ + ζ) +
∑
n∈Nc

hj,n(φ
′ + ζ), (23)

where hb,j represents the hop count between the corresponding
NAP B and the multicast route fan out node j, hj,n represents
the hop count between the multicast route fan-out node j
and neighboring NAP n, and φ′ denotes the size of the ICN
payload packet header.

According to [33], the average number of RLC packets K
that need to be sent in order to recover S source packets can
be calculated as:

K =

∞∑
k=S

k · Pd(k, S), (24)

where Pd represents the probability of the receiver having re-
ceived S linearly independent packets out of the K transmitted
packets. This probability can be calculated using the following
formula:

Pd(K,S) =

{
0 , if K < S∏S−1

j=0 1− 1
qK−j , if K ≥ S

, (25)
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3) Handover Latency Cost: Fig. 4 shows the timing dia-
gram for seamless handover in IP-over-ICN where Γ′ is the
time duration for a Layer 2 handover, which is the time from
when the MN sends an L2 report message to the previous
NAP to when the MN’s L2 association with the next NAP is
completed. Γ′ can be expressed as:

Γ′ = tH2 + ω, (26)

where tH2 represents the time between delivery of L2 report
message and L2 link down event and ω indicates the time
between L2 link down event at previous NAP and L2 link up
event at next NAP. We also define γ′ to be the time duration
for handover mode transmission, which is the time from when
the MN starts receiving RLC coded traffic from the previous
NAP, to when normal IP-over-ICN traffic is resumed at the
next NAP. In other words, it is the duration of RLC coded
transmission throughout the network with regards to a single
handover. γ′ is given by:

γ′ = Γ′ − tH1, (27)

where tH1 represents the time duration of pre-handover prepa-
ration. Therefore, if tH2 > tH1, the MN will start receiving
RLC coded traffic prior to handover from the previous NAP.
While if tH1 > tH2, the MN will only receive coded traffic
after the handover from the next NAP.

As in PFMIPv6, latency is analyzed in terms of number of
exchanged messages, required processes and traversed hops
to complete a successful seamless handover. However, as
explained in Section III-C4, the prediction model used to
identify target handover candidates takes an offline approach,
which allow us to ignore the prediction processing time.
According to the timing diagrams in Fig. 4, p denotes the
time to process a message, m denotes the time to exchange a
message and h denotes the hop count that a message traverses.
Again, as in PFMIPv6 we assume that p and m are expressed
in arbitrary time units, and both set to 1 time unit. This
implies that the link transmission delay is comparable to the
forwarding delay. Therefore, for IP-over-ICN, the handover
latency cost T ′

c can be computed as:

T ′
c = 5p+m · ha,b +m · hb,c (28)

The messages and processes in dotted line in Fig. 4 have not
been included in equation (28) for the following reasons. The
ACK message sent from the corresponding NAP B towards
the previous NAP A does not affect MN A’s detachment from
NAP A or any of the other subsequent handover preparation
steps. Its absence can only lead to retransmission of the
Handover Target(s) ID Message. Also, the Update Pub/Sub
State message sent from the corresponding NAP B to the
neighboring NAPs does not affect the subsequent handover
execution phase, i.e., MN receiving RLC coded handover
traffic. In fact, when this message does not arrive, it can only
lead to a hard rather than soft handover completion phase.
The latency cost in equation 28 does not include the PubiSub
message sent to trigger the handover completion phase, since
the message also carries the MN’s initial data payload, and
therefore does not introduce any additional latency. Finally,

TABLE I: List of mobility messages and their sizes

Notation Description Size
PBU Proxy binding update 76 Bytes [47]
PBA Proxy binding acknowledgement 76 Bytes [47]
Hr Handover initiation request 104 Bytes [22]
Ha Handover acknowledgement 168 Bytes [22]
φ Proxy MIPv6 tunnelling header 40 Bytes [47]
ζ Average payload length 1024 Bytes
ℓu Multicasted state update message 102 Bytes
ℓs Handover target(s) ID message 160 Bytes
ℓi Publish with implicit Subscription 166 Bytes

message (PubiSub)
φ′ ICN payload packet header 96 Bytes

ACK ICN Acknowledgement Message 64 Bytes

it is worth noting that in case of prediction failure (i.e., the
prediction model fails to identify the correct handover target),
a break-before-make handover is performed. A detailed cost
analysis of break-before-make handover for IP-over-ICN can
be found in [24].

V. SIMULATION AND PERFORMANCE EVALUATION

IP-over-ICN handover performance, and that of its coun-
terpart (FPMIPv6) is evaluated using a discrete time event
simulation that was built in R specifically for this purpose.
The simulation was conducted on a PC with Intel Core i7 CPU
at 2.3 GHz and 16 GB Memory. The simulation environment
incorporates a realistic mobility dataset representing vehicular
movement in the German city of Cologne. The city’s actual
cellular infrastructure, comprising of 247 base stations (eN-
odeBs) [15], in addition to 25 core forwarding nodes/switches
have been deployed in the simulation. To approximate the
coverage area of individual base stations in the region, we
perform a Voronoi tessellation on the base station locations.
The Open Street Map (OSM) database is used to extract
the city’s road topology map, and the Simulation of Urban
Mobility (SUMO) software is employed to simulate the mi-
croscopic mobility of vehicles. To derive the traffic demand in-
formation on the macroscopic traffic flows across Cologne, we
employ the Travel and Activity Patterns Simulation (TAPAS)
methodology. The mobility dataset generated, resembles the
vehicular mobility of Cologne for a 24 hour period, with more
than 700, 000 individual trips in total [50].

To represent both the LMA and TM/RV in the core network,
the same central node was utilized to ensure valid cost
comparisons. Our data traffic model assumes that all network
users transmit video data at a rate of 1 Mbps, following a
Poisson distribution for packet arrival. It is also presumed
that handover latency is between 50ms [51] and 2sec [22]
following a conditional uniform distribution depending on the
MN velocity; where MNs with higher velocity experience
lower handover latency and vice versa. This is due to the fact
that faster MNs spend less time in overlapping coverage areas,
hence handover decisions can be made more rapidly [22].

We restrict all coding operations to be performed in
GF (24). We assume an RLC generation of 100 packets and an
RLC coding overhead ϵ equal to 0.02, which means that two
extra RLC packets are transmitted. These parameters setting
ensure a decoding probability Pd(K,S) of 99.9%, as shown
in [33] while in parallel maintain the coding complexity low.
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The mobility cost equations derived in section IV have
been used in the simulation to evaluate the signalling, packet
delivery, and latency costs for both IP-over-ICN and its
FPMIPv6 counterpart. Table I presents a summary of the
mobility messages, along with their corresponding sizes, for
both evaluated solutions. For ℓu, ℓs, ℓi and φ′, these assume
ICN FIDs and name ID lengths of 256 bits each and a single
scope and ID for the IP naming.

A. Prediction Performance Evaluation with Respect to Num-
ber of Residence Time Clusters

In Fig. 5, we compare the prediction success rates of target
handover cells for 1st and 2nd order Markov chains according
to the number of residence time clusters used. The simulation
was run 10 times, each for an hour slot covering the vehicular
mobility in the city of Cologne for the hours between 8:00
and 18:00. The figure illustrates that the number of residence
time clusters used has a significant impact on the prediction
performance, where 1st order Markov chain prediction success
rate increases from 73% when 2 residence time clusters are
used, up to 84% when the number of residence time clusters
increases to 10. On the other hand, expanding the prediction
targets to two cells per handover for every user increases
the hit rate for 1st order Markov chain prediction to about
97% for 10 residence time clusters. It can also be seen from
Fig. 5 that 2nd order Markov chain prediction substantially
increases the prediction success rate that reaches about 98%
for 10 residence time clusters. This outperforms 1st order
Markov chain prediction even when 2 target handover cells are
predicted. This is due to the predictable nature of the vehicular
mobility that is governed by road pathways, which makes very
useful to know the previous cell that the user was attached to
before moving to the current cell, in order to make a more
accurate prediction of the next cell transition.

Based on the above, 10 residence time clusters have been
considered the benchmark for the prediction technique pro-
posed, as it is obvious from Fig. 5 that further increasing the
number of residence time clusters only has marginal effects on
the prediction accuracy. Finally, it is worth to note that 25% of
the mobility data set was used for training the prediction model
and the remaining 75% for evaluation. The split was based on
thorough testing, where it was found that according to the
characteristics of the data set, 25% is sufficient to achieve
high prediction accuracy, while avoiding over fitting at the
same time.

B. Prediction Performance Evaluation with Respect to Time
of Day

Fig. 6 shows the prediction success rates between 8:00 and
18:00 with 10 residence time clusters. From this figure, it is
clear that in general, the prediction accuracy is higher during
peak hours from 8:00 to 10:00 and 16:00 to 18:00, than the
rest of the day. This is due to people following similar mobility
behavior during peak hours where destination convergence is
higher. For example, people usually move toward the city
center during morning hours where the majority of businesses,
offices, universities, etc. are located. Whereas the opposite
happens during evening hours where people usually travel

Fig. 5: Prediction success rates according to number of residence time clusters
for 1st and 2nd order Markov chains.
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Fig. 6: Prediction success rates at different hours of the day with 10 residence
time clusters.

home towards the city suburbs. For all other time periods,
vehicular mobility usually has a scattered pattern. Another
interesting conclusion from Fig. 6 is that 2nd order Markov
chains are more affected by mobility patterns and therefore
hours of the day than 1st order Markov chains. This is because
2nd order Markov chains take the previous cell attachment
into account when calculating the prediction probabilities, and
therefore the prediction success rate is more affected by the
actual mobility patterns of the vehicular users.

C. Packet Delivery and Signaling Cost Evaluation for IP-over-
ICN vs. PFMIPv6 Networks

Having explored the prediction performance, we now com-
pare IP-over-ICN and PFMIPv6 in terms of packet delivery
and signalling cost. Figs. 7, 8 and 9 depict the findings
of a simulation run of 1800sec from 9:00 to 9:30 for the
Cologne metropolitan region in Germany for both PFMIPv6
and IP-over-ICN. Fig. 7 shows the average and total Packet
Delivery Cost (PDC) for PFMIPv6 and IP-over-ICN (with
1 target cell 2nd order Markov chain prediction in the IP-
over-ICN case) to support seamless handover. We observe
from the figure that PFMIPv6 incurs a higher total PDC
of approximately 13 × 109 Bytes.Hops to support seamless
handover, compared to 7.3×109 Bytes.Hops for IP-over-ICN.
In other words, PFMIPv6 shows approximately 1.8 times the
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total PDC costs imposed by IP-over-ICN due to the central
traffic anchoring used in PFMIPv6. Fig. 8 shows the average
and total handover mode PDC for PFMIPv6 and IP-over-ICN
(with and without prediction in the IP-over-ICN case). This
represents the PDC incurred only during handover (i.e., for
the MNs that are in handover mode), and not for the whole
period of communication for all MNs which was the case
in Fig. 7. We can observe from the figure that PFMIPv6
incurs 1.2 of the total PDC costs imposed by IP-over-ICN
even without prediction, i.e., distributing handover traffic to
all neighboring cells in IP-over-ICN. In the IP-over-ICN case,
the difference in total handover PDC between prediction and
no prediction mode is about 40%. This is due to the decrease
in handover prepared targets from four in average to one target
only. However, even preparing all handover target cells does
not have a big impact on the air interface as it has been verified
through the conducted simulations that a user, only spends 2%
of the total connection time on average, handing over between
cells.

Fig. 9 shows the average and total signaling cost (SC)
for both IP-over-ICN (with no prediction) and PFMIPv6 to
support seamless handover. It is worth to note that in the IP-
over-ICN case, signaling costs are higher with no prediction
due to the higher number of target cells taking part in the
handover preparation. The figure clearly shows that IP-over-
ICN incurs a higher SC of approximately 7.9×105 Bytes.Hops
compared to 5.2× 105 Bytes.Hops for PFMIPv6. The reason
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Fig. 9: SC for seamless handover in PFMIPv6 vs. IP-over-ICN.

for this is that IP-over-ICN relies on source routing, which
results in a higher number of signalling messages to convey
delivery path information to the traffic source during mobility.
In terms of the overall cost, the proposed scheme shows
significantly better performance than PFMIPv6, as PDC is
the dominant cost. Therefore, the figures clearly show that
using an ICN core and RLC coding to facilitate IP mobility
with better QoS (resilience against data loss and minimum HO
failure) can be achieved with lower costs than PFMIPv6 on
average and in total.

D. Handover Latency Cost Evaluation for IP-over-ICN vs.
PFMIPv6 Networks

This simulation experiment focuses on comparing the han-
dover latency of IP-over-ICN and PFMIPv6 schemes. Fig.
10 displays an Empirical Cumulative Distribution Function
(ECDF) of the handover latency in both domains. The graph
shows that IP-over-ICN outperforms PFMIPv6 in terms of
handover latency, where in 90% of handovers, IP-over-ICN
incurs a handover latency cost of less than 28 units time
compared to 38 units time for PFMIPv6. This is because
although IP-over-ICN imposes a higher number of signalling
messages and processes in total due to its source routing
approach, not all of these messages and processes directly
affect the handover operation (and hence the incurred latency)
as compared to PFMIPv6 and outlined in Section IV-B3. This
clearly illustrates the efficient design of the proposed control
plane signalling operations to facilitate seamless handover of-
fering about 26% lower handover latency cost with significant
savings on the data plane traffic as shown in the previous
results.

VI. CONCLUSIONS

This paper has shown that RLC can be applied to seamless
IP handover with minimum disruption if a novel IP-over-
ICN approach is taken. The evaluation findings indicate that
seamless handover can be facilitated with lower traffic and
latency costs than an existing state-of-the-art solution like
PFMIPv6, thus providing scalable and sustainable mobility
support. The improvement is due to two main factors: RLC
coding and using IP-over-ICN. The RLC eliminates the need
for resuming packet transmissions when a handover occurs
and obviates the need for protocol packet synchronization
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Fig. 10: ECDF of handover latency costs in an IP-over-ICN vs. PFMIPv6
cellular network.

techniques such as acknowledgements. By utilizing ICN in the
core network, delivery via the shortest path is ensured allowing
sustainable and resilient network operation as opposed to the
highly sub-optimal routing caused by traffic anchoring and
tunneling required by existing IP mobility solutions including
PFMIPv6. Moreover, the results show that Markov chain
prediction techniques provide very high success rates of up
to 98% in predicting handover target cells in realistic mobility
scenarios. Thus, the handover preparation cost is significantly
reduced and the QoS perceived by the users is maintained.
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