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Abstract 

We have developed a new all-optical method to directly measure the pressure-volume-temperature 

(PVT) equation of state (EOS) of fluids and transparent solids in the diamond anvil high pressure cell 

by measuring the volume of the sample chamber.  Our method combines confocal microscopy and 

white light interference with a new analysis method which exploits the mutual dependence of sample 

density and refractive index:  Experimentally, the refractive index determines the measured sample 

chamber thickness (and therefore the measured sample volume/density), yet the sample density is by 

far the dominant factor in determining the variation in refractive index with pressure.  Our analysis 

method allows us to obtain a set of values for the density and refractive index which are mutually 

consistent, and agree with the experimental data within error.  We have conducted proof-of-concept 

experiments on a variety of samples (H2O, CH4, C2H6, C3H8, KCl and NaCl) at ambient temperature, and 

at high temperatures up to just above 500 K.  Our proof-of-concept data demonstrate that our method 

is able to reproduce known fluid and solid EOS within error.  Furthermore, we demonstrate that our 

method allows us to directly and routinely measure the PVT EOS of simple fluids at GPa pressures up 

to, at least, 514 K (the highest temperature reached in our study).  A reasonable estimation of the 

known sources of error in our volume determinations indicates that the error is currently ± 2.7% at 

high temperature, and that it is feasible to reduce it to ca. ± 1% in future work. 

 

1. Introduction 

The pressure-volume-temperature (PVT) equation of state (EOS) of a substance is a material property 

of fundamental importance.  However, there is a basic shortcoming in humankind’s ability to measure 

this property for fluids.  Direct EOS measurements in real space using piston-cylinder devices have 

been made on most simple fluids (e.g. CH4 [1], CO2 [2], Ar [3], N2 [4]) up to the fusion (liquid-solid 

transition) (typically 1 – 2 GPa) at ca. 300 K.  However, with increasing temperature fusion pressures 

increase rapidly while the pressures achievable in piston-cylinder devices decrease rapidly (see, for 

example the measurements on CH4 in ref. [1]).  Pressures adequate to freeze simple fluids above 300 

K can only be generated using opposed anvil devices (Paris-Edinburgh cell, Multi-anvil press and – 

principally – the diamond anvil cell (DAC)).  In these devices direct volume measurement in real space 

is not possible.  The PVT EOS of solids contained in these devices can be determined by measurements 

in reciprocal space using X-ray or neutron diffraction to directly determine the lattice constants and 

structure.  However, fluid PV EOS cannot be determined using this method either at 300 K or at high 

temperature due to the lack of Bragg peaks from fluids. 
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There is therefore a massive gap in humankind’s knowledge of the PVT EOS of simple fluids.  For 

instance, in CH4 at 500 K directly measured PV EOS data are available up to 40 MPa, yet the freezing 

pressure is ca. 3500 MPa ([5] and refs. therein).  Various approaches have been attempted over the 

decades to rectify this, yet none have been widely adopted and it seems that all have serious 

shortcomings. 

The first approach is simply to extrapolate from the low pressure data.  Commonly used software 

packages such as NIST REFPROP / WEBBook [6] routinely provide PVT EOS output that are in fact 

extrapolations from the real experimental data collected at lower pressures and/or lower 

temperatures.  For instance, for CH4 PVT EOS output is provided up to 1000 MPa at 625 K when the 

real experimental data at 625 K only extend to 40 MPa and the real experimental data to 1000 MPa 

exist only at 300 K [1]. 

These extrapolations are performed using a model called the “Fundamental Equation of State” 

(described in ref. [5] and citations therein) that incorporates ca. 50 dimensionless and physically 

meaningless adjustable parameters and even has a mathematical form that is partially empirical.  The 

“fundamental equation of state” model was designed to be overfitted to allow accurate interpolation 

between real datapoints so using it to extrapolate is clearly not ideal. 

The second approach is Brillouin spectroscopy in the diamond anvil cell.  In this approach the speed of 

sound 𝑣 in the fluid is measured.  Usually the bulk modulus is obtained from this (𝐵 = 𝜌𝑣2 where 𝐵 is 

the bulk modulus and 𝜌 is the density), which is then integrated to obtain the 𝑃𝑉 EOS along the 

isothermal paths typically followed in an experiment (see, for instance, ref. [7]).  However, sound waves 

propagate adiabatically so the parameter that directly follows from the speed of sound is the adiabatic 

bulk modulus.  To convert between the adiabatic and isothermal bulk moduli it is necessary to know 

the heat capacity 𝑐𝑃 and thermal expansion coefficient 𝛼.  Fluid Brillouin spectroscopy EOS studies 

deal with this problem by integrating the adiabatic bulk modulus whilst neglecting the adiabatic → 

isothermal correction then obtaining the heat capacity and thermal expansion coefficient values from 

the result of this integration, using the thermodynamic relations shown below in equation (1).  The 

integration is performed incorporating the adiabatic → isothermal correction (the 𝑇𝛼2 𝑐𝑃⁄  term in 

equation (1)) using these values and repeated iteratively until convergence is achieved.  This iterative 

process is repeated for each gap between datapoints in the experiment.  Thus no direct measurement 

of volume versus pressure is made, and a single error will affect all subsequent pressure points in the 

experiment. 
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In some cases, this problem is avoided by calculating the density via the sample refractive index (RI) 𝑛 

instead [8][9].   The RI can be obtained using Brillouin spectroscopy if data are collected for different 

scattering geometries, and the density can be calculated from the RI using the Lorentz-Lorenz law [10] 

(shown in equations (2) and (5)).  However, this just introduces a different source of error: The 

assumption that the value of the Lorentz-Lorenz factor 𝐿 which provides the best fit to the 𝑛(𝜌) data 
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at lower pressure and temperature continues to be the best-fit value over the wider PT range covered 

by the Brillouin spectroscopy experiment.  In at least one case, this assumption has been shown to 

produce an EOS [9] that cannot possibly be correct since it would lead to a violation of the Clausius-

Clapeyron equation at the solid-liquid (fusion) phase transition [11].  The Lorentz-Lorenz law is written 

in the following form to determine the Lorentz-Lorenz factor 𝐿 from experimental RI measurements at 

lower pressures, where the density is known: 

𝐿𝜌 =
𝑛2 − 1

𝑛2 + 2
 

(2) 

The density can then be determined from the RI at higher pressures.  It is clear from equation (2), and 

has been noted previously [12], that when utilizing RI data collected in the gas phase to determine 𝐿 

a small error in the RI will lead to a large error in 𝐿 since the RI is close to 1. 

Furthermore, validating the experimental and analysis methods used to produce EOS using Brillouin 

spectroscopy is challenging due to the difficulty of conducting appropriate control experiments on 

substances with a known EOS.  Direct EOS measurements using piston-cylinder apparatus are usually 

only available to pressures so low that they are hard to control and measure in the DAC.  Control 

experiments reproducing known transparent solid EOS are of limited utility since the adiabatic → 

isothermal correction to the bulk modulus (a weak link in the analysis method for Brillouin 

spectroscopy data) is negligible for solids but is certainly not negligible for fluids.  Instead, Brillouin 

spectroscopy EOS are commonly compared to simulations, extrapolations and other Brillouin 

spectroscopy studies. 

The third approach is to determine the EOS by making direct measurements of the volume of the entire 

sample chamber at different pressures [12][13][14].  The DAC sample chamber in a fluid EOS 

experiment is roughly cylindrical, with a thickness 𝑡 (i.e. distance between the diamond culets) of ca. 

50 - 100 μm and a diameter of ca. 200 – 400 μm so this measurement can be performed using imaging 

and interference phenomena involving visible light.  The cross-section can be determined by recording 

a microscope image of the sample chamber with transmitted light only and counting the bright pixels 

using image processing software.  The first stage of the process to determine 𝑡 is to measure the 

product 𝑛𝑡.  To do this, a spectrum is collected of white light transmitted through the sample chamber 

along the axis perpendicular to the diamond culets.  The spectrum consists of interference fringes 

corresponding to wavelengths at which light that has been scattered back and forth across the sample 

chamber interferes constructively or destructively with light that has passed straight through.  The 

product 𝑛𝑡 (where 𝑛 is the sample RI) can be calculated trivially by measuring the wavelength spacing 

between the fringes.  We conducted some preliminary experiments (shown in the supplementary 

material) on NaCl at 295 K to 8 GPa.  The RI of NaCl at high pressure is known [15], and we found that 

– using the known RI – obtaining a 𝑃𝑉 EOS that agrees with that determined from X-ray diffraction [16] 

from the white light interference fringes and cross-section images was straightforward.  Clearly, 

determining the RI is the most difficult aspect of this approach to determine fluid EOS. 

Three methods have been developed to obtain the RI.  The first [12][13] is to exploit the parallelism of 

the diamond culets by observing Fabry-Perot interference rings when the sample chamber is 

illuminated with diffuse monochromatic light.  In this approach the angles at which the rings are 

observed are determined in part by refraction at the sample – diamond and diamond - air boundaries.  

The influence of the RI via Snell’s law therefore allows it to be determined independently of 𝑡.  The 

second [14][17][18] is to measure the reflectivity of the diamond – sample boundary which is 

determined by the RIs of the relevant media according to Fresnel’s law [19].  The third [17][18][20] is 
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to illuminate the DAC with a focussed laser beam along the axis perpendicular to the culets and to 

measure the distance moved by the DAC between the points where the beam is focussed on the piston 

and cylinder culets (this distance is not identical to 𝑡 since refraction at the diamond-sample boundary 

must be accounted for, but the RI and 𝑡 can be obtained by combining this measurement with one of 

the other measurements listed above).  This method is referred to as confocal microscopy. 

To our knowledge, fluid EOS measurements based on determination of the DAC sample chamber 

volume have been performed only at ambient temperature.  In a small number of studies, the RI has 

been determined at high temperature using the Fabry-Perot fringes method [7][21], but the data were 

not combined with measurements of the sample chamber cross-section to generate an EOS.  Instead 

the RI data were used to allow sound speed calculation from the 180° backscattering geometry in 

Brillouin scattering, rather than the platelet geometry (in the platelet / forward scattering geometry, 

the sound speed can be measured without knowing the RI of the sample [22], but the diamond culet 

parallelism requirements are probably more stringent).  The confocal microscopy method has been 

combined with the Fresnel method to produce EOS of Ar [18] and H2O [17] at ambient temperature.  

It has been combined with the white light interference measurement of 𝑛𝑡 to measure the RI of H2O 

at a single pressure (0.3 GPa) [20].  To our knowledge, it has not been attempted at high temperature. 

The Brillouin spectroscopy approach has been attempted at high temperature but (even if one takes 

the complex analysis method at face value) there are few studies in the literature considering the large 

amount of work to be done in this field, and the importance of fluid EOS experiment and theory to 

geoscience, planetary science and fundamental physics. 

We therefore set out to conduct fluid EOS measurements at high temperature by measuring the 

volume of the entire sample chamber.  Initially we attempted to do this by replicating the Fabry-Perot 

fringes method.  However, we discovered that the requirement for the parallelism of the diamond 

culets to observe the (monochromatic) Fabry-Perot fringes is very stringent.  We attempted to observe 

these fringes using a number of different DACs in our laboratory, and discovered that even DACs that 

exhibit excellent quality white light fringes exhibit very poor quality Fabry-Perot fringes.  To obtain 

good quality Fabry-Perot fringes it was necessary to build a DAC in which it was possible to perform 

tilt alignment of one of the diamonds, following the design principles in ref. [23].  However, to achieve 

this it was necessary to resort to an even tighter piston-cylinder alignment than usual, and the use of 

additional components characterized by intricate and delicate kinetic mechanisms.  Based on our 

experience of high temperature experiments in the DAC, we feel that combining this level of intricacy 

and tight-fitting moving parts with resistive heating is not a very practical solution to the problems 

outlined above.  The requirement to heat the entire sample chamber, of course, precludes the use of 

laser heating. 

It was therefore necessary to switch to a different combination of experimental methods.  We chose 

to combine the white light interference method for the determination of 𝑛𝑡 with the confocal 

microscopy method.  To our knowledge this combination has only been utilized to measure the RI of 

water at a single 𝑃, 𝑇 point (0.3 GPa, ambient temperature) [20], and has not yet been utilized to 

measure an EOS. 

In our proof-of-concept experiments we compare EOS determined using this combination of methods 

to fluid EOS determined using piston-cylinder devices and solid EOS determined using X-ray diffraction.  

We also conduct experiments at high temperature up to 514 K, demonstrating that our method can be 

used to determine PVT EOS at least up to this temperature.  In addition, we introduce a new analysis 

method that makes use of the mutual dependency between the sample density and RI: Experimentally, 

the measured value of the RI determines the measured value of the density, but on the other hand 
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the density is by far the dominant factor in determining the RI via the Lorentz-Lorenz law.  Our analysis 

method exploits this mutual dependence, enabling us to produce a set of values for the density and RI 

which are mutually consistent, and within a reasonable estimate for the margin of error in our 

experimental data.  Finally, we have quantified the different sources of error in our experiments to 

indicate how the overall error can be reduced, marking a clear way forward to highly accurate fluid 

EOS determinations in the future.   

 

2. Methods 

High pressure and high temperature were generated using DACs equipped with external resistive 

heaters.  Optical spectra were collected using a grating spectrometer and sample cross-sections (𝐴) 

were determined by counting the bright pixels using the open-source Gnu image processing software.  

Pressure was measured using photoluminescence from a small ruby crystal inside the sample chamber 

at ambient temperature [24], and using photoluminescence from a small Samarium-doped Strontium 

Borate (Sm:SrB4O7) crystal in the sample chamber at high temperature [25].  H2O reacts with Sm:SrB4O7 

at high temperature combined with high pressure [26], so for our H2O experiments we measured 

pressure above 1 GPa using a small crystal of Sm:SrB4O7 placed between the diamond and gasket close 

to the sample chamber.  In our second experiment on H2O at 500 K we increased pressure to beyond 

the freezing point and visually observed freezing at the correct pressure within experimental error.  

Further experimental details are given in the supplementary material. 

The product 𝑛𝑡 (henceforth labelled as 𝛿) was measured by interference fringes (in the wavelength / 

wavenumber domain) from white light transmitted through the DAC directly along the optical axis (see 

experimental geometry in figure 1).  We typically counted over 10 – 40 fringes and fitted Gaussian 

peaks to determine the wavelength of the highest (𝜆𝐴) and lowest (𝜆𝐵) wavelength fringes in the 

selection, after subtraction of a linear baseline in each case.  We experimented with other fitting 

methods and found that the choice of fitting method has a negligible effect on the obtained value of 

𝛿.  Equation 3 (derived in the supplementary material) is used to obtain 𝛿 from 𝜆𝐴,𝐵.  Here, 𝑝 is the 

number of fringes. 

𝛿 = 𝑛𝑡 =
(𝑝 − 1)𝜆𝐴𝜆𝐵
2(𝜆𝐵 − 𝜆𝐴)

 

(3) 

The confocal microscopy method, allowing us to determine 𝑛 (the RI) and 𝑡 (the sample thickness) 

separately, exploits the fact 𝑡 is typically 50 – 100 μm, large compared to all dimensions of a visible 

laser focal spot size.  We shine a collimated red laser beam into the DAC via an objective lens and 

position the DAC to observe (using a CCD camera) when the red laser beam is focussed on the culet of 

the cylinder diamond.  We then move the DAC so that the beam is focussed on the culet of the piston 

diamond.  The sample stage is connected to a digital micrometer, allowing us to record the distance 

moved by the DAC.  This distance (henceforth labelled as 𝑡′) is not identical to the thickness 𝑡, but it 

can be related to 𝑡 by accounting for refraction via Snell’s law at the diamond-sample and air-diamond 

interfaces.  In the paraxial approximation, equation (4) allows 𝑛, 𝑡 and the sample chamber volume 𝑉𝑆 

to be obtained from our experimental measurements. 

𝑡 = √𝛿𝑡′ 
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𝑛 = √
𝛿

𝑡′
 

𝑉𝑆 = 𝐴𝑡 

(4) 

These equations are derived in the supplementary material, along with equations for the errors in 𝑛, 

𝑡 and 𝑉𝑆 that result from the raw errors in our experimental measurements.  Equation (4) can be 

rewritten as 𝑡′ = 𝑡 𝑛⁄ .  The equation in the 𝑡′ = 𝑡 𝑛⁄  form was derived using a different methodology 

in 2009 by Hanna and McCluskey [17]. 

To derive equation (4), we have chosen to work in the paraxial approximation (our objective lens has 

a numerical aperture (NA) of 0.30).  The insertion of any plane surface (such as the air-diamond 

interface) into the beam between the objective lens and the focal point causes the focal point to 

become smeared out along the optical axis (longitudinal aberration) if non-paraxial effects are 

significant [27].  We estimate that, for an NA of 0.30 and typical values of 𝑛 and 𝑡′, neglecting the effect 

of longitudinal aberration could cause a systematic error in 𝑡′ of 0.2 μm (see calculation in 

supplementary material).  Due to the extremely small size of this error we have neglected longitudinal 

aberration throughout.  On the other hand, working in the paraxial approximation can potentially lead 

to significant random errors since the effect we rely on to determine the RI (the change in angle due 

to Snell’s law at the diamond-sample interface) is by definition a small effect.  Working outside of the 

paraxial approximation (i.e. exploiting the full ± 45° opening angle / NA of 0.7 that is possible using 

Boehler-Almax diamond seats) would be possible as an alternative method.  However our calculations 

clearly show that the systematic error caused by neglect of longitudinal aberration would then become 

significant (above 1 μm).  This systematic error would be hard to precisely calculate as it would require 

knowledge of the laser beam profile.  On balance, it would therefore seem better to work in the 

paraxial approximation utilizing a lens with a small NA to reduce the longitudinal aberration. 

In some preliminary experiments, we collected data on pressure decrease.  However, it was clear from 

the trends in the sample chamber volume (calculated using equation (4)) versus pressure that sample 

leakage was occurring from time to time upon pressure decrease, even in the solid state.  We therefore 

strongly advise against utilising volume measurements performed upon pressure decrease, even in the 

solid state.  RI measurements, could in principle be performed upon pressure decrease, however there 

seems to be more scatter in RI measurements collected on pressure decrease.  All measurements of 

RI and volume presented here were therefore performed on pressure increase.  The exceptions to this 

were some preliminary experiments on C2H6 at ca. 380 K and C3H8 at 295 K in which we measured the 

RI only, and on NaCl at 295 K in which we measured the EOS using the known RI, combining data 

collection on pressure increase and decrease in all three cases.  These data are shown in the 

supplementary material. 

Figure 1 shows illustrative examples of the measurements of 𝛿 and 𝑡′.  As written in equation (4), 𝑉𝑆 is 

in arbitrary units since we do not know how many moles of sample are in the chamber.  We will deal 

with procedures for converting it to absolute units later on a case-by-case basis for each of our 

datasets.  For future determinations of fluid EOS, the best approach is probably to begin at low 

pressure where the EOS is known, and end by collecting data in the solid state.  If the solid state EOS 

is also known, this provides two independent calibrations for the amount of sample in the chamber. 
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Figure 1.  (a) Example white light fringes (insets showing Gaussian fit to the highest wavelength fringe 

after subtraction of the linear baseline shown and DAC geometry).  (b) Images showing the laser 

focussed on one of the diamond culets (left) and defocussed part way between being focussed on the 

piston and cylinder diamond culets. 

Evaluation of the errors arising in each measurement (shown in the supplementary material) reveals 

that the error in 𝑡 is dominated by the contribution arising from the ± 3 μm error in 𝑡′ (rather than the 
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error in δ, typically ± 0.2 μm at high temperature and ± 0.05 μm at ambient temperature).  Thus, if the 

RI were known independently, it would be possible to significantly reduce the error in 𝑡 by calculating 

it directly from 𝛿 = 𝑛𝑡 and discarding the measurement of 𝑡′.  As noted earlier, there is a mutual 

dependence between the sample density 𝜌 and RI 𝑛.  Experimentally, our measured value of the RI 

determines the measured 𝑉𝑆 and therefore the measured density.  However, it is known from first 

principles (confirmed in a number of studies at ambient temperature and low temperature, reviewed 

later) that the sample density is by far the dominant factor in determining the RI, via the Lorentz-

Lorenz law. 

We propose (and test below) the following procedure to process our data, utilizing this mutual 

dependence.  The procedure is applied to a set of data collected in a single experiment (i.e. there is no 

need for any normalization to account for having a different amount of sample in the chamber in 

successive experiments).  To begin, we calculate 𝑛, 𝑡 and 𝑉𝑆 at all pressures in the dataset from δ, 𝑡′ 

and 𝐴 using equation (4).  We then calculate the density in arbitrary units (𝜌 = 1 𝑉𝑆⁄ ).  We plot 𝑛 vs 𝜌 

and fit the Lorentz-Lorenz law [10] (formulated below as equation (5)) to the plot.  In this fit there is a 

single adjustable parameter, the Lorentz-Lorenz factor 𝐿 (also in arbitrary units). 

𝑛 = √
1 + 2𝐿𝜌

1 − 𝐿𝜌
 

(5) 

We then use the RI values calculated using equation (5) with our fitted value of 𝐿 to recalculate 𝑡 using 

𝛿 = 𝑛𝑡 (i.e. discarding the less accurate measurements of 𝑡′ in favour of the measurements of δ) and 

recalculate 𝑉𝑆.  The process is then repeated until convergence in the values of 𝑉𝑆 obtained with each 

iteration.  This takes 2 - 3 iterations for the datasets that we have collected. 

 

3. Results 

A. H2O at 295 K 

We conducted a control experiment on H2O at 295 K, collecting 9 data points in the liquid state and 

one in the solid state, comparing our obtained RI values and 𝑃𝑉 EOS to existing data in the literature.  

Figure 2 (a) shows our raw RI data as a function of our raw densities (in arbitrary units) and our fit using 

the Lorentz-Lorenz law (equation (5)).  Aside from the outlying lowest density data point, the Lorentz-

Lorenz fit is generally within the error on the experimental data points (including the highest density 

point in the solid state).  Figure 2 (b) shows the raw RIs, and the RIs following two iterations of fitting 

with the Lorentz-Lorenz law, as a function of pressure.  The RI of H2O at ambient temperature has been 

the subject of a number of studies, reviewed in ref. [13].  Their power law fit, reproduced in our figure 

2 (b), is a good representation of the experimental data in the literature. 
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Figure 2. (a) Lorentz-Lorenz fit to the raw experimental data for H2O at 295 K.  (b) RI values (raw, and 

after Lorentz-Lorenz fitting) plotted as a function of pressure.  Error bars are calculated as outlined in 

the supplementary material.  The error bars in pressure are too small to display (ca. 0.005 GPa). 
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In figure 3 (a) we show the raw volume data, and the volumes recalculated using the RI values  

following the second Lorentz-Lorenz fit. Our data are compared to the IAPWS fundamental equation 

of state, which is fitted to direct measurements of the PV EOS of H2O made in a piston-cylinder device 

[28].  Since the sample chamber volume is arbitrary, we have linearly rescaled our data to fit the IAPWS 

EOS.  We also performed a third iteration of the Lorentz-Lorenz fit, however the change in the 

calculated volumes resulting from this was negligible.  This is due to the fact that the scatter in the 

volume data following the second Lorentz-Lorenz fit closely matches the scatter in the sample chamber 

cross-section data (figure 3 inset).  The cross-section data are used to calculate the densities for each 

Lorentz-Lorenz fit so any scatter in the cross-section data will affect the Lorentz-Lorenz fitting process 

as well as directly affecting the calculated volumes. 
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Figure 3 (a) Raw PV EOS data for H2O, PV EOS data following two iterations of Lorentz-Lorenz fitting, 

output from the IAPWS EOS [28] and ice VI volume [29].  All measurements are at 295 K.  (Inset) raw 

sample chamber cross-section data. (b) Difference plot comparing our volume data following two 

Lorentz-Lorenz fitting iterations to the IAPWS EOS and ice VI volume. 

In figure 3 (b) we show the difference plot between our volumes (following 2 iterations of Lorentz-

Lorenz fitting) and the literature (IAPWS EOS [28] in the liquid state and the ice VI volume [29] in the 

solid state).  In general our data lie within ± 2% of the known EOS. 

 

B. KCl at 295 K 

Our second control experiment was on KCl at 295 K.  KCl exhibits a phase transition from the B1 phase 

to the B2 phase at ca. 2 GPa.  Upon formation the B2 phase is opaque.  However it becomes transparent 

upon further compression, allowing PV EOS measurement using optical methods.  The PV EOS of the 

B1 and B2 phases has been accurately measured using synchrotron X-ray diffraction (ref. [30] and refs. 

therein).  However, in contrast to H2O, there is to our knowledge only a single experimental study of 

the RI pressure dependence across the phase transition [15]. 

Our results for KCl are shown in figure 4.  Similarly to H2O, only two Lorentz-Lorenz fit iterations 

(covering all the data across B1 and B2 phases) were required and further fits produced only negligible 

changes in the calculated volumes.  The highest pressure datapoint (6.9 GPa) is clearly an outlier and 

the experiment was terminated at this point.  This appeared to correlate with the emergence of 

significant nonhydrostaticity in the applied pressure (ruby line broadening) and has been noted in the 

other study of the pressure dependence of the RI of KCl [15]. 

Since we have the largest amount of data for the B2 phase, we scaled our sample chamber volumes 

following the Lorentz-Lorenz fit to obtain real atomic volumes by linearly scaling all B2 volumes to 

match the known EOS [30], then linearly scaling our B1 volumes by the same factor.  The scaling 

procedure thus does not place any constraint on our measured volume change in the B1 → B2 

transition. 

Agreement with the known PV EOS (figure 4 (a) and (c)) is extremely good.  In contrast to H2O, the 

scatter in the PV EOS data after the Lorentz-Lorenz fit does not correlate with the scatter in the cross-

section data.  As is clear from the difference plot in figure 4 (c) there is a small systematic discrepancy 

between our measured volumes and the known EOS in the B1 phase. 

In order to check our RI data, we digitized the data from ref. [15].  In doing so, we found two 

discrepancies in the data from this source.  Firstly, the obtained value of the RI at ambient conditions 

was 1.480, a slight underestimate compared to the value now known at 632 nm (1.484 [31]).  Secondly, 

if the change in the RI between the B1 and B2 phases is analysed using the X-ray diffraction EOS for KCl 

that is now known [30], it can be seen that it corresponds to a significant upward shift in the Lorentz-

Lorenz factor 𝐿.  This is not physically realistic as – if it changes it all – the Lorentz-Lorenz factor should 

decrease upon pressure (density) increase as this inhibits the polarizability of individual atoms. 

We therefore constructed our own simple model for the RI of KCl, utilizing equation (5), using the 

known RI and density at ambient conditions to calculate the Lorentz-Lorenz factor, and assuming this 

remains constant.  We used 62.40 Å3 / atom and 𝑛 = 1.484 (the known value at our laser wavelength 

of 632 nm [31]).  We then used the known XRD EOS [30] to calculate the density, and hence RI, as a 

function of pressure for the B1 and B2 phases.  Our experimental RI data (following Lorentz-Lorenz 

fitting) agree better with our model than with ref. [15]. 
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Figure 4. (a) Points: PV EOS for KCl at 295 K (raw data, and data following two rounds of Lorentz-

Lorenz fitting).  Lines: PV EOS known from X-ray diffraction data [30].  (b)  Points: RI data for KCl 

at 295 K (raw data, and data following two iterations of Lorentz-Lorenz fitting).  Lines: RI models as 

described in the text.  (c) Difference plot comparing our PV EOS data (following two rounds of Lorentz-

Lorenz fitting) to the PV EOS known from X-ray diffraction data [30]. 

 

C. CH4 at 514 K 

We collected PV EOS data on liquid CH4 at 514 K from 0.6 GPa up to the fusion curve, including a data 

point in the solid state.  Here and subsequently, we will refer to our sample as a liquid despite it being 

above the critical temperature due to the fact that all experimental data collected are on the rigid 

liquid side of the Frenkel line (see refs. [5][32][33] and refs. therein).  Similarly to the data collected in 

our control experiments described above, two iterations of fitting the RI data with the Lorentz-Lorenz 

law were required to achieve convergence.  Our experimental data are shown in figure 5.  At this 

temperature the data available in the literature are very limited.  Our data agree with an extrapolation 

of the Wagner-Setzmann fundamental EOS for CH4 [1] produced by the ThermoC software [34] (in the 

region where extrapolation is possible).  The only other EOS measurement in existence in this PVT 

range, to our knowledge, is that resulting from the Brillouin spectroscopy study of Li et al. [8] including 

data at 539 K.  In this study, the PV EOS was not produced using the iterative integration procedure 

used in other Brillouin studies and described in the introduction (equation (1)).  Instead, the density 

was calculated directly from the RI using the Lorentz-Lorenz relation (equation (2)) with a value of the 

Lorentz-Lorenz factor 𝐿 obtained from earlier measurements of RI versus density at lower pressures 

and/or temperatures.  There is thus an element of extrapolation in these data. 

Furthermore, as is evident from figure 5, Li et al. observe no density change commensurate with 

freezing up to the highest pressure presented in their study, 5.12 GPa at 539 K.  They state clearly that 

CH4 did not undergo fusion to the solid state during any of their experiments.  Within error, our 

assessment that the fusion curve was crossed between our 4.04(2) GPa and 4.94(2) GPa datapoints is 

consistent with the known fusion curve [35].  Li et al.’s assessment that CH4 remains in the liquid state 

at 5.12 GPa, 539 K is not.  There is a similar discrepancy between their data at other temperatures, 

including 298 K, and the known fusion curve.  We have observed fusion ourselves at 300 K [33], at a 

pressure in agreement with ref. [35]. 

As is shown in figure 5, our PV EOS data are in reasonable agreement with those of Li et al.  However, 

due to the discrepancy between Li et al.’s data and the known fusion curve, and the element of 

extrapolation in their density measurement, this agreement cannot be taken as a validation (or 

otherwise) of our data. 
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Figure 5.  PV EOS of CH4 at 514 K obtained from our data as described in the text, extrapolation of the 

Wagner-Setzmann EOS [1][34], and liquid volumes calculated from the RI obtained by Brillouin 

spectroscopy [8]. 

We completed our experiment on CH4 at 514 K with a measurement of the volume in the solid state.  

In principle, this could be measured using X-ray or neutron diffraction.  However, to our knowledge 

there are no EOS data available in the literature on solid CH4 above ambient temperature.  We 

understand that such measurements have been attempted, but have proved impossible due to the 

difficulty in forming a single crystal or a good powder from CH4.  Solid CH4 tends to form a small number 

of crystals in the DAC, providing neither a single crystal nor a good powder comprised of many crystals 

[36][37].   

The best verification that we can perform on our data is therefore to check that the volume change 

upon fusion displays (within error) an appropriate trend as a function of temperature.  In ref. [5] we 

determined the volume change upon fusion at 300 K by extrapolating the known EOS in the liquid [1] 

and solid [38] states to the fusion curve.  Both these EOS are backed by experimental data to pressures 

close to fusion.  The fractional volume change (𝑉𝑙𝑖𝑞 − 𝑉𝑠𝑜𝑙) 𝑉𝑙𝑖𝑞⁄  was determined to be 0.066.  To 

estimate the equivalent change at 514 K we performed a Murnaghan equation fit to our liquid state 

data and calculated the volume given by this Murnaghan fit at 4.94 GPa, the pressure of our solid state 

volume measurement.  This gives a fractional volume change of 0.036 on fusion.  This decrease in 

fractional volume change on increasing pressure seems reasonable.  A more detailed analysis is 

probably not warranted due to the fact that we have only one datapoint in the solid state. 

  



15 
 

D. H2O at 509 K 

We conducted two experiments on water at 509 K ± 2 K, covering the range from 0.09 GPa up to the 

fusion curve and comprising a total of 32 volume measurements in the liquid state.  In this case, the 

Lorentz-Lorenz fitting procedure took three iterations to converge for each dataset.  The PV EOS 

following this fitting are shown in figure 6. 

The sample appears, at first sight, to exhibit anomalous behaviour of a small increase in compressibility 

in the pressure range between 1 – 3 GPa.  This anomalous behaviour is likely to be the result of 

difficulties in pressure measurement during these experiments.  Sm:SrB4O7 is the only pressure marker 

that is sufficiently accurate for this kind of work at 500 K (we know this from experience), however it 

has been known to react with hot water [26].  In our case this prevented any data collection above 1 

GPa with Sm:SrB4O7 located inside the sample chamber.  In both experiments we instead resorted to 

measuring pressure using a piece of Sm:SrB4O7 wedged between the gasket and diamond close to the 

pressure chamber above 1 GPa.  The anomalously large jump in pressure at this point, that was not 

accompanied by a significant volume change (see figure 6 (c)), suggests that this led to an overestimate 

of the pressure.  On the other hand, at 509 K H2O freezes at 4.84 GPa according to the literature (ref. 

[5] and refs. therein).  Comparison of this to the measured pressures of our highest pressure liquid 

state and lowest pressure solid state datapoint would seem to limit the error in our measured 

pressures to ± 0.3 GPa.  However, any systematic error in pressure measurement would be caused by 

the water being soft compared to the gasket.  This effect would be more significant at lower pressure.  

This, combined with the size of the anomalous pressure jump when we switched to the Sm:SrB4O7 

outside the pressure chamber at ca. 1 GPa, would seem to indicate that ± 0.5 GPa is a more reasonable 

estimate of the potential error (random and/or systematic) in our pressure measurements above 1 

GPa. 

As far as the literature is concerned, it is unclear whether H2O is expected to display any anomalous 

behaviour in this region.  On the one hand, the pressures involved are far too high to observe the LDW 

→ HDW transition (this has been observed in the vicinity of the water – ice I – ice III triple point at 209 

MPa and should trend to lower pressure on temperature increase due to the entropy increase on the 

LDW → HDW transition).  On the other hand, Kawamoto et al. observed a discontinuous change in the 

trend of Raman peak position vs pressure at around 1.5 GPa, at 573 K [39].  The PVT EOS produced by 

Abramson et al. using Brillouin spectroscopy exhibits no anomalous behaviour in this region [40], 

however the raw sound speed data collected up to crystallization at 473 K from which the EOS was 

derived are hard to fit with a single monotonic curve, and the data at 573 K are very limited.  The same 

is true for the PVT EOS produced by Sanchez-Valle et al. [41] using Brillouin spectroscopy.  In their 

speed of sound data at 573 K there appears to be a clear discontinuity in the 1 – 2 GPa region, however 

there is no discontinuity in the resulting PVT EOS. 
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Figure 6.  (a) and (b) Two separate datasets of raw volume data, and data following Lorentz-Lorenz 

fitting, plotted versus pressure for water at 509 K.  (c) Volume versus pressure for both datasets 

following Lorentz-Lorenz fitting. 

We are therefore unable, at this stage, to propose an EOS for water at 509 K.  However, these datasets 

are extremely useful to test our iterative fitting procedure using the Lorentz-Lorenz law and (in section 

3.E) a modified version thereof.  Since this procedure utilizes the volume and RI measurements only, it 

is unaffected by errors in the pressure measurement. 

Since we have measured the volume in the solid state (figure 6 panels (a) and (c), ice VII at 4.84 GPa, 

509 K), a check on the effectiveness of our volume measurements can be made by comparing the 

volume change we have measured across the full pressure range in our work to the known change in 

volume between the liquid at 0.4 GPa and ice VII at 4.84 GPa.  According to ref. [29] (Birch-Murnaghan 

EOS with temperature correction fitted to synchroton X-ray DAC EOS data), ice VII has a volume of 

10.78 cm3/Mol. at these conditions.  Using this to convert our volume data from figure 6 (a) into units 

of cm3/Mol., we can then check whether our EOS data agree with the known EOS at 509 K in the low 

pressure limit.  The IAPWS EOS is backed by experimental data up to 0.4 GPa at this temperature, and 

gives a volume of 17.9 cm3/Mol. at this point.  At 0.45 GPa (our lowest pressure datapoint in this set) 

our volume measurement is 20.02 cm3/Mol.  This is as good an agreement as can reasonably be 

expected given that it hinges on a unit conversion made with a single datapoint. 

 

E. Experimental and fitting errors 

Our experimental method consists, at each pressure, of three measurements: The sample chamber 

cross section 𝐴, the measurement from the white light interference pattern 𝛿(= 𝑛𝑡), and the distance 

moved by the DAC (𝑡′) between the points where an incident laser beam entering the cell along the 

optical axis is focussed on the piston and cylinder diamond culets.  A reasonable estimate of the 
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experimental errors on these three measurements indicates that the error on the volume 

measurement is dominated by the large random error in 𝑡′.  Our procedure of iteratively fitting the RI 

data with the Lorentz-Lorenz law eliminates this random error since the only use made of the 𝑡′ 

measurements is to provide the initial values for the RI for the first iteration of fitting. 

However, the fitting procedure potentially introduces a systematic error since we assume the RI follows 

the Lorentz-Lorenz law.  The Lorentz-Lorenz law is firmly rooted in well-understood theory of 

electromagnetism and is often used to calculate the fluid density from the RI [8][9][42][43].  However, 

the derivation of the Lorentz-Lorenz law does involve some assumptions [10].  Notably, it is assumed 

that the polarizability of the individual atoms or molecules comprising the sample remains constant.  

We would like to estimate the error arising from our choice to fit our RI data with this law.  Fortunately, 

there are a lot of data available on samples in the liquid and solid states at ambient temperature, and 

at low temperature, that can enable a reasonable assessment to be made of how well this law is 

obeyed. 

We have undertaken such an exercise for CH4.  In figure 7 the data are shown for RI versus density 

extracted from a range of studies in the liquid, solid and gas states covering temperatures from 14 K 

to 373 K and pressures from 0.1 MPa to 12 GPa [8][42][44][45][46][47][48].  Details on data 

preparation are given in the supplementary material.  At the very highest densities studied (covered 

only by Hebert et al.’s study of the solid phase A [45]) there appears to be, at first sight, a small 

systematic discrepancy between the measured RIs and the Lorentz-Lorenz law fit, with the measured 

RIs trending to slightly smaller values at high density than would be expected according to the Lorentz-

Lorenz law.  This is what could be expected at high density since this will inhibit the polarizability of 

individual atoms, compromising the assumption made in the derivation of the Lorentz-Lorenz law. 

However, there is considerable scope for systematic errors to arise between the 10 datasets that are 

shown.  A variety of different methods are used in these data to measure RI, pressure, temperature 

and density.  From examination of the data throughout figure 7 it is clear that there is a systematic 

discrepancy between the Hebert et al. liquid and phase I datasets [45] and other datasets at similar 

densities, that can be only attributed to a systematic error.  When these two datasets are excluded 

from the Lorentz-Lorenz law fitting procedure, the systematic discrepancy at high density that we 

tentatively attributed to the failure of the Lorentz-Lorenz law in the previous paragraph disappears.  

We thus conclude that there is at present no convincing experimental evidence for any failure of the 

Lorentz-Lorenz law, or variation in the value of the Lorentz-Lorenz factor 𝐿 with density, in CH4. 
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Figure 7.  (points) CH4 RI measurements from the literature [8][42][44][45][46][47][48] plotted as a 

function of density. (solid red line) Lorentz-Lorenz fit to all data. (dashed red line) Lorentz-Lorenz fit 

with Hebert et al. liquid and phase I data excluded. 

In ref. [12], Dewaele et al. reviewed the available RI data for fluid and solid H2O up to ambient 

temperature using similar methodology to our review for CH4, and concluded that the assumption of 

a constant Lorentz-Lorenz factor would lead to an underestimate of the RI of about 3% at 35 GPa at 

ambient temperature, a significantly higher pressure and density than that reached in our study.  They 

showed that the Lorentz-Lorenz factor decreases linearly with density, in which case the RI data should 

be fitted using the following equation in place of equation (5), with the constraint that 𝐿′ < 0: 

𝑛 = √
1 + 2(𝐿0 + 𝐿′𝜌)𝜌

1 − 2(𝐿0 + 𝐿′𝜌)𝜌
 

(6) 

We attempted the Lorentz-Lorenz fitting with this modification for all three of our H2O datasets.  For 

the 295 K dataset, and for the first of the 509 K datasets, the fitting process converged rapidly to 𝐿′ =

0.  Only for the second dataset at 509 K did the fit using equation (5) converge to a non-zero value for 

𝐿′.  In this case, 17 of the 20 RIs calculated using equation (6) lay within +1.4% and -0.8% of the RIs 

calculated using equation (5).  The outliers were the 3 highest pressure datapoints.  Considering this 

dataset along with the other two datasets in which there was no measurable discrepancy between the 

RIs and volumes obtained using equations (5) and (6) we propose ± 1% as a reasonable estimate of the 

error in the RI introduced by the choice of fitting process. 

To conclude this section, we will examine how the potential error resulting from the choice of equation 

(5) to fit the RI data combines with the experimental errors to give the overall error in our calculated 

volumes.  From equation (4) we obtain 𝑉𝑆 = 𝐴𝛿 𝑛⁄ .  Thus the fractional error in 𝑉𝑆 is obtained simply 

by adding the fractional errors in 𝐴, 𝛿 and 𝑛 in quadrature.  We have estimated the fractional error in 

𝐴 to be ± 2.5% (see supplementary material), and the fractional error in 𝛿 is negligible in comparison.  
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Even in the high temperature data where the fringes become significantly fainter than those shown in 

figure 1, counting over a significant number or fringes plotted as a function of wavenumber keeps the 

fractional error in 𝛿 down to ± 0.2% typically.  The determination of the RI using the Lorentz-Lorenz 

law fitting (with a ± 1% error as proposed above) replaces the direct measurement of 𝑡′, which has an 

estimated fractional error varying between ± 2% and ± 5% (see earlier sections and supplementary 

material).  Thus – according to our best efforts to quantify the known errors in our measurements and 

fits – the error in the volumes we have determined using the Lorentz-Lorenz fitting process is at present 

about ± 2.7%.  The errors measured in our control experiments are consistent with this estimate: The 

standard deviation of the difference plot data from figures 3 (b) and 4 (c) is 2.5%.  Accounting for the 

errors in 𝑡′, 𝛿 and 𝐴 that contribute to the errors in the raw values of 𝑉𝑆, and the ± 1% error in 𝑛 in the 

fitted values of 𝑉𝑆, we can see that the error margins in the raw 𝑉𝑆 values and 𝑉𝑆 values following 

Lorentz-Lorenz fitting generally overlap. 

 

4. Conclusions 

We have presented here a new method for determining the PV equation of state of fluids and 

transparent solids in the DAC.  Our method is novel in two ways:  Firstly, the combination of white light 

interference with confocal microscopy to measure an EOS.  Secondly, our analysis method that exploits 

the need for the observed trends in density and RI to be mutually consistent. 

A reasonable estimate of the margins of error in our experimental measurements and analysis method 

indicates that the error in our calculated volumes is about ± 2.7%.  Furthermore, it indicates how the 

error in the calculated volumes can be reduced in future work.  The error in the white light interference 

measurement leading to the value of 𝛿 rarely exceeds ± 0.2%.  It is unlikely that this can be reduced 

further, or that it will become the dominant source of error.  The error in the cross-section 

measurement is currently the dominant error at ± 2.5%, and there is scope to significantly reduce this 

in future experiments with an improved microscope.  In ref. [14], Lobanov et al. measured DAC sample 

chamber cross-sections at ambient temperature and found that the error in the cross-section 

measurement gradually increased with pressure, reaching ± 1.5% at 111 GPa.  On this basis, it would 

seem feasible to reduce the cross-section measurement error in the pressure range relevant to this 

work (< 10 GPa) to significantly below ± 1%. 

The error introduced in the process of fitting 𝑛(𝜌) to equation (5) or (6) could also be reduced 

significantly.  In particular, for most fluids and transparent solids that are of interest, accurate RI data 

already exist at lower pressures (for instance measurements in the dense gas state at ambient 

pressure, in the critical region and in the liquid and solid states at low temperature, ambient pressure).  

In the present work we have sought to explore what can be achieved without utilizing any a priori 

knowledge of the RI (except for assuming 𝑛 = 1 in vacuum).  However, incorporating a priori 

knowledge of the RI (especially where the experimental errors are small compared to the errors in our 

raw values of the RI) could assist significantly. 

It is evident from inspection of our figures that our data contain occasional clear outliers.  It would be 

desirable, in future, to increase the density of datapoints so that outliers can be identified and removed 

in an objective manner based on statistical tests. 

Finally, there is scope to reduce the ± 3 μm error in 𝑡′ which would ultimately lead to tighter constraints 

on the outcome of the fitting process.  At present, the focal points leading to the measurement of 𝑡′ 

are located by visual observation, and movement of the stage is via manual micrometer.  So, whilst 

position can be measured to a precision of 1 μm, it cannot necessarily be controlled to this precision.  
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In a future apparatus design a professionally constructed confocal microscopy setup with automatic 

stage or lens movement (perhaps similar to that described in work at ambient temperature in refs. 

[17] and [18]) could reduce this error significantly. 

The measurements presented here were conducted on a modified photoluminescence / Raman 

spectrometer.  It seems feasible, from the arguments presented above, that conducting future 

measurements on apparatus purpose-designed for these experiments could allow the error in the 

volume measurements to be reduced to ca. ± 1% using the methodologies outlined in the previous 

two paragraphs.  This is similar to the error in synchrotron X-ray diffraction measurements of volume 

in the solid state. 

On a conceptual level also, our work brings high temperature fluid EOS measurement in the DAC far 

closer to what is possible for solids using synchrotron X-ray diffraction.  To produce Brillouin scattering 

EOS data (the current state-of-the-art for fluids in the DAC) there are usually several empirical fitting 

stages as it is hard to do the numerical integration with the adiabatic → isothermal correction without 

these.  For instance, the RI data and/or speed of sound data can be fitted with an empirical function 

of temperature and/or pressure.  Our method only includes one intermediate fitting stage, that when 

the RI data are fitted with the Lorentz-Lorenz law.  This fitting is not empirical.  This brings us 

significantly closer to the state-of-the-art for solids, in which the final processing stage of fitting the 

𝑉(𝑃) graph with an analytical EOS is the only semi-empirical part of the process. 

Similarly, in Brillouin scattering it is necessary to numerically integrate as a function of 

pressure/volume/density to actually produce an EOS.  So an error at one pressure affects all 

subsequent (higher) pressures. Our method, similarly to synchrotron X-ray diffraction on solids, 

contains no such weakness.  In addition, our method fits to the density (rather than pressure) so can 

work across phase transitions. 

In earlier work at ambient temperature utilizing the Fabry-Perot fringes method [12], it has been 

proposed that the hard limitation on the pressure at which EOS can be measured using optical methods 

such as ours is the phenomenon of “cupping” of the diamonds, i.e. the diamond culet bending 

outwards into the sample chamber.  This is also our view, based on our experience gained in the 

present work.  The “cupping” effect causes two errors.  Firstly, the reduction in the degree of 

parallelism between the diamond surfaces reduces the signal-to-noise ratio of the fringes.  The error 

resulting from this phenomenon can be quantified (and we have done so): As long as one can measure 

across a reasonable number of fringes, the error in δ resulting from the poor signal-to-noise ratio 

usually remains small at about ± 0.2%. 

Secondly, the “cupping” effect ensures that any calculation of sample chamber volume based on 𝑉 =

𝐴𝑡 is subject to an error which is very hard to quantify if 𝑡 is varying across the sample chamber area.  

In future, if it is possible to reduce the error in 𝑡′ to ca. ± 1 μm, it will be possible to quantify the error 

due to the “cupping” effect by repeating the 𝑡′ measurement at different locations in the sample 

chamber – or least put an upper limit on it. 

It is worth noting that the “cupping” effect also leads to a hard limitation on the pressures at which 

EOS can be measured using Brillouin spectroscopy.  All measurements of sound speed in the DAC 

require knowledge of the scattering geometry – based on the assumption that the diamond culets 

remain parallel to each other and perpendicular to the optical axis.  This is no longer the case if 

“cupping” is taking place.  For geometric reasons, the symmetric forward scattering geometry in 

Brillouin spectroscopy is probably the most vulnerable to errors introduced by “cupping” and the 180° 

back-scattering geometry probably the least vulnerable.  This is unfortunate, as the symmetric forward 
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scattering (platelet) geometry is the only geometry in which the sound speed can be calculated without 

knowledge of the RI [22].  Clearly, in future work the combination of our new methodology to calculate 

the RI and EOS with Brillouin spectroscopy in the 180° backscattering geometry (utilizing the RI 

calculated with our methodology) to produce an independent EOS determination could be extremely 

powerful, producing well-constrained values for the heat capacity as a by-product using equation (1). 

Finally, our work has application in the study of the fusion curve and high temperature solid EOS.  The 

volumes on each side of the fusion curve can be determined using the same method, and EOS can be 

obtained for high temperature solids for which EOS measurement using synchrotron X-ray diffraction 

cannot be performed due to the impossibility of obtaining a good powder or single crystal.  However, 

it is clear – looking at all our datasets above – that there is some scatter in the data produced using 

our methodology.  It would therefore be essential to collect a significant number of datapoints in the 

solid state, as well as in the liquid state, to account for this. 

 

Supplementary material 

The supplementary material contains the derivation of equation (4), full error calculations, examples 

of white light fringe data at high temperature, plots of refractive index versus pressure for C2H6 at 380 

K and C3H8 at 295 K, EOS data for NaCl at 295 K, further experimental details, and details of how the 

data in figure 7 were prepared. 
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Derivation of equations to calculate 𝒏 and 𝒕 from 𝜹 and 𝒕′ 

Here we derive equation (4) in the main text.  Figure S1 outlines the geometry and nomenclature used. 

 

 

Figure S1.  Geometry and nomenclature for focussing of collimated laser beam on the culets of the 

cylinder (top) and piston (bottom) diamonds. 

The incident collimated beam is of radius 𝑟, and a ray (shown as thick blue line) from the edge of the 

beam is incident towards the focal point at an angle 𝜑𝑎 in both cases, before being refracted at the air 

– cylinder diamond interface and (in the case where the beam is focussed on the piston diamond) at 

the diamond – sample interface. 

Applying Snell’s law to both sides of the cylinder diamond in the case where the beam is focussed on 

culet of the piston diamond leads to (using the paraxial small angle approximation): 

𝑛𝜑𝑠 = 𝜑𝑎 

(S1) 

 

Equation (S2) is obtained by adding up the triangle sides equal to 𝑟 on each diagram: 

𝑤𝑎 = 𝑤𝑠 +𝑤𝑎′ 



27 
 

(S2) 

Equations (S3) and (S4) are obtained by applying the small angle approximation to the relevant 

triangles. 

𝜑𝑠 =
𝑤𝑠

𝑡
 

(S3) 

𝜑𝑎 =
𝑤𝑎′

𝑎′
 

(S4) 

In equations (S1) – (S4) the values of the following variables are known (or at least, we could measure 

them in principle if we wanted to): 𝜑𝑎 , 𝑤𝑎.  The values of the following six variables are unknown: 

𝑛, 𝜑𝑠, 𝑤𝑠, 𝑡, 𝑤𝑎′, 𝑎
′.  We would like to calculate 𝑡 and 𝑛.  We will now introduce our two experimental 

measurements.  The white light interference experiment gives us the product 𝑛𝑡 (we label this as 𝛿): 

𝛿 = 𝑛𝑡 

(S5) 

The second measurement is the distance the DAC is moved between the location where the beam is 

focussed on the cylinder diamond – sample interface, and the location where it is focussed on the 

piston diamond – sample interface.  This measurement (made with the micrometer attached to the 

sample stage) will be a length similar to 𝑡.  We will label it 𝑡′.  It is easiest to visualise this as the 

difference in distance from the (fixed position) lens to the back of the cylinder diamond between the 

2 diagrams above.  In this case we obtain: 

𝑡′ = 𝑎 − 𝑎′ 

(S6) 

This equation has introduced a variable (𝑎) not present in equations (S1) – (S5).  However, 𝑎 could be 

measured just like 𝜑𝑎 , 𝑤𝑎.  In any case we now have 6 equations (S1) – (S6) and 6 unknown variables 

(𝑛, 𝜑𝑠, 𝑤𝑠, 𝑡, 𝑤𝑎′, 𝑎
′), so we can solve for 𝑛 and 𝑡: 

𝑡 = √𝛿𝑡′ 

𝑛 = √
𝛿

𝑡′
 

(S7) 

During this process 𝜑𝑎 , 𝑤𝑎 , 𝑎 all cancel out.  If we relax the paraxial approximation (i.e. write 𝑛 sin𝜑𝑠 =

sin𝜑𝑎 in place of equation S1 etc.) this is no longer the case.  Physically, if 𝑤𝑎 and 𝜑𝑎 did not cancel 

out, this would correspond to the focal point becoming smeared out along the optical axis (longitudinal 

aberration).  This phenomenon was studied in ref. [27] and, in the next section, we use their 

methodology to quantify the potential for systematic error arising from longitudinal aberration. 
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Longitudinal aberration caused by the air-diamond and diamond-sample interfaces 

In ref. [27], Ghatak studied the longitudinal aberration caused by insertion of a plane refracting surface 

into a beam between an objective lens and the focal point.  They showed that (even in the absence of 

any aberration caused by the objective lens) when the paraxial approximation is relaxed, the focal 

point shifts according to how far out from the optical axis the incoming ray strikes the refracting 

surface.  Here we will write their principal result using our notation and apply it to calculating the 

magnitude of the systematic error caused by our adoption of the paraxial approximation. 

Considering the case where a paraxial ray is focussed on the culet of the cylinder diamond (figure S1 

lower panel), accounting for non-paraxial effects to first order would shift the focal point by an amount 

∆𝑓1 depending on the value of 𝑤𝑑 (where 𝑤𝑑 = 𝑑 tan𝜑𝑑): 

∆𝑓1 ≈
[𝑑 tan𝜑𝑑]

2

2𝑑 (
1
𝑛𝑑

)
[(

1

𝑛𝑑
)
2

− 1] 

(S8) 

Here 𝑛𝑑 is the refractive index of diamond, the other symbols are as defined in figure S1 and ∆𝑓1 is 

defined as being positive if the focal point shifts away from the objective lens.  Applying Snell’s law to 

the air-diamond interface (𝑛𝑑 sin𝜑𝑑 = sin𝜑𝑎) allows us to calculate the longitudinal aberration in this 

focal length ∆𝑓1 as a function of known quantities 𝑛𝑑 , 𝑑 and 𝜑𝑎 under the approximation ∆𝑓1 ≪ 𝑑.  

We will assume that the angles take the maximum values permitted by the numerical apertures (NAs) 

of the lens and DAC. 

Now consider the case where a paraxial ray is focussed on the culet of the piston diamond (figure S1 

upper panel).  To first order, we can account for longitudinal aberration to this beam caused at the air-

diamond interface (∆𝑓2) by making the adjustment to equation (S8) 𝑑 → 𝑑 + 𝑡: 

∆𝑓2 ≈
[(𝑑 + 𝑡) tan𝜑𝑑]

2

2(𝑑 + 𝑡) (
1
𝑛𝑑

)
[(

1

𝑛𝑑
)
2

− 1] 

(S9) 

The longitudinal aberration to this beam caused by refraction at the diamond-sample interface (∆𝑓3) 

is given (using the same methodology and sign convention as equations (S8) and (S9), and the same 

notation as figure S1) by: 

∆𝑓3 ≈
[𝑡 tan𝜑𝑠]

2

2𝑡 (
𝑛𝑑
𝑛 )

[(
𝑛𝑑
𝑛
)
2

− 1] 

(S10) 

The angles 𝜑𝑠 and 𝜑𝑑 can, provided the refractive index 𝑛 of the sample is known, be calculated 

directly from 𝜑𝑎 using Snell’s law.  The overall systematic error (∆𝑡𝑎𝑏.
′ ) due to the combined effect of 

longitudinal aberrations when the laser is focussed on the piston and cylinder diamonds is therefore 

estimated as: 

∆𝑡𝑎𝑏.
′ ≈

∆𝑓3 + ∆𝑓2 − ∆𝑓1
2

 

(S11) 
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Here, the factor of 2 is present because we would expect the maximum in laser intensity to be part 

way between the paraxial focal point and the non-paraxial focal point where the angles are at their 

maximum values permitted by the numerical apertures of the lens and DAC.  This is, of course, an 

estimate.  An exact calculation would require measurement of the beam profile.  In figure S2 (below), 

we plot ∆𝑡𝑎𝑏.
′  as a function of 𝜑𝑎 for typical parameters 𝑛 = 1.5, 𝑡 = 75 μm, 𝑑 = 1.6 mm, and the 

known refractive index of diamond (𝑛𝑑 = 2.4).  At the opening angle utilized in this work 

(corresponding to a lens NA of 0.3) we estimate the % error in 𝑡′ resulting from use of the paraxial 

approximation to be 0.35%.  This corresponds to an absolute error in 𝑡′ of 0.17 μm. 

 

Figure S2.  % error in 𝑡′ resulting from use of the paraxial approximation estimated using the 

methodology above, plotted as a function of angle 𝜑𝑎.  The present work utilized an objective lens with 

NA = 0.3, equivalent to 𝜑𝑎 = 17.45° maximum. 

 

Derivation of equation (3) in the main text 

Inside the DAC sample chamber, light with a free-space wavelength of λ has a wavelength of 𝜆 𝑛⁄ .  

When we shine white light through the DAC along the optical axis, the interference fringes therefore 

occur at wavelengths for which 𝜆𝑙 = 2𝑛𝑡 where 𝑙 is an integer.  The peaks are equally spaced as a 

function of wavenumber and for a set of 𝑝 peaks where the peaks at each end of the set have 

wavelengths 𝜆𝐴,𝐵 we can write: 

1

𝜆𝐴
−

1

𝜆𝐵
=

1

2𝑛𝑡
[𝑙 + (𝑝 − 1) − 𝑙] 

(S12) 
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From which equation (3) in the main text trivially follows with 𝛿 = 𝑛𝑡.  Here we assume there is no 

dispersion in our samples.  Experimentally, we also ensured for all samples except H2O at 509 K that 

the wavelength of the laser used for the determination of 𝑡′ (632 nm) lies within the range of fringes 

utilized.  In the H2O samples at 509 K we could only obtain sufficiently good quality fringes to fit in the 

range 575 – 620 nm.  However, we could detect no dispersion within this range.  No significant 

dispersion would be expected in  any case, as discussed in ref. [12]. 

 

Error calculations 

The value of δ is obtained using equation (3) in the main text with 𝜆𝐴,𝐵 obtained from Gaussian fits to 

the relevant fringes after linear background subtraction.  The errors in these wavelengths are given by 

the fitting software (Magicplot Pro) and (adding errors in quadrature in the normal manner) propagate 

through to give the following error in δ: 

∆𝛿 =
𝑝 − 1

(𝜆𝐵 − 𝜆𝐴)
2
√𝜆𝐵

4 (∆𝜆𝐴)
2 + 𝜆𝐴

4(∆𝜆𝐵)
2 

(S13) 

Inspection of the derivation for equation (3) in the main text shows that the fringes are equally spaced 

as a function of wavenumber rather than wavelength.  In the high temperature data we found it easier 

to obtain δ from a plot of intensity versus wavenumber for this reason.  In this case, the error in δ is 

calculated from errors in the relevant wavenumbers (𝜈𝐴 = 1 𝜆𝐴⁄  etc.) using: 

∆𝛿 =
𝑝 − 1

(𝜈𝐵 − 𝜈𝐴)
2
√(∆𝜈𝐴)

2 + (∆𝜈𝐴)
2 

(S14) 

The error in δ is insignificant at ambient temperature, and at lower pressures at high temperature 

(sometimes as low as ± 0.001 μm).  At higher pressure combined with high temperature it can become 

significant (ca. ± 1 μm occasionally), but not dominant.  The increase as a function of pressure means 

that it is essential to calculate the error using the equations above separately for each datapoint.  The 

result of this calculation is incorporated into all relevant error bars shown in this work.  We illustrate 

this error below using the 514 K CH4 data in table S1 and figures S3 – S5.  Table S1 shows the error ∆𝛿 

obtained using equation (S14) for each datapoint in this set.  The errors in pressure are obtained from 

the discrepancy between the pressures measured before and after the collection of the data for each 

volume measurement. 

Pressure (GPa) ΔP (GPa) δ (μm) Δδ (μm) 

0.651 0.093 102.51 0.15 

1.076 0.034 97.17 0.07 

1.741 0.002 99.72 0.09 

2.373 0.005 97.01 0.09 

2.766 0.073 99.23 0.16 

3.021 0.030 96.97 0.12 

3.535 0.006 97.01 0.09 

4.043 0.023 95.36 0.19 

4.939 0.028 94.23 0.21 
Table S1.  Tabulated data for CH4 at 514 K: Pressure measurements, errors in pressure measurements, 

measurements of δ and errors in measurements of δ. 
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Figure S3.  White light fringes from CH4 sample at 514 K, 1.08 GPa.  The insets show the sets of fringes 

which were fitted at the high and low wavenumber end of the spectrum.  Here, 𝑝 = 27.  The * indicates 

a glitch in the CCD detector. 

Figure S3 shows the white light fringe data at 1.08 GPa, 514 K.  Here (and for the fringes at each other 

pressure) it was sometimes difficult (due to glitches on the detector) to directly count the number of 

fringes by visual inspection.  We therefore checked the number of fringes by fitting Gaussians (after 

background subtraction) to ca. 5 fringes at the upper and lower wavenumber end of the spectrum.  

This fitting allowed us to calculate a preliminary value for δ, and hence obtain a value for 𝑝 to check 

against our visual count of the number of fringes.  The Gaussian fits to the very highest and lowest 

wavenumber fringes in the entire spectrum were then used to calculate δ and Δδ using equations (3) 

and (S14).  Figures S4 and S5 show the equivalent data at 3.02 GPa and 4.94 GPa. 
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Figure S4.  White light fringes from CH4 sample at 514 K, 3.02 GPa.  The insets show the sets of fringes 

which were fitted at the high and low wavenumber end of the spectrum.  Here, 𝑝 = 27.  The * indicates 

glitches in the CCD detector. 
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Figure S5.  White light fringes from CH4 sample at 514 K, 4.94 GPa.  The insets show the sets of fringes 

which were fitted at the high and low wavenumber end of the spectrum.  Here, 𝑝 = 17.  The * indicates 

glitches in the CCD detector. 

The absolute error in 𝑡′ (∆𝑡′) was estimated as ± 3 μm by conducting a number of successive 

measurements at the same location.  The errors in 𝑡′ and 𝛿 propagate through to give errors in 𝑛 and 

𝑡 as follows: 

∆𝑡 =
1

2
√
𝛿

𝑡′
(∆𝑡′)2 +

𝑡′

𝛿
(∆𝛿)2 

∆𝑛 =
1

2
√
(∆𝛿)2

𝑡′𝛿
+
𝛿(∆𝑡′)2

(𝑡′)3
 

(S15) 

Examining the equations for ∆𝑡 and ∆𝑛, we can see that since 𝛿 ≈ 𝑡′ and ∆𝑡′ ≫ ∆𝛿 in virtually all 

cases, the error in 𝑡′ is the dominant cause of error in 𝑡 and 𝑛.  If we neglect the ∆𝛿 contribution to 

∆𝑛 (but make no other approximations) we obtain: 

∆𝑛

𝑛
≈
1

2

∆𝑡′

𝑡′
 

(S16) 
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The fractional error 
∆𝑡′

𝑡′
 is significant since 𝑡′ (which stays smaller than 𝑡) varies from ca. 30 – 80 μm.  

Thus the fractional error 
∆𝑛

𝑛
 varies from 2% - 5%. 

Finally, the error in the cross-section area 𝐴 must be accounted for to obtain the error in the raw 

sample chamber volume 𝑉𝑆.  We propose that this error is more appropriately accounted for as a fixed 

percentage of 𝐴, than as a fixed absolute value.  A reasonable estimate of the uncertainty in where to 

fix the limits for the integration of the number of bright pixels in the images indicates an uncertainty 

of ± 1.5% in 𝐴.  However, additional sources of uncertainty in this measurement are hard to quantify.  

In particular, the fact that the sample chamber walls may not be perfectly perpendicular to the image 

plane, and the fact that tiny specks of Ruby or Sm:SrB4O7 in the pressure chamber may reduce the 

bright pixel count.  We therefore propose that ± 2.5% is a more reasonable estimate of the error in 𝐴.  

The amount of scatter in the plots of 𝐴 versus 𝑃 is consistent with this estimate.  In this case, the overall 

error in the raw sample chamber volume is given by: 

∆𝑉𝑆 = 𝐴√(∆𝑡)2 + (
∆𝐴

𝐴
)
2

𝑡2 

(S17) 

Typically, 𝑡 ≈ 50 − 100𝜇𝑚.  In this case, 

(
∆𝐴

𝐴
)
2

𝑡2 ≈ (∆𝑡)2 

(S18) 

Therefore, the errors in 𝑡′ and 𝐴 are both significant in causing the error ∆𝑉𝑆 in the raw volume data. 

 

Refractive index versus pressure for C2H6 and C3H8 

We conducted two experiments on C2H6 at ca. 380 K, in which RI data were collected on pressure 

increase and decrease up to 4 GPa, including one measurement in the solid state.  Cross-section data 

were not collected and no fitting was performed on the RI data.  Figure S6 shows the raw RI data as a 

function of pressure.  We also performed an experiment on C3H8 at 295 K in which RI data were 

collected on pressure increase and decrease.  Figure S6 shows the raw RI data as a function of pressure.  

According to the literature, the C3H8 fusion curve is at 3.2 GPa at ambient temperature [49].  Our own 

investigations indicate that the fusion curve lies at considerably lower pressure than this, perhaps as 

low as 1.3 GPa.  This would seem to be more in line with the fusion curve above ambient temperature 

presented in the same reference.  
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Figure S6.  Raw RI data as a function of pressure for C2H6 at ca. 380 K.  The arrows indicate data 

collected on pressure decrease. 

 

Figure S7.  Raw RI data as a function of pressure for C3H8 at ca. 295 K. 
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Preliminary experiments on NaCl 

In some preliminary experiments we determined the NaCl EOS using the white light interference 

fringes to obtain 𝑛𝑡, combining this with the known RI at high pressure [15] to obtain t and our cross-

section measurement to obtain 𝑉.  These data, along with the known EOS [16], are shown in figure S8 

below.  Since these data were collected we significantly improved our methodology so these data 

should not be considered representative of the accuracy possible with our method. 

 

 

Figure S8.  NaCl EOS data calculated using the white light interference fringes and known RI [15], 

compared to the known EOS [16].  The upper panel is data from two DAC loadings (with volumes 

rescaled accordingly) and the lower panel is data from a single DAC loading. 
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Further experimental details 

High pressure was generated using custom-constructed piston-cylinder DACs equipped with diamonds 

having 450 μm or 600 μm diameter culets.  For the experiments at ambient temperature the DACs 

utilized consisted of a short (ca. 4 cm) piston and cylinder constructed from stainless steel with 

pressure applied via screws or a lever arm.  For the experiments at high temperature we used a DAC 

with a longer piston and cylinder constructed from Maraging steel, with pressure applied via a lever 

arm at high temperature.  In both cases the DACs were gasketed using stainless steel gaskets, with 

sample chambers eroded using a custom-constructed electric discharge machine following pre-

indentation. 

High temperature was generated using a heater clamped around the cylinder of the DAC (Watlow Inc.) 

connected to a custom-constructed temperature controller which ensured temperature remained 

constant within the error margins given elsewhere. 

Photoluminescence spectra of Ruby and Sm:SrB4O7 (for pressure measurement) were collected on a 

1200 lines/mm conventional single grating spectrometer.  Photoluminescence was excited using 405 

nm and 532 nm laser diodes.  In both cases the 180° backscattering geometry was used, with a 20x 

magnification objective (numerical aperture of 0.30).  White light interference spectra (such as that 

shown in figure 1 of the main text) were collected on the same spectrometer, with excitation from a 

white LED placed behind the DAC.  The dimensions of the LED and DACs limit the beam divergence to 

0.04 radians (2.3°) for the experiments at ambient temperature and 0.02 radians (1.1°) for the 

experiments at high temperature. 

The measurements of 𝑡′ made by recording the laser focal points were performed using a 632.8 nm 

HeNe laser.  This laser was focussed on the sample using the same 20x / 0.30 NA objective as used for 

the photoluminescence spectra and white light interference patterns.  The laser was operated at very 

low power and great care was taken to align the beam expander to produce a clean and crisply 

focussed beam. 

KCl was loaded into the DAC by placing a small number of crystals on the end of a needle, and distilled 

H2O was loaded into the DAC by placing a small droplet on the end of a needle.  CH4, C2H6 and C3H8 

were loaded into the DAC cryogenically using the same procedure as in our earlier work on CH4 (e.g. 

ref. [33]). 

A diagram of our apparatus is shown in figure S9.  Additional mirrors for the purpose of directing light 

around the optical table have been omitted for clarity. 
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Figure S9.  Apparatus diagram.  50:50 beamsplitters and mirror shown here are mounted on flip mounts 

so are removable from the beam.  White LEDs (a) and (b) illuminate the sample with transmitted and 

reflected light respectively.  The white light interference spectrum is collected using the transmitted 

light from LED (a).  the CCD camera is for sample viewing and 𝑡′ measurements. 

 

Processing of CH4 RI data from the literature 

The data from the literature comprising figure 7 in the main text were processed as follows: 

• Hebert et al. [45], Shimizu et al. [46] and Martonchik and Orton [48] liquid state data.  The 

pressure and RI values were digitized from the graphs in the papers.  Densities were calculated 

from the pressure using the fundamental EOS [1] as implemented by NIST [6]. 

• Olson [47].  In this work the RI at the critical point was obtained.  We used the critical density 

given by the fundamental EOS / NIST [1][6]. 

• Hebert et al. [45] and Shimizu et al. [46] solid phase I data.  The pressure and RI values were 

digitized from the graphs in the papers.  Densities were calculated from the pressures using 

our own Murnaghan fit to the X-ray diffraction data of Hazen et al. [38]. 

• Hebert et al. [45] solid phase A data.  The pressure and RI values were digitized from the graphs 

in the papers.  Densities were calculated from the pressures using our Murnaghan fit to the X-

ray diffraction data of Nakahata et al. [50]. 

• Luna et al. phase II data [44].  The RI and density values are given in tabulated form in the 

paper, and were used without any processing or adjustment. 

• Achtermann et al. gas data [42].   Although ref. [42] includes values for the densities, these are 

calculated from the RI assuming that the Lorentz-Lorenz law is obeyed.  Instead, we therefore 

obtained the densities from the given 𝑃, 𝑇 values using the fundamental EOS / NIST [1][6] 

(published after ref. [42]).  The data included from ref. [42] cover a wide range of temperatures, 

at 34 MPa (the highest pressure reached in this study).  Data from this study at lower pressures 

were excluded from figure 7 for clarity, and to avoid overfitting the Lorentz-Lorenz law to low 

density data at the expense of fitting well to data at the densities covered in the present study. 
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Note: Data from refs. [8], [45] and [46] in the liquid state at ambient temperature above 1 GPa were 

excluded from figure 7 because the fundamental equation of state [1] is not backed by any 

experimental PV data above 1 GPa so it is not possible to calculate density from pressure without some 

element of extrapolation. 

 

 


