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Abstract: We present a formal treatment of the modification of 
spontaneous emission rate by a cavity (Purcell effect) in sub-wavelength 
semiconductor lasers. To explicitly express the assumptions upon which our 
formalism builds, we summarize the results of non-relativistic quantum 
electrodynamics (QED) and the emitter-field-reservoir model in the 
quantum theory of damping. Within this model, the emitter-field interaction 
is modified to the extent that the field mode is modified by its environment. 
We show that the Purcell factor expressions frequently encountered in the 
literature are recovered only in the hypothetical condition when the gain 
medium is replaced by a transparent medium. Further, we argue that to 
accurately evaluate the Purcell effect, both the passive cavity boundary and 
the collective effect of all emitters must be included as part of the mode 
environment. 

©2013 Optical Society of America 

OCIS codes: (140.5960) Semiconductor lasers; (270.5580) Quantum electrodynamics; 
(140.3948) Microcavity devices. 

References and links 

1. S. Haroche, “New trends in atomic physics,” in Proceedings of the Les Houches Summer School of Theoretical 
Physics, Session XXXVIII,1982, G. Grynberg and R. Stora, ed. (Elsevier Science, 1984), pp. 195–309. 

2. H. Walther, “Experiments on cavity quantum electrodynamics,” Phys. Rep. 219(3-6), 263–281 (1992). 
3. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946). 
4. J. M. Gérard and B. Gayral, “Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state 

microcavities,” J. Lightwave Technol. 17(11), 2089–2095 (1999). 
5. P. Yu, P. Bhattacharya, and J. Cheng, “Enhanced spontaneous emission from InAs/GaAs self-organized quantum 

dots in a GaAs photonic-crystal-based microcavity,” J. Appl. Phys. 93(10), 6173–6176 (2003). 
6. T. Baba and D. Sano, “Low-threshold lasing and Purcell effect in microdisk lasers at room temperature,” IEEE J. 

Sel. Top. Quantum Electron. 9(5), 1340–1346 (2003). 
7. M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. 

Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, 
“Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007). 

8. M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-
temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4(6), 395–399 (2010). 

9. K. Ding and C. Ning, “Metallic subwavelength-cavity semiconductor nanolasers,” Light: Sci. Appl. 1(7), e20 
(2012). 

10. Y. Xu, J. Vučković, R. Lee, O. Painter, A. Scherer, and A. Yariv, “Finite-difference time-domain calculation of 
spontaneous emission lifetime in a microcavity,” J. Opt. Soc. Am. B 16(3), 465–474 (1999). 

11. H. Y. Ryu and M. Notomi, “Enhancement of spontaneous emission from the resonant modes of a photonic 
crystal slab single-defect cavity,” Opt. Lett. 28(23), 2390–2392 (2003). 

12. T. Suhr, N. Gregersen, K. Yvind, and J. Mørk, “Modulation response of nanoLEDs and nanolasers exploiting 
Purcell enhanced spontaneous emission,” Opt. Express 18(11), 11230–11241 (2010). 

13. C. A. Ni and S. L. Chuang, “Theory of high-speed nanolasers and nanoLEDs,” Opt. Express 20(15), 16450–
16470 (2012). 

#189475 - $15.00 USD Received 25 Apr 2013; revised 13 Jun 2013; accepted 13 Jun 2013; published 21 Jun 2013
(C) 2013 OSA 1 July 2013 | Vol. 21,  No. 13 | DOI:10.1364/OE.21.015603 | OPTICS EXPRESS  15603



14. A. Meldrum, P. Bianucci, and F. Marsiglio, “Modification of ensemble emission rates and luminescence spectra 
for inhomogeneously broadened distributions of quantum dots coupled to optical microcavities,” Opt. Express 
18(10), 10230–10246 (2010). 

15. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Photons and Atoms: Introduction to Quantum 
Electrodynamics (Wiley, 1989). 

16. J. J. Sakurai, Modern quantum mechanics (Addison-Wesley, 1994). 
17. R. J. Glauber and M. Lewenstein, “Quantum optics of dielectric media,” Phys. Rev. A 43(1), 467–491 (1991). 
18. S. W. Chang and S. L. Chuang, “Normal modes for plasmonic nanolasers with dispersive and inhomogeneous 

media,” Opt. Lett. 34(1), 91–93 (2009). 
19. S. W. Chang and S. L. Chuang, “Fundamental formulation for plasmonic nanolasers,” IEEE J. Quantum 

Electron. 45(8), 1014–1023 (2009). 
20. M. O. Scully and M. S. Zubairy, Quantum optics (Cambridge University, 1997). 
21. M. Asada, “Intraband relaxation time in quantum-well lasers,” IEEE J. Quantum Electron. 25(9), 2019–2026 

(1989). 
22. R. J. Glauber, Optical Coherence and Photon Statistics” in Quantum Optics and Electronics (Les Houches, 

1965). 
23. L. A. Coldren and S. W. Corzine, Diode lasers and photonic integrated circuits (John Wiley & Sons, inc., 1995). 
24. G. Björk, S. Machida, Y. Yamamoto, and K. Igeta, “Modification of spontaneous emission rate in planar 

dielectric microcavity structures,” Phys. Rev. A 44(1), 669–681 (1991). 
25. K. Srinivasan and O. Painter, “Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-

quantum dot system,” Nature 450(7171), 862–865 (2007). 
26. G. Khitrova, H. Gibbs, M. Kira, S. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. 

Phys. 2(2), 81–90 (2006). 
27. V. Weisskopf and E. Wigner, “Calculation of the natural brightness of spectral lines on the basis of Dirac’s 

theory,” Z. Phys. 63, 54–73 (1930). 
28. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University, 2007). 
29. A. E. Siegman, An introduction to lasers and masers (McGraw Hill, 1971). 
30. G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in 

semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25(11), 2297–2306 (1989). 
31. H. J. Carmichael, Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations 

(Springer-Verlag, 1999). 
32. T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki, and F. Koyama, “Observation of fast spontaneous emission 

decay in GaInAsP photonic crystal point defect nanocavity at room temperature,” Appl. Phys. Lett. 85(18), 
3989–3991 (2004). 

33. H. Iwase, D. Englund, and J. Vucković, “Analysis of the Purcell effect in photonic and plasmonic crystals with 
losses,” Opt. Express 18(16), 16546–16560 (2010). 

34. M. Fujita, A. Sakai, and T. Baba, “Ultrasmall and ultralow threshold GaInAsP-InP microdisk injection lasers: 
design, fabrication, lasing characteristics, and spontaneous emission factor,” IEEE J. Sel. Top. Quantum 
Electron. 5(3), 673–681 (1999). 

35. H. Altug, D. Englund, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2(7), 484–488 
(2006). 

36. M. Glauser, G. Rossbach, G. Cosendey, J. Levrat, M. Cobet, J. Carlin, J. Besbas, M. Gallart, P. Gilliot, R. Butté, 
and N. Grandjean, “Investigation of InGaN/GaN quantum wells for polariton laser diodes,” Phys. Status Solidi C 
9(5), 1325–1329 (2012). 

37. M. Yamada and Y. Suematsu, “Analysis of gain suppression in undoped injection lasers,” J. Appl. Phys. 52(4), 
2653–2664 (1981). 

38. M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, 
“Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012). 

39. M. Yamanishi and Y. Lee, “Phase dampings of optical dipole moments and gain spectra in semiconductor 
lasers,” IEEE J. Quantum Electron. 23(4), 367–370 (1987). 

40. S. R. Chinn, P. Zory, Jr., and A. R. Reisinger, “A model for GRIN-SCH-SQW diode lasers,” IEEE J. Quantum 
Electron. 24(11), 2191–2214 (1988). 

41. B. Deveaud, F. Clérot, N. Roy, K. Satzke, B. Sermage, and D. S. Katzer, “Enhanced radiative recombination of 
free excitons in GaAs quantum wells,” Phys. Rev. Lett. 67(17), 2355–2358 (1991). 

42. W. W. Chow and S. W. Koch, Semiconductor-laser fundamentals (Springer, 1999). 
43. D. Martín-Cano, A. González-Tudela, L. Martín-Moreno, F. J. García-Vidal, C. Tejedor, and E. Moreno, 

“Dissipation-driven generation of two-qubit entanglement mediated by plasmonic waveguides,” Phys. Rev. B 
84(23), 235306 (2011). 

44. W. Kowalsky, A. Schlachetzki, and F. Fiedler, “Near‐band‐gap absorption of InGaAsP at 1.3 μm wavelength,” 
Phys. Status Solidi A 68(1), 153–158 (1981). 

45. R. H. Groeneveld, R. Sprik, and A. Lagendijk, “Effect of a nonthermal electron distribution on the electron-
phonon energy relaxation process in noble metals,” Phys. Rev. B Condens. Matter 45(9), 5079–5082 (1992). 

46. W. S. Fann, R. Storz, H. W. Tom, and J. Bokor, “Electron thermalization in gold,” Phys. Rev. B Condens. 
Matter 46(20), 13592–13595 (1992). 

#189475 - $15.00 USD Received 25 Apr 2013; revised 13 Jun 2013; accepted 13 Jun 2013; published 21 Jun 2013
(C) 2013 OSA 1 July 2013 | Vol. 21,  No. 13 | DOI:10.1364/OE.21.015603 | OPTICS EXPRESS  15604



1. Introduction 

The fundamental system in cavity quantum electrodynamics (cavity-QED) is a two-level 
emitter interacting with the electromagnetic field in a cavity [1,2]. Characteristics of this 
system, such as the spontaneous decay rate, are not inherent to the emitter, but depend on the 
interaction between the emitter and cavity modes. Further, the emitter-mode interactions 
undergo modifications as the cavity modes are modified by their environment, for example 
the lossy boundaries of a non-ideal cavity. 

The spontaneous emission rate of an emitter in a cavity may be enhanced or inhibited 
compared to emission in free space, a phenomenon known as the Purcell effect [3]. The 
spontaneous emission modification factor, also known as the Purcell factor, scales inversely 
with the cavity mode volume. In nano-scale lasers, enhanced emission together with a 
reduced number of cavity modes relative to large lasers can have significant effects, 
especially on sub-threshold behavior. These effects are generally desirable, as they tend to 
increase the utilization of spontaneous emission into the lasing mode and lower the lasing 
threshold. Rate equation models of micro- and nano-scale lasers often incorporate the Purcell 
factor into the spontaneous emission term [4–9]. 

Since its original description by Purcell, the modification of spontaneous emission has 
been studied in a number of general physical contexts, such as when the emitter and cavity 
mode are not on resonance [4,10], when the spectral broadening of the emitter and cavity 
mode are comparable [11–13], and when the emitters are a collection of non-identical 
quantum dots (QDs) [14]. In this work, we apply the theory specifically to semiconductor 
nanolasers such as those reported in Refs [7–9], and include both inhomogeneous broadening 
(due to the distribution of carrier energies within the conduction and valence bands) and 
homogeneous broadening (due to intraband scattering). Although part of our formalism is 
similar to that used in Ref [14]. for quantum dots, the underlying physics differ. We 
summarize the relevant results from cavity-QED and the quantum theory of damping to 
explicitly express the assumptions upon which our argument rests. We discuss how the 
assumptions apply or fail to apply in semiconductor nanolasers. In particular, we argue that 
the spontaneous emission probability of an electron-hole pair in a cavity is modified not only 
by the cavity itself, but also, though indirectly, by the aggregate of other electron-hole pairs 
present. This latter effect can be significant, yet is not readily included into existing models. 

This paper is organized as follows: In the first section, we summarize the non-relativistic 
QED theory that forms the basis of our formulation. We then give the general expressions for 
the spontaneous emission probabilities in free space and in a cavity, assuming the emitters are 
two-level-systems. In the subsequent sections, we apply the results to semiconductor 
nanolasers. We obtain the expression of the Purcell factor for semiconductor lasers, 
accounting for the loss at the cavity boundary, but not for the indirect effect of the aggregate 
of emitters. In a numerical example, we illustrate our result by evaluating the Purcell effect of 
a sub-wavelength semiconductor laser reported by Nezhad et al. [8]. For this example, we use 
an absorptive reservoir because only the cavity boundary is included in the environment. 
Finally, we discuss the importance of the aggregate emitter effect, and the difficulties it 
presents within the framework of the current model. 

2. Non-relativistic QED in free space and in a cavity 

Following the formalism of ([15]. §III.A.1), we begin the non-relativistic QED description of 
the electric field in free space and in a cavity by separating the longitudinal and transverse 

components of the electric field operator, ˆ ˆ ˆE E E⊥= + . The longitudinal field operator Ê  is 

fully determined by the charge distribution and describes the quasi-static field of charged 
particles. In what follows, we model electron-hole pairs in the gain material as two-level 
quantum systems, and cavity materials with their macroscopic permittivities ε; the model 
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includes no charged particles. We therefore focus on the source-free condition and ignore Ê . 

The transverse component of a free field is given by ([15]. §III.B.2). 

 ( ) ( ) ( )( )†
, ,3

, 0

ˆ ˆ ˆ,
2

i it i a t e a t e
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ω
ε
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In Eq. (1), the summation is over all free space modes, k is the wavevector of the mode, 
and ε is the polarization unit vector of the mode, satisfying ⊥ kε . cω =k k  is the mode 

frequency, L3 is the quantization volume, ( )†
,â tk ε  and ( ),â tk ε  are photon creation and 

annihilation operators for the mode, respectively, and 
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where ( )ˆ 0a  and ( )†ˆ 0a  are the operator values at time t = 0. Equations (1) and (2) are written 

for a free field in the Heisenberg picture, in which quantum states are constant and operators 
vary with time. They also apply in the Dirac picture for a field interacting with, for example, a 
two-level emitter if the interaction is included as correction to the un-perturbed Hamiltonian. 
In this situation, the quantum states evolve due to the interaction ([16]. §5.5). It is often 

convenient to separate Eq. (1) into annihilation Ê +
⊥  and creation Ê −

⊥  terms, 
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An analogous representation exists for the electric field operator in a cavity [17,18]. In a 
source-free cavity, the electric field operator becomes 

 ( ) ( ) ( ) ( ) ( )( ) ( )†

0

ˆ ˆ ˆ ˆ ˆ, , , e
k

u u u k k k kE t E t E t i a t a t
ω
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>
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where the summation is over all cavity modes and ωk is the eigenfrequency of the mode k. In 
Eq. (4), r is the location at which the field is evaluated, ( )ek r  is the electric field modal 

profile normalized so that the mode energy evaluates to ( ) ( ) ( ) ( )( )† †1
ˆ ˆ ˆ ˆ

2 k k k k ka t a t a t a tω + , 

i.e., kω  per quantum level of the harmonic oscillator and 1
2 kω  in the oscillator ground 

state. Explicitly, in non-dispersive media, 

 ( ) ( ) ( ) ( ) ( ) ( )2 2 3E
e , E Hk

k k k kV
k

N d
N

ε μ = + 
r

r r r r r r  (5) 

where Nk is the normalization factor for mode k and the integration is over the entire volume 
in space. ( )Ek r  and ( )Hk r  represent real cavity mode fields (solutions of the classical 

Maxwell's equations for the cavity geometry), and integration is over all space. In electrically 
dispersive but magnetically non-dispersive media, Nk becomes [19] 
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where εR stands for the real part of permittivity ε. The assumed, non-dispersive magnetic 
permeability enables us to express the total magnetic energy in Eq. (6) in terms of the electric 
field [18]. Although εR may be negative in some metallic materials, the integral in Eq. (6) is 
always positive. Note that the preceding formalism lacks the imaginary part of the 
permittivity, and therefore ignores damping in the cavity. Damping may be introduced using 
Heisenberg-Langevin reservoir theory ([20]. §9). We discuss such an approach to damping in 
the rest of this section. 

When the electromagnetic mode interacts with the environment, the time dependence of 

( )ˆka t  and ( )†ˆka t  can no longer be described by Eq. (2). A damping environment can often be 

modeled as a thermal reservoir. The reservoir model is applicable when the interaction is 
weak and the environment is a large stochastic system that satisfies the Markovian 
approximation, namely, a system that over a short time τreservoir becomes fully disordered and 
loses all memory of its earlier state. Intuitively, the interaction must be sufficiently weak and 
the reservoir characteristic time τreservoir sufficiently short, so the mode experiences all possible 
states of the reservoir in equal measure. The reservoir formalism will be employed in Section 
4 to describe loss at the boundary of the cavity. Hereafter the terms environment and reservoir 
are used interchangeably. 

When a mode interacts with a thermal reservoir, the evolution of the mode operators 

( )ˆka t  and ( )†ˆka t  also becomes stochastic. As a result, only statistical correlations involving 

( )ˆka t  and ( )†ˆka t  can be predicted for each mode. The correlations obey [20] 
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where [ ]R
 denotes the statistical expected value, and ( )kn ω  represents the reservoir energy 

at frequency ωk. In Eq. (7), Ck is the mode-reservoir coupling constant, thus 1/Ck represents 

the cavity damping time. The expected value ( ) ( )†ˆ ˆk k R
a t a t    of the photon count decays 

exponentially with the damping constant 1/Ck toward its steady state value ( )kn ω , which is 

usually referred to as the reservoir temperature. Comparing the reservoir characteristic time 
τreservoir with the cavity damping time, the mode-reservoir weak coupling condition is τreservoir 
<< 1/Ck. After time t >> 1/Ck, the evolution of the correlation, which is described by Eq. (7), 
reaches steady state, with its behavior described by Eq. (8) below. 
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Once mode-reservoir equilibrium has been reached, the correlations on the left hand side 
of Eq. (8) are fully determined by Ck and ( )kn ω . 

#189475 - $15.00 USD Received 25 Apr 2013; revised 13 Jun 2013; accepted 13 Jun 2013; published 21 Jun 2013
(C) 2013 OSA 1 July 2013 | Vol. 21,  No. 13 | DOI:10.1364/OE.21.015603 | OPTICS EXPRESS  15607



We next introduce the interaction between the electromagnetic field and a two-level 
emitter, such as an electron-hole pair in a semiconductor laser. Suppose the emitter is 
prepared at time t = t0 in its upper state |2>. The emitter interacts with the electromagnetic 
field mode, and the two become quantum mechanically entangled. At some later time t > t0, a 
phase-destroying event occurs, e.g., a collision between two electrons in the conduction band 
of semiconductors [21]. Such an event either makes the emitter transition to the lower state 
|1> while simultaneously adding a photon of frequency ω21 to the field, or leaves the emitter 
in the upper state |2> and the mode with its original photon count. The emitter-mode 
interaction then begins anew and continues until the next phase-destroying event occurs. 
When such events are much more frequent than level transitions (transitions between states), 
the photoemission probability between time t0 and a later time t > t0 is small and is given by 
[22] 

 ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )0 0
21

0 0

*

2 1 , 12 21 12 21 21 212

1
ˆ ˆ, ,r r

coll coll
t t

i t t

i t t

P t e i E t E t i D d dt dt
τ τ ω ω ω ω ω

+ + ′′ ′− − + −

→ ⊥ ⊥
′ ′′ ′ ′′= ⋅ ⋅ ⋅  


℘ ℘ (9) 

where i  is the initial state of the field, and ( )12 21ω℘  is the dipole matrix element. ( )12 21ω℘  

is a property of the emitter and determines the potential strength of the emitter-mode 
interaction ([23]. §4.3). The actual interaction strength depends on the orientation of the 
dipole relative to the electric field and is thus governed by the dot product between the two. 
D(ω21) is the density of emitter states, which characterizes the inhomogeneity of the system 
( ( ) ( )21 21 21D ω δ ω ω= −  if all emitters are identical with natural frequency 21ω ). Equation (9) is 

valid over time intervals short enough such that P2→1(t) << 1. This condition, known as the 
emitter-mode weak coupling regime, is met in semiconductors owing to fast phase-destroying 
intraband collisions, which occur with characteristic frequency 1/τcoll ~(0.3ps)−1 at room 
temperature [6,21]. The photoemission rate is generally much lower, except under very strong 
applied field and/or very strong spontaneous emission enhancement [4,24]. The opposite limit 
is the strong-coupling regime, in which neither the emitter nor the field mode experience 
dephasing events that are more frequent than level transitions; in this situation, Eq. (9) does 
not apply, and Rabi oscillations result instead [4,25,26]. In this paper, however, we focus on 
the emitter-mode weak-coupling regime. Equation (9) is therefore employed throughout and 
evaluated at times t = t0 + τcoll when, on average, the next phase-destroying collision is 
expected to occur. To obtain emission probability in free space and in cavities, we evaluate 
Eq. (9) with the transverse electric field operator of the respective condition. 

3. Spontaneous emission probability in free space and in cavities 

It can be shown from Eq. (9) that photoemission still takes place, with a well-defined 
probability, even when the mode is in the vacuum state |0>; this is referred to as spontaneous 
emission. We apply Eq. (9) in free space, with all free space modes in the vacuum state and 
no reservoir present. The field operators in this case have deterministic time dependences 
described by Eq. (2). By substituting Eqs. (1) and (2) into Eq. (9), we recover the Weisskopf-
Wigner probability of spontaneous emission in the limit of a 2-level system when D(ω21) = 
δ(ω-ω21) [27], 
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(10) 

In Eq. (10), re is the location of the emitter, and summation cross-terms cancel owing to 
†

k , k , k kˆ ˆ0 0 0 0a a′ ′ ″ ″ ′ ″ ′ ″δ δε ε ε ε=  . The 

quantity ( ) ( )( ) ( )[ ]
( )0 0

0 0 21

2
1
2 21

21 1
2 21

sin
R ,

coll coll

coll

t t i t t coll

t t
e d dt t

τ τ ω ωτ
ω ω τ
ω ω

ω ω − ″− ′+ + −≡ =
−
−

− ′ ″  , which absorbs 

the time exponents inserted from Eq. (2), is the homogeneous broadening function and 
depends on τcoll. Viewed as a function of ω, R(ω-ω21,τcoll) peaks at ω21, has a width on the 

order of 1/τcoll, and satisfies ( )21, 2coll collR dω ω τ ω π τ− = ⋅  [16]. The approximation in Eq. 

(10) consists in replacing the summation over free space modes k with appropriate integration 
and then taking ωk≈ω21. Such an approximation is justified because the free space modes 
form a continuum with an infinitesimal spectral spacing between adjacent modes, and the 
quantity 3ωk varies little over the width of R(ω-ω21,τcoll). 

A similar procedure can be carried out in an undamped cavity if all cavity modes are 
initially in vacuum state. Applying Eq. (4) to Eq. (9), summation cross-terms cancel again 
according to †ˆ ˆ0 0 0 0k k k ka a δ′ ′′ ′ ′′=  , and we obtain 

 ( ) ( ) ( ) ( )2

12 21 21 21 212 1, 0...0 e ,cav k
k e k coll

k

P D R d
ω ω ω ω ω τ ω→ = ⋅ −  r


℘  (11) 

Unlike in free space, the summation over modes k in Eq. (11) cannot be replaced with 
integration if the spectral spacing between adjacent modes is non-negligible. This is 
especially the case in micro- and nano- cavities in which the spacing between adjacent modes 
may be a significant fraction of the modes’ resonance frequencies. The cavity spontaneous 
emission probability given by Eq. (11) may depend significantly on the number of available 
modes and their location relative to the density of emitter states D(ω21). It also depends on the 
location and orientation of the emitter relative to the normalized mode field ( )ek r . For 

example, the probability is zero for an emitter located at a field node. 
In a damped cavity, the mode interacts with the reservoir. The time dependence of the 

field operators of a damped cavity is described by the correlation function in Eq. (7). 
Provided that equilibrium between the mode and the reservoir is reached, we substitute Eq. 
(8), the steady-state solution of Eq. (7), into Eq. (9) for each cavity mode to obtain, 

 ( )( ) ( ) ( ) ( ) ( ) ( )2

12 21 212 1,equilibrium 21 21
e1 ,rkcav

k k e k k coll

k

DP n L R d d
ω

ω ωω ω ω ω ω τ ω ω
→

⋅= + − −  


℘  (12) 

where summation cross-terms cancel once again, even though the underlying physics differs 
from that in Eqs. (10) and (11). In Eq. (12), summation cross-terms cancel because operators 
of different modes interact independently with the reservoir, and the equilibriums are 

uncorrelated, leading to the evaluation of [ ]† †ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) 0k k k kRR R
a t a t a t a tτ τ′ ′′ ′ ′′   + = + =     when 
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k' ≠ k”. Note that we assume the reservoir to be large enough so that the modes do not couple 
to one another via the reservoir. The Lorentzian Lk(ω-ωk) in Eq. (12) appears when the 
damping term in Eq. (8) is expressed as a Fourier transform, 

( )
1

2 k
k

Ci i
k ke e e L d

τω τ ωτ ω ω ω
−− −= −   , with 

 ( )
( ) ( )

2

2 2
2 2

11
1 2 22 , where

1 1
2 2

kk

k k k k
k

k k k k

C Q
L C

C

ω
ω ω ω

π π ω
ω ω ω ω ω

 Δ 
 − ≡ = ⋅ = Δ

   + − Δ + −   
   

   (13) 

and the quality factor is defined as k kQ ω ω≡ Δ .The convolution in Eq. (12) determines the 

emission probability in a cavity for an inhomogeneously broadened ensemble of emitters, 
when the mode-reservoir equilibrium has been reached. The effect of the reservoir on the 
emission probability is described by Lk(ω-ωk), whose spectral property is described by Eq. 
(13). 

4. Purcell factor in semiconductor lasers 

In the remainder of this paper, we apply the results from the non-relativistic QED treatment to 
a 3-level laser in which emitters are pumped from the ground state |1> to an excited state |3> 
and quickly decay from state |3> to a lower state |2>; the lasing transition is between states 
|2> and |1>. Semiconductor lasers in particular are frequently modeled in this manner, even 
though their underlying physics differs: state |2> describes the condition where a conduction 
band state is occupied and the valence band state of the same crystal momentum is vacant, 
while state |1> describes the condition when the conduction band state is vacant and the 
valence band state is occupied ([28]. §6.3 [29]. §6.2 [30];). 

To describe our system, we construct a basic model similar to that in. ([20]. §9) and [31]. 
We suppose each emitter to interact with all modes of the cavity, but ignore direct interaction 
among emitters. The cavity modes, on their part, undergo damping as a result of loss at the 
cavity boundaries, and we model the loss as a thermal reservoir. 

Loss at the cavity boundary, such as Joule loss in a metallic mirror, or loss of energy 
through the mirror and its eventual conversion to heat at some remote point in space, 
generally satisfies the assumptions of a reservoir model: it is weak interaction with a large 
stochastic system that is disordered and does not retain memory of past interactions. Further, 
this reservoir is passive, as it does not return energy to the mode. Rather, it drains the mode 

energy over time, and in steady state ( ) ( )†ˆ ˆ 0k k R
a t a t  =  . Therefore, in Eqs. (8) and (12), we 

take ( ) 0kn ω = , which is commonly known as the zero temperature condition. The 

Hamiltonian describing each single emitter in this system can be expressed as 

 ˆ ˆ ˆ ˆ ˆ ˆ
A F AF R FRH H H H H H= + + + +  (14) 

where ˆ
AH , ˆ

FH  and ˆ
RH  are the emitter, field and reservoir Hamiltonian, respectively. ˆ

AFH  

denotes interaction between the emitter and the field modes, while ˆ
FRH  denotes interaction 

between the field modes and the reservoir. 
We note that even if, by assumption, a given emitter does not directly interact with other 

emitters, the field modes still interact with all emitters present, rather than only with a single 
emitter. This interaction is not included in the Hamiltonian in Eq. (14), either explicitly or as 
part of the reservoir. It will be argued in Section 6 that the effect of the emitter population on 
the field modes cannot justifiably be ignored in semiconductor lasers. However, we adopt the 
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simplified model as a starting point to illustrate how it leads to the expressions for Purcell 
factor commonly found in the literature [4,8,11,14,32,33]. 

In a system where an emitter interacts with the field, and the field interacts with a thermal 
reservoir, the results summarized in Sections 2 and 3 apply directly. The cavity Purcell factor 
Fcav is defined as the ratio of spontaneous emission in a cavity to that in free space. In the 
evaluation of Fcav in the literature, it is common to replace the vacuum free space emission 
probability presented in Eq. (10) by the emission probability of bulk material of effective 
index nr, with no cavity [4,11]. The spontaneous emission probability in the bulk material, 

2 1, 0...0
materialP → , takes the same form as in free space, except that ε00 is replaced by the permittivity 

of the medium 2
0r rnε ε=  and that c is scaled down by the refractive index nr. From Eq. (10) 

we obtain 
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℘             
 (15) 

In the second line of Eq. (15), we evaluate 3
21ω  and ( )12 21ω℘  at the center frequency 

21ω of the inhomogeneous broadening spectrum D(ω21) and pull them out of the integration, 

because these quantities vary relatively little over the homogenous broadening range. 
Comparing Eqs. (12) and (15), we obtain the Purcell factor Fcav 
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(16) 

again evaluating the slowly-varying dipole matrix element ( )12 21ω℘  at 21ω . The emission 

probability in Eq. (12), and hence the Purcell factor in Eq. (16), depends on the location re of 
the emitter. More precisely, it depends on the normalized mode field at the location of the 
emitter ( )ek er , as well as on the orientation of the emitter's dipole moment matrix element 

( )12 21ω℘  relative to the field. If the emitters are randomly oriented and uniformly distributed 

over an active region of volume Va, the quantity ( ) ( ) 2

12 21 ek eω ⋅ r℘  is replaced by its average 

over all locations and orientations. 

 ( ) ( ) ( ) ( )2 2 2 3
12 21 12 21

1 1
e e

3 a
k e kV

a

d
V

ω ω⋅ → r r r℘ ℘  (17) 

where the coefficient 1/3 accounts for the random emitter orientation. 
In certain situations, the carrier distribution over Va may become non-uniform. For 

example, in multiple quantum well (MQW) structures, the carrier distributions in the well and 
barrier regions differ significantly. Even in bulk semiconductors, the recombination of 
carriers may vary spatially, with the highest rates occurring at field antinodes. This is the case 
if the recombination at field antinodes is so rapid that diffusion of carriers from other parts of 
the active volume is not fast enough to avoid depletion. Carrier depletion at field antinodes 
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and subsequent diffusion from the nodes toward the antinodes leads to the spatial 
inhomogeneity of the recombination. At room temperature, the diffusion length of carriers in 
InGaAsP (i.e., average distance traveled before recombination) is on the order of 1-2μm [34]. 
The distance between the field node and antinode in visible and near infra-red sub-
wavelength semiconductor cavities, on the other hand, is usually less than 0.5μm [7,8]. Thus, 
the depletion regions would remain relatively depleted due to the finite diffusion time. Under 
these circumstances, Eq. (17) should then be replaced by an appropriately weighted average. 
For the present purpose of illustrating our formulation and avoiding obfuscation of our end 
goal, we accept the uniform carrier distribution assumption of Eq. (17) and use it in Eq. (16) 
along with ( )ek er  from Eqs. (5) and (6). 
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 (18) 

Equation (18) permits several observations. Firstly, the double integral in Eq. (18) is the 
convolution of inhomogeneous broadening D(ω21), cavity Lorentzian Lk(ω-ωk), and 
homogeneous broadening R(ω-ω21,τcoll). It should be noted that although the homogenous 
broadening function R(ω) and the inhomogeneous broadening function D(ω) appear 
symmetrically in Eq. (18), they may in principle exhibit different dynamics. In particular, 
rapid recombination of carriers near the mode frequency ωk may deplete the carrier 
population at that frequency faster than it is replenished by intraband scattering (this 
phenomenon is known as “spectral hole burning”). In such cases, it could be meaningful to 
disaggregate the integral in dω21 in Eq. (18) and define separate Purcell factors for carriers at 
different frequencies ω21 [35]. More typically, however, especially at room temperatures, the 
intraband relaxation time τcoll ~0.3ps of InGaAsP is much shorter than photoemission time (an 
assumption already made in Eq. (9)), and the distribution of carriers D(ω21) is at all times the 
equilibrium distribution ([23]. Appendix 6). This equilibrium distribution closely resembles 
the photoluminescence spectrum [36]. In semiconductor lasers utilizing bulk or MQW gain 
material, it is the broadest of the three convolution factors in Eq. (18) and therefore dominates 
the convolution. For InGaAsP at room temperature, the full-width-at-half-maximum 
(FWHM) of D(ω21) and R(ω-ω21,τcoll) are approximately 7·1013rad/s and 6.7·1012rad/s, 
respectively. D(ω21) dominates the convolution in Eq. (18) as long as the cavity Q factor is 
above 19, which corresponds to a FWHM of 7·1013rad/s. For practical cavities, the Q factor 
will be significantly larger; thus diminishing the contribution of Lk(ω-ωk) to the resulting 
Purcell factor. In fact, R(ω-ω21,τcoll), alone, dominates Lk(ω-ωk) if the Q factor is greater than 
200 [21,37]. Consequently, in typical III-V semiconductor lasers with MQW or bulk gain 
material, the cavity Q factor plays a negligible role in determining the spontaneous emission 
rate and Fcav. Secondly, Fcav may be large in small laser cavities due to its inverse 
proportionality to the active region volume Va.. However, Fcav is actually inversely 
proportional to the effective size of the mode, /a kV Γ , where the mode-gain overlap factor Γk 

is defined in Eq. (18) and describes the spatial overlap between the mode and the active 
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region. Thus if the mode is poorly confined, Γk <<1, Fcav will remain small, despite a small 
active region. 

Finally, note that the Purcell factor Fcav is the sum of contributions ( )k
cavF  from each cavity 

mode present, as is the emission probability in Eq. (12). However, in the context of 
nanolasers, greater emission into the mode that would ultimately lase is generally desirable as 
it helps utilize the carriers more efficiently, whereas emission into other modes is wasteful. 
From this point of view, therefore, the appropriate figure of merit is not the Purcell factor Fcav 
but the spontaneous emission factor β, 

 
( )

( )

1
cav

k
cav

k

F

F
β =


 (19) 

where the lasing mode is indicated by the index k = 1, and the summation is over all modes k, 
including cavity modes and modes radiating out of the cavity into free space. The 
spontaneous emission factor is brought closer to its theoretical limit β = 1 when one 
summation term in Eq. (18) is increased and other terms are suppressed, for example by 
eliminating unwanted cavity modes [38]. On the other hand, it is worth noting that since the 
Purcell factor is positively related to the modulation speed of a device, Fcav rather than β may 
be the appropriate figure of merit in designing high-speed laser devices [12,13]. 

5. Evaluation of Purcell factor in a sub-wavelength semiconductor laser 

In this section, we illustrate the formulation using a semiconductor nanolaser with MQW gain 
medium, through which we previously demonstrated room temperature laser operation [8]. 
We use the exact geometry and material parameters of the device as in Fig. 4 of Nezhad et al. 
[8]. The schematic of the device is depicted in Fig. 1. The key geometrical parameters are the 
InGaAsP MQW gain core of height hcore = 480nm, and the major and minor core radii of the 
slightly elliptical gain (due to fabrication imperfections) are rmajor = 245nm and rminor = 
210nm, respectively. The SiO2 shield layer has thickness Δ≈200nm. Assuming the aluminum 
cladding thickness to be 70nm (which is twice the skin depth), the height, the major and 
minor total diameters of this laser are 1.35μm, 1.03μm and 0.96μm respectively, resulting in a 
laser cavity that is smaller than its emission wavelength in all three dimensions. The lasing 
mode of the device, designated TE012 in [8], is depicted in Fig. 2(a), which is obtained from a 
COMSOL multiphysics 3D finite element method (FEM) model. The model yields the 
electric field profile ETE012(r), mode frequency ωTE012 = 1.330·1015rad/s (λ = 1416nm), and 
transparent cavity Q factor Q = 479, from which the Lorentzian LTE012(ω-ωTE012)) follows via 
Eq. (13). By transparent, we mean that the permittivity of the gain medium is purely real, and 
all losses are characterized by the imaginary part of the permittivity of the cavity metal as 
well as radiation out of the cavity. 
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Fig. 1. Schematic of the subwavelength metallo-dielectric laser in Fig. 4 of Nezhad et al. [8]. 
Key geometrical parameters are rmajor = 245nm, rminor = 210nm, Δ = 200nm, h1, h2, h3 and hcore 
are 200nm, 550nm, 250nm and 480nm, respectively. 

The sinc-like shape of the homogeneous broadening function R(ω-ω21,τcoll) in Eq. (10) is a 
consequence of the assumed abrupt dephasing of emitter-field interaction due to an intraband 
collision at time t = t0 + τcoll. In reality, the dephasing is not abrupt, and collisions do not 
happen at precise intervals. Although more accurate lineshape models have been given 
[21,39,40], it is common to describe homogeneous broadening with a simple Lorentzian, and 
calibrate the intraband collision time τin so that 2/τin represents the FWHM of the Lorentzian 
([23]. §4.3 [28]. §5.5 [41];). The value of τin reported in this context is 0.3ps for an InGaAsP 
MQW at room temperature [6,21]. For our present purposes, the exact shape of homogeneous 
line broadening is not essential, and we adopt the Lorentzian approximation. The spectra 
LTE012(ω) normalized to area 1 and R(ω-ω21,τcoll) normalized to area (2πτcoll) are shown in Fig. 
2(b) and Fig. 2(c), respectively. 

The origin of inhomogeneous broadening in semiconductors is the quasi-equilibrium 
Fermi distribution of carriers in the conduction and valence bands, which is maintained 
through intraband scattering [42]. In bulk material, this distribution can be estimated from the 
photoluminescence (PL) spectrum. Emission probabilities into the various free space modes 
(k,ε) are given by the summation terms on the second line of Eq. (10): they take the same 
form as in vacuum modeled classically, except that ε00 is replaced by the permittivity of the 
medium. The spectrum of this emission is therefore just the convolution 

( ) ( )21 21 21, collD R dω ω ω τ ω− , after neglecting the variation in ( )12 21ω℘  over the frequencies 

involved. D(ω21) can be recovered from the convolution if R(ω-ω21,τcoll) is known. For 
emission into cavity modes, we use the same emitter distribution D(ω21) as that used for 
emission into free-space modes. This follows from our assumption that the carrier 
recombination rate (rate of level transitions) is smaller than the intraband relaxation rate, 
1/τcoll, which was used to justify the use of Eq. (9). A necessary consequence of this 
assumption is that spectral hole burning will not occur [6,13]. In the Purcell factor evaluation 
presented in this section, we use the PL spectrum of the material without the presence of a 
cavity either measured at low pump powers or as provided by OEpic Semiconductor Inc., 
who grew the material. The distribution of D(ω21) is obtained from the PL spectra, which are 
plotted in Fig. 2(d). 
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Fig. 2. (a) The lasing mode’s electric field profile and the three spectra in the evaluation of the 
Purcell factor: (b) cavity lineshape, (c) homogeneous broadening lineshape and (d) PL spectra. 
Dashed red: measured at low pump powers, and solid blue: datasheet provided by OEpic Inc. 

Knowledge of the cavity Lorentzian LTE012, the homogeneous broadening function R(ω-
ω21,τcoll), the inhomogeneous distribution D(ω21) and the field profile ETE012(r) allows us to 

evaluate the summation term ( )012TE
cavF  in Eq. (18). Table 1 lists the values of 

( )012TE
cavF (sometimes thought of as “single mode Purcell factor”) if material dispersion is 

neglected, for the following cases: (i) assuming an inhomogeneously broadened gain medium, 
by evaluating Eq. (18); (ii) ignoring inhomogeneous broadening and assuming instead that all 
emitters are on exact resonance with the cavity mode, i.e., D(ω) = δ(ω-ωTE012); (iii) following 
the method used in the supplementary material of [8], where both the inhomogeneous and the 
homogeneous broadening were neglected, i.e., D(ω) = δ(ω-ωTE012) and R(ω-ω21,τcoll) = 
(2πτcoll)δ(ω-ωTE012). Both homogeneous and inhomogeneous broadenings lower the 
spontaneous emission rate into mode TE012, because, when broadened, not all emitters are on 
resonance with the TE012 mode frequency. Further, spontaneous emission from emitters with 
transition frequencies near the mode resonance in the presence of intraband scattering is less 
enhanced than that from the same emitters in the absence of intraband scattering. 
Approximate calculations that do not account for the broadening, such as in [8], may 
therefore dramatically over-estimate the emission rate and the Purcell factor. 

Table 1. Evaluation of the Purcell factor ( )012TE

cavF using different methods 

(i) Inhomogeneously and 
homogeneously broadened 

(ii) Homogeneously 
broadened only 

(iii) Unbroadened 

0.170 (Measurement) 5.175  8.79 
0.215 (OEpic Inc.) 

To compute the spontaneous emission factor β in Eq. (19), it is necessary to evaluate the 
total spontaneous emission rates in all modes k, including cavity modes and modes radiating 
out of the cavity into free space. The Q factors of the radiating modes are low, but their 
number is large, making a direct summation of terms in Eq. (18) difficult. Alternative 
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estimation methods exist, based on the formal equivalence between spontaneous emission and 
the radiation of a classical point dipole [43]. For a cavity such as that of [8], which is not 
strongly radiating, it may be helpful to obtain the upper bound on β by including in the 
denominator of Eq. (19) only the cavity modes thought to contribute most to spontaneous 
emission. 

Figure 3 depicts the electric field distribution and ( )k
cavF  of all the cavity modes with Q 

factors greater than 20, and whose resonance wavelengths fall within the material PL 
spectrum of 1300-1670nm. Limiting the summation in the denominator of Eq. (19) to these 5 
modes yields the upper bound βmax = 0.359 using measured PL, and βmax = 0.377 using PL by 
OEpic Inc. We note that the geometry of this device is not optimized for maximizing β in the 
metallo-dielectric cavity design. 

 

Fig. 3. Simulated mode distribution of all modes that falls within the spectral window of PL 
and have cavity Q>20. Also shown are Purcell factors for each mode, Fcav, calculated using 
two different sources of PL spectra. 

6. Discussion 

In preceding sections, we have summarized the main results of cavity-QED and the quantum 
theory of damping, and applied these theories to the spontaneous emission in sub-wavelength 
semiconductor lasers. Consistent application of the theory reveals that some of the intuitions 
and commonly used formulae originally derived for gas or quantum dot lasers do not carry 
over to bulk and MQW semiconductor lasers. Two observations are of particular importance. 

First, the Purcell factor is often thought to scale as ( )/a kQ V Γ , the ratio of cavity Q to 

the mode volume /a kV Γ . In bulk and MQW semiconductors, however, inhomogeneous and 

homogeneous broadenings typically overwhelm the cavity linewidth, and consequently cavity 
Q has negligible effect on the spontaneous emission rate. In nanocavities where the cavity 
modes are sparse and radiation out of the cavity is weak, homogeneous and inhomogeneous 
broadenings also result in much lower overall spontaneous emission rates than might be the 
case if all emitters exactly matched the cavity resonance. 

Second, in the present model the field-reservoir interaction ( ˆ
FRH  in Eq. (14)) includes 

only losses at the cavity boundary in the form of radiation output and loss through cavity 
walls. It does not include interaction of the field with the gain material, apart from the single 

emitter under immediate consideration, which is accounted for in Eq. (14) by the terms ˆ
AH  

and ˆ
AFH . Consequently, the mode damping constant Ck in Eq. (8), and the Lorentzian Lk(ω) 

in Eq. (18), describe only cavity wall and radiation loss, and must be computed for a 
hypothetical structure in which the gain medium (with complex permittivity) is replaced with 
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a transparent medium (with purely real permittivity). We obtained the Lorentzian in this 
manner in Section 5, and most authors who report estimates of Purcell factor use the same 
approach [4,8,11,14,32,33]. 

Yet even if we accept the assumption, embodied in Eq. (14), that an emitter interacts only 
with the electromagnetic field modes and does not directly interact with other emitters, these 
other emitters, just like the cavity boundary, can still modify its emission rate by altering the 
state of the field modes. The effect of emitters may be less important than that of the cavity 
boundary in gas lasers and in quantum dot lasers as long as the number of emitters remains 
small. In bulk and MQW semiconductor lasers, this is not so. Material loss in unpumped 
InGaAsP at the mode frequency may range from 3·103cm−1 to 104cm−1, depending on the 
difference between the mode frequency and the material bandgap [44]. If this loss were 
included, the Q factor of the TE012 mode in Fig. 2 would drop from the transparent medium 
value, 479, to as low as 16. The corresponding Lorentzian linewidth would become 
comparable to the width of the inhomogeneous broadening spectrum D(ω21). 

While the modification of the modes, and hence of spontaneous emission rates, by the 
gain medium cannot be ignored, it is also unclear how it can be consistently included in the 
present model. Unlike the cavity boundary, an unpumped gain medium cannot be treated as a 
thermal reservoir. Recall that a reservoir must become completely disordered, i.e. a reservoir 
mode must cycle through all its possible states, over a time τreservoir that is short relative to the 
rate of change of the field mode to which it is coupled. For the unpumped gain medium, the 
dephasing time scale τreservoir would be on the order of τcoll~0.3ps. Yet the damping it inflicts 
on the mode is so severe that the mode decays in as little as 0.012ps (based on Q = 16 and ω 
= 1.330·1015rad/s). Under such strong damping, even the treatment of the cavity boundary as 
a thermal reservoir becomes questionable, although the electron collision time in metals is on 
the order of 0.01ps [45,46]. 

It is also worth noting that once pumping is introduced, the (classically defined) Q factor 
of the mode rises and reaches a theoretical value of infinity at the lasing threshold. It seems 
likely that, in the quantum mechanical treatment, the manner in which the gain medium 
modifies the mode and, through the mode, modifies the emission rates, would also change as 
pumping is added. In this situation, however, the gain medium conforms even less to the 
thermal reservoir model, for it is no longer at equilibrium with the mode, and so Eq. (8) 
cannot be used. Furthermore, as pumping is increased and the field builds up in the cavity, the 
transition rate grows and may eventually exceed the collision rate, violating the emitter-mode 
weak coupling condition, P2→1(t) <<1. Under this circumstance, Eq. (9) can no longer be 
used. Intuitively, one may expect the gain material to partly compensate the dissipation at the 
cavity boundary, while at the same time contribute randomness to the mode state through 
spontaneous emission. Formal quantum mechanical treatment of the Purcell effect in 
semiconductor lasers, incorporating the effect of the gain medium, is the subject of future 
research. 
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