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Abstract: Accumulating evidence has indicated that stemness-related genes are associated with the
aggressiveness of triple-negative breast cancer (TNBC). Because no universal markers for breast
CSCs are available, we applied the density gradient centrifugation method to enrich breast CSCs.
We demonstrated that the density centrifugation method allows for the isolation of cancer stem
cells (CSCs) from adherent and non-adherent MCF7 (Luminal A), MDA-MB-231 (TNBC) and MDA-
MB-468 (TNBC) breast cancer cells. The current study shows that the CSCs’ enriched fraction from
Luminal A and TNBC cells have an increased capacity to grow anchorage-independently. CSCs from
adherent TNBC are mainly characterized by metabolic plasticity, whereas CSCs from Luminal A have
an increased mitochondrial capacity. Moreover, we found that non-adherent growth CSCs isolated
from large mammospheres have a higher ability to grow anchorage-independently compared to CSCs
isolated from small mammospheres. In CSCs, a metabolic shift towards glycolysis was observed due
to the hypoxic environment of the large mammosphere. Using a bioinformatic analysis, we indicate
that hypoxia HYOU1 gene overexpression is associated with the aggressiveness, metastasis and poor
prognosis of TNBC. An in vitro study demonstrated that HYOU1 overexpression increases breast
cancer cells’ stemness and hyperactivates their metabolic activity. In conclusion, we show that density
gradient centrifugation is a non-marker-based approach to isolate metabolically flexible (normoxia)
CSCs and glycolytic (hypoxic) CSCs from aggressive TNBC.

Keywords: triple-negative breast cancer; oxidative phosphorylation; glycolysis; cancer stem-like cells
(CSCs); metabolic plasticity; hypoxia

1. Introduction

Breast cancer is the most diagnosed tumor and the main cause of death among females
worldwide [1]. Traditional therapy for breast cancer usually targets hormone receptors (the
estrogen receptor (ER) and progesterone receptor (PR)) or epidermal growth factor receptor
2 (HER2). However, common chemotherapy is inefficient against this breast subtype, which
lacks ER, PR and HER2 expression, known as triple-negative breast cancer (TNBC). To
make the situation worse, TNBC is the most aggressive breast cancer subtype [2]. Therefore,
the development of a new therapeutic strategy is crucial for TNBC.

One of the key cancer hallmarks is the ability of malignant cells to rearrange their
energy metabolism to satisfy the demands of proliferation and metastatic activity [3,4].
A large body of evidence shows the ability of cancer cells to navigate their metabolism
between glycolysis and oxidative phosphorylation (OXPHOS), switching from one state to
another in order to adapt to the fluctuating tumor microenvironment and survive [5–7].
Based on an in vitro study, the hybrid glycolysis/OXPHOS metabolic model was proposed
for TNBC [8]. The metabolic plasticity (hybrid metabolic state) of cancer cells that allows
for a shift towards glycolysis is one of the main reasons why malignant breast cells can
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survive under intermitted hypoxic conditions [9]. Moreover, a hypoxic microenvironment
may help to enrich the tumor with poorly differentiated/undifferentiated cancer cells and
prevent cellular differentiation. As a result, a hypoxic niche accelerates the formation of a
small sub-population of cancer stem cells (CSCs), which are the main root cause of tumor
recurrence and metastasis [10]. A recent study demonstrated that stemness-related genes
are associated with the aggressiveness of TNBC and that stemness markers have prognostic
value for TNBC [11]. Our study on a Luminal A breast cancer model showed that chronic
hypoxia increases the stemness of cancer cells [12].

In general, there are two types of hypoxias: acute and chronic. Acute hypoxia usually
occurs at the early stage of cancer due to rapid malignant cell proliferation, whereas
chronic hypoxia develops at the late stage of cancer due to aberrant tumor vasculature [13].
In vitro studies have shown that the regulation of malignant progression, invasion and
metabolic rearrangement mainly involves hypoxia-inducible factors (HIFs) and the hypoxia
up-regulated 1 (HYOU1) gene [13,14]. Under hypoxic conditions, HYOU1, also known as
Orp150, serves as a molecular chaperon in the endoplasmic reticulum [14]. There is evidence
showing that HYOU1 is overexpressed in several cancers, including breast cancer [14]. Our
study on a Luminal A breast cancer model demonstrated that chronic hypoxia increases the
stemness of cancer cells via the overexpression of mitochondria-related genes [12]. A recent
work on lung multicellular tumor spheroid revealed that the downregulation of HYOU1
suppresses the stemness and malignancy of lung cancer [15]. However, it is still unclear
whether the alteration in HYOU1 affects the stemness and metabolism of TNBC cells.

Isolated breast CSCs are good in vitro models for developing a new therapeutic strat-
egy to eradicate the root cause of cancer [16]. Different separation techniques are available
to isolate breast CSCs. Cell-surface phenotype separation is one of the common methods
to isolate CSCs. Cell-surface markers like CD44+/CD24− and cytosolic stemness marker
ALDH+ are widely used for the enrichment of CSCs from breast cancer [17]. However,
there are no universal CSC markers available for different breast cancer subtypes [18].
An alternative simple method to enrich breast CSCs is needed. According to the CSCs
theory, cell asymmetric division increases intra-tumoral heterogeneity and helps to form a
sub-population of CSCs [19]. Therefore, a method for the isolation of CSCs is based on their
physical properties. For instance, several works demonstrated that the density gradient
centrifugation method is an efficient tool to isolate CSCs from a primary hepatic cancer rat
model [20] and human primary glioblastoma tumor [21].

In the present study, we aimed to determine whether breast CSCs can be physically
separated from adherent and non-adherent breast cancer models. For this purpose, we ap-
plied the density gradient centrifugation method using Luminal A and TNBC models. After
centrifugation, four to six fractions were collected. The second fraction contained of CSCs
enriched subpopulation, showing an increased capacity to grow anchorage-independently.
We demonstrated that CSCs isolated from the adherently grown Luminal A had increased
mitochondrial capacity, whereas CSCs isolated from adherently grown TNBC showed
metabolic plasticity. In contrast, CSCs isolated from large mammospheres shifted their
metabolism towards glycolysis most probably due to the hypoxic environment inside of
mammospheres. We demonstrated that the tumor hypoxic environment increases breast
cancer cells’ stemness via the overexpression of HYOU1 and hyperactivates their metabolic
activity, leading to the aggressiveness of TNBC. In conclusion, density gradient centrifuga-
tion represents a non-marker-based approach to isolate metabolically flexible (normoxic)
CSCs and glycolytic (hypoxic) CSCs, which are important targets for future therapies for
aggressive TNBC.

2. Results
2.1. Fractionation of Breast Cancer Cells by Density Gradient Centrifugation and CSCs’ Enriched
Fraction Determination via Non-Adherent 3D Mammosphere Assay

Numerous studies have shown that the density gradient centrifugation method can be
applied for the isolation of CSCs and senescence cells from cancer [20–22]. In the current
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study, the density gradient centrifugation protocol [22] was adapted for breast cancer cells.
Here, we used three breast cancer cell lines which represent two subtypes of breast cancer:
MCF 7, representing Luminal A, or MDA-MB-231 and MDA-MB-468, representing TNBC.
After density gradient centrifugation, six fractions (FI-VI) were gently collected from the
top to the bottom based on the density gradient (Figure 1A). Then, the cell distribution
within the density gradient was analyzed. Cell counting revealed that the cells from all
three cell lines were distributed similarly. Cell segregation from F1 to FVI was as follows:
2.21–3.86% (FI), 5.03–8.32% (FII), 51.98–67.91% (FIII), 13.21–24.54% (FIV), 3.03–4.12% (FV)
and 8.19–9.34% (FVI) (Figure 1A). We found that FIII contained the most cells, and FI and
FV contained the fewest cells (less than 4%). As the CSC content in breast cancer can be
determined using a mammosphere assay, the cells from each fraction were cultured as
mammospheres under non-adherent conditions. The mammosphere assay revealed that
the most enriched CSC fraction was FII (which will later be used as a CSC fraction), and
the smallest contained fraction was FVI (which will later be used as a bulk cell fraction)
(Figures S1–S3). We demonstrated that the CSCs’ enriched fraction had 1.6–2 times more
mammosphere compared to the bulk cell fraction (Figure 1B–D). Moreover, an increased
colony formation capacity was observed for the CSC fraction compared to the bulk cell
fraction from MDA-MB-468 (Figure S4). However, the CD44 assay did not reveal any
difference in the CD44 level for MDA-MB-231 cells (Figure S5). Figure 1 shows that both
the CSCs and bulk cell fractions each represented around 8% of the total cell population.
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(bulk cells) in (B) MCF7, (C) MDA-MB-231 and (D) MDA-MB-468 using 3D mammosphere for-
mation assay. Bars are presented as mean ± SEM, and statistical analysis is carried out with paired 
two-tailed Student’s t-test; n = 3–4, and * and ** indicate statistically significant differences between 
the mean values, denoted as p < 0.05 and p < 0.01, respectively. 
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the time from 30 min to 90 min and made the gradient steeper for mammosphere separa-
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separation efficiency was analyzed by fluorescence microscopy (Figure 2B–D). The micro-
scope images show that before separation, the mammospheres were more heterogeneous 
in size (Figure 2B), whereas after separation, the size of the mammospheres in each frac-
tion became more homogenous (Figure 2C,D). As expected, the count and size of mam-
mospheres decreased by increasing the OptiPrep density (Figures 2, S6 and S7). We found 
that FII contained the largest mammospheres and FV contained mammospheres of the 
smallest size (Figures 2E,F, S6 and S7). The figure shows that in the case of Luminal A, the 
dimension of mammospheres decreased by 36% (Figure 2E), and in the case of TNBC, the 
mammosphere decreased 4.6 times in size (Figure 2F). Next, a secondary mammosphere 
assay was performed for the MDA-MB-231 cell line. CSCs from large mammospheres dis-
played more stemness-like properties, producing 46% more mammospheres compared to 
the CSCs from small mammospheres (Figure 2G).  

Figure 1. Breast cancer cell separation and mammosphere assay. (A) Schematic illustration of
Optiprep gradient used for breast cancer cell fractionation and percentages of cells segregated in each
fraction. Anchorage-independent growth quantification for fractions FII (cancer stem cells) and FVI
(bulk cells) in (B) MCF7, (C) MDA-MB-231 and (D) MDA-MB-468 using 3D mammosphere formation
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assay. Bars are presented as mean ± SEM, and statistical analysis is carried out with paired two-tailed
Student’s t-test; n = 3–4, and * and ** indicate statistically significant differences between the mean
values, denoted as p < 0.05 and p < 0.01, respectively.

2.2. Fractionation of Mammospheres by Size Using Density Gradient Centrifugation

Next, the density gradient method was adapted for mammosphere separation by size.
Compared to the separation of adherent cultured breast cancer cells, we increased the time
from 30 min to 90 min and made the gradient steeper for mammosphere separation. After
density gradient centrifugation, four fractions (FI-IV) were gently collected from the top
to the bottom based on the density gradient (Figure 2A). The mammosphere separation
efficiency was analyzed by fluorescence microscopy (Figure 2B–D). The microscope im-
ages show that before separation, the mammospheres were more heterogeneous in size
(Figure 2B), whereas after separation, the size of the mammospheres in each fraction be-
came more homogenous (Figure 2C,D). As expected, the count and size of mammospheres
decreased by increasing the OptiPrep density (Figures 2, S6 and S7). We found that FII
contained the largest mammospheres and FV contained mammospheres of the smallest size
(Figures 2E,F, S6 and S7). The figure shows that in the case of Luminal A, the dimension of
mammospheres decreased by 36% (Figure 2E), and in the case of TNBC, the mammosphere
decreased 4.6 times in size (Figure 2F). Next, a secondary mammosphere assay was per-
formed for the MDA-MB-231 cell line. CSCs from large mammospheres displayed more
stemness-like properties, producing 46% more mammospheres compared to the CSCs from
small mammospheres (Figure 2G).

2.3. CSCs from TNBC Have Hybrid Metabolism and CSCs from Large Mammospheres Have
Increased Glycolytic Capacity

A recent study demonstrated that breast CSCs are hyper-metabolically active with an
increased reserve capacity to survive under non-adherent growth conditions [7]. Therefore,
the ATP level was measured in the CSCs and bulk cells. We did not find any difference in
the ATP level between the CSCs and bulk cancer cells (Figure 3).

Next, a metabolic analysis was performed for CSCs isolated from large and small
mammospheres (Figure 4G,H). The metabolic flux analysis revealed that the mitochondrial
proton leak was altered in CSCs from mammospheres. Namely, the mitochondrial proton
leak was 40% higher in the CSCs isolated from large mammospheres compared to the cells
isolated from small mammospheres (Figure 4G). Moreover, a glycolytic flux analysis was
performed for CSCs from large and small mammospheres. The glycolytic flux analysis
showed that the glycolytic activity and glycolytic reserve capacity were higher by 29% and
45%, respectively, in the CSCs from large mammospheres compared to the CSCs from small
mammospheres (Figure 4H). The hypoxic environment of large mammospheres (based
on previous study [23]) might represent the main cause why CSCs shift their metabolism
toward glycolysis.

Next, the CSCs’ metabolic activity was analyzed more deeply. The metabolic flux
analysis showed that mitochondrial basal respiration and ATP production were not altered
in the CSCs compared to the bulk cells (Figure 4A,C,E). For both Luminal A and TNBC,
increased mitochondria maximal respiration and mitochondrial reserve capacity were ob-
served in the CSCs compared to the bulk cells (Figure 4A,C,E). The maximal respiration and
reserve capacity increased by 16% and 32%, respectively in the Luminal A CSCs (Figure 4A).
Similarly, the maximal respiration and reserve capacity increased by 13–15% and 11–29%,
respectively, in the CSCs of TNBC (Figure 4C,E). However, an increased mitochondrial
proton leak (25–30%) was only observed in the CSCs from TNBC (Figure 4C,E). Moreover, a
glycolytic flux analysis was performed for the CSCs and bulk cell fractions (Figure 4B,D,F).
The glycolytic flux analysis did not reveal any difference in the glycolytic activity between
the Lumina A CSCs and bulk cells (Figure 4B). Our study demonstrates that the metabolic
plasticity of TNBC CSCs was associated with increased OXPHOS and glycolytic activity
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(Figure 4C–F). The glycolytic flux analysis showed that the glycolytic activity of CSCs,
isolated from MDA-MB-468, increased by 27%, whereas the glycolytic reserve capacity
decreased compared to the bulk cells (Figure 4D). Furthermore, increased glycolytic activity
and glycolytic reserve capacity were observed in the CSCs isolated from MDA-MB-231
compared to the bulk cells (Figure 4F). A hybrid metabolism is probably needed for CSCs
to survive and grow under non-adherent growth conditions.
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Figure 2. Mammosphere separation, mammosphere size distribution within density gradient and
mammosphere assay. (A) Schematic illustration of Optiprep gradient used for mammosphere
fractionation and percentages of mammospheres segregated in each fraction. Illustrative fluorescence
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microscopy figures of mammosphere distribution before mammosphere separation (B) and after
mammosphere separation fractions (C) FII and (D) FIV. Mammosphere size (mammosphere area
pixels) assay for (E) MCF7 and (F) MDA-MB-468 with fractions FII (large) and FIV (small) using
fluorescence microscopy at 40X magnification and CellProfiler software. Anchorage-independent
growth quantification for fractions FII (Large) and FIV (Small) in (G) MDA-MB-231 using 3D mam-
mosphere formation assay. Bars represent mean ± SEM. Statistical analysis was carried out using
paired two-tailed Student’s t-test; n = 3–5. * and ** indicate statistically significant differences between
mean values, denoted as p < 0.05 and p < 0.01, respectively.
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Figure 3. ATP level assay in fractionated breast cancer cells. ATP level was determined in (A) MCF7,
(B) MDA-MB-231 and (C) MDA-MB-468 cancer stem cells and bulk cells using Cell-Titer-Glo. Bars
represent mean ± SEM, and n = 3.

2.4. HYOU1 Is Highly Expressed in Hyoxic TNBC and HYOU1 Is Related with Aggressiveness,
Stemness, Hyper-Metabolic Activity, Metastasis and Poor Prognosis of Breast Caner

In the current study, we demonstrate that large mammospheres mimicking the tumor
hypoxic environment (based on previous study [23]) contain CSCs with more stemness-like
properties and increased glycolytic activity compared to CSCs from small mammospheres
(Figures 2G and 4H). To test the hypothesis that hypoxia is related with the aggressiveness
of TNBC, a bioinformatic tool was used. For this purpose, a meta-analysis of HYOU1 was
performed by using clinical data on patients with breast cancer (Figure 5A–D). Firstly, the
meta-analysis showed that TNBC is the most hypoxic breast cancer subtype (Figure 5B).
Secondly, the meta-analysis revealed that HYOU1 is overexpressed in TNBC, whereas
the lowest HYOU1 expression level is in Luminal A (Figure 5A). Altogether, an increased
HYOU1 expression level is correlated with the hypoxia level in TNBC (Figure 5A,B). Next,
a meta-analysis was performed to identify how the alteration in the HYOU1 expression
level affects the aggressiveness of breast cancer. The Kaplan–Meier analysis showed that
an increased HYOU1 expression level is associated with a decreased distant metastasis
survival rate in lymph node-positive breast cancer (Figure 5C). Moreover, the meta-analysis
demonstrated that among patients with breast cancer, HYOU1 is overexpressed predomi-
nantly at the late stage of the tumor (Figure 5D). Next, we tested how the overexpression of
HYOU1 affects the stemness and metabolism of breast cancer cells. A mammosphere assay
indicated that the overexpression of HYOU1 increased the capacity to form a mammosphere
by 60% in a Luminal A model (Figure 5E). We demonstrated that HYOU1 overexpression
not only increases stemness but also increases the metabolic activity of breast cancer cells.
Indeed, a 23% higher ATP level was observed in overexpressed HYOU1 cells compared to
control MCF7 cells (Figure 5F).
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and (B) glycolysis (ECAR) with cancer stem cells and bulk cells isolated from MCF7 cells. Comparative
analysis of (C) mitochondrial respiration (OCR) and (D) glycolysis (ECAR) with cancer stem cells and
bulk cells isolated from MDA-MB-468 cells. Comparative analysis of (E) mitochondrial respiration
(OCR) and (F) glycolysis (ECAR) with cancer stem cells and bulk cells isolated from MDA-MB-231
cells. Comparative analysis of (G) mitochondrial respiration (OCR) and (H) glycolysis (ECAR) with
large and small mammospheres from MDA-MB-231 cells. Bars represent mean ± SEM, and paired
two-tailed Student’s t-test was used for statistical analysis; n = 3–4. *, ** and *** indicate statistically
significant differences between mean values, denoted as p < 0.05, p < 0.01 and p < 0.001, respectively.
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Genome Atlas database was utilized to analyze (A) the HYOU1 pattern, (B) Buffa hypoxia score and
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(D) how HYOU1 mRNA expression is associated with the tumor grade in breast cancer (a statistic
analysis was carried out using the unpaired two-tailed Student’s t-test). A Kaplan–Meier survival
analysis showing the relationship between (C) HYOU1 (ORP150) mRNA expression and distant
metastasis-free survival (DMFS) in patients with lymph node-positive (LN(+)) breast cancer (a
statistical analysis was performed using the Log-rank test). (E) A mammosphere assay was carried
out for HYOU1-transfected MCF7 cells and (F) an ATP assay was carried out for HYOU1-transfected
MCF7 cells using Cell-Titer-Glo (the bars present the mean ± SEM, and a statistic analysis was carried
out using the paired two-tailed Student’s t-test n = 3). *, ** and *** indicate statistically significant
differences between the mean values, denoted as p < 0.05, p < 0.01 and p < 0.001, respectively.

3. Discussion

Based on the CSC theory, traditional chemotherapy mainly targets bulk cancer cells,
while CSCs remain untouched, and as a result, CSCs may cause tumor relapse [24]. Several
studies have shown that TNBC is the most CSC-enriched breast cancer subtype and an
increased number of CSCs is correlated with poor prognosis [25]. Therefore, the ability to
identify and isolate CSCs from the tumor will help to develop a new therapeutic strategy
for aggressive TNBC. Currently, there are four methods available for the isolation and
identification of CSCs from breast cancer [26]. The most used method to enrich CSCs is
based on cell surface biomarkers by FACS or magnetic sorting. The cell surface markers
CD44+/CD24- are widely used to identify and isolate CSCs from breast cancer, whereas
CD44+/CD24-enriched CSCs have been found in mesenchymal TNBC [27]. Another CSC
isolation method is a side population assay based on CSCs’ intrinsic properties [26]. The
Hoechst assay is widely used to identify the CSC population. The main limitation of the
Hoechst assay is the frequent false positive detection of cancer stem cells [20]. Moreover,
aldehyde dehydrogenase assays are widely used to identify CSCs in different cancers,
including breast cancer. The aldehyde dehydrogenase assay has revealed that ALDH1+
positive CSCs are predominantly located in epithelial TNBC [26]. Another feature of
CSCs is the ability to grow under non-adherent conditions, forming spheroids. There
is a large body of evidence that CD44+/CD24- and ALDH1+-enriched cells can form
mammospheres [28–30]. The advantage of this assay is the potential to identify a novel
CSCs population with a new biomarker from heterogenous spheroids [26]. The main
disadvantage of the spheroid assay is its ability to identify only proliferative CSCs but
not quiescent CSCs [31]. Therefore, there is a lack of any universal biomarkers or efficient
methods to identify and isolate CSCs from TNBC. In the current study, we demonstrated
that the density gradient centrifugation method is a simple and non-marker-based method
to identify and isolate CSCs from TNBC and Luminal A. Recent studies demonstrated that
density gradient centrifugation allows for the isolation of both quiescent and fast-cycling
CSCs from the tumor [20,21]. A study on human glioblastoma showed that high-density
glioblastoma cells are enriched with quiescence CSCs and treatment-resistance cancer
cells [21]. Oppositely, our study demonstrates that the low-density fractions of TNBC and
Luminal A are enriched with CSCs. Similarly, Liu et al. indicated that low-density fractions
of rat hepatic tumor cells are CSCs-enriched and contain highly proliferative cells that
are resistant to chemotherapy [20]. This indicates that the density gradient centrifugation
method can be used for breast CSC isolation and for developing a novel drug treatment
strategy for TNBC.

Accumulating evidence has indicated that CSCs can switch their metabolism between
glycolysis and OXPHOS to maintain stemness and survive within a vulnerable tumor
environment [25,32]. Recently, a hybrid metabolic model has been proposed for TNBC [8].
The current study shows that CSCs isolated from TNBC cells by density gradient centrifuga-
tion have increased glycolytic and OXPHOS activity. Interestingly, a similar metabolically
hyper-active sub-population of CSCs has been isolated from TNBC by using FACS [33].
Namely, breast CSCs isolated by FACS have increased mitochondrial maximal capacity
and mitochondrial leak, and CSCs consume more glucose compared to bulk cells. Our
previous studies showed that TNBC has the highest mitochondrial activity among breast
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cancer subtypes, whereas a high mitochondrial mass in Luminal A is associated with
poor prognosis [34,35]. The current study shows that both Luminal A and TNBC CSCs
have increased mitochondrial maximal capacity and mitochondrial reserve capacity. It
was recently proposed that spare respiration capacity is one of the key parameters of the
aggressiveness of cancer cells [36]. Firstly, in vitro studies on a large amount of cell lines,
including breast cancer cell lines, demonstrated that a high mitochondrial reserve capacity
is a reason why cancer cells are chemotherapy-resistant [37]. Secondly, there is evidence
that a high spare respiration capacity level helps cancer cells adapt to stress conditions
more quickly. For example, cancer cells with a low spare respiration capacity are more
sensitive to glucose deprivation [38]. Thirdly, our study shows that CSCs from aggres-
sive TNBC have both high glycolytic reserve capacity and spare reserve capacity, which
allow cancer cells to switch between glycolysis and OXPHOS energy states. Moreover,
we demonstrated that TNBC CSCs have increased mitochondrial proton leak. Increased
mitochondrial proton leak is probably associated with the overexpression of mitochondrial
uncoupler UCP2. A recent study demonstrated that UCP2 overexpression increases breast
cancer cells’ stemness [39]. In vitro and in vivo studies showed that the overexpression
of UCP2 promotes breast cancer tumorigenesis [40]. AMP-dependent kinase (AMPK) is
the main cellular sensor which is able to modulate mitochondria’s physiology, including
mitochondrial reserve capacity and mitochondrial proton leak [41,42]. A high mitochon-
drial reserve capacity and increased AMPK activity are reasons why breast cancer cells are
resistant to metformin and doxorubicin [41,43]. Recent studies demonstrated that AMPK
activation regulates the stemness of breast cancer cells and AMPK modulates metabolic
plasticity in TNBC [8,43].

Accumulating evidence shows that increased aerobic glycolysis is associated with
tumor aggressiveness and multi-drug resistance [44–46]. A study on a breast tumor demon-
strated that CSCs have higher glycolytic activity compared to bulk cells [47]. The current
work shows that TNBC CSCs isolated from 2D and 3D (large) mammospheres have in-
creased glycolytic activity with high glycolytic reserve and glycolytic reserve capacity. A
study on lymphoma cells demonstrated that an increased glycolytic reserve decreased
cancer cells’ sensitivity to glycolytic inhibitors [48]. Numerous studies have indicated that
glycolysis-related enzymes play a key role in the chemotherapy resistance formation in
cancer cells [49]. It has been demonstrated that in breast cancer Hexokinase II (HK2), the
rate-limiting enzyme in the glycolytic pathway promotes cancer progression [50]. In vitro
studies showed that HK2 overexpression increases cancer cells’ resistance to chemotherapy
and that HK2 downregulation improves the radiosensitivity of TNBC [50,51]. Moreover,
another work demonstrated that HK2 also has an important role in the stemness of cancer
cells, including in breast cancer [23,52,53]. A study on breast cancer showed that the ex-
pression of phosphofructokinase-P (PFK-P), the second rate-limiting enzyme in glycolysis,
correlates with poor prognosis [54]. Moreover, it was found that the overexpression of
PFK-P increases breast cancer cells’ stemness [33]. In hypoxic tumors, the main modulator
of glycolysis is hypoxia-inducible factor-1 (HIF-1) [55]. For example, GLUT1 and LDH
expression alteration induced by HIF-1 is associated with chemotherapy resistance and the
metastasis of cancer cells [56,57]. We propose that targeting both glycolysis (HIF-1) and
OXPHOS (AMPK) is necessary to decrease the metabolic plasticity of TNBC. This action
would significantly improve the efficiency of chemotherapy against aggressive TNBC.

Hypoxia is a common feature of solid tumors that facilitates the formation of a CSC
population, metastasis, metabolic rearrangement and tumor progression [58–60]. Although
human breast tissue is well oxygenized (O2 level around 8.5%), during tumor development,
the oxygen level decreases by six times (O2 level around 1.5%) [58]. Our meta-analysis
showed that TNBC is the most hypoxic breast cancer subtype. Moreover, we demonstrated
that cells from large mammospheres mimicking the hypoxic environment (based on a
previous study [23]) display more stemness-like properties compared to cells isolated
from small mammospheres. A study on breast cancer indicated that hypoxia increases
the expression of ALDH (stemness marker) and remodels the metabolism of cancer cells
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towards glycolysis [12,55]. Our study shows that in hypoxic environments, CSCs shift their
metabolism towards glycolysis. Interestingly, recent work demonstrated that while chronic
hypoxia increases the stemness of breast cancer cells, acute hypoxia decreases it [12]. It has
been found that chronic hypoxia usually occurs at later stages of breast cancer, promoting
the resistance of CSCs to chemotherapy [13]. In the current study, we used breast cancer
cells with overexpressed HYOU1 to mimic a chronic hypoxia environment. We found that
HYOU1 overexpression increases the stemness of Luminal A cells via the hyperactivation of
their metabolic state, and as a result, an increased intracellular ATP level was observed. Our
recent work showed that breast cancer cells have an increased ATP level, whereas a high
intracellular ATP level fuels the metastatic activity of TNBC cells [7,61]. Our meta-analysis
indicated that HYOU1 is overexpressed in TNBC. In addition, HYOU1 overexpression
is associated with a poor prognosis for metastatic breast tumors. The overexpression
of HYOU1 has previously been found in the prostate, non-small cell lung cancer and
ovarian cancer. The same works demonstrated that HYOU1 expression is correlated with
poor prognosis [14]. Moreover, in the current study, we indicate that HYOU1 expression
correlates with the breast cancer stage. Another study recently demonstrated that long
noncoding RNA HYOU1-AS facilitated TNBC progression via HYOU1 overexpression [62].
Thus, targeting hypoxic CSCs via HYOU1 should be the most promising therapeutic
strategy to eradicate CSCs in aggressive TNBC.

In conclusion, the current study demonstrates that density gradient centrifugation is
a non-marker-based approach which allows for metabolic flexible (normoxic) CSCs and
glycolytic (hypoxic) CSCs from aggressive TNBC to be enriched. We proposed that targeting
OXPHOS and the glycolytic reserve capacity (normoxic) as well as HYOU1 (hypoxic) should
be the most promising therapeutic strategy to eradicate CSCs in aggressive TNBC.

4. Materials and Methods
4.1. Experimental Model Cell Lines

Human breast cancer cell lines (MCF7, MDA-MB-231 and MDA-MB-468) were ob-
tained commercially from the American Type Culture Collection (ATCC). All cell lines were
grown in Dulbecco’s Modified Eagle Medium (DMEM; GIBCO, Grand Island, NY, USA)
supplemented with 10% FBS, 1% Glutamax and 1% Penicillin-Streptomycin. All cell lines
were grown at 37 ◦C in 5% CO2.

4.2. Gradient-Based Breast CSCs and Hypoxic Mammosphere Separation

The protocol was performed for 2D monolayer human breast cancer cell lines (Figure 6A)
according to the gradient-based cell separation method [22]. Briefly, culture media DMEM
without FBS was used to dilute 60% OptiPrep stock to 40%. Different levels of OptiPrep in
DMEM media were then prepared as follows: 2 mL overlaid by 24%, 15% and 5% from
bottom to top in a 15 m falcon. The upper part of the tube was filled with 3 mL cell
suspension (3–6 × 106 cells) in completed DMEM medium without OptiPrep. The density
gradient centrifugation was performed at 800× g for 30 min at room temperature. After
centrifugation, different density fractions (0–24% OptiPrep DMEM medium) were collected
and transferred into a new tube. Then, fractions were diluted in PBS to 15 mL and pelleted
by centrifugation at 300× g for 5 min at room temperature.

The density gradient centrifugation protocol was also adapted for 3D-mammsophere
separation (Figure 6B). Culture media DMEM/F-12 was used to dilute 60% OptiPrep stock
to 40%. Different levels of OptiPrep in DMEM/F-12 media were then prepared as follows:
2 mL was overlaid by 40%, 5% and 2% from bottom to top in a 50 mL falcon. After 5 days,
growing mammospheres were collected from T225 Flask by gentle centrifugation (200× g)
for 5 min and resuspended in 3 mL in completed DMEM/F-12 medium without OptiPrep.
Then, the mammosphere solution (3 mL) was placed on the upper part of the OptiPrep
gradient. Density gradient centrifugation was performed at 800× g for 90 min at room
temperature. After centrifugation, different density fractions (0–40% Optiprep DMEM/F-12
medium) were collected and transferred into a new tube. Then, fractions were diluted
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in PBS to 15 mL and pelleted by centrifugation at 300× g for 5 min at room temperature.
Mammospheres’ separation efficiency was analyzed by fluorescence microscopy.
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Figure 6. Density gradient centrifugation protocols for adherent (A) and non-adherent (B) breast
cancer cells to isolate cancer stem cells. After gradient-based separation, single cell suspension was
prepared using manual disaggregation (25-gauge needle) or after mammosphere gradient-based
separation enzymatic assay (1× Trypsin-EDTA) for 10 min at 37 ◦C, and manual disaggregation was
carried out (25-gauge needle); 500/cm2 cells were plated in mammosphere medium.
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4.3. Three-Dimensional Mammosphere Growth and Three-Dimensional Mammosphere Formation
Assay and Colony Formation Assay

After gradient-based separation, a single cell suspension was prepared using manual
disaggregation (25-gauge needle) enzymatic disaggregation (1× Trypsin-EDTA, Sigma
Aldrich, Burlington, MA, USA, cat. #T3924) for 10 min at 37 ◦C and manual disaggre-
gation (25-gauge needle); 500/cm2 cells were plated in mammosphere medium (DMEM-
F12/B27/20 ng/mL EGF/PenStrep antibiotics) under non-adherent conditions in six-well
plates coated with 2-hydroxyethylmethacrylate (poly-HEMA, Sigma, Burlington, MA, USA,
cat. #P3932). Cells were grown for 5 days and maintained in a humidified incubator at
37 ◦C at an atmospheric pressure in 5% (v/v) carbon dioxide/air. After 5 days of culture,
3D-mammospheres > 50µm were counted using an eyepiece (“graticule”), and the per-
centage of cells plated which formed spheres was calculated and is referred to as percent
mammosphere formation, and the value was normalized to one bulk cancer cell or small
mammosphere (1 = 100% mammosphere formation efficiency).

Colony formation assay was performed following nature protocol [63]. After density
gradient centrifugation, 200 cells were seeded in 6-well plates at 37 ◦C with 5% CO2 for
14 days. After 14 days, cells were stained with 0.5% crystal violet for 30 min at room
temperature. Stained colonies were counted using open-source software ImageJ downloads
from https://imagej.net/ij/download.html (accessed on 12 December 2023).

4.4. Fluorescent Microscopy Analysis

After mammosphere separation with density gradient centrifugation, a microscopy
analysis was performed by analyzing mammospheres in live cell imaging with the EVOS
imaging platform (ThermoFisher, Waltham, MA, USA). Mammospheres were labeled by
nuclear dye Hoechst 33342, and fluorescence images were analyzed by using open-source
software CellProfiler download via the website https://cellprofiler.org/previous-releases
(accessed on 12 December 2023) (50 µm threshold for mammosphere size was used).

4.5. ATP Assay Using Cell-Titer-Glo

Cell-Titer-Glo (#G7570) was obtained from Promega, Inc. (Madison, WI, USA) and was
used according to the manufacturer’s recommendations to measure intracellular ATP levels
in lysed cells. Cell-Titer-Glo is a luciferase-based assay system. Luminescence content was
evaluated using the Varioskan™ LUX plate reader (Thermo Scientific, Waltham, MA, USA)
where the ATP level was normalized to nuclear fluorescent dye Hoechst 33342.

4.6. Metabolic Flux Analysis for Density Gradient Separated Breast Cancer Cells

Real-time oxygen consumption rates (OCRs) and extracellular acidification rates
(ECARs) were determined using the Seahorse Extracellular Flux (XFe96) analyzer (Seahorse
Bioscience, North Billerica, MA, USA) [64]. Briefly, after breast CSC separation by density
gradient centrifugation, cells were washed with OCR or ECAR media, and single cells
were counted in the presence of Trypan blue to assay cell vitality. After 3D mammosphere
separation by density gradient centrifugation, mammospheres were dissociated into single
cells by trypsin (incubation for 10 min at 37 ◦C) and passed through a syringe. After cells
were washed with OCR or ECAR media, they were counted in the presence of Trypan blue.
Then, density gradient separated single cells (20–30 × 103) were transferred into a Cell-Tak
pre-coated 96-well XF microplate. The XF plate was centrifugated at 200× g for 1 min to
accelerate the cells’ attachment to the bottom of the wells. Finally, the OCR and ECAR were
measured using the Seahorse Metabolic Flux Analyzer (XFe96, North Billerica, MA, USA),
under standard conditions at 37 ◦C, and at the end, both measurements were normalized
for cell content by a fluorescent assay of the nuclear dye Hoechst 33342.

4.7. Viral Transduction of HYOU1 Gene

Lentiviral construct (GeneCopoeia, Rockville, MD, USA), ORF expression clone for
HYOU1 ((NM_001130991.1) #EX-S0360-Lv10) was amplified, and LentiSuite™ Basic Kit

https://imagej.net/ij/download.html
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(System Bioscences, Palo Alto, CA, USA, #LV340A-1) was used to create the stably trans-
duced HYOU1 cell line from MCF7 cells following the manufacturer’s protocol.

4.8. Bioinformatics Analysis

HYOU1 gene analysis of primary breast cancer was based on the Cancer Genome Atlas
(TCGA) platform (http://www.cbioportal.org/ (accessed on 12 December 2023)), where
the METABRIC and Breast Invasive Carcinoma PanCancer Atlas databases were used.

To perform a Kaplan–Meier (K–M) analysis on the HYOU1 gene, we used an open
access online survival analysis tool [65]. We primarily analyzed data from patients with
lymph node-positive breast cancer. The hazard ratios of patients with breast cancer were
calculated using the best auto-selected cutoff. K–M curves were created using the online
K–M plotter (https://kmplot.com/analysis/index.php?p=service&cancer=breast (accessed
on 12 December 2023)). The latest 2023 version of the database was utilized for all of
these analyses.

4.9. Statistical Analysis

Data are expressed as mean ± SEM of over ≥3 independent experiments with ≥3
technical replicates per experiment. Differences between experimental groups were deter-
mined by the paired two-tailed Student’s t-test, and for K-M analysis, Log-rank test was
performed. A p-value of less than 0.05 was considered statistically significant.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/ijms25168958/s1.
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