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In the security domain, the growing need for reliable authentication methods highlights the importance of
thermal face recognition for enhancing law enforcement surveillance and safety especially in IoT applications.
Challenges like computational resources and alterations in facial appearance, e.g., plastic surgery could affect
face recognition systems. This study presents a novel, robust thermal face recognition model tailored for
law enforcement, leveraging thermal signatures from facial blood vessels using a new CNN architecture
(Max and Average Pooling- MAP-CNN). This architecture addresses expression, illumination, and surgical
invariance, providing a robust feature set critical for precise recognition in law enforcement and border control.
Additionally, the model employs the NM-PSO algorithm, integrating neighborhood multi-granulation rough set
(NMGRS) with particle swarm optimization (PSO), which efficiently handles both categorical and numerical
data from multi-granulation perspectives, leading to a 57% reduction in feature dimensions while maintaining
high classification accuracy outperforming ten contemporary models on the Charlotte-ThermalFace dataset by
about 10% across key metrics. Rigorous statistical tests confirm NM-PSO’s superiority, and further robustness
testing of the face recognition model against image ambiguity and missing data demonstrated its consistent
performance, enhancing its suitability for security-sensitive environments with 99% classification accuracy.

1. Introduction conditions, such as low light environments [3]. However, it also faces

its own set of challenges, such as blurred thermal signatures due to high

Biometric authentication is being widely used as a tool for law
enforcement due to its high accuracy, quick processing capabilities, and
seamless integration with existing security systems, enhancing overall
operational effectiveness and deterrence against criminal activities [1].
Face recognition is a well-known biometric authentication technique,
owing to its significance in the commercial and governmental arenas.
Criminal identification, airport face verification, smart home physical
access control, and logging to mobile devices are some applications
for face recognition. However, the accuracy of face recognition heavily
depends on the quality of the facial image captured [2].

In this context, thermal imaging—a specialized subset of face-based
biometric authentication—utilizes the heat patterns emitted by indi-
viduals to generate visual representations, offering several practical
applications [2]. This technique effectively addresses many challenges
inherent to the visible spectrum, including complications such as object
shadows, clothing blending into the background, and variable lighting

ambient temperatures, surface reflections that can distort images, and a
reduction in clarity at greater distances, all of which can degrade image
quality. Widely adopted in military operations for border surveillance
and by law enforcement agencies, thermal imaging facilitates the iden-
tification and authentication of individuals by analyzing their unique
thermal signatures [4]. Additionally, thermal face authentication serves
as a vital real-time tool for law enforcement officers, aiding in the
detection and monitoring of individuals on “watchlists” who are sought
by the police [5].

Generally, the face recognition process, including thermal infrared,
consists of several stages such as image acquisition, face detection,
feature extraction (FE), and matching [6]. Since face recognition relies
on biometrics to identify people based on their traits, supervised learn-
ing is primarily used, which can leverage the success of deep learning
(DL [7].
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There are two primary challenges inherent in face recognition sys-
tems, particularly affecting their integration into Internet of Things
(IoT) applications like security and surveillance systems. Firstly, the
process of face recognition, which involves face detection, FE, and
matching, requires substantial computational resources, posing a chal-
lenge for IoT devices with limited capabilities [8]. This is particularly
problematic in scenarios such as law enforcement using portable cam-
eras, where high computational costs can hinder operational efficiency.
Secondly, the effectiveness of face recognition systems, especially those
using the visible spectrum, is heavily compromised by alterations in
facial appearance, such as those resulting from plastic surgery. These
changes can significantly disrupt the FE process, which is critical for
accurate identification. Plastic surgery, while often used for legitimate
medical reasons like correcting birth defects or injuries, can also be
exploited to deliberately alter one’s identity to evade law enforce-
ment [9]. The increasing affordability and prevalence of cosmetic
surgery further exacerbate this issue, challenging the reliability of facial
recognition technologies.

To address these issues, a robust FE method is essential to ensure
that the initial capture of facial characteristics is accurate and com-
prehensive. Additionally, feature selection (FS) [10] becomes critical
in refining the feature set to manageable levels, reducing the compu-
tational load and enhancing the performance of classifiers [11]. This
step is crucial for adapting face recognition technologies to environ-
ments with resource constraints, such as IoT devices, ensuring both
efficiency and efficacy in real-world applications [12]. Therefore, the
development of reliable FE and FS tools is fundamental for the success
of thermal face recognition systems in security-sensitive environments.
The study is guided by the following objectives.

1. Improving the FE performance to maintain robust facial ex-
tracted features.
2. Enhancing FS to mitigate the computation cost burden.

To achieve the first objective, this paper makes use of a new
modified version of convolution neural networks (CNN) that uses the
max/average pooling, referred to as MAP-CNN. While CNNs are em-
ployed for FS, they do not analyze features from a multigranulation
perspective and struggle to directly handle heterogeneous data [13],
which may compromise the quality of the feature subset. Consequently,
to address the second objective, a novel version of particle swarm op-
timization (PSO) is proposed. This version is based on a new rough set
model utilizing multigranulation theory with neighborhood relation.
This approach guides the feature reduction task through a modified FS
version of PSO, where the rough set model serves as a fitness function.
PSO was selected as it has been argued that PSO is the elite algorithm
in the swarm family and simple but yet employing a fewer number of
parameters.

The contributions of the paper are as follows.

+ Extracting deep features from thermal face images using MAP-
CNN algorithm that is able to capitalize on the distinct thermal
signatures from facial blood vessels, integrating the AVG-MAX
Vector Pooling Block (VPB) to synergistically combines Max and
Average Pooling methods for comprehensive feature capture. This
approach ensures robust FE crucial for thermal face recognition,
significantly enhancing computational efficiency and model sta-
bility for real-time law enforcement applications. The extracted
features showed a better representation of the individuals than
the features extracted using the traditional CNN.

A novel version of the multi-granulation rough set called the
Neighborhood multi-granulation rough set (NMGRS). It advances
the MGRS theory by accommodating neighborhood relations. This
innovation allows NMGRS to effectively manage heterogeneous
datasets containing both categorical and numerical features. It ex-
cels in discerning the nuanced interrelations within data, thereby
providing a more adaptive and accurate representation about
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the data. By integrating distance measures, NMGRS extends the
applicability of traditional MGRS to broader real-world scenarios
where data inconsistency and diversity prevail.

An NM-PSO based FS algorithm that integrates NMGRS with the
PSO algorithm to select and reduce the high dimensionality of
the features needed for face recognition. In this scenario, NMGRS
serves as a fitness function to guide the PSO reduction of inconsis-
tencies and heterogeneity in the dataset. It showed that it could
select only 40% of the features while achieving more than 99%
classification accuracy.

The effectiveness of the suggested model was assessed through the
utilization of several performance metrics. The metrics encom-
passed in this study are accuracy, precision, recall, and F1-Score.
The metrics employed in this study demonstrated a full evaluation
of our suggested model, showcasing its effectiveness and quality
across various dimensions. Robustness analysis was conducted to
assess the model’s performance under varying degrees of ambi-
guity and missing data. The analysis demonstrates that the model
exhibits considerable robustness, effectively managing ambiguity
and incompleteness up to a threshold of 50%.

The statistical analysis of the suggested model was conducted
to demonstrate the significance of the various machine-learning
approaches utilized in this work. This facilitates practitioners in
making informed judgments by relying on robust evidence, hence
decreasing the risk of making decisions based on arbitrary factors.

The remainder of the paper is organized as follows: Section 2
reviews the literature. Section 3 sheds light on the main concept and
mathematical models needed for building our models. In Section 4, the
proposed model is introduced in detail and is validated in Section 5.
Finally, Section 6 concludes the paper.

2. Related work

Research on thermal face matching, using machine learning (ML)
is limited in the literature, as searches on multiple databases did not
yield many results. Methods used for the extraction of features in face
matching can be accomplished using appearance-based methods, local
descriptor methods, or CNN [6]. While thermal cameras can capture
images in low-light conditions, the low information and depth texture
quality are still considered weaknesses in infrared face recognition.
However, CNN can extract more profound features even from low-
information data using its convolutional layers [14]. In this respect, the
DL classifier CNN has been proposed as the preferable option in most
observed studies due to its performance and ability to process large
amounts of data [6].

Using the Yale facial image dataset, Ramaiah et al. [15] deployed
the CNN algorithm to get an average classification accuracy of 94%
under varying illumination conditions. While this approach reinforces
the use of CNN for thermal face recognition under varying light-
ing and facial expression conditions, the average accuracy of 94%
and the inability to identify surgically altered faces may not meet
the requirements of law enforcement agencies. In the same direction,
Wu et al. [16] compared face recognition with traditional methods
namely LBP, HOG, and moments invariant. They demonstrated that
CNN achieves a higher recognition rate of 98%. While the experiment
demonstrated the superiority of CNN in thermal face recognition under
expression and illumination invariance, it is worth noting that the
dataset did not include cases with surgically modified faces.

Yet, another direction is carried out by Fan et al. [17] who evalu-
ated the efficacy of a fully convolutional network (FCN) in analyzing
multi-face thermal images in unconstrained settings. The FCN achieved
accuracies of 98%, 100%, and 100% for head rotation, expression, and
illumination, respectively, showing optimal performance when faces
are spaced apart, though its practicality for law enforcement is con-
strained by this requirement. Moreover, Grudzien et al. [6] presented
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a thermal face verification method based on Siamese CNN, utilizing the
ThermalFaceNet architecture to compare its performance with existing
state-of-the-art CNN architectures. However, the research does not
take care of either the effect of illumination or expression invariance.
Furthermore, for better accuracy, Sayed et al. [18] deployed a pre-
trained CNN to extract the features of the multiple convolution layers
of the low-resolution thermal infrared images using a sample of 1500
resized thermal images, each with a resolution of 181 x 161 pixels. It
achieved an impressive accuracy of 99% while significantly reducing
processing and training times.

With the focus on different datasets, Manssor et al. [19] applied
CNN to thermal and visual image datasets, attaining accuracies of 98%
and 98% on the DHU and DHUFO databases, respectively, showcasing
reduced training and processing times. Their approach also considered
illumination and, to some extent, expression invariance but not surgical
changes.

Another direction is carried out in the realm of hybrid algorithms.
An example of this is the work carried out by Kakarwal et al. [20]
who applied two ANN algorithms—backpropagation and Levenberg—
Marquardt—across databases of visible, thermal, and fused images. The
backpropagation algorithm achieved 92% accuracy, whereas
Levenberg-Marquardt reached 83%. Despite CNNs being more profi-
cient in image processing, these ANNs still show considerable perfor-
mance.

More recently, using the thermal dataset USTC-NVIE, Mahouachi
and Akloufi [21] proposed a Deep CNN architecture based on the
FaceNet architecture and the Multi-task Cascaded Convolutional Net-
works (MTCNN) model for thermal face matching, demonstrating
promising results. While the research demonstrated the promising
application of infrared imaging, it mainly focuses on illumination
invariance, placing less emphasis on expression invariance and without
addressing surgical invariance. A similar attempt is carried out by
Muller et al. [22] who demonstrated that established network architec-
tures can be trained for the task of multiclass face analysis in thermal
infrared focusing in specific areas of the face while irrelevant features
such as glasses, masks and jewelry are not considered. While CNN
provides promising results, the study primarily focuses on detecting
health issues rather than face-matching; thus, it is not oriented toward
law enforcement.

The DL-based approach proposed by Aji et al. [23] utilizes CNN
to extract features from infrared images, employing a combination of
Haar Cascade and Local Binary Pattern methods to delineate facial
regions. The experiments demonstrate that CNN, combined with Haar
Cascade, significantly enhances accuracy, achieving scores up to 95%.
This promising experiment underscores the potential of thermal face
recognition in law enforcement, showing high accuracy, precision,
recall, and Fl-scores. However, the study’s focus on illumination in-
variance omits considerations for expression or surgical invariance.
Similarly, Ashfaq and Akram [3] developed a framework based on the
DL Inception v3 model using two datasets, Sleek thermal and FLIR, each
including three classes: cat, car, and man. They achieved an accuracy of
98% for the FLIR dataset and 100% for the Sleek Thermal dataset using
a CNN classifier. Since the dataset primarily consists of mixed images,
the accuracy may not accurately reflect the recognition of human faces
by law enforcement agencies.

A more recent attempt is carried out by Taspinar [24] who intro-
duced a new CNN model, named LW-CNN (Light Weight CNN), which
was compared with the pre-trained VGG16 model. LW-CNN achieves
high classification accuracy on three different datasets with results
reaching up to 98%, proving the model’s effectiveness in handling
thermal images without the need for pre-processing. Moreover, Tsai
et al. [25] introduced a thermal imaging-based authentication system
to verify employees wearing COVID masks against an organizational
database, achieving a 94.1% accuracy rate with CNN. While impact-
ful for organizational authentication, the relative accuracy limits its
application in law enforcement.
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Fig. 1. Thermal Face Recognition Model (TFRT).

Last but not least, Bai et al. [26] developed a non-intrusive personal
thermal comfort model that records and predicts interior inhabitants’
thermal preferences using infrared facial recognition and ML. The
method includes extracting facial temperatures from six locations of
interest utilizing key point extraction techniques and infrared face
identification. Using gradient boosting decision tree (GBDT) and ran-
dom forest (RF) models, the feature relevance of these variables was
determined. This method outperformed traditional deep neural net-
works in terms of training times, processing complexity, and prediction
accuracy of 90%. However, predictions at different distances and sur-
gical invariance were lacking. The literature review identified and
demonstrated two major dimensions of thermal face recognition: il-
lumination invariance and expression invariance, predominantly using
the CNN classifier. However, this research proposes a third dimension
necessary for law enforcement agencies, which is surgical invariance,
and this dimension is lacking in all the research explored. Therefore, the
proposed research is the first study in thermal face recognition to ad-
dress illumination invariance, expression invariance, and surgical face
invariance simultaneously through the TFRT model as per Fig. 1. This
will aid in the detection of surgically altered faces, thus enhancing its
applicability in law enforcement agencies. A summary of the literature
review is given in Table 1.

3. Preliminaries

This section gives overviews of the techniques and algorithms used
in the proposed thermal face detection model.

3.1. Multigranulation rough set

The Multigranulation Rough Set (MGRS) represents an advancement
in classical rough set theory, tailored to concurrently manage diverse
information systems and multiple granularities of knowledge. Its effec-
tiveness is pronounced in contexts where information is plagued by
vagueness, uncertainty, and incompleteness, which are commonplace
in domains of knowledge representation and decision-making. Within
the MGRS framework, the universe of discourse, denoted as U, is
scrutinized through a collective of information systems or granulations,
each delineating distinct attribute subsets, represented as C; where
i =1,2,...,m. These granulations coalesce into a structure denoted by
¢ = {C|,C,,...,C,}. At the core of MGRS theory are the notions of
lower and upper approximations of a set, which extend the classical
rough set approximations to embrace a spectrum of granulations.

For a subset X C U, the lower approximation in the context of G is
articulated as:

6X) =G =(xeU|Vie(l,..,m,3IeC xeY,CX} (1)
i=1

Conversely, the upper approximation is defined by:

E(X):UE,(X):{xem3ie{1,...,m},3Y,ec,.:xeY,.nX;&@}

i=1

@
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Table 1
Summary of related work and identification of research gap.
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Study, year Ilumination invariance

Expression invariance

Surgical invariance Dealing with heterogeneity

Ramaiah et al. [15], 2015
Wu et al. [16], 2016

Fan et al. [17], 2017

Sayed et al. [18], 2018
Grudzien et al. [6], 2018
Manssor et al. [19], 2019
Mahouachi and Akloufi [21], 2021
Muller et al. [22], 2021
Kakarwal et al. [20], 2021
Aji et al. [23], 2022

Ashfaq and Akram [3], 2022
Tasi et al. [25], 2023

Bai et al. [26], 2024

Our model

AN NN N I NE N NN
WX WX X X X QXXX

XWX X X X X | X X X
QX X X X X X X X X X X X X

The conventional MGRS model is primarily predicated on categori-
cal attributes, a constraint that introduces unreliability in the approx-
imation space when encountering numerical features. Addressing this
limitation, we introduce an enhanced variant termed the Neighborhood
Multigranulation Rough Set (NMGRS) model, which refines the ap-
proximation space computation by incorporating both categorical and
numerical attributes.

An object u; merits inclusion in the lower approximation of &, if it
aligns with both categorical and numerical neighborhood criteria. This
dual consideration precipitates a more precise approximation space,
markedly beneficial for datasets that amalgamate categorical with nu-
merical attributes. Building upon this refined model, we present the
Particle Swarm Optimization NMGRS (NM-PSO) algorithm, wherein the
NMGRS serves as the fitness function, pivotal in the iterative evaluation
of feature subsets. To expedite convergence to the minimal feature
subset, NMGRS systematically eliminates redundant features identified
through successive iterations, ensuring a progressive refinement of the
feature subset.

3.2. Convolutional neural network (CNN)

CNNs are an archetype of DL architectures, ingeniously designed to
process data that adheres to a grid-like topology, for instance, images
or sequential inputs. Their utility is extensively acknowledged in the
realm of computer vision for tasks such as image classification, object
detection, and image segmentation, to name a few. The underlying
inspiration for CNNs can be traced to the cognitive processes of the
human visual cortex, which they mimic to discern and analyze visual
data [27]. A typical CNN comprises a stratified structure of convo-
lution layers, non-linear activation functions like the Rectified Linear
Activation Function (ReLU), pooling layers, fully connected layers, and
regularization mechanisms such as dropout [28]. An exemplar CNN
structure is depicted in Fig. 2.

In the CNN strata, the network employs a plethora of filters to parse
the input, detecting distinctive, localized features within the data [29].
ReLU, as a non-linear activation function, is pivotal in capacitating
the network to capture complex data relationships and patterns [30].
Subsequent to the convolutional layer, pooling layers perform down-
sampling, thus attenuating the dimensionality of the feature maps
while preserving essential features. This dimensionality reduction not
only curtails the computational burden but also endows the network
with translational robustness [31]. The fully connected layers, situated
towards the end of the network, are tasked with synthesizing the
high-level representations extracted from the input data and executing
predictions [32]. To alleviate the risk of overfitting, dropout layers
are incorporated, randomly deactivating a subset of neurons during
training [28].

The CNN architecture is the most important factor of its perfor-
mance and efficiency [33]. The arrangement of the layers, the elements
used in each layer, and how they are constructed, all these factors affect
the speed and accuracy at which various tasks can be carried out.

3.3. Max/average pooling CNN (MAP-CNN)

This section presents the MAP-CNN algorithm which was used to
extract the features from the thermal face dataset. The improvement
was done through the pooling layer by proposing a novel pooling,
AVG-MAX pooling layer.

3.3.1. Vector pooling block

The vector pooling block is a novel component in the neural net-
work that processes an input tensor 1;,,,,, with dimensions Cx H X W,
where C is the number of channels, H is the height, and W is the width
of the tensor. This block is designed to include two distinct processing
paths: one for horizontal pooling and the other for vertical pooling.

In the horizontal pooling path, the operation can be mathematically
described as Py,.izoma max(l;,,,lc, b, :1) for each channel ¢ and
height h. Similarly, the vertical pooling path operates along the height
dimension. Each path then leads to a 1 x 1 convolutional layer, which
can be represented as F, = K - Ijypy, where K is the 1 x 1
convolution kernel.

Following each convolution, a Rectified Linear Activation Function
(ReLU) layer is integrated, described by Fr,;y = max(0, F,y,00eq)-
This integration enhances the network’s stability and accelerates its
convergence.

The core feature of this pooling block is its ability to merge the
feature vectors from both horizontal and vertical paths while main-
taining dimensionality reduction benefits. This merging is achieved
through an element-wise summation, F,,ined = Frorizontat T Foertical>
ensuring a comprehensive feature vector representation. The resultant
feature vector undergoes another RelU layer, formulated as Fy;,, =
max(0, F,,,pineq)> further aiding in rapid model convergence.

The vector pooling block’s overall design is a testament to its
effectiveness in FE. It leverages parallel pooling, strategic 1 x 1 convo-
lutions, element-wise vector summation, and multiple ReLU activations
to optimize the FE process. The operational mechanics and structure of
the Vector pooling block are elucidated in Fig. 3.

onvolved

3.3.2. MAX-AVG VBP pooling layer

The AVG-MAX Vector Pooling Block (VPB) in CNN architectures
unites the two principal pooling methods: Max-Pooling and Average
Pooling. Max-Pooling, denoted as MaxPool(/;,,,,), selects the maximum
element from a defined pooling region in the input tensor /;,,,. Con-
versely, Average Pooling, represented as AvgPool(/,,,,), calculates the
mean of elements within the pooling region.

The AVG-MAX VPB ingeniously combines these techniques, ex-
tracting salient features by integrating the robustness of Max-Pooling
with the comprehensive approach of Average Pooling. This is achieved
through four parallel pathways: Max-horizontal pooling (MaxPooly,),
Max-vertical pooling (MaxPool,,), Average horizontal pooling
(AvgPooly), and Average vertical pooling (AvgPool, ). Each pathway
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Fig. 3. Vector pooling block [28].

concludes with a 1 x 1 convolution (F,,,, = K - I;,,,), where K is the
convolution kernel.

After convolution, the AVG-MAX VPB incorporates a Rectified Lin-
ear Activation Function (ReLU) layer (Fg,;,;, = max(0, F,,,,)), pro-
moting stability and faster convergence. The fusion of feature vectors
from each ReLU layer is performed through element-wise summation
(Feombined = Frerv1+ Frerv2+Freru3+Frerya)> harmonizing the insights
from different pooling strategies.

This operation is followed by a batch normalization layer (Fgzy =
BatchNorm(F,,,,;i..q)), Standardizing the feature set for enhanced net-
work stability and model generalizability. The AVG-MAX VPB culmi-
nates with an additional ReLU layer post-batch normalization (F;,, =
max(0, Fgy)), further accelerating convergence.

Overall, the AVG-MAX VPB effectively combines concurrent pooling
paths, 1 x 1 convolutions, and element-wise summation, along with
batch normalization and dual ReLU activations, establishing a robust
architecture for feature amalgamation. This design promotes network
stability and expedites convergence, crucial for efficient CNN opera-
tions. The structure and functionality of the AVG-MAX VPB are detailed
in Fig. 4.

4. Proposed robust thermal face recognition model

The proposed model combined the power of the DL and ML ap-
proaches. It used the CNN to extract deep features while the ML was
used in the classification thus making our model computationally effi-
cient. The following sections give overviews of the model components
(i.e., FE, FS (a novel model was proposed), and the classification).

4.1. Feature extraction process

A CNN can be used as a powerful feature extractor in various ML
tasks [34]. By leveraging the learned representations from CNNs, we
can extract rich and meaningful features from input data. In CNNs, the
initial layers perform local FE by applying convolutional filters across
the input data. These filters capture low-level features such as edges,
textures, or color gradients. As the network progresses through deeper
layers, it learns to detect more complex and higher-level features,
including object parts and semantic structures. The advantage of using
a CNN as a feature extractor lies in its ability to automatically learn
hierarchical and discriminative features from raw data. CNNs have
to be highly effective in capturing complex patterns and structures
in images, making them particularly well-suited for computer vision
tasks [35].
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Fig. 4. AVG-MAX Vector Pooling Block (VPB) combining Max-Pooling and Average Pooling through four parallel paths (Max-horizontal Pool, Max-vertical Pool, Avg-horizontal
Pool, Avg-vertical Pool), followed by 1 x 1 convolutions and ReLU activation. The outputs are merged via element-wise summation (), followed by batch normalization (BN),

and a final ReLU activation [28].

Furthermore, transfer learning can be applied to leverage pre-
trained CNN models. Pre-trained CNNs, which have been trained on
large-scale datasets like ImageNet, have already learned a rich set of
general features. By using these pre-trained models, we can extract
features that are generic and transferable across different tasks. This
approach is especially useful when the target dataset is small, as
it allows us to benefit from the knowledge learned from large-scale
datasets [36]. Therefore, CNNs can serve as powerful feature extractors
by learning hierarchical representations of input data. These extracted
features can be utilized in various downstream tasks, enabling us
to leverage the impressive capabilities of CNNs for a wide range of
machine-learning applications [37].

4.1.1. Feature extraction using AVG-MAX-VPB-based CNN

The novel MAP-CNN, presented in Section 3.3.2, could be a better
FE technique than the traditional CNN. This is because the former is
based on the combination of two pooling techniques: average pooling
and max pooling with the concept of VPB. The traditional pooling layer
uses a fixed square kernel size, which is not as effective in extracting
a diverse set of features. In contrast, the AVG-MAX-VPB methodology
takes advantage of the different characteristics of each pooling method,
resulting in a more significant feature set [28].

In AVG-MAX-VPB, average pooling is used to compress the input
image, as the output of average pooling is a smaller matrix containing
the overall features of an image, with less emphasis on specific de-
tails. However, the max pooling method is used to identify the most
prominent features of the image, as the output of max pooling is a
smaller matrix with the most significant features of the image intact.
While the VPB is used to extract both local and global features, it
consists of two pathways that extract features along the horizontal
and vertical orientations, respectively [28]. By using long and narrow
pooling kernels along both pathways, the VPB is able to collect global
features that span across large regions of the image, as well as local
features that are specific to smaller regions. The combination of these
pooling techniques with the concept results in a feature set that is more
diverse and robust compared to using any of these pooling methods
independently. This diverse feature set could be used for a variety
of different tasks such as image classification, object detection, and
object recognition. The steps of using CNN as a feature extractor are
as follows:

1. Start by selecting a pre-trained CNN model that has been trained
on a large-scale dataset.

2. Exchange each pooling layer in the pre-trained CNN with AVG-
MAX-VPB.

3. Remove the Fully Connected Layers as these layers are respon-
sible for mapping the extracted features to specific classes and
are not needed for FE.

4. Extract Features from the Convolutional Layers.

5. Flatten or Pool the Feature Maps depending on the specific task
and requirements.

6. Use the extracted features for various downstream tasks, such as
image classification, object detection, or image retrieval.

4.2. Neighborhood multi-granulation rough set (NMGRS)

As shown above, MGRS has unreliable approximation space. To
address this problem, a new variant of MGRS was introduced in this
paper. This new variant used the neighborhood relation to design
neighborhood MGRS (NMGRS). The description of this design process
is given below.

In the context of NMGRS, each object y; in the universe % is asso-
ciated with three distinct neighborhood classes, which are predicated
upon the sets €, //, and &/, respectively. These classes are formally
defined as follows:

9‘??,1@- = {uj | Vak € %’ Uui,ak = qu,ak }’ (33)
O, =l | Ly, up) < e}, (3b)
gﬂ’,u, = 0%/',14,- n 0/1/,14, s (?’C)

where ¢ € (0,1] is a user-defined threshold, and / (g, up) denotes
the Euclidean distance between objects ; and u; with respect to the
attribute set ., calculated as:

Ly (uju;) =

Using these neighborhood classes, the NMGRS approximation space
for a given decision subset i, is computed as follows. The lower
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approximation Qu(. is determined by:

Oy, =l €U 105, [, =gt 1), )

while the upper approximation 6, L, is defined as:
J

6%_ = {t; €U | 0y, N, # D).

The NMGRS model, through these calculations, promises an en-
hancement in computing the approximation space over the MGRS
model, particularly by accommodating both categorical and numerical
features in the data. The forthcoming theorem elucidates the efficiency
of the NMGRS model relative to its MGRS predecessor.

Theorem 1. The lower approximation, denoted as Qu , which is derived

from the NMGRS model, serves to enhance the approxtmatlon yielded by the
MGRS model. The refinement process ensures that the lower approximation
in NMGRS encapsulates a more precise subset of objects that are unequivo-
cally within the decision subset 1, . This precision is achieved by considering
both categorical and numerical features to determine the neighborhood
classes, thereby leading to a more accurate and reliable approximation
space.

Proof. Consider an object u; belonging to the lower approximation
ngj as computed by the NMGRS model, indicated by (4). This entails
that the neighborhood class 6~ is a subset of the decision subset
LI,:/. According to the Eq. (4), it implies that -, does not encompass
any objects associated with a disparate decision subset il . Hence,
the inconsistency measure [ (69]_,,,,,11@) equals zero, leading to the
conclusion that (- ,,,4;,) > 105 4> Ueg))- As a result, u; is also a
member of the lower approximation ng‘ when computed using the
MGRS model as described by (4). !

Conversely, if u; is part of @, as derived through the MGRS model,

indicated by (4), then I Oy, ,ngk) > 1 (Gﬂ_#[,ug’). However, this
inequality does not infer that 1 (O, ,i,l( ) is null. Consequently, we
cannot claim that 6,-, is entirely contained within e - Thus, the
lower approximation determined by the NMGRS model is 'inclusive or

equal to that ascertained by the MGRS model. [ ]

Definition 1 (Fitness Function). The NMGRS based fitness function &
expresses the amount of goodness of the decision label d, of a dataset,
on the set .# and is given by

. lew,

Fyd) = ———. 5)
=i [By,

The value of the fitness function, which is in [0, 1], is called the

goodness value. [ |

It should be noted that the fitness function is used to differentiate
between the necessary and unnecessary features. This procedure is
employed as per Definition 2.

Definition 2 (Clipping the Data). Clipping a dataset involves removing
features that do not contribute to determining its decision label 4. This
process focuses on eliminating irrelevant or redundant features, and
streamlining the dataset for more effective analysis. By discarding these
superfluous features, the dataset becomes more manageable and better
suited for precise decision-making tasks. [ |

In our research, the Neighborhood Multigranulation Rough Set (NM-
GRS) based fitness function, as outlined in Eq. (5), plays a pivotal role
in discerning the indispensability of features in a dataset. This approach
involves a strategic process to prune a set A C &/~ by iteratively
removing individual features and evaluating the impact on the dataset’s
fitness value.
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The procedure is as follows: for each feature g, in &/~ it is removed
from the set A, and the fitness value & is calculated both before and
after this removal. If the fitness value decreases subsequent to the
removal of the feature, it implies that the feature is integral to the
dataset, thereby necessitating its reinstatement into A. Conversely, if
the fitness value remains constant, it indicates the feature’s redundancy,
warranting its permanent exclusion. Formally, a feature a; is necessary
if Fo—(a;y(d) < Fy-(d), and unnecessary otherwise.

The culmination of this iterative process yields a minimal subset A
of o/~ that encapsulates only the essential features. This subset A is
defined as minimal with respect to the decision d if F,(d) > F,-(d)
and for each feature a; within A, Fp—ia;y(d) < Fp(@).

4.3. Improved particle swarm optimization using NMGRS for feature selec-
tion

Particle Swarm Optimization (PSO) is an evolutionary computa-
tional technique that addresses optimization problems by iteratively
refining candidate solutions in accordance with a specific quality met-
ric. The algorithm is inspired by the collective behavior observed in
natural systems, such as birds flocking or fish schooling, particularly in
their food-finding strategies.

To elaborate, consider a flock of birds searching for food. Within this
flock, certain birds exhibit a higher proficiency in locating food sources.
These proficient birds can be analogized as leaders who guide the direc-
tion of the search, while the rest of the flock, akin to followers, adapt
their movements based on the leaders’ cues. Periodically, the leaders
disseminate their knowledge about the food’s location, facilitating the
followers in recalibrating their trajectories and enhancing the overall
efficacy of the search. This dynamic interplay allows for the continuous
exchange of roles where a follower, upon improved performance, may
ascend to a leader’s status, while a leader may transition to a follower’s
role if outperformed.

The PSO algorithm captures this essence by assigning each member
of the swarm, represented as particles in the algorithm, a unique
identity. These particles, akin to birds in a flock, navigate the solu-
tion space, with their positions symbolizing potential solutions to the
optimization problem. The algorithm iteratively updates the positions
of these particles, influenced by both their own best-known positions
and the swarm’s collective best position. Through this process, the
swarm collectively converges towards an optimal solution, with each
particle contributing to and benefitting from the shared knowledge
of the group’s experiences. These adept birds can be perceived as
leaders, providing directional insights, while the others can be viewed
as followers, adapting their positions based on the information acquired
from the leaders. Periodically, the leaders share their knowledge about
the food location, allowing the followers to adjust their trajectories and
enhance their search efficacy. This dynamic allows for the potential
elevation of a follower to a leader, based on its performance in locating
the food, and a leader may become a follower if outperformed. Consider
a flock of 10 birds, with only the top 3 efficient ones deemed as
leaders. The flock adjusts its position every 5 minutes to evaluate their
proximity to food and share insights. The leading trio in each round
disseminates the positional information contributing to their successful
forage, potentially altering the leader—follower dynamic in subsequent
rounds.

There are numerous ways to deploy PSO. We plan to create a
streamlined version, tailored to efficiently and precisely solve FS prob-
lems. The algorithm will emulate actual flocking behavior to pinpoint
the optimal feature subset in a dataset. Each bird is assigned a unique
number i, i = 1,2,..., N, and a role, either a leader or a follower.
These unique numbers are static, but the roles can interchange based
on each iteration’s performance. Initially, all birds assume random
positions, representing potential solutions, and commence the search.
A position, in this scenario, is a vector—known as a particle—that
corresponds to a subset of the dataset features. After each iteration, the
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PSO algorithm designates the top-performing n < N birds as leaders
allowing them to share their particle data with the followers to refine
the subsequent search. Thus, the PSO algorithm resolves the FS tasks
by a two-step process: an exploration step and an exploitation step,
continually iterating until the optimal solution is identified.

4.3.1. NM-PSO exploration step

Particle i > 1 possesses in iteration k > 1 a position vector
X, = [x1.%3.....x,], x; € {0,1}, continually undergoing updates in
consecutive iterations. This vector specifies a subset of the features of
the Data under review, where x; highlights the features considered.
For instance, X3, = [1,0,1,0] signifies that particle 3 in iteration 2 is

concentrating on features a; and as.

Definition 3 (Vector-Set Correspondence). For any position vector X =
[x1. %5, ..., x,], the equivalent feature set B consists only of the features
with non-zero entries in X. Conversely, for any feature set B, the
matching position vector X is the vector with a 1 for each element
corresponding to a feature in B. This implies X < B if x; = 1 <
b; e B. | |

As an illustration, with feature set B = {a;, a3}, the related position
vector is X = [1,0, 1,0], and reciprocally.

X =1[1,0,1,0] <= B = {a;, a3}

Each particle in the Particle Swarm Optimization (PSO) algorithm
commences its journey in iteration one by randomly selecting a subset
of the initial n conditional features. This forms the initial position
vector, which is subject to iterative adjustments influenced by the
PSO algorithm. As the process progresses to iteration k > 1, the
algorithm performs several key steps. The position vectors of particles,
particularly those not in leadership roles, are modified. Concurrently,
the fitness value § of each particle’s position vector is computed,
necessitating its transformation into a corresponding feature set as per
the defined criteria. The algorithm then identifies the top p particles
with the highest fitness values as leaders, indicating their proximity
to the optimal feature subset. This progression involves adjusting non-
leader position vectors, assessing the fitness of these vectors, refining
corresponding feature sets based on fitness evaluation, generating new
position vectors from these refined sets, and promoting the particles
with the highest fitness values to leadership roles in the next iteration.
The iterative procedure persists until either a predetermined number of
iterations T is reached or a feature subset is identified that matches or
exceeds the fitness value of the original set.

4.3.2. NM-PSO exploitation step

In PSO, the exploitation step is crucial for particles to refine their
positions in the search space based on their personal best positions and
the global best position found by the swarm. Let .S represent the swarm
at iteration k, consisting of particles i, each having a position vector X,
in the search space.

At each iteration k > 1, every particle i updates its velocity V;
and position X;  ~as follows:

Vik+1 = wVik + clrl(Pik - Xik) +cr(Gy — Xik)
Xik+1 = X"k + V"k+1
where:

» w is the inertia weight, controlling the impact of the previous
velocity.

¢; and ¢, are cognitive and social coefficients, respectively.

r, and r, are random numbers uniformly distributed in [0, 1].

P, represents the personal best position of particle i up to itera-
tion k.

G, represents the global best position found by the swarm up to
iteration k.
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Once the new positions are computed, each particle evaluates the
objective function at its new position, and the personal best positions
and the global best position are updated accordingly. This process of
exploitation helps the particles converge towards the optimal solution,
leveraging both individual and collective experiences. NM-PSO uses
the above mentioned strategies as per Algorithm 1 and is depicted
graphically in Fig. 5.

5. Experimental results and discussion

To validate the proposed NM-PSO capabilities as a FS tool, we coded
it in Python and run on a PC with Windows 11, Core i7 and 8 GB RAM.
The objective of this experiment is to prove that using the proposed
NMGRS as a fitness function to guide PSO reduction task is of major
significance. Throughout the experiments, the dataset is extracted from
Charlotte-ThermalFace dataset [38] about thermal face recognition.
Two methodologies (traditional CNN and improved one) were used to
extract the features. Therefore, we have in hand two datasets referred
to as Alex-net (extracted from CNN) and Alex-net-AVG-MAX (extracted
from MAP-CNN). For the sake of clarity, NM-PSO performance (number
of selected feature subset size, convergence speed and classification
performance as in [39]) is compared against ten related FS algorithms.

5.1. Dataset description

Charlotte-ThermalFace dataset [38] was used to evaluate the pro-
posed thermal face recognition model. This dataset is the optimal
choice for evaluating thermal face recognition in law enforcement
applications as it contains images covering illumination and expression
invariance. Additionally, since the images are thermal, the dataset
also addresses surgical face invariance. The dataset comprises a large
number of high-resolution thermal infrared face images which are col-
lected in different environments, including indoor and outdoor settings,
with varying lighting conditions, at different distances and diverse
backgrounds. This diversity ensures that the dataset covers a wide
range of real-world scenarios, making it highly suitable for law enforce-
ment applications. One notable feature of the Charlotte-ThermalFace
dataset is its inclusion of face images captured at various distances.
The variation in camera-to-subject distance is crucial for evaluating the
performance of face recognition systems in scenarios where individuals
may be close to or far from the camera, as is often the case in law
enforcement.

5.2. Scenario I: NM-PSO performance

In this scenario, we conducted a comprehensive evaluation of the
newly developed NM-PSO FS algorithm, alongside testing our pro-
posed FE method (CNN-AVG-MAX). The FE process was executed using
both the conventional CNN model and the enhanced CNN-AVG-MAX
version, resulting in two distinct datasets: CNN-data and MAP-CNN-
data. Subsequently, the NM-PSO-based FS algorithm was applied to
these datasets and benchmarked against ten contemporary algorithms,
including PSO [40], SFO [41], CO [42], WOA [43], MEHHO [44],
BHHO [45], IHHO [46], GA [47], DE [48], and GWNO [49]. The
comparative analysis focused on the size of the selected feature subsets
and the computational time required for FS.

The primary comparative analysis involved assessing the number of
features selected by the 11 algorithms (10 competitors and NM-PSO)
using both CNN-data and MAP-CNN-data. Table 2 displays the results,
highlighting that NM-PSO (bold in the last row) consistently selected
the smallest feature subset. Specifically, for the CNN-data, NM-PSO
selected 2032 features, achieving a reduction rate of approximately
50%, outperforming its closest competitor, IHHO, which selected 3247
features (21% reduction rate). This result indicates that NM-PSO sur-
passes its best competitor by nearly 30% in terms of CNN-data. In the
case of MAP-CNN-data, NM-PSO selected 1458 features, corresponding
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Algorithm 1: Neighborhood multigranulation rough set particle swarm optimization (NM-PSO) algorithm

Input : (%,9,7") // Dataset
N //# of employed particles
n //# of best performing particles
T //Maximum number of iterations
Output: N //Reduced subset of the dataset
1 Calculate - (d), as per (5).
//Setup phase:
t=1
F =1 //list to keep the particles’ fitness; initially empty
fori=1to N do
Create the pivot vector Xik consisting of elements [y, ,,.... 3,].

Clip A;, as per Definition 2 //Removing superfluous features.
Reassemble the vector Xik to reflect A; as per Definition 3.

O O e N U WN

U
o
=}

~

/Iterative phase:
12 do
13 t
14 []

15 ri=1to N do
16 ifie L, then

//For a leading particle i do

o

t+1

29

Formulate the corresponding set A; in accordance with Definition 3.
Compute the fitness value 9A, (d), Eq. (5), and add it to the list F.

d
ormulate the set ILk as iy, i,, ..., iy, S.t. i; represents the index of top m values in &, i.e designating the most effective particles as leaders.

17 Compute the fitness measure 9A[ (d) in accordance with Eq. (5) and include this measure in the fitness list &.
18 end
19 else
//For a non leading particle i do
20 Derive the new position vector Yi, based on the previous iteration’s vector Yi,_,
21 Based on Definition 3, develop the relevant feature set Ai that aligns with the updated position vector Yi,.
22 Compute the fitness value QFA‘ (d) for the set A;, in accordance with Eq. (5), and then add this fitness score to the list &.
23 Clip A; in accordance with Definition 2 //Effectively removing any superfluous features from A;.
24 After pruning, recreate the pivot vector Xik so that it corresponds to the refined feature set A;, following the guidelines
outlined in Definition 3.
25 en
26 end
27 Form the leader set Lk by selecting the particles with indices i, i,, ..., i,,, corresponding to the highest m fitness values in the set &.

//This step designates the top-performing particles as leaders for the next iteration.

28 Allocate the highest fitness value, #y, (d), to the variable Hdep. //This step ensures that the highest fitness value achieved in the

29 while (Hdep < %,- (d) AND t < T);

current iteration is recorded for subsequent comparison and analysis.

to a 64% reduction rate, while the best competitor, PSO, selected
3054 features (25% reduction rate). Thus, NM-PSO demonstrated a
39% improvement over its predecessor. These findings lead to two key
observations: (a) NM-PSO emerges as the superior FS algorithm for
both thermal face datasets, and (b) the performance of all algorithms
enhanced with the MAP-CNN-data, compared to the traditional CNN.
This suggests that the MAP-CNN-AVG-MAX model is more effective in
extracting representative features from thermal face images than the
traditional CNN model, underlining its efficacy. Remarkably, NM-PSO
showed a significant 16% improvement in reduction rate with the MAP-
CNN-data compared to the 12% improvement demonstrated by the next
best algorithms, PSO and CO.

The NM-PSO algorithm’s exceptional performance can be attributed
to several key design elements that collectively enhance its efficiency
and accuracy. Firstly, the precise computation of the lower approx-
imation in the NMGRS, as detailed in Eq. (4), plays a pivotal role.
This calculation ensures an equitable balance between the numerical
and categorical aspects of the data, thus preventing any one type
from overshadowing the other. Essentially, this means that objects are
included in the lower approximation based on a comprehensive analysis
of both their numerical and categorical characteristics. Secondly, the
algorithm’s process of feature elimination is meticulously designed to
consider the significance of each feature in relation to the decision
class, aligning with Definition 2 (data clipping). This approach is
distinct from traditional methods as it determines the relevance of
features within a more sophisticated framework, taking into account
the interplay between lower and upper approximations. Additionally,
the NM-PSO algorithm is structured such that once a feature is deemed
irrelevant and removed in a particular iteration, it is not reconsidered
in subsequent iterations. This strategy ensures that the elimination of a

Table 2

Comparative analysis of the feature subset sizes selected by the NM-PSO algorithm and
its ten competing counterparts, focusing on both standard CNN-data and the enhanced
CNN-data.

FS # selected Percentage of  # selected Percentage of

algorithm  features improvement features improvement
with respect to  with respect to  with respect to  with respect to
CNN-data CNN-data MAP-CNN-data ~ MAP-CNN-data

SFO 3448 15.82 3361 17.94

GWNO 3165 22.73 3151 23.07

co 3619 11.65 3120 23.83

MEHHO 3480 15.04 3002 26.71

BHHO 3490 14.79 3231 21.12

GA 3410 16.75 3109 24.10

IHHO 3247 20.73 3007 26.59

WOA 3567 12.92 3153 23.02

PSO 3533 13.75 3054 25.44

DE 3266 20.26 3090 24.56

NM-PSO 2032 50.39 1458 64.40

feature does not compromise the distinctiveness of the objects, as they
continue to be effectively differentiated using the remaining features.
In the second phase of these experiments, we focused on eval-
uating the time efficiency of the algorithm in locating the optimal
feature subset. As illustrated in Fig. 6, it is apparent that the NM-
PSO algorithm (represented by the red bar) consistently outperforms
others in terms of time efficiency for both datasets. This implies that
NM-PSO demonstrates remarkable speed in dimensionality reduction,
underscoring its effectiveness in swiftly identifying the most compact
and relevant feature subset. This high level of time efficiency can be
primarily attributed to the sophisticated design of the NM-PSO’s fitness
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Fig. 5. The flowchart of the proposed model. The first block represents the feature extraction task for the thermal face images in which the CNN is improved using the average
max pooling. The resulting equivalent raw data for the thermal face images are fed to the second block which represents the FS task implemented using PSO while improved

using NMGRS.

function, which is integrated with the NMGRS model. This integration
is crucial as it guarantees that once a feature is deemed irrelevant and
excluded from the subset, it is not reconsidered in future iterations.
This approach significantly streamlines the FS process, ensuring rapid
convergence towards the minimal feature subset, thus saving valuable
computational time and resources.

5.3. Scenario II: NM-PSO convergence

The second scenario examines the convergence speed (i.e., the
algorithm’s behavior across iterations until the desired feature subset
is identified). Evaluating this convergence speed is pivotal in bio-
inspired FS algorithms. This is because for an FS algorithm to assuredly
converge to the optimal minimal feature subset, it should consistently
exhibit high fitness values across iterations. The investigation of the
convergence offers an insightful perspective on the efficacy of our pro-
posed NM-PSO FS algorithm comparing with the other 10 algorithms
during the FS operation. The results of this scenario are summarized in
Fig. 7. As illustrated in this figure, the fitness trajectory of the NM-PSO
consistently surpasses that of the competing algorithms, indicating the
robust and sustained superiority of NM-PSO throughout the process.

10

Table 3
Comparison of the standard deviation of fitness values for NM-PSO and its counterparts
using CNN-data and MAP-CNN-data.

FS Standard deviation with Standard deviation with
algorithm respect to CNN-data respect to MAP-CNN-data
SFO 0.20 0.26

GWNO 0.18 0.21

co 0.19 0.25

MEHHO 0.24 0.16

BHHO 0.19 0.24

GA 0.25 0.21

IHHO 0.18 0.28

WOA 0.27 0.15

PSO 0.24 0.16

DE 0.22 0.18

NM-PSO 0.13 0.12

To rigorously evaluate the consistency and precision of the fitness
values generated by the NM-PSO algorithm in comparison with compet-
ing algorithms, an analysis of the standard deviation (¢) of these fitness
values was conducted. This analysis provides an insight into the vari-
ability of the fitness values throughout the T iterations, supplementing
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Fig. 6. The time taken by the 11 FS algorithms to reduce the data dimensionality.
Clearly, the red bars, for the NM-PSO reduced data, are lower than those of the
competitors confirming its applicability. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

the visual interpretation presented in Fig. 7. The standard deviation is
calculated using the formula:

T
N P 2
o= T—lg;(/%Ai w2,

where . Ai represents the fitness value of the feature subset Ai selected
in iteration i, and u denotes the average of these T values, computed
as follows:

y:%Z':lT/%A,-.

Table 3 reveals that NM-PSO consistently exhibits the lowest stan-
dard deviation compared to other algorithms in both datasets. This
highlights the stability of NM-PSO’s fitness values, indicating its effi-
cient convergence.

The observations suggest that NM-PSO consistently yields depend-
able outcomes. Detailed scrutiny of the results indicates minimal fluc-
tuation in the fitness function’s value across iterations. This is corrob-
orated by Fig. 7, highlighting that the most significant fluctuations
in fitness value transpire during the initial iterations, subsequently
approaching a quasi-stable state. This underscores NM-PSO’s profi-
ciency in rapidly identifying the targeted subgroup. The efficacy can
be attributed to its advanced NMGRS architecture, which prioritizes the
elimination of redundant and irrelevant features. Essentially, the har-
monious equilibrium between exploration and exploitation processes
ensures that NM-PSO, as previously delineated, consistently identifies
the desired feature subset in every execution.

11
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5.4. Scenario III: Impact of NM-PSO feature selector on thermal face
recognition performance

To evaluate the impact of the quality of the features selected by NM-
PSO in representing the original data classes (i.e., faces), a comparative
analysis was conducted on the classification performance using both
CNN-data and MAP-CNN-data. This analysis leveraged four renowned
classifiers: random forest (RF), support vector machine (SVM), k nearest
neighbors (kNN), and logistic regression (LR). The evaluation metrics
encompassed precision, recall, accuracy, and F1-Score. It is crucial to
note that, although the dataset comprised three decision classes, a
binary classification approach was adopted. This was facilitated using
the widely-recognized one vs. rest (OvR) method, alternatively termed
one vs. all (OvA) [50], as recently demonstrated in [39].

Tables 4 and 5 present the classification outcomes for the subsets
chosen by our proposed algorithm (NM-PSO) and its ten counterparts,
utilizing four distinct classifiers. A meticulous evaluation underscores
the preeminence of the subset selected by NM-PSO (highlighted in the
bold column). Specifically, the subset delineated by NM-PSO consis-
tently surpasses the subsets chosen by competing algorithms in terms
of classification accuracy. Detailed scrutiny suggests that the NM-
PSO-selected subset exhibits superior performance irrespective of the
classifier or dataset in use. This level of consistency is not mirrored
by other competitors. For instance, while IHHO emerged as the top
performer with CNN-data, WOA took the lead with MAP-CNN-data.
This further reinforces NM-PSO robustness and adaptability across
different datasets. Moreover, it is noteworthy that NM-PSO when paired
with the RF method, achieves an impeccable accuracy of 100%. Such
an outcome suggests the potential for linear separability of the utilized
data produced by NM-PSO.

Although we contend that the MAP-CNN-data is of superior quality
compared to the traditional dataset, it is noteworthy that the classifi-
cation accuracy for the RF classifier in conjunction with the NM-PSO
algorithm reaches 100%. This phenomenon can be attributed to the
inherent data-pruning capabilities of RF, which efficiently eliminates
superfluous features, thereby facilitating a streamlined FS process.
Consequently, this additional layer of selection by RF is instrumental in
achieving such high accuracy levels. In contrast, competitor algorithms
do not exhibit the same level of accuracy with these datasets. This
discrepancy highlights the capability of NM-PSO to identify a near-
optimal feature subset that can be effectively fine-tuned using RF,
underscoring its robustness even when the dataset quality might not
be optimal.

5.5. Scenario 1V: Statistical analysis

For our study, NM-PSO was subjected to a series of experimental
comparisons. Based on the results from the above three scenarios, NM-
PSO exhibited superior performance over ten alternative algorithms in
identifying a minimal feature subset while demonstrating rapid con-
vergence. NM-PSO has also helped the classifiers to produce excellent
accuracy for face recognition as illustrated in Scenario III. To bolster
this observation, a supplementary statistical analysis was carried out on
the fitness values attained post the 20th iteration. This comparative
analysis was bifurcated: the first phase aimed to ascertain whether
there was a statistical deviation between our method and the ensemble
of ten competitor algorithms. We commenced with the null hypothe-
sis positing that the algorithmic performances were equivalent, with
the objective of discerning whether this hypothesis could be refuted.
Should the null hypothesis be invalidated in this preliminary phase,
it would necessitate the activation of the subsequent phase. In this
segment, ten discrete comparisons were conducted, each juxtaposing
our algorithm against an individual competitor from the group.

To determine which hypotheses were negated, we scrutinized the
null hypothesis. This hypothesis posited equivalence between our
method and each individual competitor’s approach, enabling us to
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Fig. 7. Fitness value versus the number of iterations. NM-PSO curve (red), tops the other curves which reflects NM-PSO’s ability to find a reliable minimal feature subset. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 8. The mean accuracy rank of the Friedman test for NM-PSO (our algorithm is shown in the last column) and ten competitor algorithms. Clearly, the NM-PSO bar tops the
other bars, confirming its significant difference from the competitor algorithms.

Table 4
Comparative analysis of five distinct classification algorithms, gauging their performance through four key metrics over CNN data. These algorithms were applied to feature subsets
selected by NM-PSO and ten other competing algorithms.

Classification Performance Original SFO GWNO Cco MEHHO IHHO WOA GA BHHO PSO DE NM-PSO
algorithm metric Data
Accuracy 100.0 91.33 82.11 78.99 81.24 82.11 91.55 79.11 84.32 73.12 77.44 100.0
RE Precision 100.0 85.24 89.12 85.84 84.56 85.14 86.24 82.22 82.41 26.14 75.55 100.0
Recall 100.0 83.58 84.25 84.12 79.96 80.25 82.16 86.36 75.52 65.55 90.63 100.0
F1-Score 100.0 76.71 84.62 82.14 83.34 77.63 82.27 84.63 81.78 76.87 90.66 100.0
Accuracy 99.60 91.46 78.64 79.17 85.35 79.66 81.89 82.37 76.91 61.97 89.34 99.54
SVM Precision 99.60 89.52 76.14 78.85 89.14 76.37 74.61 76.96 89.65 74.50 75.39 99.54
Recall 99.60 86.64 79.15 78.90 77.17 82.89 88.63 90.35 77.23 29.78 87.20 99.54
F1-Score 99.60 83.19 76.16 86.33 85.84 86.99 88.54 88.58 87.21 20.91 78.55 99.54
Accuracy 99.16 83.83 76.94 80.24 79.52 82.61 81.22 74.61 74.24 79.11 80.63 99.13
KNN (K = 5) Precision 99.16 73.64 85.41 84.51 79.66 79.23 81.14 89.23 90.15 19.67 81.94 99.13
Recall 99.16 80.27 85.15 76.66 83.37 74.57 78.15 85.25 88.11 48.88 76.60 99.13
F1-Score 99.16 78.22 89.66 83.84 88.98 83.89 78.14 80.11 78.20 48.52 86.60 99.13
Accuracy 98.63 82.87 89.38 78.67 78.52 76.94 76.14 80.25 81.30 54.14 80.31 98.61
IR Precision 98.64 76.41 84.97 88.11 87.44 78.14 81.17 76.25 76.25 35.17 84.22 98.61
Recall 98.63 80.42 79.58 76.41 74.25 79.52 74.71 87.24 74.6 27.88 79.30 98.61
F1-Score 98.63 85.16 73.47 85.52 80.88 80.11 90.77 82.27 90.47 90.74 86.14 98.61
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Table 5
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Comparative analysis of five distinct classification algorithms, gauging their performance through four key metrics over MAP-CNN data. These algorithms were applied to feature

subsets selected by NM-PSO and ten other competing algorithms.

Classification Performance Original improved PSO SFO Cco WOA MEHHO  BHHO IHHO GA DE GWNO  NM-PSO
algorithm metric CNN-Data
Accuracy 100.0 80.87 79.23 8336 8236 79.32 79..36 91.36 8235 8597 78.01 100.0
RF Precision 100.0 65.87 86.25 80.39 89.66 78.25 76.96 7498 7825 7945 86.25 100.0
Recall 100.0 85.22 87.54 86.87 77.55 86.14 87.35 73.97 8287 77.23  84.63 100.0
F1-Score 100.0 93.15 83.77 84.47 88.41 81.42 80.14 80.58 90.46 86.69 76.84 100.0
Accuracy 99.97 62.69 90.89 90.75 7478 81.36 89.75 81.27 83,52 80.84 8375 99.97
SUM Precision 99.97 21.11 77.67 78.12 78.96 81.95 88.22 82.25 90.29 90.12 80.66 99.97
Recall 99.97 60.97 76.54 79.12 76.65 76.84 75.25 73.85 86.66 83.15 87.35 99.97
F1-Score 99.97 4224 7312 8135 7323 91.52 90.58 78.68 86.37 91.63  89.64 99.97
Accuracy 99.41 67.13 80.15 75.54 86.37 76.57 81.95 81.99 76.89 89.37 75.25 99.43
KNN (K = 5) Precision 99.41 47.28 90.36 77.44 8495 74.22 88.67 73.40 7454 84.85 89.63 99.43
B Recall 99.41 35.33 81.98 79.58 76.77 81.24 78.77 75.23 8354 81.41 73.99 99.43
F1-Score 99.41 4.62 78.74 87.65 73.98  86.24 78.10.2  78.51 80.52 77.52 91.74 99.43
Accuracy 99.90 68.63 86.16 8237 90.74 77.28 84.36 76.20  90.27  87.37 73.14 99.85
IR Precision 99.90 65.03 86.52 9147 90.56 77.36 91.55 82.01 89.89 78.88 88.25 99.85
Recall 99.90 37.87 91.22 91.58 87.68 76.24 77.68 87.54 79.22 85.74 78.88 99.85
F1-Score 99.90 1.53 79.37 82,62 87.32 83.25 88.99 87.00 89.28 86.99  85.85 99.85
CNN-data MAP-CNN-data
'y 'y
GWNO $ —— GWNO
DE % B — S— DE % —— —
GA —— GA % D — —
THHO % e — THHO e
BHHO ¢ BHHO $ —_——
g
=
E MEHHO ¥ —_—— MEHHO $ ——
=<
WOA —(— WOA —_—C—
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Fig. 9. Bonferroni post-hoc test for the mean classification accuracy value of NM-PSO (bold blue line) and ten FS competitor algorithms for CNN-data and MAP-CNN-data. Clearly,
there is little overlap with NM-PSO. When the bars do not overlap with the blue line, this means that there is a significant difference from NM-PSO, and the null hypothesis is
rejected. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

identify instances where the hypothesis was rejected. Given that the
fitness value data, as depicted in Fig. 7, lacks a predefined distribu-
tion, our analysis leveraged the established non-parametric Friedman
test [51]. For enhanced visualization, this dataset was bifurcated into
two categories: CNN-data and its improved variant.

For statistical analyses presented within this paper, Matlab was em-
ployed as the tool of choice. It facilitated the computation of a p-value
for the aggregate dataset, which subsequently became an input for a
multi-comparison function executing a post-hoc test. In our scenario,
the Bonferroni test served this purpose. It is paramount to note that
when the derived p-value is below a specified threshold a, the standing
null hypothesis is repudiated. Consistently, the threshold « 0.05
was adopted in our analyses. Upon executing the Friedman test on
the comprehensive fitness value dataset on two separate occasions,
the resultant p-values were discerned as 1.158¢ — 9 and 2.125¢ — 10.
Notably, in both instances, the p-value was inferior to the a threshold,
leading to the rejection of the null hypothesis. Furthermore, Fig. 8
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illustrates the mean accuracy of the algorithms using the Friedman
test. To reinforce the validity of these outcomes, the post-hoc test was
deployed. The ensuing results from the Bonferroni post-hoc test are
illustrated in Fig. 9. A meticulous examination underscores minimal
intersections with NM-PSO in either case, fortifying the premise of NM-
PSO’s statistical distinctiveness from the ten competing algorithms. This
offers a rigorous mathematical affirmation of NM-PSO’s supremacy and
its distinctiveness from the other contenders.

5.6. Scenario V: Robustness analysis of the proposed model

Robustness in face recognition refers to the system’s ability to ac-
curately identify individuals across a range of varying conditions such
as different lighting, angles, facial expressions, occlusions, and across
demographic changes. The Charlotte-ThermalFace dataset is ideally
suited for evaluating robustness in our thermal face recognition systems
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used in law enforcement. It encompasses a diverse array of high-
resolution thermal infrared images, captured under varying conditions
such as different lighting, expressions, and distances, as well as indoor
and outdoor settings. This variety ensures the dataset effectively tests
the system’s performance in real-world scenarios. Further, we designed
two other scenarios (ambiguity and missing data) to demonstrate the
robustness of the proposed methods:

1. CaseI (Increased Ambiguity Level): Thermal cameras, commonly
used for security purposes, may produce ambiguous images
under certain conditions, including but not limited to:

(a) High Ambient Temperatures [52]: In environments with
elevated ambient temperatures, such as in industrial set-
tings or outdoors on sunny days, the background heat
can obscure or blur thermal signatures of human beings,
complicating clear identification.

Reflections [53]: Thermal cameras can capture infrared
radiation reflected off shiny surfaces like metal, glass, or
water. This reflection can distort thermal images, show-
ing altered temperatures that can mislead interpretations
about the sources and nature of heat signatures.
Distance and Focal Adjustments [54]: The clarity of ther-
mal images diminishes with distance. Humans located
far from the camera may appear blurred or indistinct.
Moreover, incorrect focal adjustments can lead to im-
ages lacking sharpness and detail, which complicates the
interpretation of thermal data.

(b

—

(c

—

The challenge of these three scenarios lies in ensuring that the
NM-PSO algorithm continues to function effectively even when
ambiguity reaches 50%.

2. Case II (Increased Missing Values, *): Errors in thermal camera
measurements can result in missing facial feature values [55].
The algorithm must leverage existing data to compensate for
these missing values. The objective is to maintain algorithmic
performance even when the proportion of missing values sur-
passes the existing values, approaching a 50% threshold of in-
completeness.

In this experiment, attention is exclusively focused on data refined
by the MAP-CNN due to its superior performance in prior tests. In
scenarios involving either an increased level of ambiguity or a higher
percentage of missing data, it is expected that the performance of
the NM-PSO algorithm will naturally diminish. However, the essential
aim of this investigation is not merely to confirm that performance
deteriorates under these conditions, but rather to assess the nature of
this degradation.

The question now, therefore, revolves around how gracefully the
NM-PSO algorithm manages this decline. The findings from this se-
ries of tests reveal that the NM-PSO’s degradation in performance, in
terms of both feature subset size and accuracy, occurs in a controlled
and gradual manner. This graceful degradation highlights the algo-
rithm’s robustness, demonstrating its ability to maintain a reliable level
of performance even as the complexity or ambiguity of the dataset
increases.

In the first case, the experiment quantitatively assesses the per-
formance of the NM-PSO algorithm relative to its competitors (see
in Table 6) under varying levels of feature ambiguity. This is sys-
tematically tested by artificially modifying the feature values on an
object-by-object basis before executing the FS, with increments ranging
from 10% to 50% in steps of 10%. Consequently, five distinct dataset
versions are created, and both NM-PSO and its competitors are evalu-
ated independently on each dataset. As the feature values are altered,
the dependency of the labels on the conditional features shifts, leading
to changes in the optimal feature subset. The variations in feature
subset size are detailed in Table 6, and the corresponding changes in
classification performance across four classifiers are depicted in Fig. 10.
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Table 6
Comparative analysis of the feature subset sizes selected by the NM-PSO algorithm and
its ten competing counterparts, with respect to varying ambiguity percentage.

FS algorithm 10% 20% 30% 40% 50%

SFO 3620 3655 3689 3724 3758
GWNO 3323 3355 3387 3418 3450
Cco 3800 3836 3872 3909 3945
MEHHO 3654 3689 3724 3758 3793
BHHO 3665 3699 3734 3769 3804
GA 3581 3615 3649 3683 3717
IHHO 3409 3442 3474 3507 3539
WOA 3745 3781 3817 3852 3888
PSO 3710 3745 3780 3816 3851
DE 3429 3462 3495 3527 3560
NM-PSO 2134 2154 2174 2195 2215

Table 7

Feature subset size selected by NM-PSO with varying missing value percentage over
MAP-CNN-data.

Missing value percentage

Feature subset size

10 2241
20 2375
30 2541
40 2744
50 2991

A detailed examination of Table 6 reveals that with increasing levels
of ambiguity, the size of the feature subset tends to expand for all
algorithms, including NM-PSO, due to the diminished discriminative
power of the features. Notably, the feature subsets determined by
NM-PSO consistently remain smaller compared to its competitors. Ob-
serving the classification performance depicted in Fig. 10, the NM-PSO
curve outperforms those of other algorithms. Although performance
degradation is a common trend among all algorithms as the ambiguity
level rises, the decline in performance is notably milder for NM-PSO,
underscoring its robustness against high degrees of ambiguity. This
resilience can be attributed to the sophisticated design of its fitness
function, which effectively guides the feature reduction process within
PSO. Specifically, NM-PSO’s ability to analyze data from a multigran-
ular perspective, treating categorical and numerical features distinctly,
plays a crucial role. Hence, even with up to 50% alterations in facial
feature values, NM-PSO maintains a commendable accuracy in human
identification.

In the subsequent experiment concerning Case II, we introduce
missing values into the dataset by artificially inserting null entries
(denoted by ‘*’) for various objects. It is important to emphasize that
NM-PSO is readily adaptable to accommodate these missing values.
This adaptation involves a modification of the categorical neighbor
function, Eq. (3a), as delineated in Eq. (6). This modification allows
NM-PSO to effectively handle incomplete datasets, ensuring that the
presence of missing data does not impede the algorithm’s performance.

9%),1(‘- = {uj | Vak €, Uui,ak = qu,ak v Uui,ak =% Aqu,ak#*}’ (6)

Furthermore, for numerical features, the approach to calculating the
difference between two feature values is adapted to accommodate
missing data, as delineated below:

1. If both values are present, the difference is computed through
traditional subtraction.

2. If one value is missing, the difference is treated as the value of
the existing feature. This is effectively equivalent to imputing a
zero for the missing value.

On the contrary, competitor algorithms employ traditional classi-
fiers as their fitness functions, which inherently lack the capability to
directly address missing values without resorting to preliminary impu-
tation strategies. This limitation necessitates additional preprocessing
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Fig. 10. Classification accuracy of trained by the FS selected by NM-PSO and its competitors versus the ambiguity percentage.

steps, effectively causing these algorithms to revert to methodolo-
gies akin to those applied in Case I, thus rendering their application
somewhat redundant for our purposes. Therefore, for Case II, we exclu-
sively assess the performance of NM-PSO. Mirroring the experimental
approach of Case I, we introduced missing values artificially to the
dataset, denoted by *’. This manipulation was conducted on an object
basis, progressively increasing the proportion of missing values from
10% to 50%, in increments of 10%. Consequently, we generated five
distinct datasets, each subjected to an independent execution of NM-
PSO. The resultant sizes of the feature subsets are documented in
Table 7. Additionally, the impacts of these variations on classification
performance, assessed through four different classifiers, are illustrated
in Fig. 11, providing a comprehensive view of the robustness and
adaptability of NM-PSO in handling incomplete data, thus making our
thermal face recognition model robust.

Please note that for the classification task, we re-imputed the data
following the FS task, which is justified as the imputation is now
performed post-FS. Upon closer examination of the results, it is evident
that the degradation rate remains relatively low until the missing
values constitute 40% of the dataset. Beyond this point, the degradation
rate increases marginally until it reaches 50%. This resilience can
be attributed to the use of RST notions by the NMGRS algorithm,
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which addresses missing values without resorting to imputation or
elimination, unlike other common algorithms.

5.7. Comparison with related work

End-to-end CNN-based image classification methods have demon-
strated significant success in various image recognition tasks, including
thermal face recognition. However, these methods often encounter
challenges when addressing complex scenarios involving illumination,
expression, and surgical invariance. Our proposed MAP-CNN model,
integrated with the NM-PSO algorithm, offers several critical improve-
ments in these areas.

Studies by Ramaiah et al. [15], Wu et al. [16], Fan et al. [17],
Sayed et al. [18], Kakarwal et al. [20], Aji et al. [23], and Ashfaq
and Akram [3] have achieved commendable recognition rates under
varying lighting conditions, focusing primarily on illumination invari-
ance. Despite this, these approaches often fail to maintain accuracy
when combined with factors such as expression and surgical changes.
The maximum accuracy achieved by these methods was 95% by Aji
et al. [23], with the minimal feature subset consisting of 3541 features,
as demonstrated by Ashfaq and Akram [3]. These results highlight the
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Fig. 11. Classification accuracy of trained by the FS selected by NM-PSO versus the
missing value percentage.

superiority of our model (achieving 99%) over traditional CNN-based
algorithms in handling illumination invariance.

Similarly, Manssor et al. [19] and Bai et al. [26] achieved 98%
and 90% accuracy, respectively, by considering both illumination and
expression invariance, but not surgical invariance. Additionally, our
model demonstrates superiority over the work of Muller et al. [22], who
focused on health-related face analysis post-surgical changes, achieving
93% accuracy where our proposed face recognition achieved 99%. The
integration of NM-PSO with MAP-CNN results in a significant reduction
in feature dimensions (by 57%), enhancing computational efficiency
while maintaining high classification accuracy. This integration allows
our model to effectively address illumination, expression, and surgical
invariances, as well as handle heterogeneous data. This is a notable im-
provement over traditional end-to-end CNN methods, which typically
require extensive computational resources and time for training and
inference. Furthermore, unlike conventional CNN-based models that
cannot directly handle missing values, our model is designed to manage
such scenarios, providing a crucial advantage.

Therefore, the MAP-CNN model combined with NM-PSO not only
surpasses existing methods in terms of accuracy and feature efficiency
but also offers enhanced robustness and adaptability to complex real-
world scenarios, making it a superior choice for thermal face recogni-
tion tasks.

6. Conclusions

Thermal imaging technology has been deployed in multiple domains
for identification and authentication, utilizing one or at most two
dimensions, namely illumination invariance and/or expression invari-
ance. However, this is the first known research that has triangulated
illumination, expression, and surgical invariance, thus providing a
robust recognition method for law enforcement agencies. This was
achieved by extracting robust facial features using the new MAP-CNN
architectures. Then, a novel FS algorithm, NM-PSO, was introduced to
select the most discriminative features reducing the computational cost
but keep the accuracy high. This innovative approach amalgamated
the robustness of PSO with the principles of neighborhood multi-
granulation rough set (NMGRS). An exhaustive comparative analysis
of NM-PSO against ten contemporaneous algorithms elucidated its
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preeminence, both in terms of reduced feature subset dimensions and
rapid convergence thus making the research methodically novel as
well. Moreover, when benchmarked with four renowned classifiers,
the feature subset delineated by NM-PSO consistently outperformed
subsets derived from alternative algorithms in classification efficacy. A
subsequent statistical evaluation, deploying the Friedman/Bonferroni
test, corroborated the distinct advantage of NM-PSO over its con-
temporaries. Robustness testing of the face recognition model against
image ambiguity and missing data further demonstrated its consistent
performance. The model was able to provide reliable results with up to
50% missing data and 50% image ambiguity, showcasing its resilience
and effectiveness even under challenging conditions. This highlights
the model’s practical applicability in real-world scenarios where data
imperfections are inevitable. As the NM-PSO proved its applicability,
we plan to develop a distributed version of it in the near future either
over MapReduce or the YARN framework. This makes it possible to
extend the algorithm benefit to multi-disciplines.
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