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ii. Thesis Summary 

Plant disease epidemiology is the study of plant pests and their related diseases in populations 

of plants over time and space. In plant disease epidemiology, mathematical and computer 

simulation modelling is often deployed to provide insight into the factors that drive spread, as 

well as to identify effective intervention strategies. A key intervention for the successful 

eradication and control of invasive plant pests is surveillance for early detection of invading 

populations. Models have been used to address outstanding research questions, such as what 

prevalence will a pest have reached when first detected and how much surveillance resources 

need to be allocated for early detection. This thesis addresses how generalisable early 

detection models are when applied to realistic epidemiological scenarios. Here I show that 

epidemiological parameters including the dispersal ability of the pest, landscape 

heterogeneity, detection assay sensitivity and surveillance intensity influence the degree to 

which a simple epidemic model, termed the ‘rule of thumb’, can be used to predict detection-

prevalence in complex epidemics. I also apply both the rule of thumb and a spatially-explicit 

stochastic epidemiological model to the case study of Oak Processionary Moth 

(Thaumetopoea processionea). These results indicated in particular that the rule of thumb is 

less accurate for short wavefront (spatially-compressed epidemic spread), highly virulent 

(infectious) pests where the frequency between surveillance rounds is long. These findings 

show that the rule of thumb benefits from increased surveillance frequency because the rule 

of thumb assumes constant sampling efforts in a non-spatial context with 100% detection 

rate. The findings also indicate that the effects of landscape heterogeneity are largely 

mitigated in the context of high distance pest dispersal and that a modification to the rule of 

thumb can increase generalisability drastically. I anticipate that the findings of this thesis will 

demonstrate that early detection models can be broadly applicable to a range of diseases 
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when dispersal distances of pests are high, virulence is low, landscapes are largely 

homogenous and detection sensitivity is high.  
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1 Chapter one: Introduction 

1.1. Background 

Plants are essential to life on earth. They are foundational to entire ecosystems, support 

national economies, feed the global community, provide pharmaceutical solutions, promote 

mental health and wellbeing, and supply a wealth of scientific insight (Hall & Knuth, 2019; 

Kumar, 2004; De Luca et al., 2012; Lortie et al., 2022; Balderman et al., 2016). Yet studying 

the impact of plant systems on both the local and global scale is often overlooked in favour of 

human-focused activities (Grierson et al., 2011). Overcoming this plant-blindness is perhaps 

the most important aspect of generating a sustainable future for all. Fortunately, as people are 

increasingly looking for healthy ways to interact with nature, awareness of plants continues to 

grow (Stagg & Dillon, 2022).  

However, an aspect that people do not often consider when thinking about plants is of the 

pests that affect them. In reality, plant pests pose a significant threat to our environment, 

agriculture and even the global economy (He et al., 2016). This is ironic as it is through 

awareness that a willingness to investigate plant disease arises; without investigation, there 

would not be surveillance. Surveillance is foundational to the development of effective plant 

pest management strategies (Parnell et al., 2017). The rate at which novel pests are 

establishing in regions is constantly increasing (Spence et al., 2020). The acquisition of 

surveillance data must match this pace because timely detection and intervention are crucial 

to mitigate their impacts on agriculture, biodiversity, and local economies (He et al., 2016). 

Therefore, the dependency on scientists taking the lead on data collection has never been 

greater. Co-ordinating scientists, stakeholders and other non-specialists requires accurate 

assessments of current knowledge on the status of pests. This is only possible through 

generating meaningful insights based on available data. The role of National Plant Protection 
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Organisations (NPPOs) has been well designated by the International Plant Protection 

Convention (IPPC) mandate; it is imperative that NPPOs adhere to and enforce phytosanitary 

requirements to ensure the safeguarding of global plants and trade (IPPC, 1997). NPPOs 

require sufficient resources and expertise to facilitate the gathering of evidence of plant 

disease, and the capacity to act on data to reduce the overall introduction and burden of plant 

disease (IPPC, 2016). The focus of plant disease specialists within this framework should be 

on translating data collected in the field into transparent insights for bilateral interactions 

between stakeholders and NPPOs. By these ends, the development of a repertoire of scientific 

models that are transparent and transferable is sorely needed. Therefore, it is the role of plant 

disease specialists to investigate biological phenomena and integrate their findings into the 

wider economic, social, and ecological framework through the effective use of models. This 

framework encompasses the economic considerations of the impact of plant disease on 

agriculture and trade, the social consequences of the loss of crop species according to cultural 

and trade value and the ecological ramifications for biodiversity and the delicate balance of 

ecosystems (He et al., 2016; Yang et al., 2006). 

Few attempts have been made to synthesise the overall impact of plant pests in the context of 

the above considerations, though Yang et al. proposed a system based on the risk assessment 

of disease (Yang et al., 2006). The narrow definition of risk assessment is considered as 

determining the potential epidemiological and economic impact of emerging or new diseases 

(Yang et al., 2006). Risk is a suitable index for summarising the causal interactions within the 

plant disease network because it relates the spatio-temporal aspects of disease with global 

stability (Yang et al., 2006; Hywatt-Twynam et al., 2017). Risk is also predictive and 

stochastic, and so is a generalisable parameter that is applicable in many plant disease 

scenarios (Yang et al., 2006; Hywatt-Twynam et al., 2017). Decomposing risk by specific 

criteria (such as likelihood of disease establishment, environmental suitability and extent to 
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seasonal dispersal) allows for targeted assessments according to the relevant stake holders 

affected (Yang et al., 2006). By using biological principles as a foundation for risk 

assessment, multiple objectives can be addressed. Therefore, it is logical that plant disease 

specialists have focused on quantifying risk in an epidemiological context. Ultimately, an 

ability to quantify risk in the context of specific objectives is vital to developing plant disease 

management strategies that can effectively reduce disease burden (Hywatt-Twynam et al., 

2017; Cunniffe et al., 2016). 

Examples of risk models include the parameterisation of sanitation methods, disease contact 

rates, dispersal, virulence, pathogenicity, economic burden, weather conditions etc. (Magarey 

& Sutton, 2007; Sundström et al., 2014; Newlands et al., 2018). Besides risk, it is also 

pertinent to consider impact, i.e., the degree to which a disease will reduce crop yield or 

damage ecosystems. With this consideration integrated into risk models, it has been predicted 

that the poorest communities globally will be disproportionally affected by the global 

increase in plant disease (Sundström et al., 2014). Expected global food demand is predicted 

to increase by 35% to 56% before 2050 because of the global population explosion and 

developing status of many countries (Van Dijk et al., 2021; Kc et al., 2018). Producing 

sufficient nutrition for all is not just a question of how to produce food efficiently, how all 

this food production will be protected from pests must also be considered.  Currently, there is 

too much reliance on a few select crops for sustaining human needs. Whilst it is enticing to 

use a single commodity crop that can serve the needs of nutrition and support local 

economies, many plant disease models have highlighted the risk associated with monoculture 

practises and agricultural intensification (Dun-chun et al., 2021; Uekoetter, 2011). The 

development of risk models therefore should look to towards a more holistic interdisciplinary 

approach, whereby the quality of prediction is improved over time by introducing or 

removing parameters based on sound scientific investigation. 
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Evidence indicates that the increase in plant pest establishment globally is a consequence of 

human-mediated activities (Bradley et al., 2010). For example, elevated CO2 levels have been 

demonstrated experimentally to increase the proliferation of invasive plant species, especially 

in arid regions (which constitutes 20% of available land globally) (Bradley et al., 2010; Smith 

et al., 2000; Nagel et al., 2004). Higher global temperatures have been demonstrated to 

increase the likelihood of insect pests surviving throughout the year, including overwintering, 

especially in colder climates (Dukes et al., 2009). In addition, increases in the global 

movement of material has presented many novel opportunities for plant pests to establish in 

new climates (Hellmann et al., 2007). Overall, climate change and globalisation are driving 

the establishment of plant disease through the transportation of material and changing the 

environment in favour of the plant pests (Pautasso et al., 2012; Evans & Waller, 2009). 

Examples of human-mediated changes include the expansion of agricultural land use, the loss 

of native habitats, altering water ecosystems and increases in urbanisation (Zabel et al., 2019; 

Hanski, 2011; de Barros Ruas, 2022). Modelling these trends is difficult to do 

mechanistically due to the extent to which stochasticity impacts investigation efforts. 

However, the localised co-ordination of NPPOs is the best option for managing the impact of 

these human-mediated activities, and effective plant disease management strategies hinges on 

transparency of data exchange between governments with unified objectives to managing 

plant disease (Yeh et al., 2017). A unified effort to managing global biosecurity will require 

further incentivisation in order to promote sustainable practises (Muhie, 2022). This overall 

strategy for global bio-security can only be effectively put in place with the use of models 

that can quantify the impact of NPPO activities. Simple models are now available to present 

the risk associated with sanitary practises and surveillance protocol, and the adoption of these 

models can be a priority for NPPOs co-ordinating their activities together moving forward 

(Magarey & Sutton, 2007; Parnell et al., 2012). Therefore, the focus of this thesis is on the 
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validation of simple transferable models that can assist NPPO activities across a broad range 

of epidemics and the implications of epidemiological modelling in the context of 

surveillance. 

1.2. Aims of thesis 

The purpose of this thesis is to assess the quality of simple early detection models that have 

broad application to many plant diseases. Parnell et al. (2012) derived a simple early 

detection model that predicts the prevalence of disease when it is first detected, which from 

this point forward will be referred to as the rule of thumb (named so for its simplicity). The 

rule of thumb is founded on the early growth rate of disease and the corresponding rate of 

surveillance, directly measuring the association between the surveillance rate and the growth 

rate of an epidemic (Parnell et al., 2012). The output of this model is a quantitative prediction 

of the total prevalence of disease when first detected. Therefore, validating this model for 

generalisability could be of benefit for future researchers and stake holders. Previous 

validation of this model has focused on non-spatial assumptions, i.e. measuring the accuracy 

of the model without spatial reference to host dynamics (with some exceptions) (Parnell et 

al., 2015; Parnell et al., 2012). Validation of spatially-explicit epidemiological models is of 

vital importance because dispersal mechanics are a fundamental aspect of the disease cycle 

(Wolf & Isard, 2007). By including dispersal mechanics within an epidemiological model, it 

is possible to build better representations of disease dynamics for further investigation. In this 

thesis, I will explore many aspects relevant to disease dynamics models with the use of 

spatial constraints and dispersal mechanics. There is much literature demonstrating how 

spatial assumptions introduce different epidemiological phenomena within models as 

compared to non-spatial assumptions (Riley et al., 2015). However, how spatial behaviours 

affect the accuracy of simple early detection models, and consequently how this impacts the 

development of pest surveillance management strategies, is largely unexplored territory.  
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Methods from the field of geostatistics have commonly been used to explore prevalence of 

disease, based on a population sample protocol (Parnell et al., 2017). However, these 

methods are not mechanistic, and hence do not capture underlying epidemiological 

phenomena. Species distribution models present different obstacles, primarily attributing 

equal probability to infection across landscapes (Parnell et al., 2017). By using a spatially 

explicit stochastic epidemiological model, realistic representations of a wide range of 

epidemics can be explored to infer underlying mechanistic principles, which can be applied to 

allow better early detection surveillance. 

Early detection of plant disease is of vital importance. Given the natural exponential growth 

rate of many polycyclic diseases (Gilbert & Parker, 2023), it is critical that a disease is 

detected before a disease can establish within a region (Augustin et al., 2012).  Early 

detection depends on the effective co-ordination of NPPOs. Using the rule of thumb can 

inform NPPOs with meaningful insight into the appropriate allocation of surveillance 

resources dependent on the disease in question (Parnell et al., 2012; Parnell et al., 2015). This 

is a major step towards optimising surveillance allocation, so that the focus can shift towards 

the quality of surveillance as opposed to quantity. There is still, however, outstanding 

questions that need to be answered with the rule of thumb. For example, how does detection 

sensitivity affect the accuracy of the rule of thumb? How does landscape heterogeneity affect 

the accuracy of the rule of thumb? How do epidemiologically relevant parameters such as the 

dispersal of pathogens affect the accuracy of the rule of thumb? Finally, can the rule of thumb 

be used with real application to a novel pest? This thesis seeks to address these outstanding 

questions.  
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1.3. Structure of Thesis 

Chapter two, the literature review, will first explore various aspects of plant disease and how 

it is linked to National Plant Protection Organisation activities. Chapter three then explores 

epidemiological parameters and their impact on homogenous landscapes to reduce variability 

in landscape effects. The objective here is to determine to what extent dispersal and 

transmission affect the accuracy of the model. Chapter four then explores landscape 

heterogeneity to explore how the aggregation of hosts in space affects the accuracy of the 

model. The objective is to introduce incremental levels of aggregation to quantify how this 

impacts the accuracy of the simple detection model. In chapter five, detection sensitivity is 

introduced into the picture to determine to what extent detection sensitivity impacts the 

accuracy of Parnell et al’s early detection model, and a derivative developed by Mastin et al. 

(Parnell et al., 2012; Mastin et al., 2020). Chapter six then goes on to explore a case study 

using derived epidemiological parameters on the novel pest Oak Processionary Moth 

(Thaumetopoea processionea) to highlight how current surveillance strategy is impacting the 

prevalence at detection of this pest. The objective is to demonstrate a methodology to 

deriving epidemiological relevant parameters to use within simple detection models. Chapter 

seven bring all these findings together to discuss the findings of the thesis, synthesising the 

findings together and highlighting their significance. 

Hopefully the reader will see the broader picture in validation of models and the methodology 

of investigation deployed here is left as a stepping-stone to the validation of other models of 

scientific interest. With the increasing prevalence of plant disease globally, the need for 

generalist expertise across a broad range of epidemics has never been greater. I intend to 

inform stake holders and scientists with the most thorough analysis to date of the accuracy of 

this simple epidemiological detection model by introducing various epidemiological factors 

such as dispersal distance and landscape aggregation, surveillance parameters such as 
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detection sensitivity and applying the models explored in this thesis to a real case study. The 

findings from this thesis will hopefully be of benefit to policy makers, agricultural 

communities and conservationists in optimising early detection and response strategies, 

thereby safeguarding our ecosystems, food security and economic interests from the 

escalating threat of plant disease.  
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2. Chapter two: Literature review 

2.1. Introduction 

2.1.1. History of plant disease 

Historically, there has been much interest in the occurrence of plant disease, with evidence 

that plant disease has been a constituent part of human life since agriculture developed 

(Agrios, 2005). Theophrastus, considered as the "father of botany", wrote extensively about 

plants, and gave descriptions of their diseases in "The nature of Plants" around 300 B.C. He 

noted that rusts were more common on cereal crops than on legumes, and that disease was 

more common and severe in lowlands (Stakman, 1957; Agrios, 2005). His contribution to the 

knowledge of plant disease was very limited however due to beliefs at the time, and plant 

disease management strategies were restricted to pleasing the Gods (Barnes et al., 2020). The 

first recognised control strategy for a plant disease was suggested by Albertus Magnus 

around 1200 A.D (Agrios, 2005). Albertus Magnus recognised mistletoe as a plant pest that 

reduced the quality of timber by swelling the trunks and causing breakage, and efforts to cure 

the tree by pruning marked the first documented control strategy (Siraisi, 2001).  

The first case of plant disease regulatory legislation arrived in the 1660s, when French 

farmers petitioned the French Government to remove barberry bushes near wheat crops to 

reduce the wheat rust agent Puccinia graminis f. sp. tritici (Stakman, 1957; Agrios, 2005; 

Barnes et al., 2020). It was still a century before the Puccinia genus was first defined, and 

more than a century after this before the general link between fungi and disease was 

established (Barnes et al., 2020). In the late 19th to early 20th century, wheat rust epidemics 

were very common in the US, in many years leading to a near total loss of wheat yield 

(Peterson, 2013). Outbreaks were common across the US and most of Europe, including the 
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UK, prompting drastic culling of barberry bushes through government legislation (Barnes et 

al., 2020).  

One of the most notable plant epidemics in history is the Irish potato famine in the 19th 

century, in which an estimated 1.5 million people died, and nearly the same emigrated from 

Ireland due to the devasting effects of late potato blight (Agrios, 2005). Late potato blight in 

Europe was caused by the HERB-1 strain of Phytophthora infestans, which was introduced in 

the 19th century from the Americas (Goss et al., 2014). Anton deBarry is best known for 

elucidating the life cycle of P. infestans in the mid eighteenth century, and the role of P. 

infestans in the development of symptoms associated with potato blight disease (Matta, 

2010). His experiments predated the discovery of germ theory by Louis Pasteur, as he 

demonstrated that spores from the previous season were the causal agents of the next season’s 

epidemic (Matta, 2010; Agrios, 2005). 

The debate regarding spontaneous production and the causality of disease continued into the 

20th century, though the gradual acceptance of Koch’s postulates eventually superseded 

previous theory (Zadoks, 2001). The 20th century was a pinnacle era in the development of 

the understanding of the conditions surrounding disease development (Zadoks, 2001).  Early 

in the 20th century, discussions moved to the nature of overwintering pests and pathogens, the 

transmission of pathogens between sub-species of crops and other plants and, perhaps most 

important to the general field of epidemiology, the establishment of epidemic growth curves 

(Zadoks, 2001, Brauer, 2017). Advances in plant pathology can be attributed to 

advancements in technologies such as microscopy and better understanding of the 

relationship between pathogen, host, and environment. Progress in the field of microbiology 

further facilitated advancement in quantitative epidemiology through the work of scientists 

such as Kermack and McKendrick (Zadoks, 2001; Brauer, 2017). After 1963, plant 
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epidemiology itself became a field of study, with the insights of scientists such as J. E. 

Vanderplank firmly advancing ideas such as the latent and infectious periods in plant disease 

epidemics, and better understanding of the theory underpinning quantitative plant disease 

epidemiology (Zadoks, 2001; Madden et al., 2017; Vanderplank, 1963) (see section 2.4 for 

further details). 

2.1.2. Biosecurity & significance of infectious plant disease  

Today, the significance of infectious plant diseases across the globe is undeniable (IPPC, 

2021; Antonelli et al., 2020; Global Plant Health Assessment & Savary, 2023). Globalisation 

has facilitated massive increases in trade and travel as well as the onset of climate change, 

and hence the risk of novel plant pests invading national borders is increasing yearly (Defra, 

2014; IPPC, 2021). The Food and Agricultural Organisation of the United Nations estimates 

that between 20 and 40 percent of global crop production is lost to pests annually, with these 

losses to plant disease costing the global economy around £170 billion (IPPC, 2021). 

Furthermore, plants directly contribute to quality of life and provide sustainable ecosystems, 

which can be disrupted by the destructive nature of plant disease (Spence et al., 2020; 

Turner-Skoff & Cavender, 2019). Infectious plant diseases can be identified by the 

characteristic symptoms that lead to damage: wilting, spotting (necrosis), rotting, mould, 

among others (Nazarov et al., 2020). Infectious plant diseases can also be identified by their 

causal agents: bacteria, fungi, viruses, protozoa, parasitic plants, oomycetes, nematodes and 

other vectors (Nazarov et al., 2020). Determining the causal agent of a disease is essential to 

further control measures. Firstly, treatment measures may vary in their effectiveness 

dependent on the individual pathogen species’ biochemistry. This is a major factor in 

prescribing the most effective mixture to mitigate losses, and other factors including multiple 

infections by disparate pathogens on the same host must also be considered (Jetiyanon & 

Kloepper, 2002). Secondly, identifying the causal agent is crucial to isolating the pathogen’s 
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mode of dispersal and reproductive potential. This information is vital for modelling the 

spread of a pathogen and must be considered for the purposes of prediction and estimation of 

yield losses within a plant population.  

For example, the fungus species Magnaporthe oryzae has been identified as the causal agent 

of rice blast disease, which is the most destructive disease of rice world-wide (Dean et al., 

2012). Rice is the primary calorie intake for half the world's population, and it is estimated 

than rice production will have to increase by 40% by 2030 to meet demand (Khush, 2005). 

Total crop losses of between 10%-30% annually due to M. oryzae are common, with sudden 

regional epidemics representing the typical scenario (Dean et al., 2012). Cisgenic breeding 

processes for rice cultivars resistant to rice blast disease have been proposed recently, and 

modelling the impact of such interventions is of much relevance to National Plant Protection 

Organisations (NPPOs) (Nalley et al., 2016). Considering the global significance of rice blast 

disease, amongst other prevalent diseases, optimising the link between modelling and the 

implementation of disease management strategies is vital if biosecurity measures are to be 

utilised effectively.  

Plant viruses also pose a major threat; for example, the establishment of tomato spotted wilt 

virus (TSWV; carried by its most important vector, Frankliniella occidentalis) has caused 

significant economic losses globally (Scholthof et al., 2011). TSWV is prevalent globally, 

where it has consistently reduced the yield of several important plant species such as tomato, 

peanut, pepper, and potato (Culbreath & Srinivasan, 2011; Roggero & Masenga, 2002; 

Parrella et al., 2003). The symptoms of this disease vary from species to species, and even 

from host to host, due to factors such as the age of the infected plant, the level of nutrition 

and environmental conditions (Best, 1968). Firstly, this degree of prevalence indicates that 

plant pathogens have sufficient capacity to spread across distances that span national borders. 
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Secondly, the unique presentation of symptoms on hosts due to the presence of TSWV 

demonstrates that the interactions between host, plant and environment largely determines the 

presentation of symptoms on plant species, which lead to our causal assumptions of the 

chances of damage or risk to entire populations (Kaniyassery et al., 2022). Fundamentally, 

these interactions between host, pathogen and environment underlie even the most basic of 

epidemiological models.  These interactions are ubiquitous across all taxa responsible for the 

symptomatic presentation of disease. 

A final example raised here for the diversity and significance of plant disease is an example 

from Nematoda. Pine wood nematode, (Bursaphelenchus xylophilus), is an example of a 

parasitic nematode that is devastating conifer trees globally, leading to significant economic 

losses (Mota et al., 2009). The destruction caused by B. xylophilus is comparable to the 

virtual elimination of the American chestnut by chestnut blight caused by Cryphonectria 

parasitica and elimination of ash trees in Europe by ash dieback caused by Hymenoscyphus 

fraxineus (McMullan et al., 2018). Prioritising disease management on a local scale should be 

based on a comprehensive understanding of local pathogenic species and ecological 

interactions from which targeted preventative efforts should be used (based on efficient 

modelling approaches) and the financial, ecological, and social value produced by a plant 

species. Perhaps more generally, global scale prioritisation should focus on sorely neglected 

plant diseases that have historically been overlooked in favour of the more popular human 

and animal diseases (Flood, 2010).  

Control of plant diseases is classified as high priority today, and is managed at a local, 

regional, and global scale (Stack, 2008). Challenges to plant biosecurity include human 

population growth, globalisation, climate change, bioterrorism and changing agribusiness 

trade networks (Stack, 2008). There is a need for standardised yet robust strategies for the 
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detection and eradication of plant disease backed by scientific knowledge of plant 

epidemiology with an open dialog between scientists, stakeholders and government to 

construct effective plant disease management strategies (Spence et al., 2020). Plant disease 

management strategies rely on anticipating occurrence of disease and attacking vulnerable 

points in the disease cycle, which can occur before or after infection has been established. 

Therefore, knowledge of plant epidemiology can be tremendously beneficial to informing 

plant disease management strategies (Filho et al., 2016). 

To address these challenges, there has been increasing emphasis on Pest Risk Assessments 

(PRAs). PRAs are analytical tools that evaluate the risks associated with the introduction with 

specific pests in specific areas. They consider the potential for entry, establishment, and 

spread of pests, and based on these assessments, offer informed decisions about the best 

course of action (Defra, 2023). Examples of PRAs include the UK Plant Health Risk 

Register, which has assessed over 1400 pests and pathogens as potential threats to the UK 

agricultural and horticultural landscape (Defra, 2023).  

One of the most effective risk reduction options that emerge from PRAs is the identification 

and closing of pathways. For example, if a specific pathogen is found to be prevalent in a 

trading partner’s country, then the trade of specific plants may be prohibited or restricted 

(Defra, 2023). Furthermore, the practise of horizon scanning is being adopted by many 

countries. Horizon scanning is a continuous, systematic process to identifying and assess 

future threats and opportunities for pest expansion. This continuous effort to identify 

potential pest risks pre-border is consistently advancing in scope and capacity with the help 

of machine learning (Sutherland et al., 2023). The emphasis lies on both pre-border and post-

border measures; while pre-border measures include rigorous inspections, certifications and 

quarantine protocol, post border measures involve surveillance, early detection, and 



 

15 

 

management of established pests (Defra, 2023). Machine learning techniques could be 

applied to many areas of plant disease management such as identification, classification, 

quantification and prediction of plant disease (Yang & Guo, 2017). Briefly, detection, 

quantification etc. of diseases can be performed by identifying key classifiers such as 

discoloration or leaf pattern changes caused by the symptomatic presentation of disease. 

Furthermore, coupled with advanced tools such as near-infrared (NIR) spectroscopy, changes 

in leaf content can be detected and quantified using machine learning techniques for the 

identification of disease before symptoms present themselves (Conrad et al., 2020). 

Advancing the use of machine learning requires using methods that are transferable from one 

disease scenario to another; for example, machine learning algorithms “trained” on canopy 

identifiers in a particular region may not be transferable without additional modifications to 

another region. 

To ensure the success of these measures, it’s important that there is constant and transparent 

dialogue between scientists, stakeholders, and government. Only by pooling the collective 

knowledge of plant pests and resources for pest management can it be possible to construct  

effective pest management strategies against the myriad challenges within plant biosecurity 

(Defra, 2023). 

2.2. Epidemiology of plant disease 

The purpose of plant epidemiology is to address plant disease epidemics as ecological 

phenomena, and then derive knowledge from which effective plant disease management 

strategies can be designed for tactical implementation (Filho et al., 2016). With the 

advancements in machine learning algorithms and computational power it is possible to 

derive effective modelling solutions with the use of data alone, though this does not provide 

as much causative inference as with building mechanistic models (Tourinho & Vale, 2023). 
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A fundamental understanding of the plant disease triangle is essential to modelling the 

disease dynamics within plant epidemiology (Figure 2.1) (Agrios, 2005).  

 

Figure 2.1. The plant disease triangle. All three components must be present for the 

occurrence of disease. Image taken from precisionfarmingdealer.com (1st September 2023). 

To make an estimation of how a pathogen will spread we need to address fundamental 

questions relevant to host susceptibility, pathogen virulence, pathogenicity, and the 

conducive nature of the environment (Barrett et al., 2009; Sacristán & García‐Arenal, 2008; 

Meentemeyer et al., 2012; Lapin & van den Ackerveken, 2013). Historically, the distinction 

between pathogenicity and virulence has been obscured in plant disease literature; recently. 

virulence has been defined as the reduction in host fitness caused by the interaction between 

host and pathogen. and pathogenicity as the capability of a pathogen to establish itself on or 

within host material (Barret et al., 2009). Modern development in plant epidemiology does 
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not consider these factors in isolation. Host susceptibility is affected by a pathogen’s 

evolutionary capabilities, pathogenicity is altered by the landscape distribution of hosts or the 

variability in climate parameters, and the environmental distribution of plants is changed by 

the establishment of endemic disease (Turner, 2005; Meentemeyer et al., 2012; Lapin & van 

den Ackerveken, 2013). Furthermore, the picture becomes increasingly complex as we 

consider multiple infections on individual hosts, spillover to non-target species, the 

evolutionary “arms race” between host and pathogen, and the influence of human activity in 

the context of landscape ecology (Barret et al., 2009, Turner, 2005; Lapin & van den 

Ackerveken, 2013). Furthermore, with advances in knowledge regarding the introduction of 

novel plant diseases as a direct consequence of human-mediated climate change and 

globalisation, plant epidemiology must consider and anticipate factors that remain largely 

unknown. Therefore, plant epidemiology must rapidly adapt as a field in which prediction is 

possible across categories of taxa larger than ever before. Plant epidemiology has a strong 

mathematical and statistical basis on which to build realistic models to be utilised across 

spatial, temporal, and spatio-temporal populations (Cunniffe et al., 2015); how these models 

can be translated into meaningful tools for stakeholders to embrace within the schema of 

plant disease management still remains a fundamental challenge of plant epidemiology in the 

21st century (Madden, 2006). 

2.2.1. Pests & pathogens 

The number of species capable of damaging plants is well recorded. Over 10,000 species of 

fungi damage plants through the causation of diseases such as the rusts, mildews, and 

leafspots (Nazarov et al., 2020). In addition, the diversity of oomycetes (as defined by their 

diploid life cycle), as currently known is vast and continuing to expand (Kamoun et al., 

2014). Approximately 4500 plants are considered to live parasitically on other plants (Gogoi 

et al., 2020). There are nearly 2000 different species of virus currently known to cause 
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damage in plants (Gaur et al., 2021). Approximately 150 bacterial species are known to cause 

diseases such as rots, wilts, and blights in plants (Kannan & Bastas, 2015). Parasitic 

nematodes are also causative agents of plant disease: at least several hundred are known to 

feed on plants, causing a variety of diseases worldwide (Agrios, 2005).  

The proliferation of plant disease is largely dependent on factors integrated within the plant 

disease triangle; however, here I will focus on the biology of pathogenic species as a means 

of classification and characterising epidemiological behaviour. Modelling the proliferation of 

pathogenic species, and to an extent the total virulence within a population, requires detailed 

inference on the reproductive capacity of the pathogen, the dormancy period in which a pest 

requires to become virulent, mechanisms of dispersal, and overall pathogenesis (Wolf & 

Isard, 2007). It logically follows that the duration of time necessary for a complete replication 

cycle consequently plays a significant role in the growth rates of epidemics (Gergerich & 

Dolja, 2006; Agrios, 2005). Fungi, bacteria, and viruses typically have short reproduction 

cycles (replicate rapidly) and produce relatively large quantities of inoculum, thus are likely 

to proliferate quickly.  A short reproduction cycle leads to a polycyclic epidemic whereupon 

plants that are infected act as secondary sources of infection during an epidemic expansion 

phase (Sacristán & García-Arenal, 2008). Longer reproduction cycles, such as those for 

parasitic plants, nematodes, and some species of fungi, result in slower offspring generation 

(Agrios, 2005). Infected plants often cannot act as secondary sources of inoculum in these 

cases, and the epidemic is classified as monocyclic. Whether a disease is polycyclic, 

monocyclic, or some variant of either, should inform stakeholder’s disease management 

decisions. van der Plank initially proposed over sixty years ago that the key to effective 

disease management for monocyclic diseases lies in targeting the primary source of infection 

that drives the epidemic (van der Plank, 1963). This approach, whilst a foundational insight 

to the field of mathematical plant epidemiology, requires a more modern analysis. Recent 
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advances in modelling and pathogen control techniques have demonstrated that the quantity 

and relationship between primary and secondary inoculum is context dependent on the 

particular pathogen strain, the host distribution (through both time and space) and the 

environment in which the interactions between pathogen and host occurs (González-

Domínguez et al., 2020). For example, whilst the polycyclic disease cycle is traditionally 

defined by the logistic equation (with y0 representing primary inoculum), study of sexual and 

asexual stages of oomycetes have led scientists to include additional terms to reflect the 

variable disease intensity contributions of numerous phases (offset by temporal 

considerations) (González-Domínguez et al., 2020). This emphasizes the evolving nature of 

epidemiological strategies and the need for their continual refinement based on the latest 

scientific insights. The parameter r is calculated as the rate in which inoculum will replicate 

given the current infection status of hosts. Therefore, for disease cases where rapid 

replication of inoculum is prevalent, focusing on the host-pathogen interactions is prioritised 

over identifying the initial source of inoculum (Nutter, 2007).  

The dispersal mechanisms of plant pathogens are additionally important considerations when 

characterising diseases within the context of plant epidemiology. In some cases, fungi and 

parasitic plants produce their inoculum on the surface of the aerial parts of the host (such as 

spores and seeds), and therefore dispersal can be facilitated over long distances through 

environmental factors associated with weather conditions (Magarey & Sutton, 2007). In 

contrast, viruses depend entirely on systematic relationships with vector carriers or other 

means of co-transportation to be actively transmitted from plant to plant (Gergerich & Dolja, 

2006). For example, Tomato spotted wilt virus (TSWV) multiplies in cells of thrip vectors 

(such as Frankiniella spp.); however, dispersal is restricted to adult thrips because larvae and 

pupae do not feed on plant material (Salvalaggio et al., 2017). Understanding this 

phenological behaviour is one of many critical factors relevant to mechanistic modelling; 
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including other components of thrip life cycles and preferred weather conditions for both 

pathogen and vector are also essential (Salvalaggio et al., 2017; Chappell et al., 2013). 

Synthesising all of these parameters into meaningful models that can be considered 

generalisable (i.e., transferable across spatial and temporal boundaries) even for the single 

TSWV virus-vector relationship presents a challenge to scientists, and consequently 

difficulties for stakeholders (Magarey & Sutton, 2007). Discussions of these challenging 

phenomena will be presented later in this section, though it suffices to state a lack of 

standardisation of parameters, a dependence on modelling specialisation in select crops, and 

the inherent challenges presented by modelling overall risk in terms of summary variables 

collectively create barriers to the development of transferable models (Magarey & Sutton, 

2007). 

Whilst fungal spores will not utilise an active vector seeking host plants, the dispersal 

(release) mechanisms can be effective with small perturbations in the environment 

(Mukherjee et al., 2021). The passive removal of spores from their hosts because of climatic 

forces such as wind force is often sufficient enough for the successful propagation and 

establishment of diseases (Chaudhary et al., 2022). Hence, the largest proportion of plant 

diseases that are known are fungal, simply due to the successful mechanisms of reproduction 

driven by evolutionary forces (Magarey & Sutton, 2007). Field experiments have identified 

spore movements of several hundred kilometres in what is known as a long-distance dispersal 

event (Rieux et al., 2014; Prospero et al., 2005). The pattern of spore dispersal is also 

cyclical, with peaks in spore concentration in the middle of the day (Oneto et al., 2020). 

Other mechanisms of dispersal have been recorded across the fungal taxa. These mechanisms 

include responses to the wetness of the host or pathogen, changes in air temperature, changes 

in humidity, and total exposure to irradiance (both short and long wavelengths) (Chaudhary et 

al., 2022).  Choosing the appropriate model for fungal epidemics depends on the effective 
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characterising of dispersal with the use of the most appropriate mathematical representation. 

The mechanistic modelling of take-off, transport and deposition processes depends on the 

interactions between transmission parameters and dispersal parameters within mathematical 

frameworks.  

Plant diseases caused by bacterial species can be dispersed in a variety of ways, though on 

short dispersal scales splash dispersal is often a key factor. Here the binding of bacteria to 

plant cells by mixing with water reduces the likelihood of removal via wind intermittence 

(Jones & Harrison, 2004). Similarly, plant nematodes are adapted to heavier moisture 

conditions as they typically move through the film of water that is attached to soil particles, 

or otherwise thrive in light, sandy soils (Kim et al., 2017). Modelling soil-borne plant 

nematodes must particularly account for human mediated transportation activities, as soil-

born nematodes have very restricted mechanisms of dispersal via natural movement. Unlike 

other plant pathogens, aquatic plant nematode species have unique dispersal mechanisms 

constrained by hydrodynamics (Ptatscheck & Traunsprunger, 2020). Plant nematodes 

typically thrive in warmer climates where longer growing seasons extend feeding periods and 

increase reproduction rates (Somasekhar & Prasad, 2011). Examples of bacterial and 

nematode species of significant economic or research importance include Xanthomonas spp., 

Xylella fastidiosa, Globodera spp., and Radopholus similis (Mansfield et al., 2012; Jones et 

al., 2013). The diversity of plant pathogens globally demonstrates the repertoire of (largely 

species dependent) variables and processes that researchers must consider. Hence, researchers 

(particularly practitioners) within plant pathology are usually specialised in their focus on a 

select few pathogenic species, leading to difficulties in amalgamating generalised 

mechanistic data for transferable model synthesis (Magarey & Sutton, 2007).  
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The vertical transmission of pests (i.e. vegetative transmission) are equally important 

considerations. Vegetative transmission is a major concern for most field crops, fruit, 

ornamental trees, and shrubbery where readily accessible plant organs are available for 

transplantation (He et al., 2019; Cobos et al., 2019; Galperin et al., 2003). Recent research 

has indicated however that vertical transmission of pathogens acts as a double-edged sword 

for plant species. Vertical transmission of certain micro-organisms can promote plant health; 

and incidences where pathogen virulence is decreased and plant resistance is increased 

through selection processes that promote these micro-organisms have been recorded (Pagán 

et al., 2014; Truyens et al., 2015). Mechanical transmission of pathogens through sap transfer 

is less common, though plant viruses such as potato virus X, tobacco mosaic virus and 

cucumber mosaic virus can cause significant crop losses through mechanical transportation 

(Gergerich & Dolja, 2006; Cruz et al., 1998; Murakishi et al., 1971). Mechanical 

transmission of pathogenic bacteria can also occur through abrasions or wounds on leaves, 

stems or roots; the pathogen Xanthomonas campestris pv. pruni, for example, is transmitted 

from cankers on infected plum trees to nursery trees when pruned under suitable weather 

conditions (Goodman & Hattingh, 1988). Given the role of human-mediated activities in the 

increased transmission of pathogens; some scientists have considered the plant disease 

triangle as a tetrahedron instead (with human-mediated influences such as farming practises 

as the fourth vertex) (Francl et al., 2001). Alternatively, time is often expressed as the fourth 

variable to the plant disease relationship instead of human activity because of the temporal 

considerations over the duration of plant disease epidemics (for example, host senescence).  

The transmission of plant disease from the preceding generation of epidemic inoculum, often 

referred to as overwintering, is also a major concern to biosecurity. Seeds not fully 

submerged in soil surfaces account for the largest proportion of overwintering events, though 

volunteer plant species and plant debris also contribute to the indirect transmission of plant 



 

23 

 

disease over seasons (Jaspers et al., 2015). The presence of indirect overwintering sources is 

contextual on the geographic landscape in which a plant disease has established. The 

establishment of disease in an urban region may lead to rapid proliferation in surrounding 

rural areas, so overwintering management efforts should ideally require consideration of 

landscape epidemiology, as in the case of Huanglongbing and psyllid survival over winter 

months in Florida (Martini et al., 2020).  

2.2.2. Environment & host 

Environmental factors significantly contribute to the proliferation of plant disease epidemics 

and therefore must be considered as integral to the plant-pathogen paradigm (Kalaris et al., 

2014). Weather conditions such as wind intermittence, irradiance, humidity, and temperature 

play a significant role in the proliferation of most plant pathogens, as well as environmental 

gas concentrations of CO2 and CH3 (Kalaris et al., 2014; Chaudhary et al., 2022; Velásquez et 

al., 2018). Fundamentally, studying the interactions between disease presence and weather 

conditions is currently the most viable method of developing generalisable models due to the 

availability of climate data and the relatively simple methods of identifying parameter ranges 

in which pathogens will proliferate (Magarey & Sutton, 2007). Typically, it is a rule of thumb 

that conditions suitable for a plant host are suitable for their pathogens. 

Leaf wetness for example encourages plant growth but contributes to the overall 

susceptibility of plants to infection (Velásquez et al., 2018; Kalaris et al., 2014). In contrast 

we find some diseases, such as the causative agent of rice blast disease (Magnaporthe 

oryzae), are significantly more prevalent during drought conditions (Velásquez et al., 2018). 

The virulence of many other diseases is known to be affected by precipitation and humidity 

(Clarkson et al., 2014; Thompson et al., 2013). Effectively developing sufficient systems of 

modelling these interactions involves a solid understanding of not only host-environment 
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interactions (i.e. leaf wetness), but also environment-environment interactions (i.e. soil 

composition-precipitation) under which the host is interacting (Thompson et al., 2013). If a 

mechanistic model focuses on partial environmental interactions, there is a risk that 

insufficient complexity has been captured. This risk can lead to confounding factors 

remaining unknown; thus, a model that captures some behaviour in a particular species may 

not be transferable to another. If the model parameters are designed for the purposes of 

prediction, then this can lead to disastrous consequences (Ioannidis et al., 2022). 

Temperature is another key environmental driver of disease (Magarey & Sutton, 2007). For 

every plant pathogen interaction, there is an optimal temperature at which disease develops 

(Velásquez et al., 2018). For a simplistic comparison of this generalised principle, the potato 

cyst nematode Globodera pallida has an optimal temperature of approximately 15 °C for 

disease growth, whereas the temperature range of 27 °C to 35 °C is optimal for the virus 

Xanthomonas oryzae (Horino et al, 1982). Variability in optimal temperature is not restricted 

to the unique classification of plant pest species. Optimal temperatures can significantly vary 

between species and even sub-species of the same genera (Rossi et al., 2001). Furthermore, 

the host-pathogen interactions influence the degree to which temperature is a determining 

causal factor. Optimal temperature growth for a plant pathogen may vary across host species. 

The temperature influence may itself be influenced by co-infections or exposure to other 

hazards as in the case of Iflavirus whereby multiple pathogen infections alters the minimum 

requirements for proliferation (Jakubowska et al., 2016; Ponnuvel et al., 2022).  

 Weather conditions also impact overall vector density and survival rates throughout the year. 

The survival rate of vectors over winter months is well-explored within the literature due to 

the relevance it bares on the expansion of disease (Roos et al., 2011; Zeilinger et al., 2017). 

As the trend in global warming continues to increase positively, insects are most likely to 
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benefit from increasing temperatures based on favourable changes in vector biology and 

changes to agricultural practise (Roos et al., 2011). Vector density is also demonstrated to be 

positively associated with the current trend in changing climate conditions, albeit this is a 

complex dynamic to model (Zeilinger et al., 2017).  

How host plants interact within the plant disease system is another aspect that must be 

considered when delineating causal relationships for the purposes of disease management. 

Plants have natural defence systems that can cope with many different pathogens (Heil & 

Bostock, 2002; Lapin & van den Ackerveken, 2013). However, the interactions between plant 

host and pathogen are complex and the consequence of the genetic arms race between plant 

host and pathogen can lead to dire consequences for plants (Lapin & van den Ackerveken, 

2013). For example, components of plant surface waxes can promote the germination of 

fungal spores and flavonoids released by the host plant into the soil can attract soil-borne 

pathogens (Lapin & van den Ackerveken, 2013). Given the typical genetic uniformity of crop 

species within a cultivar, the aggregation of genetic predisposition to infection can compound 

to more severe epidemics (Brown et al., 2004). Conversely, the introduction of genetic 

resistance is a possible strategy to strengthening crops and reducing the likelihood of 

pathogen establishment (Lapin & Ban den Ackerveken, 2013, Nutter et al., 2007; Adams et 

al., 1971). Genetic resistance has been utilised in various crops (such as barley, potatoes and 

rice) to reduce the impact of their associated fungal pathogens, significantly increasing yield 

as a result (Parlevliet, 1979; Rimbaud et al., 2021).  

The composition of an effective plant resistance system must consider the spatio-temporal 

scale that includes the genetic deployment strategy (Parlevliet, 1979; Rimbaud et al., 2021). 

For example, the dispersal of resistant genes may be aggregated within one cultivar, 

introduced across a time interval through crop rotation or segregated as a mosaic of resistance 
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across an entire landscape (Parlevliet, 1979; Rimbaud et al., 2021). These considerations are 

not limited to genetic resistance; the general principles of landscape distribution (i.e. how 

plants are distributed throughout space) and how this impacts host susceptibility to disease 

are well studied (Brown & Bolker, 2004; Rottstock et al., 2014; Plantegenest, 2007). 

Broadening the scale from field to landscape, aggregated clusters of hosts emerge in what are 

often referred to as “patches” (Malavasi et al., 2016; Plantegenest, 2007; Borer et al., 2016). 

By using a multiscale approach that incorporates larger landscape behaviours, more accurate 

models of plant host-pathogen interactions can be derived (Borer et al., 2016). Disease 

progression is different from pathogen to pathogen, how these interactions between host and 

pathogen lead to disease and further quantifying the disease progression curve itself is the 

foundation to developing effective disease strategy. It is therefore vital to develop techniques 

that can either deduce the degree to which landscape plays a role within this foundation or to 

inductively explore how landscape shapes disease behaviour through experimentation. Patch 

effects are well documented in literature (Johnson & Haddad, 2011; Plantegenest, 2007; 

Mundt et al., 2011). The challenge remains to synthesise models that can account for patch 

effects in nature and only with a plant epidemiologist or plant disease ecologists perspective 

is this possible.  

Overall, the interactions between host, pathogen and environment are complex, dynamic, and 

unique. This leads to difficulties in generalising models for application across a broad range 

of taxa. However, progress in the understanding of the underlying mechanisms of disease 

establishment and proliferation does mean that there are plenty of models and experimental 

data to inform concerned scientists and stakeholders when considering effective disease plant 

disease management strategies (Zaffaroni et al., 2020; Parnell et al., 2015). It is important to 

consider the spatio-temporal scale of these interactions when understanding the entire system 

and both the direct and indirect consequences of intervention, from gene to landscape. One 
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could visualise the plant disease triangle becoming a Sierpinski tetrahedron (Figure 2.2). A 

fourth element is introduced (time) to become a tetrahedron and the aggregation of hosts as 

space between systems is removed approaches the Sierpinski tetrahedron. The tetrahedron 

represents the addition of the fifth variable space. However, given the restrictions on the 

formation of a Sierpinski tetrahedron, the spatial dimension can only be represented as 

uniformly distributed elements; the reality of spatial considerations is indeed more complex 

than this would suggest. Accounting for the spatial components of disease proliferation 

remains a challenge for 21st century plant disease research. 
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Figure 2.2. Sierpinski tetrahedron to demonstrate the fourth and fifth variables of time and 

scale respectively within the plant disease system. A Sierpinski tetrahedron is a fractal form 

of a regular tetrahedron. Inner space is removed iteratively as the dimensions of the shape 

approaches 2. By summarising the entire disease system within a single host and representing 

this knowledge as the original tetrahedron, every removal of space within the tetrahedron 

represents a shifting of scale tending towards the entire landscape. The original system 

becomes an aggregation of individual sub-units representing a complex mosaic of landscape 

across time. This representation reflects both an increasing understanding of the interactions 

involved in plant disease systems and the increasing complexity required to meet the 

challenges of plant disease management. Image adapted from 

www.robertdickau.com/tetrahedron.html (1st September 2023). 

 

http://www.robertdickau.com/tetrahedron.html
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2.3. Plant disease surveillance 

2.3.1. Surveillance objectives 

Surveillance is a critical component of plant disease management strategies, and has multiple 

purposes for biosecurity; consequently, it is a mandatory activity of NPPOs (IPPC, 2016). 

New tools have been developed to address surveillance strategies such as the deployment of 

molecular tools, geographic information systems and remote sensing (Bronzato Badial et al., 

2018; Madden et al., 2017; Zhang et al., 2019). However, designing surveillance strategies 

sufficient to control plant disease is multi-faceted and complex (Parnell et al., 2017). There 

are statistical design requirements (i.e. quantifying confidence intervals to produce 

meaningful insights) that must sufficiently meet the standards of the inspectorate. The 

minimum level of confidence in surveillance output is often sacrificed to meet financial or 

logistical constraints; often ideal surveillance objectives are not met due to limited resources 

or budget allocation (Parnell et al., 2017). Likewise, if a targeted region of surveillance 

outmatches surveillance resources, then the focus of surveillance efforts often shifts instead 

to critical pathways of entry (IPPC, 2007). Furthermore, how many surveillance resources to 

allocate to a particular plant disease shift depending on economic and social variables which 

may be difficult to quantify (Garret et al., 2011; Cunniffe et al., 2015). Overall, developing 

surveillance strategies is a challenge even without considerations of the plant disease cycle. 

Model based approaches have been used to address these outstanding issues in plant disease 

surveillance (Cunniffe et al., 2015). The inclusion of disease dynamics within surveillance 

models remains a challenge that sorely requires investigating. Disease dynamics provide 

insight into how diseases spread over time. Incorporating these dynamics into surveillance 

models enhances the likelihood that predictions are more aligned with real-world scenarios, 

thus enhancing the accuracy of forecasts. Furthermore, incorporating disease dynamics into 

surveillance models ensures that surveillance models account for fluctuations and 
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stochasticity in natural disease spread. Including disease dynamics also ensures that resources 

are used efficiently, without missing critical information on disease spread such as high-risk 

pests or particularly vulnerable regions.  

2.3.2. Surveillance operations 

Surveillance operations have broad application; typically categorised as early detection, 

monitoring, delimiting and pest free confirmation (Kalaris et al., 2014). Surveillance 

protocols, coupled with analysis, are how data are gathered to address the on-going 

challenges of managing and preventing losses due to plant disease. With the use of effective 

surveillance, data are available to estimate the impact a disease will have. With the use of 

analysis, theses data ar translated into meaningful insights to overcome economic, social and 

health challenges related to plant disease (Kalaris et al., 2014).  

The ultimate objective of detection surveys is to discover invasive species before they have 

become firmly established in a region (Kalaris et al., 2014). However, if an incursion is 

already established then surveillance protocol is shifted to a monitoring process, where 

classification of the prevalence of disease per area is determined (James, 1974). If a pathogen 

has been detected, then it is the role of monitoring surveys to maintain an ongoing assessment 

of disease (James, 1974). The means by which this is done is relatively straight-forward and 

common. Firstly, field experiments are conducted to establish the virulence and pathogenicity 

of disease, secondly this information is used as the foundation for assessment in another 

population (James, 1974).  

Detection surveys are like monitoring surveys in that they can provide the foundation for 

detection and diagnosis; coupled together detection and monitoring surveys provide a 

powerful means for risk analysis and quantifying the impact of disease. The purpose of these 

surveys is to assist by informing plant disease management strategy development through an 



 

31 

 

effective a warning system to nearby regions in the event of another epidemic and informing 

stakeholders as to the appropriate level of disease control necessary (Kalaris et al., 2014).  

On the other hand, delimiting surveys are used when NPPOs and stakeholders need to 

determine the extent to which a region is infected by a pest when knowledge of the pest 

distribution or prevalence is unknown (Kalaris et al., 2014; IPPC, 2016). Delimiting surveys 

often follow the detection of a novel incursion via a detection survey (Lázaro et al., 2021). 

Logically, the objective of a surveillance strategy is a result of the known spatio-temporal 

distribution of a pathogen; Figure 2.3 is a simple analysis of selecting the most appropriate 

surveillance strategy (Figure 2.3).  

 

Figure 2.3. The decision support process for selecting the most appropriate survey objective. 

Taken from the 2016 IPPC surveillance guidance report (IPPC, 2016). 
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2.3.3. Surveillance methods 

The three fundamental methodologies available for surveying plant disease are classified as: 

sampling surveys, trapping surveys and visual examinations (IPPC, 2016). These three 

fundamental methodologies vary in their method of collecting data and range in specificity 

and sensitivity. In sampling surveys host material, pests or soil are collected for identification 

and analysis (IPPC, 2016; Dean et al., 2005; Lázaro et al., 2021; Le & Vu, 2017). Prior to the 

first decade of the 21st century, molecular techniques for identification and analysis were 

expensive and time-consuming to operate. However, thanks to technological advances such 

as real time PCR and ELISA, the rapid and inexpensive identification of pathogens has 

become a viable option for surveyors (Defra, 2014; Schaad & Frederick, 2002). In contrast 

sampling with molecular diagnostic tools, trapping surveys such as those used for vectored 

diseases are used prior to disease symptom onset (Jackson & Bayliss, 2011). Trapping tools 

are far easier to operate than molecular diagnostic sampling tools and have the additional 

benefit of being useful without human-facilitated operation. However, data requires 

specialised expertise to identify pests and pathogenic spores and therefore will be less 

accurate overall than molecular tools. Furthermore, as trapping tools are often designed to 

capture specific pests or pathogenic spores, the transferability of these methods is therefore 

lacking. Coupling trapping methods with molecular diagnostic methods has demonstrated 

promising results with real application to managing plant disease (Klosterman et al., 2014).  

Early detection of plant disease pivots on the use of appropriate and efficient surveillance 

measures; utilising trapping tools is useful for vector-borne and fungal diseases in the early 

phase of epidemic management but these tools have limited application for other pathogens 

such as viruses and bacteria (Jackson & Bayliss, 2011).  For the purposes of biosecurity, 

confidence in positive results, reliability with repeated use and rapid identification of pest or 

pathogen are all critical components of any novel survey device (Jackson & Bayliss, 2011). 
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Visual surveys are a simple form of disease inspection, but results are often subjective and 

require the onset of symptoms before being applicable (Martinelli et al., 2015). With the aid 

of technological advancement, visual inspection has become more consistent via the use of 

visual light photography and digital image analysis (Martinelli et al., 2015). The development 

of deep-learning software now presents a feasible opportunity to rapidly diagnose plant 

diseases based on automated image recognition through images captured on smart phones 

(Mohanty et al., 2016). In addition, recent advances in artificial intelligence (AI) have 

prompted scientists to investigate the combination of AI and Remote Sensing (RS) 

technology. This promising avenue of research could be potentially useful in detecting plant 

disease through the measurements of electromagnetic wave readings; though this has yet to 

be proven as operationally feasible (Martinelli et al., 2015). However, RS could potentially 

provide highly accurate visualisation of the spatial distribution of plant disease, and these 

data could directly feed into a plant disease surveillance strategy (Martinelli et al., 2015).  

The structure of the sampling method may also affect the outcome of the survey. For 

example, sampling may be randomly selecting hosts in a population, systemically selecting 

hosts according to some ordering scheme, separated according to some "strata" or selection 

based on clustering (Kalaris et al., 2014). Sample size, confidence in the results and detection 

threshold are connected; typically, if the sample size is larger, then the confidence in the 

results below a certain threshold is greater (Kalaris et al., 2014). The sampling scheme used 

must be specified by the relevant stakeholders and NPPOs, taking into consideration the 

results required given resources available whilst meeting the obligations of the IPPC (Kalaris 

et al., 2014; IPPC, 2016). This requires in part a fundamental understanding of the biological 

impact of the disease in question, which can be estimated using epidemiological modelling. 

Developments in plant pest modelling have integrated sampling protocol with 

epidemiological growth to predict the extent of disease prevalence within a population when 
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first detected (Parnell et al., 2012). Modelling approaches such as this one are very simple to 

parameterise and thus their predictions have much utility if accurate.  

Plant disease “behaviour” is fundamentally unique to each system contained within the plant 

Sierpinski tetrahedron as described above. Therefore, capturing epidemic “behaviour” within 

our surveillance approach is critical to developing successful plant disease management 

strategies. Investigations must be made at each variable within the disease systems and 

integrated as a whole. This requires collaboration and transparency between stakeholders, 

government, agencies, and organisations (IPPC, 2016). Adhering to standard practise 

protocol will facilitate meaningful transference of data between countries. This is vital as it is 

obvious that plant disease does not recognise borders. 

2.4. Epidemiological modelling 

2.4.1. Growth curve modelling & parameters 

The development of exponential, monomolecular and logistic models has resulted in effective 

means to describe epidemics within the plant biosecurity global community (van Maanen & 

Xu, 2003). Historically, polycyclic diseases were described by logistic models whilst 

monocyclic diseases by monomolecular models; though in more recent times, experimental 

evidence has demonstrated that these two general classes of epidemic progression curves 

cannot always be described exclusively by a particular mathematical form (Pfender, 1981). 

The situation is usually context dependent: the initial amount of inoculum, the life cycle of 

the host and pest, and environmental conditions may affect the most appropriate 

mathematical model to use that best reflects disease progression (Pfender, 1981). Other 

models such as Gompertz can be applied to disease progress curves dependent on field study 

validation (van Maanen & Xu, 2003). These models are characterised by the initial quantity 

of inoculum (Y0), the disease growth rate (r) and, except for unbounded distributions such as 
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the exponential, the final capacity of disease (Ymax) (Nutter et al., 2007). Other parameters 

that can affect disease proliferation are considered in modified models which include 

environmental considerations, host susceptibility, biological growth phases; generally if it is 

within the mechanistic system then it can be parameterised (van Maanen & Xu, 2003). 

Parameters have been used to represent plant disease epidemic growth since their initial 

derivation by Vanderplank in later half of the 20th century, this parameterisation has 

contributed much to the recent development within plant epidemiological modelling (Jeger, 

2000). However, the difference between parameterising mechanistic models and 

parameterising phenomenological models is that phenomenological models must reduce the 

parameters to an effectively quantifiable space i.e. noise will remain within the system. By 

doing so, explanatory reasoning is reduced though it is now possible to quantify a complex 

and possibly stochastic system.  

Susceptible-Infected-Recovered (SIR) compartmental models are another set of models that 

instead of using disease growth data to feed apriori into prediction, are parameterised to 

measure the rate of change in disease state and characterise disease behaviour aposteriori. 

Their form can be either deterministic or stochastic, or some combination of both. The units 

of the basic SIR model are the total sum of susceptible plants, infected plants and plants that 

are removed (Jeger, 2000). Further components have been developed as necessary to include 

latent and cryptic hosts within the modelling framework (Leclerc et al., 2014). These 

additional units have been included to account for greater complexity in disease dynamics 

such as when hosts are exposed to disease but not infected or present the disease 

asymptomatically (van Maanen & Xu, 2003; Cunniffe et al., 2015; Leclerc et al., 2014). The 

transition from susceptible (S) to infected (I) depends on the number of infected individuals, 

the underlying population contact structure and the probability of transmission given contact 

(Keeling & Rohani, 2007). The transition from infected (I) to removed (R) is dependent on 
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the total time in the infectious class (Keeling & Rohani, 2007). The fundamental principle 

here is that the entire system is contained within a few parameters that can be predicted with 

well-designed field experiments. However, generally, these parameters cannot typically be 

approximated via lab experiment and therefore are typically derived from previous epidemic 

data. Even with accurate parameterisation, without the inclusion of distance as a variable 

within the compartmental model, it would not be possible to reflect the influence of more 

realistic contact rates between plants and the distribution of plants as a whole population 

(Keeling & Rohani, 2007). 

The selection of either deterministic or stochastic models is also of critical importance when 

determining how knowledge of the important growth curve will be used. A deterministic set 

of equations can be useful to demonstrate principles such as endemic periodicity and 

equilibrium over time; however, when exploring realistic and often complex landscapes (i.e. 

with the inclusion of landscape heterogeneity, multiple patho-systems or variable host 

dynamics) they can fail to provide meaningful insight (Roberts et al., 2015). From this 

perspective, it is understandable why the literature on stochastic processes to describe plant 

epidemiological phenomena has rapidly expanded in recent years (Richter-Heitmann et al., 

2020; Fabre et al., 2021). 

2.4.2. Spatially explicit modelling 

Recent advances in technology allow for the spatio-temporal representation of epidemics 

using compartmental models, facilitating detailed inference about disease dynamics across 

disparate landscapes (Plantegenest et al., 2007; Jeger, 2000; Bisin & Moro, 2022). Under 

most circumstances, for directly transmitted diseases, transmission will be a highly localised 

process and hence the spatial distribution of pathogens is directly related to transmission 

between infected and susceptibles hosts (Bisin & Moro, 2022; Keeling & Rohani, 2007). 
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Landscape heterogeneity can therefore affect disease progression in often unanticipated ways, 

though research demonstrates that landscape heterogeneity typically slows down epidemic 

growth progression under modelling assumptions (Bisin & Moro, 2022; Keeling & Rohani, 

2007).  

It is logical that the distances between populations should affect the likelihood of detection 

and this assumption is described in dispersal kernel constructs (see Figure 2.4) (Brown et al., 

2004; Phillips et al., 2008). The dispersal of various diseases has been characterised by 

dispersal models based on mathematical principles such as the exponential, gaussian or 

power law assumptions (Keeling & Rohani, 2007). These kernels are selected either by 

experimentation conducted in the field or by matching the criteria for disease dispersal i.e. a 

long-distance kernel will require a leptokurtic tail. There are often underlying assumptions to 

most kernels: likelihood of transmission is reduced with distance from the source, disease is 

dispersed in all directions, dispersal mechanisms are consistent as they spread across the 

landscape, inoculum cannot be spontaneous etc. These assumptions are based on 

experimental evidence, though exceptions to the rules are always points of interest. For 

example, wind direction may change the dispersal direction of disease, and host resistance 

mechanisms and interactions with other pathogens change the virulence of pathogens over 

time and space. Whilst in an ideal world it would be perfect to use a dispersal kernel that 

allows for perfect prediction and explains the underlying phenomena at play, in reality it is a 

trade-off between predictability and fitting parameters to match the data. Dispersal kernels 

grounded in scaling invariance properties, such as the power law kernel, with close 

approximation to real biological phenomena, have been demonstrated to be better generalised 

in this regards; allowing scaling to match disease behaviour to provide predictions on larger 

spatial areas and across longer durations of time (Severns et al., 2019; Farber et al., 2019). 
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Figure 2.4. five dispersal kernels ranging in kurtic behaviour. Gamma distributed. Kernels 

become more thin-tailed as the shape parameter increases; the more fat-tailed kernels have a 

larger probability density at distances beyond the inflection point and vice versa for the 

higher shape parameter.  

Spatial models incorporate dispersal kernels to reflect the natural difference in the probability 

of disease transmission from a source over distance. For example, localised extinction 

occurring in subpopulations that are separate to the infection wave can be modelled in 

stochastic spatially-explicit models (Keeling & Rohani, 2007; Bisin & Moro, 2022). 

Calculations can be useful in determining 𝑅0 for a subpopulation based on the average 

prevalence of all populations (Keeling & Rohani, 2007). By calculating 𝑅0, it is possible to 

infer other useful predictions for disease hence prediction is not constrained by a lack of 

mathematical inference. If using a stochastic model, there is expected to be much variation in 

spatially-explicit simulations, and sub-populations of plant hosts contained within strata 

across the landscape may affect disease dynamics in each simulation depending on the initial 
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host infection location and the motion of disease based on probability events (Keeling & 

Rohani, 2007). In effect, landscape heterogeneity adds a layer of complexity that only 

stochastic spatially-explicit models can capture.  

2.4.3. Modelling for surveillance strategy 

NPPOs often do not have the necessary resources to conduct surveillance programmes across 

all vulnerable plant species (Kalaris et al., 2014). Therefore, besides necessary prioritisation 

and decision-making protocol, surveillance programmes require predictive models to 

determine spatial and temporal targeting for survey efforts (Kalaris et al., 2014; IPPC, 2016). 

It is imperative that disease is detected at the earliest possible interval to implement an 

effective plant disease management strategies (Parnell et al., 2017). In plant health, statistical 

modelling methods have historically drawn on binomial distribution sampling theory to 

inform surveillance strategy (Parnell et al., 2017). As stated previously, understanding how 

the disease cycle alters predictions is critical to developing efficient and effective surveillance 

strategy.  

Parnell et al. (2017) demonstrated epidemiological variables could be utilised to inform 

surveillance via a model that predicted the prevalence of a disease given a given surveillance 

protocol (Parnell et al., 2017). Likewise, Potts et al. (2013) developed a model parametrised 

for citrus canker that could determine an effective "adaptive radius" in which to search for 

infected individuals (Potts et al., 2013). Though the "adaptive radius" strategy is not 100% 

efficient and requires a total exploration of susceptible nodes (Potts et al., 2013). This reflects 

a limitation of models; it is currently not feasible to model disease dynamics with 100% 

accuracy, the best that can be done is stating confidence limits around a prediction (Keeling 

& Rohani, 2007). Application of models to informing surveillance strategy has also been 

based on ecological principles. Russell et al. developed a rapid eradication assessment model 
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to determine the minimal sufficient monitoring effort required to confirm eradication of 

invasive species (Russell et al., 2017). It is a general rule of thumb that the earlier detection 

occurs, the more successful plant disease management strategies will be, therefore models 

with predictive application to facilitate early detection are preferable to untargeted 

surveillance approaches (Russell et al., 2017).  

Overall, how surveillance is co-ordinated and how surveillance informs NPPOs and other 

agencies hinges on the development of models that can synthesise relevant epidemiological 

parameters with meaningful output based on objectives. Hence surveillance models are 

typically specific to requirements, though effective if utilised properly. Generalising and 

quantifying the objective of surveillance surveys across NPPOs is critical to increasing the 

usefulness of these surveillance models. By shifting the focus to the simplicity of objective 

there will be less urgency in developing a repertoire of models. Therefore, standardisation of 

simplistic models with thorough investigation into the accuracy of predictive output is the 

approach that I recommend.  

2.4.4. Transferability of models 

Many NPPOs are in sore need of models that are robust, transparent and fit for purpose 

(Defra, 2014). The use of generalisable models in anticipatory prediction are increasingly 

being used to support policy and decision making with regards to biosecurity (Yates et al., 

2018). However, an outstanding challenge of transferable models is the parameterisation of 

pathogen behaviour which has been repeatedly demonstrated to not be uniform (Yates et al., 

2018; Nutter et al., 2007; Magarey & Sutton, 2007). Therefore, parameterisation that reduces 

these ecological and systematic complexities is a necessity. Furthermore, were an epidemic to 

be repeatable within a region, it may behave differently according to the nature of complex 

systems. Therefore, a heavier reliance on stochastic modelling would appear to be appropriate 
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in moving forwards to more generalisable models. Transferable models will benefit from 

accounting for sampling bias of individuals. Surveillance data are sometimes pooled from 

different areas or biased in selection based on spatial and temporal targeting (Kalaris et al., 

2014). Therefore, models that can account for these dynamics are more transferable. In 

addition, models that can account for heterogeneity whilst remaining parsimonious will have 

greater transferability. When considering the spatial and temporal aspects of a transferable 

model, it may be useful to define a range from which a model is no longer pragmatic to use. 

This will help NPPOs define their objectives with a more realistic outlook. Overall, a 

transferable model will benefit from higher data quality and quantity (Yates et al., 2018). 

Hence the use of modern surveillance technology such as remote sensing provides an 

opportunity to fill these criteria. Models that are built with a better appreciation of underlying 

epidemiological phenomena will also increase the chances in success (Yates et al., 2018). 

Furthermore, training plant pathologists to understand the entire patho-system globally will 

increase the likelihood of improving the transferability of modelling approaches (Magarey & 

Sutton, 2007). This is being observed in reality as the budding field of pathogen ecology 

becomes more prominent within the 21st century.  

In conclusion, the biosecurity challenges of the modern era are based on a lack of knowledge 

such as data on pest prevalence in nearby regions and an inability to currently synthesise the 

body of available knowledge into meaningful translatable insight. Traditional scientific 

methods are addressing the first aspect of this problem, though an interdisciplinary approach 

and an application of simplicity should be the priority now as we address the transferability 

of models within plant epidemiology.  This thesis seeks to address a broad range of 

epidemiological values within a set range of parameters relevant to epidemics to synthesis 

together the applicability of the rule of thumb. It is intended that the utility of the rule of 

thumb is well defined and explored thoroughly. Thus, exploring epidemiological parameters, 
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landscape heterogeneity, detection sensitivity, surveillance strategies and applying this 

research to the real-world case scenario of a current pest in the UK. As the underlying 

phenomena are better understood from the context of a systems approach, and more people 

become aware and subsequently interested in plant disease, progress will inevitably be made 

to improve the lives of millions of people globally who are affected by the proliferation of 

plant disease. 
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3. Chapter three: Simple models for complicated 

epidemics - exploring the use of epidemiologically 

relevant parameters in parsimonious models to inform 

early detection surveillance 

3.1. Chapter Summary 

Plant Epidemiology is the study of disease transmission from plant to plant on a population 

scale. This discipline is often concerned with the consequences of emerging plant pest threats 

and developing models to manage invasive species that have not previously established 

within the focus region. In the UK, the estimation of the cost of invasive species is £1.7 

billion per year. To manage these emerging plant diseases, biosecurity measures against plant 

pathogens employ a combination of surveillance and predictive modelling. How effective 

predictive models are at informing surveillance strategy across a range of spatially stochastic 

epidemiological conditions has yet to be extensively explored. By using a spatially-explicit 

stochastic epidemiological simulation model combined with a spatially-stochastic 

surveillance model, I explore a fixed surveillance strategy with a range of epidemiological 

parameters to evaluate the accuracy of one such early detection model, labelled the rule of 

thumb. I show that decreasing the dispersal distance parameter θ (metres) and increasing 

transmission coefficient β (rate of infection) leads to a reduction in the accuracy of the rule of 

thumb. Previously it was thought that increasing the growth rate parameter had a diminishing 

effect on the accuracy of the rule of thumb. However, my results indicated that the effect is 

largely complex and dependent on both the dispersal distance and the transmission coefficient 

parameters. Results suggest the rule of thumb is more applicable to emerging plant diseases 

that are dispersed across longer distances i.e. >140 meters. My results also demonstrate that 

the rule of thumb has variable accuracy under a range of realistic epidemic scenarios. These 

results should be used to inform plant health managers as to the effectiveness of using this 

specific model in real world scenarios.  
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3.2. Introduction 

Plant diseases are a major problem globally, both economically and in terms of food security 

(Dun-chun et al., 2021; Burdon et al., 2020).  The Food and Agricultural Organisation (FAO) 

of the United Nations estimates that between 20 and 40 percent of global crop production is 

lost to pests annually, and that these losses cost the global economy approximately $220 

billion annually (FAO, 2021). This estimation of crop loss has been consistent for at least a 

decade, though these impact costs reflect a complex series of interacting networks within a 

fabric of ecological, social, and economic constructs (Savary et al., 2012; Dun-chun et al., 

2021). The introduction of exotic plant diseases to new regions contributes significantly to 

this crisis, and this trend is increasing globally over time (Spence, 2020). Many nations are 

investing heavily in efforts to minimise spread and contain these emerging plant diseases 

(Burdon et al., 2020; Savary et al., 2012). This increase in the threat of emerging plant 

diseases is largely due to the globalisation of trade, the movement of people, and the 

unprecedented volume of traded material leading to the proliferation of the causal agents 

(often referred to as plant pests) (Spence, 2020). Furthermore, with the unpredictability of 

climate change due to global warming, uncertainty in the risk of plant pest establishment and 

the associated potential costs are increasing significantly (Coakley et al., 1999). The major 

concern is that plant pests remain a persistent threat to global security despite continual action 

to mitigate the impact of the responsible plant pests (Mansfield et al., 2012; Scholthof et al., 

2011; Dean et al., 2012; Jones et al., 2013).   

How well nations and their National Plant Protection Organisations (NPPOs) can respond to 

emerging plant diseases is contingent on effective surveillance of plants and control for early 

detection (Epanchin-Niell et al., 2014; Parnell et al., 2015; Mastin et al., 2020). Tools to 

facilitate early detection of emerging plant pests are sorely needed to inform optimal 

strategies for surveillance and control (Gottwald et al., 2002; Gottwald, 2010; Rizzo et al., 
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2005; Legg et al., 2011; EPPO, 2021). A fundamental challenge to surveillance for emerging 

plant pests is allocating the appropriate resources to detect and monitor pests, and with 

specific timing appropriate to the emergence of disease symptoms (Epanchin-Niell et al., 

2014). Typically, either the amount of surveillance is too little, leading to inaccurate reporting 

of disease prevalence and missed opportunities to detect epidemics early, or too much, 

leading to costly and unnecessary allocation of limited resources (Epanchin-Niell et al., 2014; 

Ristaino et al., 2021; Anderson et al., 2004). For example, despite the well-known status of 

ash dieback across Europe, a lack of surveillance meant it was already widespread in the UK 

when first detected in 2012 (Parnell et al., 2015; Woodward & Boa, 2013). Dieback of ash 

trees (Fraxinus excelsior) is now expected to cost £15 billion in the UK in trade losses, and 

subsequent damage to vital ecosystems (Hill et al., 2019). 

Recently, efforts have been made to use epidemiological modelling to develop optimal 

strategies to overcome current challenges to surveillance for emerging plant diseases (Mastin 

et al., 2020; Parnell et al., 2014; Cunniffe et al., 2015; Hauser & McCarthy, 2009). However, 

many of these recent modelling approaches focused on “where” to allocate surveillance 

resources, and not “how much” surveillance resources should be allocated to effectively 

prevent emerging plant disease from establishing in a new region (Mastin et al., 2020; Parnell 

et al., 2014; Hauser & McCarthy, 2009). Previous efforts to determine how much 

surveillance is to be allocated to an emerging plant disease have focused on endemic status 

diseases, drawing on binomial theory to estimate whether a disease is beyond a prevalence 

threshold for effective management or eradication (Parnell et al., 2017; Madden & Hughes, 

1995). However, these statistical approaches are limited in that they only consider a one-off 

round of sampling, and do not incorporate any available epidemiological information on the 

rate or pattern of disease spread. Furthermore, other attempts to model the appropriate 

allocation of surveillance resources based on cost or high priority epidemiologically relevant 
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parameters have resulted in models that are difficult to understand for the typical stakeholder; 

whose expertise is required and will be based on their fundamental understanding of the 

relevant model (Hauser & McCarthy, 2009).  

How much surveillance should be allocated before a disease was to be detected was a 

question that was addressed by Parnell et al. (2012). The authors developed a generalised 

‘rule of thumb’ that determined the prevalence of an emerging plant disease when first 

detected based on the surveillance allocation (Parnell et al., 2012). This rule of thumb utilised 

the exponential growth rate of specific emerging plant disease epidemics (Methods section 

3.3.4.). Utilising the growth rate of epidemics is progression towards making 

epidemiologically informed decisions of surveillance allocation (Parnell et al., 2015). 

However, the approach makes several simplifying assumptions, including ignoring spatial 

effects of disease spread caused by dispersal limitations and heterogeneity in host population 

distribution. The rule of thumb thus raised important issues around model transferability, 

namely how far simple epidemic models can be used to make useful predictions to inform 

surveillance programmes in practice across different epidemic scenarios. Given the non-

spatial nature of the rule of thumb, transferring this model to more realistic scenarios has 

important implications for applicability in real world scenarios. For example, whilst the 

simple model was demonstrated as useful in predicting Citrus Canker and Phytophthora 

ramorum prevalence at detection, how the model performs generally across a range of 

different dispersal and transmission coefficient interactions has yet to be explored in further 

detail (Parnell et al., 2015; Mastin et al., 2020).  

This chapter explores different configurations of plant disease transmission coefficients and 

plant disease dispersal distances within a spatially explicit stochastic simulation model to 

determine how the rule of thumb translated into different realistic scenarios. To explore these 
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scenarios, a comparison of both a surveillance model and a spatially-explicit stochastic 

epidemic simulation model with the rule of thumb was made. In this chapter the intention is 

to inform researchers and stakeholders how generalisable this early detection model is when 

used in combination with other epidemiologically relevant models, which are necessary to 

inform scientists of the complex behaviours inherent in epidemiological predictions.  

The primary research question that was addressed in this chapter therefore was: 

• How do epidemiologically relevant parameters such as dispersal distance and 

transmission coefficient impact the accuracy of early detection models? 
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3.3. Methods 

3.3.1. Epidemiological model 

The model tracked simulated host plants in a two compartmental model (Keeling & Rohani, 

2007): susceptible (S) hosts were uninfected and infected (I) hosts were infectious. If host i 

was susceptible at time t, then the rate of infection of i was given by: 

     𝜑𝑖(𝑡) =  ∑ 𝐾(𝑑𝑖𝑗; )𝑗  

           (Eqn 3.1)

   

ϕi(t) was the rate of infection at time t,  was the transmission coefficient that defined the rate 

for any given distance within the kernel, and the summation ran over all infectious hosts j at 

time t. The dispersal 𝐾(𝑑𝑖𝑗; ) set the rate of disease transmission between a pair of hosts 

separated by distance 𝑑𝑖𝑗, and was parameterised by the dispersal scale parameter . 

Therefore,   is a rate and   has the units of distance. To allow robustness in dispersal 

mechanics if needed based on the dispersal kernel tail, I included the power exponential 

function dispersal kernel explored by previous authors (Bourhis et al., 2019; Rieux et al., 

2014). I fixed the scale parameter   as the thin-tailed exponential kernel in this study, and 

then normalised so that the probability of infection translated to a total probability of 1 for the 

entire kernel at any given time: 

     𝑛𝑜𝑟𝑚 =
1

22(2)
  

           (Eqn 3.2) 

In order to reduce the time taken to run epidemic simulations, I used the tau-leap Gillespie 

algorithm (Gillespie, 2001). This algorithm was defined as: 
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𝛿𝐼𝑇 ≈ ∑ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑆𝑡𝜑𝑖(𝑡)𝜏)

𝑇−𝜏

 

           (Eqn 3.3) 

Where 𝜏 was the time leap between the initial state and updated state of the simulation 

process, (T – t).  

Table 3.1. List of the epidemiological parameter values used within the epidemiological 

model. β values were selected as a range between 50-150 and then distributed across seven 

even intervals to match θ for the purposes of analysis (see results). 

Transmission Coefficient (β) (rate of 

infection) 

Dispersal Distance (θ) (metres) 

50 10 

66.7 20 

83.3 30 

100 40 

116.7 50 

133.3 60 

150 70 
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Figure 3.1. Schematic of the experimental procedure to calculate the accuracy of the rule of 

thumb in chapter 3. 

The mean dispersal distance for the kernel is given by the equation stated in Bourhis et al. 

(2019): 

ϕ =  
𝜃𝛤(

3
𝑏

)

𝛤(
2
𝑏

)
 

           (Eqn 3.4) 

Where θ was the dispersal parameter, b was the shape parameter, Γ was the gamma function, 

and φ was the mean dispersal distance. The shape parameter b is set to 1 (which is defined for 
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the power exponential kernel), therefore the mean dispersal distance is reduced to ϕ =  2𝜃; 

the mean dispersal distance of inoculum is twice the dispersal parameter, 𝜃. 

3.3.2. Landscape generation and epidemic simulation 

The landscape was modelled as a 1km2 area containing 900 hosts, which was considered a 

reasonable density for a variety of commercial crops (i.e. citrus or pine species) (Moreira et 

al., 2019; Gottwald et al., 2002; Kullman, 2006). These landscapes were generated in the R 

environment using the spatstat package (Baddeley & Turner, 2005). I initiated epidemics with 

1 random host infection at time t = 0, and the initial host was random for each epidemic run 

within the simulation, which continued until all hosts were infected. I selected the range of 

dispersal distances (; metres) to reflect a mean dispersal of between 20m and 140m and a 

transmission coefficient value (β; rate of infection) of between 50 and 150 to reflect realistic 

epidemic behaviour (Alonso-Chavez et al., 2016). These values produced epidemics that 

reached total prevalence approximately between 1-10 years, which reflected typical epidemic 

growth curves (see Figure 3.2). The range of epidemiological parameters in this chapter 

produced growth rates of between 0.011 to 0.022. 2000 landscapes were generated using a 

random distribution algorithm, with 900 hosts allocated across a 1 km2 area (Alonso-Chavez 

et al., 2016).  
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Figure 3.2. Growth curves for the upper and lower bounds of the epidemiological parameter 

set in this study. β (50;150) and θ (10;70) are the transmission co-efficient and dispersal 

distance parameters respectively. 
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Figure 3.3. Linearised growth curve for an example simulation set across the time period 

studied for the extrapolation of the epidemiological growth parameter (r). The red line is the 

plotted exponential growth model with respect to time (t) and (r). 

3.3.3. Surveillance model 

I developed a spatially stochastic surveillance model by randomly sampling hosts at set time 

intervals using the stored epidemic data generated previously to estimate the mean growth 

rate of epidemics. I stopped the surveillance model at the point at which the epidemic was 
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detected for the first time, and total prevalence in the simulation run was recorded.  I then 

calculated the average prevalence for the complete simulation set. The initial sample size per 

sampling round was 30 hosts (N), with the interval between surveillance rounds () set to 30 

time units. The compatibility of the surveillance model with the epidemiological model 

ensures that time units remain coherent, i.e. the time units were set as days and required no 

conversion between models. 

3.3.4. The rule of thumb model 

The Parnell et al. (2012) rule of thumb is defined as: 

𝑞∗ =
𝑟

𝑁
 

           (Eqn 3.5) 

Where 𝑞∗was the theoretical detection prevalence which was determined by the relationship 

between the growth rate of the epidemic 𝑟 and the surveillance protocol,  was the interval 

between surveillance rounds, and 𝑁 was the sample size taken for inspection each 

surveillance round. The derivation of this equation was discovered as follows: by the 

assumption that if an epidemic grows exponentially, then the probability of detecting the 

disease at any given time was a simple interaction between rate of surveillance and the 

exponential growth of the epidemic (Parnell et al., 2012). By solving this equation via 

integration, Parnell et al. (2012) arrived at the total probability of detection at the point of 

detection. Using a random variable transformation of the initial time with an exponential 

growth assumption, the prevalence at the time of detection was translated from this 

probability using the Jacobian of the transformation. A useful approximation then followed 

from this. A full derivation of the approach can be found in Parnell et al (2012; 2015). 

Thereby, the above rule of thumb stated that given the epidemic growth parameter (r), the 
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surveillance frequency (Δ) and the sample size (N), then the prevalence of disease at detection 

(q*) was estimated as an approximation of the true prevalence of disease at detection. Key 

assumptions from the rule of thumb are exponential increase of the pathogen population and 

continuous monitoring of the host population with time.  

  

For every unique epidemiological parameter combination of θ (metres) and β (rate of 

infection), I performed 2000 simulation runs, providing a unique set of a growth rate values 

(r). I estimated r by using a linear transformation on the initial growth phase of the epidemic, 

corresponding to the first quartile of transition events and measuring the mean gradient of the 

curve. The average of these 2000 r values was then used as input within the rule of thumb 

(Eqn 4). For N and Δ in the above equation, these values were taken from the surveillance 

model as defined above. 

3.4. Results 

Results demonstrated a distinct pattern in the relationship between the epidemiological 

parameters  (dispersal distance; metres),  (rate of infection) and the accuracy of the rule of 

thumb prediction of prevalence at first detection: this is shown by the relative differences 

between the rule of thumb prediction of prevalence at first detection and the prevalence at 

detection within the simulation model (Figure 3.3c). As epidemiological parameters  and  

increased, the prevalence at detection within the simulation model increased (Figure 3.3b). 

This was reflected in the predictive model, which also increased in output value when 

approximating prevalence at detection within the simulation model (Figure 3.3a). The rule of 

thumb predictive model consistently underestimated the prevalence at detection within the 

simulation model, although this effect decreased as dispersal  increased, as shown in Figure 
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3.3a & b (Figure 3.3a & b). The pattern for the difference between the rule of thumb 

predictive model and the prevalence at detection within the simulation model when β was 

changed demonstrated convergence, where variability in β decreased as θ increased. 

My results demonstrated several important findings regarding the impact of epidemiological 

parameters on the accuracy of the Parnell et al., (2012) method (Figure 3.4). As the 

epidemiological parameters increased in magnitude, the absolute magnitude in the prevalence 

at detection within the simulation model increased (Figure 3.3b). The rule of thumb 

prediction was also consistent in increasing approximation in parallel with increasing 

epidemiological parameters (Figure 3.3a) However, the rule of thumb prediction generally 

under-reported the actual prevalence at detection within the simulation model. This result was 

consistent across the epidemiological parameter space: these underestimations were observed 

in the relative differences between the predictions and prevalence at detection within the 

simulation model (Figure 3.3c).  

Another key finding was that, as dispersal  decreased, the relative difference between the 

rule of thumb prediction and the prevalence at detection within the simulation model 

increased. For example, the mean relative difference between the rule of thumb 

approximation and the prevalence at detection within the simulation model was 0.183 for the 

maximum value of θ (θ = 70). This was contrasted against the mean relative difference of 

0.620 for the minimum value of θ (θ = 10).  

Another important result was that changing  had a converging effect on the relative 

difference; at lower values of  , the increase in  led to larger variance in the relative 

difference for any given θ value, but as  moved through the mid-range there was less 

variability when altering  value (Figure 3.4a & b).  Generally, for the range of β values, the 

mean relative difference across the θ values was approximately 0.28 (Figure 3.4b). The 
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impact of changing   was not as great as changing   in the relative difference between the 

rule of thumb prediction and the prevalence at detection within the simulation model (Figure 

3.4a & b). 
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Figure 3.3. Heatmaps demonstrating the output of the rule of thumb, prevalence at detection 

within the simulation model, and the relative difference between the rule of thumb and 

prevalence at detection. a) The rule of thumb predictions; b) the prevalence at detection 

within the simulation model; c) the relative comparison between the rule of thumb and 

simulated detection prevalences. Surveillance was fixed at 30 N and 30 . Parameters 

investigated were β and θ with values ranging from 10 to 70 for both. 2000 simulations were 

used per parameter combination. 
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Figure 3.4. Mean relative differences between the prevalence at detection within the 

simulation model and the rule of thumb approximation for a range of parameter values. Each 

point reflects the mean relative difference for all values of a fixed parameter, error bars 

indicating the range of values of the other parameter. a) For each θ value, the β values are 

reported as the standard deviation with their mean as the point; b) for each β value, the θ 

values are reported as the standard deviation with their mean as the point. Parameters are β 

and θ with values ranging from 50 to 150 and 10 to 70 respectively. Surveillance was fixed at 

30 N and 30 . 2000 simulations per parameter combination. 
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3.5. Discussion 

Both the transmission coefficient (β; rate of infection) and the dispersal distance (θ; metres) 

epidemiological parameters affect the accuracy of the rule of thumb when explored within 

spatially-explicit stochastic models. These results are an extension of previous studies that 

have explored the rule of thumb in a non-spatial and spatial context, with both simulated and 

real data (Parnell et al., 2012; 2015; Mastin et al., 2020). The rule of thumb is a promising 

prediction model, given the simplicity of the model and the applicability of the model to 

epidemics, as has been demonstrated previously (Parnell et al., 2015, Mastin et al., 2020). 

This chapter emphasises that simplifying epidemics using the characteristic epidemiological 

growth rate variable (r) can lead to varying levels of accuracy in early detection predictions. 

Figure 3.3. demonstrates the linearised fit of the the exponential function to the epidemic 

data. Given that the exponential fit was applied to the logistic epidemiological data, 

consideration of a potentially poor fit is merited (Figure 3.3.). The rule of thumb model uses 

the growth parameter which is applicable to an exponential model and logistic model, though 

estimates to derive the early phase fit will be different. Judging by the linearised data in 

Figure 3.3., the stochastic form of the simulation model does somewhat mitigate the risk of 

misfitting. This chapter has demonstrated that epidemiological parameters such as the 

transmission coefficient (β) and the dispersal distance (θ) which are directly linked to the 

estimation of r exhibit their own behaviours both independently and dependently of one 

another. For the purposes of this chapter, surveillance was fixed at a constant rate for all 

epidemiological parameter combinations (Δ=30, N=30) to clarify the effects of 

epidemiological parameters on the accuracy of simple epidemiologically relevant predictive 

models such as the rule of thumb.  

The results showed that starting with a low value of θ in the epidemic simulation model led to 

the rule of thumb prediction having the lowest relative accuracy. These small dispersal 
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distances correspond to some real-world disease agents, such as explosive fungal spores of 

Pyricularia oryzae (rice blast disease) or the soil-borne parasite Rhizoctonia solani 

(Meredith, 1973; Gregory, 1968). Previous research has indicated that short distance dispersal 

of inoculum results in lower final prevalence of disease (Mundt & Sackett, 2012). This result 

was supported in this chapter, where lower θ values resulted in lower prevalence at detection. 

While the rule of thumb prediction reflected the reduction in disease prevalence with smaller 

values of θ, the difference between the predictions and detection prevalences remained 

relatively consistent across parameter space. This led to the larger relative differences 

observed between prediction and simulation.  

There could be several reasons for this observed consistency. The rule of thumb assumes 

equal probability of detection across the entire landscape. However, in my simulation model 

there was a period of time during the early phase of epidemic in which inoculum was not 

fully distributed across the landscape. Whilst the disease was spreading through the landscape 

during this period, the sampling strategy may have missed early detection in areas where the 

disease had not yet spread. The simulation model was also designed so that initial 

surveillance did not begin at the time infection was introduced (t0). This would lead to further 

disease progression not accounted for within the rule of thumb prediction. The consistent 

underprediction by the rule of thumb raises questions about the assumptions underlying early 

detection models, and the impact of epidemiological parameters on disease spread and 

surveillance. By incorporating additional factors into the simulation models and surveillance 

strategies, such as more realistic assumptions about disease progression related to 

environmental conditions and pathogenic behaviours, the complexity of disease spread is 

better described and the accuracy of early detection methods is potentially improved (De wolf 

& Isard, 2007). 
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By changing β with respect to θ, there was a converging effect on the accuracy of the rule of 

thumb prediction. While smaller values of θ had a larger range of impact when altering β, the 

mean relative difference across the parameter range was approximately 0.28. This indicated 

several findings. Firstly, that dispersal distance had a larger impact on the accuracy of the 

rule of thumb prediction. The larger impact of θ on the accuracy of the rule of thumb 

prediction suggests that epidemiological detection models are influenced more by the spatial 

distribution of hosts or spatial constraints of the landscape than by the transmission 

coefficient of disease. This finding supported previous research that indicated that the spatial 

distribution of host populations and spatial constraints of the landscape can have a significant 

impact on disease spread, and consequently an impact on the accuracy of early detection 

models (Holdenrieder et al., 2004; Plantegenest et al., 2007; Parnell et al., 2015; Mastin et 

al., 2020; Bourhis et al., 2019). 

The second finding this result indicated was that, as θ increased, the effects of the spatial 

distribution or constraints of the landscape became less influential, leading to a flattening of 

the impact of the transmission coefficient. This flattening was a result of the infection wave 

front becoming less pronounced, with a larger degree of homogeny resulting from more 

mixing of infected and uninfected hosts. When the inoculum reached further distances in each 

time step, this facilitated greater mixing between uninfected and infected hosts, leading to a 

more uniform disease spread across the landscape. This effect, coupled with the 

normalisation constant leading to a thinner spread of inoculum across the landscape, resulted 

in reductions in the influence of β, and hence less variability with increased θ. This result has 

several important implications. Regarding long-distance dispersal, the disease dynamics 

changed significantly as the infection wave front became less distinct and the spread of 

disease became more uniform: diseases proliferated faster, which led to higher prevalence 
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values. Fortunately, this simple detection model demonstrated higher accuracies for such 

scenarios, which led to the assumption that this model is suited for such events.  

Secondly, this finding also indicated that with long distance dispersal of inoculum, the loci of 

disease hotspots became more difficult to determine. This could potentially disrupt the 

implementation of targeted control methods. Thus, with long-distance dispersal of inoculum, 

alternative management strategies may become more important in management of disease, 

such as aerial spraying or enhancing host resistance, as opposed to construction of barriers 

(Filipe et al., 2012; Norelli et al., 2012).  

Thirdly, the simulation model in the paper focused on an exponential decay kernel, which has 

been described previously as one of the most useful dispersal kernels in modelling disease 

progression behaviour (Bullock et al., 2017). However, in specific long-distance dispersal 

scenarios, a power law kernel may be more appropriate, and how the rule of thumb prediction 

aligns with simulations of this nature remains to be explored (Severns et al., 2019). This 

consideration highlights the need for additional exploration of the impact of other dispersal 

kernels, such as the power law kernel mentioned, on epidemiologically relevant parameters 

such as the transmission coefficient and dispersal distance of inoculum. By doing so, 

researchers would have a deeper understanding of how these kernels impacted the accuracy 

of the rule of thumb model. 

The Parnell et al. (2015) study featured growth rates ranging between 0.014 and 0.002, while 

more recent research focusing on Phythophthora ramorum exponential growth rates ranging 

from 0.001 to 0.005 (Mastin et al., 2020). In this chapter, the range of epidemiological 

parameters produced growth rates of between 0.011 to 0.022. Growth rates of above 0.02 

have been estimated for particularly infectious diseases such as Xylella fastidiosa (White et 

al., 2020). As Xylella fastidiosa poses an emerging plant disease threat to the British Isles, 
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my findings have highlighted the importance of accurately determining the dispersal distance 

of such infectious diseases (Mabbett, 2018). A previous study of the main vector of X. 

fastidiosa in Apulia in Italy (Philaenus spumarius) applied a mean dispersal distance of 100 

meters between olive trees to explore the epidemiology of X. fastidiosa (White et al., 2017). 

If X. fastidiosa establishes within the British Isles and native P. spumarius become infected, 

then the results of this chapter indicate that the rule of thumb prediction will have a promising 

chance of being applicable (θ = 50) with an accuracy of approximately 80%. This is also with 

the assumption that the surveillance protocol of 30 samples every 30 days is used. If the rule 

of thumb is to be applied for the early detection of such plant disease threats, then 

incorporating realistic assumptions about the spatial dynamics of disease dispersal and 

realistic surveillance allocation should be a top priority for disease management and 

surveillance strategies.  

The results of this chapter have shown that the relative accuracy of the rule of thumb was 

more effective for long-distance dispersal epidemic events, and that there was always some 

degree of inaccuracy even when spatial constraints and dynamics were not interfering with 

the predictive accuracy. The results of this chapter also indicated that the rule of thumb will 

consistently under-estimate the true prevalence of disease due to spatial and temporal factors. 

These findings directly related to the research question “Do epidemiologically relevant 

parameters such as dispersal distance and transmission coefficient impact the accuracy of the 

rule of thumb?” by illustrating the varying degrees of accuracy of the rule of thumb 

depending on dispersal distance and transmission coefficient. The results contribute valuable 

insight into the performance of the rule of thumb and hopefully highlight its applicability and 

limitations in different disease scenarios for future researchers and stakeholders alike. In 

summary, the findings of this chapter have indicated that the rule of thumb is more applicable 

for longer dispersed pests and diseases, and for shortly dispersed pests it is wise to consider 
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how virulent a pest may be; if pest virulence is high, then there is an increased likelihood that 

the rule of thumb model is less likely to provide accurate estimates of true prevalence at 

detection.  
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4. Chapter four: Simple models for complicated 

epidemics - how introducing spatial dynamics affect 

parsimonious plant pest models that inform early 

detection surveillance 

4.1. Summary 

Early detection models are important for effective disease management and control, but 

advancing models from non-spatial assumptions to spatially-explicit models remains a 

challenge. This chapter explored the effects of changing host patterns, landscape scales, and 

epidemiologically relevant parameters on the accuracy of Parnell et al.’s (2012) rule of thumb 

within a spatially-explicit stochastic epidemiological model. Surveillance simulations were 

performed over epidemiological simulation data, with the frequency of surveillance Δ and the 

sample size for each surveillance round N parameterised. These findings indicated that the 

dispersal distance parameter (θ; metres) was the most influential factor in determining the 

accuracy of the model, with a larger θ resulting in higher accuracy. Furthermore, the impact 

of landscape clustering on the accuracy of the model was context-dependent, but generally 

the model was more accurate on homogeneous landscapes than on clustered landscapes, 

especially in the context of short dispersal θ magnitudes. The low accuracy in estimation of 

prevalence at detection for diseases that have limited dispersal may lead stakeholders to 

underestimate the true spread of disease, leading to inappropriate resource allocation to 

manage the outbreak. This chapter also highlighted the need for further research to refine 

understanding of dispersal parameters and their complex interactions with other landscape 

variables. Overall, this chapter contributes to the growing body of research on the role of 

landscape variables in shaping disease dynamics and control efforts. 
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4.2. Introduction 

Trees and other plant species provide major ecological and economic benefits to many 

species and microorganisms globally, including humans (Turner-Skoff & Cavender, 2019). 

Why it is significant to effectively manage plant diseases has been highlighted in Chapter 3. 

The successful control of large-scale epidemics relies not only on the potential effectiveness 

of disease management strategies but also on our actions, priorities, resource allocation and 

the influence of political factors. These overall disease management strategies could be 

categorised as disease management strategies deployed before the epidemic expansion (for 

example pre-border prediction and prevention), disease management strategies during the 

early phase of the epidemic expansion (for example post-border prediction and early 

detection) and post-hoc disease management strategies, during the later phase of epidemic 

(for example adaption and analysis, including cost analysis) (Parnell et al., 2015; Boyd et al., 

2013; Cunniffe et al., 2016; Ristaino et al., 2021).  

Epidemiological modelling is increasingly used to inform disease management strategies 

(Defra, 2023). Surveillance effort during the early phase of emerging pest epidemics is often 

not sufficient due to a general lack of understanding of appropriate allocation to meet 

management objectives of containment or eradication (Parnell et al., 2015). Early phase 

epidemic management is often required to contain or eradicate disease; this can difficult to 

implement due to limited information available about an emerging disease, the rapid spread 

of disease due to lack of detection and diagnosis or the mobilisation and allocation of 

resources during the early phase of disease establishment (Severns et al., 2019; Parnell et al., 

2015). The development of early detection diagnostic tools for many emerging plant diseases 

have prompted epidemiological modellers to match the technology with models that can 

facilitate early detection and consequently better management of emerging pest epidemics 

(Peng et al., 2022; Liu & Wang, 2020). The development of more robust models capable of 
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directing the activities of disease management efforts during the early phase of epidemics are 

thus required.  

As stated previously, the rule of thumb for predicting the prevalence of disease when it is first 

detected is a novel tool that plant health managers can use to direct surveillance allocation 

(Parnell et al., 2012; Parnell et al., 2015; Mastin et al., 2020). Surveillance models have been 

developed to direct where surveillance should be allocated during the early phase of an 

epidemic previously (Mastin et al., 2020). Matching spatially targeted allocation of 

surveillance resources with the appropriate quantity of surveillance will better guide plant 

health managers when dealing with an emerging plant pest threat. Furthermore, knowing 

when to allocate the surveillance resources is essential to maximising management efforts 

(Parnell et al., 2015; Mastin et al., 2020).  

The focus of this chapter was to explore the impact of changing landscape dynamics in 

epidemic simulation scenarios on the accuracy of the rule of thumb. Combining a spatially 

stochastic epidemic simulation model, a spatially stochastic surveillance simulation model 

and the rule of thumb allows exploration of the application of early detection models. In 

particular, landscape heterogeneity is known to significantly influence the dynamics of an 

epidemic however how landscape heterogeneity influences early-stage epidemic spread and 

thus our ability to estimate resources required for early detection is largely dependent on 

available data (Plantegenest et al., 2007; Meentemeyer et al., 2008; Václavík et al., 2010). 

With advances in tools such as spatial statistics and geographic information systems (GIS) it 

is possible to quantify the impact of landscape dynamics on disease dynamics (Plantegenest 

et al., 2007; Meentemeyer et al., 2008; Václavík, 2010). Many recent studies have attempted 

to understand how spatial dynamics will fit into our current understanding of predictive 

modelling and overall model transferability (Condeso & Meentemeyer, 2007; Allouche et al., 
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2008; Meentemeyer et al., 2008a; Václavík, 2010). For example, by using invasive species 

distribution models (iSDMs), it is possible to assign “weight” to variables that may be 

influencing the distribution of invasive species (Meentemeyer et al., 2008a; Václavík, 2010). 

These models utilise machine learning techniques such as maximum entropy (MAXENT), 

and are flexible with the input of parameters, allowing different “weights” dependent on a 

particular invasive species. These models account specifically for the distribution of plants, 

including symptomatic and asymptomatic hosts to model both the risk of establishment and 

the possible distribution of disease. Condeso & Meentemeyer used an iSDM to assess the 

impact of landscape heterogeneity on the proliferation of Sudden Oak Death (caused by the 

pathogen Phytophthora ramorum) (Condeso & Meentemeyer, 2007). By predicting 

environmental suitability along the Western Coast of the United States, targeted surveillance 

of disease severity was delivered. The results of this study indicated that trees surrounded by 

large contiguous forests were most severely affected (Condeso & Meentemeyer, 2007). This 

is an excellent example of how predictive modelling approaches can be utilised to serve the 

interests of stake holders in disease management whilst simultaneously delivering novel 

information to inform future studies and disease management efforts.  

How early detection models that incorporate dispersal patterns and host aggregation will 

perform has yet to be studied. That is, to what extent these factors drive early-stage epidemic 

and our ability to predict the performance of early detection surveillance strategies is poorly 

understood. This chapter explores the concepts of landscape heterogeneity with regards to the 

reliability and uncertainty of predictive modelling (Parnell et al., 2012; Parnell et al., 2015; 

Newlands, 2018). Given that the rule of thumb used in this chapter was developed with non-

spatial assumptions, how well it transfers across a range of possible landscapes is a critical 

question that is sought to be answered within this chapter. This information is intended to 

equip plant health managers with a more flexible and robust tool for managing an emerging 
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or ongoing epidemic, analysing the rule of thumb utility under diverse epidemic conditions 

where landscape heterogeneity and the distance scale of landscape are factors.  

Therefore, the research questions of this chapter are: 

• How does changing the host pattern impact the ability to predict detection prevalence 

with simple epidemic models? 

• How does changing the dispersal distance parameter within different landscapes, 

hence reflecting a range of epidemics, impact the ability to predict detection 

prevalence with simple epidemic models? 

4.3. Methods 

The methodology of this section covers the mechanics of the modelling process used in this 

chapter to explore and evaluate the accuracy of the simple rule of thumb under changing 

landscape conditions. Initially the models are lain out, including the structure of the dispersal 

model, landscape generation and surveillance processes. The rule of thumb equation is then 

described in detail, it’s derivation and what it represents are described. Finally, the indices 

used to quantify the impact of landscape heterogeneity and homogeneity are explained. 

4.3.1. Epidemiological model 

My model tracked simulated host plants in a two compartmental model (Keeling & Rohani, 

2007): susceptible (S) hosts were uninfected and infected (I) hosts were infectious. If host i 

was susceptible at time t, then the probability of infection of i was given by: 

     𝜑𝑖(𝑡) =  ∑ 𝐾(𝑑𝑖𝑗; )𝑗  

           (Eqn 4.1)
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ϕi(t) was the rate of infection at time t,  was the transmission coefficient that defined the rate 

for any given distance within the kernel, and the summation ran over all infectious hosts j at 

time t. The dispersal 𝐾(𝑑𝑖𝑗; ) set the rate of disease transmission between a pair of hosts 

separated by distance 𝑑𝑖𝑗, and was parameterised by the dispersal scale parameter . 

Therefore,   is a rate and   has the units of distance. To allow robustness in dispersal 

mechanics if needed based on the dispersal kernel tail, I included the power exponential 

function dispersal kernel explored by previous authors (Bourhis et al., 2019; Rieux et al., 

2014). I fixed the scale parameter   as the thin-tailed exponential kernel in this study, and 

then normalised so that the probability of infection translated to a total probability of 1 for the 

entire kernel at any given time: 

     𝑛𝑜𝑟𝑚 =
1

222
  

           (Eqn 4.2) 

In order to reduce the time taken to run epidemic simulations, I used the tau-leap Gillespie 

algorithm (Gillespie, 2001). This algorithm was defined as: 

𝛿𝐼𝑇 ≈ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑆𝑡𝜑𝑖(𝑡)𝜏) 

           (Eqn 4.3) 

Where 𝜏 was the time leap between the initial state and updated state of the simulation 

process, (T – t).  
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Table 4.1. List of the epidemiological parameter values for chapter four. For each square 

matrix of parameter combinations, a random landscape modifier (ξ) is assigned. ξ  values are 

selected as a range between 0-1 and then 11 θ values are selected to create a square matrix of 

parameter combinations for the purposes of analysis (see results). 

Random 

Landscape 

Modifier (ξ) 

Dispersal Distance (θ) 

(metres) 

0 10 m 

.1 20 m 

.2 30 m 

.3 40 m 

.4 50 m 

.5 60 m 

.6 70 m 

.7 80 m 

.8 90 m 

.9 100 m 

1  110 m 

 

I modelled the landscapes as 1km2 areas containing 1000 hosts, which reflected a realistic 

plant host density. I initiated epidemics with a single randomly selected host infection at time 

t = 0, continuing until a specified time limit of ten years (tmax). This limit was included to 

account for the occurrence of simulated epidemics where transmission between hosts became 

effectively zero because of the distance between host clusters; thus, preventing simulations 

from running indefinitely. The range of dispersal distances ( ) and the transmission 



 

73 

 

coefficient (=100) were chosen based on the results of chapter three which reflected 

realistic parameter values. All parameter values are specified in table one. 

4.3.2. Generating landscapes 

I developed the landscape patterns by generating clustered landscapes points with a 

proportionality parameter labelled the randomisation factor ξ that reallocates points using a 

randomiser function (ξ = 1, random landscape; ξ = 0, clustered landscape). Each simulation 

was configured with a unique landscape distribution whilst parameter combinations did not 

vary. I generated clustered landscape patterns using a Matérn cluster process, a special class 

of Neyman-Scott processes (Neyman & Scott, 1958). This process defines parent points p 

and subsequent daughter points d via Poisson estimation. The total set of points on each 

landscape was given by: 

𝑇 = 𝑝1
+ ⋯ + 𝑝𝑖

=  ∑ 𝑑𝑖

𝑝

𝑖=1
 

           (Eqn 4.4) 

Where both p and d are Poisson distributed. I scaled the radius of the plant host clusters r 

to the 1 km2 area and fixed these parameters for subsequent scales. p and d were set to 50 

and 25 by default to explore clustering effects.  

The reallocation of points within the Matérn cluster process was defined as: 

(𝑥, 𝑦) =  (𝑑𝑖
|𝑋) 

           (Eqn 4.5) 

Where 𝑑𝑖  is replaced by co-ordinates defined as: 
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𝑋 ∼ Uniform(0, √K) 

Where K is defined as the scale of the landscape in meters squared. The landscape modifier ξ 

is the proportion of hosts that undergo this transformation. 

For simplicity, I removed edge effects from the study, subsequently the total set of points was 

consistent and remained within the study region. 

4.3.3. Surveillance model 

I developed a spatially explicit, stochastic surveillance model by randomly sampling hosts at 

set time intervals using the stored epidemic data generated previously to estimate the mean 

growth rate of epidemics. At the point of disease detection, I stopped surveillance and then I 

recorded and stored the total prevalence.  I then calculated the average of these prevalence 

values. The initial sample size per sampling round was 30 hosts (N), with the interval 

between surveillance rounds () set to 30 (arbitrary time units). The compatibility of the 

surveillance model with the epidemiological model ensures that time units remain coherent 

i.e. the time units were arbitrary and required no conversion between models; here time units 

are assumed as days.  

4.3.4. The rule of thumb model 

Parnell’s rule of thumb was defined as (Parnell et al., 2012): 

𝑞∗ =
𝑟

𝑁
 

           (Eqn 4.6) 

Where 𝑞∗was the theoretical detection prevalence which was determined by the relationship 

between the growth rate of the epidemic 𝑟 and the surveillance protocol,  was the interval 
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between surveillance rounds, and 𝑁 was the sample size taken for inspection each 

surveillance round. The derivation of this equation was discovered as follows: by the 

assumption that if an epidemic grows exponentially, then the probability of detecting the 

disease at any given time was a simple interaction between rate of surveillance and the 

exponential growth of the epidemic (Parnell et al., 2012). By solving this equation via 

integration, Parnell et al. (2012) arrived at the total probability of detection at the point of 

detection. Using a random variable transformation of the initial time with an exponential 

growth assumption, the prevalence at the time of detection was translated from this 

probability using the Jacobian of the transformation. A full derivation of the approach can be 

found in Parnell et al (2012; 2015). Thereby, the above rule of thumb stated that given the 

epidemic growth parameter (r), the surveillance frequency (Δ) and the sample size (N), then 

the prevalence of disease at detection (q*) was estimated as an approximation of the true 

prevalence of disease at detection. Key assumptions from the rule of thumb were exponential 

increase of the pathogen population and continuous monitoring of the host population with 

time.  

For every unique epidemiological parameter combination of θ and β, 2000 simulation runs 

were performed, providing a unique set of a growth rate values (r). I estimated r by using a 

linear transformation on the initial growth phase of the epidemic, corresponding to the first 

quartile of transition events and measuring the mean gradient of the curve. The average of 

these 2000 r values was then used as input within the rule of thumb (Eqn 5). For N and Δ in 

the above equation, these values were taken from the surveillance model as defined above. 

4.3.5. The comparison metrics 

The comparison metrics used were absolute difference and relative difference. The absolute 

difference was calculated as the difference between q* and the average epidemic prevalence 
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at detection. The relative difference was the absolute difference further divided by the 

average epidemic prevalence. 

4.3.6. Nearest Neighbour Index 

To approximate the total degree of clustering within the landscapes, The Nearest Neighbour 

index (NNI) was used. The NNI represents the relative difference between the observed 

allocation of points and the expected allocation of points under an expected random 

distribution. This is an expression of the observed mean distance between points to the 

expected mean distance between points as is defined as: 

𝑁𝑁𝐼 =
𝐷0

𝐷𝐸
 

           (Eqn 4.7) 

Where, 

𝐷0 =
∑ 𝑑𝑖

𝑛
𝑖=1

𝑛
 

Where 𝑑𝑖 represented the distance between each host and its nearest neighbour and, 

𝐷𝐸 =
. 5

√𝑛/𝐴
 

Where 𝑛 corresponded to the number of features in a landscape and 𝐴 represented the area of 

the landscape. If the output was less than a value of 1, then the landscape exhibited some 

degree of clustering. 
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4.4. Results 

Results demonstrated that the accuracy of the rule of thumb model increased with increased 

dispersal distance and decreased with clustering. This was shown by the rule of thumb 

prediction of prevalence at first detection and the prevalence of detection within the 

simulation model (Figure 4.4). The prevalence at detection within the simulation model was 

generally consistent across the parameter space for the wide range of landscape 

configurations and dispersal distance combinations explored when the transmission 

coefficient remained constant (Figure 4.2). The rule of thumb reflected this generally constant 

trend in prevalence, hence the absolute difference between the rule of thumb prediction and 

the simulated detection model did not vary significantly across the parameter space (see 

Figure 4.3). However, the relative difference between the rule of thumb and the simulated 

detection model decreased as dispersal distance (θ; metres) increased due to the increasing 

prevalence at detection within the simulation model. Thus the accuracy of the model 

increased with dispersal distance (Figure 4.4). In addition, the relative difference between the 

rule of thumb prediction and the simulated detection model increased as clustering increased, 

thus the accuracy of the rule of thumb model decreased with clustering (Figure 4.4).  

Figure 4.2 shows the mean prevalence of detection for each parameter combination across the 

parameter range (Figure 4.2). These values ranged from 0.01 to 0.05, where  represented the 

host distribution modifier (0=total clustering, 1=total randomness) and  represented the 

mean dispersal distance of inoculum (metres). The results indicated that the mean prevalence 

of detection increased as  and  were increased. One of the parameter combinations ( = 0.1, 

 = 90) was omitted from the analysis because the data was corrupted for this combination. 

The reason for this data corruption has yet to be determined. Figure 4.3 presents the absolute 

difference between simulated detection prevalence and the rule of thumb for each parameter 
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combination across the parameter range (Figure 4.3). The values range between 0.01 to 0.02 

(at two decimal points), therefore the impact of  on the absolute accuracy of the rule of 

thumb appeared to be limited, this limited impact appears to be consistent for  also. 

However, the heatmaps did indicate a weak relational pattern between decreasing  and 

increasing absolute difference based on heat intensity between 0.01 and 0.02. Parameter 

combinations were omitted from this analysis as code did not function whilst generating 

epidemic growth curves for a selection of the lowest dispersal distances ( = 0.2, 0.3, 0.4, 0.5, 

0.7,  = 10). Whilst calculating growth rate values, several simulation estimations produced 

NA values. Why these simulations produced NAs has yet to be determined. Given the 

omission of the parameter combination in the previous data, it was impossible to calculate the 

absolute difference for that same point again. Figure 4.4 shows the relative difference in 

detection estimation between the rule of thumb and the simulated detection model (Figure 

4.4). This was estimated as the division of the absolute difference by detection prevalence. 

The values range from 0.25 to 0.81 and both  and  play a role in determining the relative 

difference. The heatmap observational analysis indicated that increasing  and decreasing ξ 

led to increased relative difference in detection estimation between the rule of thumb and the 

simulated detection model.  
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Figure 4.1. The mean prevalence of detection for each parameter combination across the 

parameter range. Values range from 0.01 to 0.05. ξ represents the landscape modifier (0 = 

total clustering, 1 = total randomness) and θ represents the mean dispersal distance of 

inoculum (meters). Surveillance strategy is determined by sample size and sampling 

frequency interval (N = 30, Δ = 30). Values rounded to two decimal places. 



 

80 

 

 

 

 

 

 

 

 

 

 

 

 

 

                    

                                            

                                            

                                        

                                            

                                            

                                            

                                            

                                            

                                            

                                        

    

 

  

  

  

   

                    

 

    

    

    

    

    

    
                   

 

Figure 4.2. The absolute difference in detection estimation between the rule of thumb and the 

simulated epidemic detection model for each parameter combination across the parameter 

range. Values range from 0.01 to 0.05. ξ represents the landscape modifier (0 = total 

clustering, 1 = total randomness) and θ represents the mean dispersal distance of inoculum 

(meters). Surveillance strategy is determined by sample size and sampling frequency interval 

(N = 30, Δ = 30). Values rounded to two decimal places. 
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Figure 4.3. The relative difference in detection estimation between the rule of thumb and the 

simulated epidemic detection model for each parameter combination across the parameter 

range. Estimated as the division of absolute difference by detection prevalence. Values range 

from 0.25 to 0.81. ξ represents the landscape modifier (0 = total clustering, 1 = total 

randomness) and θ represents the mean dispersal distance of inoculum (meters). Surveillance 

strategy is determined by sample size and sampling frequency interval (N = 30, Δ = 30). 

Values rounded to two decimal places. 
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To investigate the degree of clustering in the landscape, the Nearest Neighbour Index (NNI) 

was used (see Figure 4.5). It is evident from the figure the decrease in clustering observed 

with increasing ξ. 

Figures 4.6-4.9 demonstrated the epidemic behaviour represented spatially, with snapshots at 

the time of detection for a range of parameters. For epidemics with small values of θ, there 

was a similarity between the clustered and random landscape configurations. i.e. the 

influence of the clusters was not as significant due to the limited dispersal of inoculum.  

 

Figure 4.4. The sequence of Nearest Neighbour Index’s for the random landscape factor on 

the 1 km2 scale. Values less than 1 indicate clustering, however, the accuracy of the NNI in 

describing clustering depends on several factors, including the scale of the analysis, the 

spatial distribution of the points, and the assumptions underlying the NNI calculation. 

Standard Deviation is reported as solid bars above and below the mean NNI. 
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Figure 4.5. A selection of epidemic snapshots at the point of detection for ξ = 0, θ =10. All 

other parameters including ,  and N are fixed (N = 30,  = 30). Red dots indicate infected 

hosts at detection, blue dots indicate hosts that remain susceptible at detection. Shown are 

randomly selected realisations from the epidemic model (a-h) to demonstrate the range of 

epidemic behaviour.  
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Figure 4.6. A selection of epidemic snapshots at the point of detection for ξ = 0, θ =110. All 

other parameters including ,  and N are fixed (N = 30,  = 30). Red dots indicate infected 

hosts at detection, blue dots indicate hosts that remain susceptible at detection. Shown are 

randomly selected realisations from the epidemic model (a-h) to demonstrate the range of 

epidemic behaviour. 
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Figure 4.7. A selection of epidemic snapshots at the point of detection for ξ = 1, θ = 10. All 

other parameters including ,  and N are fixed (N = 30,  = 30). Red dots indicate infected 

hosts at detection, blue dots indicate hosts that remain susceptible at detection. Shown are 

randomly selected realisations from the epidemic model (a-h) to demonstrate the range of 

epidemic behaviour. 
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Figure 4.8. A selection of epidemic snapshots at the point of detection for ξ = 1, θ = 110. All 

other parameters including ,  and N are fixed (N = 30,  = 30). Red dots indicate infected 

hosts at detection, blue dots indicate hosts that remain susceptible at detection. Shown are 

randomly selected realisations from the epidemic model (a-h) to demonstrate the range of 

epidemic behaviour. 
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4.5. Discussion 

The objectives of this thesis chapter were to explore the effects of landscape variables and 

their interactions across a range of epidemics; specifically how these interactions influenced 

the accuracy of an early detection model (Parnell et al., 2012). These objectives could be 

addressed by thus answering the following questions: 

• How does changing the host pattern impact the ability to predict detection prevalence 

with simple epidemic models? 

• How does changing the dispersal distance parameter within different landscapes, 

hence reflecting a range of epidemics, impact the ability to predict detection 

prevalence with simple epidemic models? 

The main findings of this chapter indicated that the most influential factor on the accuracy of 

the “rule of thumb” was the dispersal distance parameter, which specified the distance 

inoculum would spread. This was described using a special form of the gamma dispersal 

kernel analogous to the exponential decay model (Bourhis et al., 2019). The mean dispersal 

distance corresponded to twice the value of θ (metres), where the probability decayed 

proportional to the distance from source. β (rate of infection) corresponded to the likelihood 

of a new host being infected upon contact with inoculum, which in this epidemic model 

translated into the probability of infection for each host given their distance from source. 

Initially, the extensive experiments across the landscape modifier scale (ξ) demonstrated that 

as ξ decreased and as θ decreased, there was an observable reduction in the accuracy of the 

rule of thumb as described by the relative differences (Figure 4.4). This observable reduction 

was consistent though the absolute differences remained almost entirely constant across the 

parameter range (Figure 4.3). The reasoning behind the range of relative differences is that 

the even though the prevalence of epidemic at detection increased as ξ increased and θ 
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increased, the absolute differences remained constant, hence reducing the overall relative 

drop in accuracy of the “rule of thumb”. The implication of this finding contrasts previous 

literature that indicates modelling long distance disease dispersal is more stochastic and more 

unpredictable as compared to short distance disease dispersal (Robinet et al., 2012). In 

respect to restricting this study to the power exponential form of the gaussian kernel; the 

kernel chosen for this study (the gaussian kernel) may need to be parameterised with different 

shape values to improve realism when modelling the spread of specific plant pathogens (as 

well as to provide additional meaningful insights). Were the rule of thumb to be applied to a 

wide distribution of kernels, unravelling the nature in the increase in accuracy of the rule of 

thumb with larger dispersal kernels would be less challenging. For now, it is hypothesised 

that the change in the dispersal kernels scaling parameter does not significantly alter the 

behaviour of epidemic expansion (Farber et al., 2019). If the scaling of the epidemic 

expansion does not significantly affect the resulting prevalence pattern beyond the increase in 

prevalence, the rule of thumb models assumptions will continue to hold and this will be 

reflected in the increased accuracy with increasing prevalence. The clustering behaviour 

reduced the accuracy of the rule of thumb because host aggregation may not be accounted for 

within the rule of thumb model. Previous research has indicated that edge effects have a 

significant impact on the final prevalence status of a diseased crop or plant landscape 

(Johnson & Haddad, 2011). Johnson & Haddad demonstrated that crops that were patchier 

would have lower disease prevalence (albeit specifically a fungal pathogen case study). 

Following this logic, were there no significant model assumption violations, a lower 

prevalence would predict a greater decrease in accuracy of the rule of thumb model when 

observing relative differences. 
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According to the model this effect was observed, indicating that the clustering of hosts in a 

landscape will decrease the rule of thumb’s accuracy without violating the assumption of 

exponential growth (Figure 4.4). This is further supported by the constant absolute 

differences across the landscape aggregation parameter space (Figure 4.3). Again, the 

epidemiological model deployed in this study was relatively simple if representative of a 

large group of epidemics. How the rule of thumb model would perform with further 

compartmentation of individual host status would more thoroughly explore the effects of 

landscape dynamics on the accuracy of the rule of thumb.  

The relative amount of clustering was indicated by the Nearest Neighbour Index (NNI), 

demonstrating a relationship between clustering and the value of ξ across the landscape range 

(Figure 4.5). The NNI analysis demonstrated that the effects of clustering decreased with 

increasing ξ. Values less than 1 indicate some degree of clustering, though the NNI indicates 

some degree of variability. The compounded effect of less clustering leads to additional 

accuracy in the rule of thumb model. An additional experiment was performed to explore the 

effects of clustering on differing scales of landscape for different values of β, however the 

cluster formations using the previous clustering parameter values were smaller on larger 

landscapes and hence removed from the experiment and consequently is in the appendix 

(Appendix, Figure 4.10, 4.11a & b). It is important to note that the impact of  on the 

accuracy of the rule of thumb was limited;  had some degree of influence on the 1km2 scale 

but was restricted for larger landscape scales (Appendix, Figure 4.11a & b). This finding 

indicates that for long dispersal distance events, the transmission coefficient will not greatly 

impact the rule of thumb approximation, hence increasing transferability across epidemics. A 

further consideration is that the normalisation constant within this epidemiological model 

represents falling inoculum between hosts, further decreasing the effects of the transmission 

coefficient between hosts on larger scales. This is considered largely realistic behaviour and 
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hence reinforces the finding that long distance dispersal of inoculum will reduce the impact 

of the transmission coefficient on the accuracy of the rule of thumb model. This has been 

investigated previously with similar findings (Arias et al., 2018). However, it is important to 

note that until the clustering behaviour in the landscape is standardised, it is difficult to draw 

any meaningful conclusion of clustering behaviour on larger scales. 

Figures 4.6-4.9 demonstrated a series of 8 random iterations for contrasting sets of 

epidemiological relevant parameters (Figures 4.6-4.9) The parameters were selected at the 

maximum and minimum range values to demonstrate the contrast in prevalence at detection.  

When explored as a set of 2000 iterations per parameter combination, Figure 4.6 and 4.8 

revealed that some change in the accuracy of the rule of thumb occurred when changing 

between a homogeneous landscape and a heterogenous landscape on a shorter scale, as 

interpreted visually (Figure 4.6 & 4.8). How influential this effect of landscape clustering is 

likely dependent on the epidemiological parameters of the epidemiological model used.  

In reflecting on the findings of this chapter, I believe it is pertinent to acknowledge that the 

effects of landscape clustering might also be impacted by the surveillance intensity. If a range 

of surveillance frequencies and sample sizes are to be deployed, then the effects of clustering 

on the accuracy of early detection models might become more prominent because of the 

inoculum of infection becoming trapped within the clusters. I propose that a future 

investigation into the effects of changing surveillance intensity in tandem with changing 

landscape aggregation would be of benefit to future researchers. 

The impact of θ on the accuracy of this simple epidemic model was explored thoroughly in 

the chapter and was determined to be the most influential parameter. The effects of dispersal 

parameters in spatially stochastic models have been explored previously and demonstrated to 

have a significant effect on the dynamics of epidemics (Filipe & Maule, 2004; Arias et al., 
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2018). For example Arias et al., (2018) demonstrated that longer dispersal kernels promote 

the proliferation of epidemics and Filipe & Maule, (2004) observed similarly that epidemic 

size is proportional to the size of the dispersal distance parameter (Arias et al., 2018; Filipe & 

Maule, 2004). Given the importance of θ in determining the accuracy of the early detection 

model, future research could focus on refining understanding of how this parameter varies 

across different landscapes and epidemic scenarios by collecting data on dispersal distances 

in the field or using more sophisticated modeling approaches to simulate different types of 

epidemics. Moreover, as noted by Filipe and Maule (2004) and Arias et al. (2018), the effects 

of dispersal parameters on epidemic dynamics can be complex and context-dependent (Filipe 

& Maule, 2004; Arias et al., 2018). Therefore, future studies could also investigate how other 

factors, such as host population densities or environmental conditions, interact with dispersal 

parameters to shape disease spread and control efforts.  

Overall, this chapter provided valuable insights into the role of landscape variables and their 

interactions in shaping the accuracy of early detection models for epidemics. Of particular 

importance are the influences of both dispersal distance and clustering dynamics. Therefore, 

the results are overall indicative that the rule of thumb model maintains a high degree of 

accuracy across a range of epidemics. By building on these findings, researchers and 

stakeholders can work towards developing more effective strategies for preventing and 

controlling disease outbreaks in a variety of contexts. Further research efforts should focus on 

varying the range of compartmental models such as SIR and SIS models and a range of 

dispersal kernel behaviours to further elucidate the accuracy of early detection models such 

as the rule of thumb within changing landscape environments.  

 



 

92 

 

5. Chapter five: Simple models for complicated epidemics 

- exploring the interactions of surveillance and 

epidemiological parameters in parsimonious models to 

inform early detection surveillance 

5.1. Chapter summary 

The early detection of pests in a plant population, such as a crop or a forest, is essential to 

mitigating significant losses at regional or national levels through effective plant pest 

management. Plant pest modellers concern themselves with reductions in the impact of these 

pests by informing stakeholders with appropriate action. Currently, there is much 

investigation into early detection models that integrate surveillance intensity with the 

epidemiological growth rate of an epidemic to inform stakeholders what the prevalence of 

pest will be when first detected. This study explores the accuracy of two early detection 

models by changing surveillance intensity, detection method sensitivities, and resource 

allocation with the use of a spatially-explicit stochastic epidemiological simulation model. 

My findings reveal that the accuracy of the early detection models are sensitive to both 

changing the epidemiological parameters transmission coefficient (β; rate of infection) and 

dispersal distance(θ; metres) and changing the surveillance intensity (frequency Δ and sample 

size N). My findings also reveal that one of the early detection models produced higher 

accuracies when accounting for changing detection assay sensitivity. These findings could 

inform stakeholders how changing surveillance intensity will affect the accuracy of the 

prediction of pest prevalence across a broad range of epidemics. The insights from this 

chapter could also inform stakeholders to a preferred modelling approach when accounting 

for detection assay sensitivity. As such, my research should contribute to improved 

biosecurity strategies and predictive modeling approaches for effective plant pest 

management.  
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5.2. Introduction 

Plant pests are a substantial, global problem, environmentally, economically and in terms of 

global food security (Dun-chun et al., 2021; Burdon et al., 2020). The importance of 

effectively managing plant diseases is stated in Chapter 3. Pests can be defined as insects, 

other invertebrate, bacteria, fungi, viruses or pathogens which affect the health of plants or 

plant products (Defra, 2023). Current pests that are of increasing global concern include 

Emerald Ash borer (Agrilus planipennis), Banana Fusarium Wilt (Fusarium oxysporum) and 

the bacterium Xylella fastiodisa (IPPC Secretariat, 2021; Buja et al., 2020; Volkavitsh et al., 

2021; Pegg et al., 2019). The early detection of these plant pests is crucial for the successful 

management and control of destructive pests (Buja et al., 2021). However, predicting the 

performance of surveillance strategies, and thus ensuring appropriate surveillance design, is 

not trivial. Recently, modelling approaches have been developed as a potential solution to 

improve our ability to predict the performance of plant pest detection strategies (Newlands, 

2018). Increasing the accuracy of plant pest detection models increases their applicability to 

managing novel pests that are introduced because of, in increasing importance, ongoing 

evolutionary processes, climate change and globalisation of trade (IPPC Secretariat, 2021; 

Spence, 2020; Parker and Gilbert, 2004). Increasing the accuracy of plant pest detection 

models is an important issue for NPPOs and relevant plant stakeholders impacted by the 

negative effects of plant pest epidemics (Newlands, 2018; Almieda, 2018). Plant pest 

detection models need to be flexible enough to be responsive to different scenarios whilst still 

producing consistent and accurate estimations. If there is a potential for reductions in 

accuracy, stakeholders should be informed beforehand (Newlands, 2018). The appropriate 

use of surveillance parameters in a plant pest detection model must also be considered; these 

are contextual and dependent on the intended use of the model. Examples of plant pest 

surveillance parameters vary; in the context of plant pest detection models, parameters 
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include the number of plants sampled on a day, the frequency of days in which surveillance is 

conducted and the sensitivity of the surveillance method (Parnell et al., 2012; Parnell et al., 

2015; Mastin et al., 2020). Previous early detection models have utilised these parameters as 

foundations to mathematical analysis of pest prevalence when first detected (Parnell et al., 

2012; Parnell et al., 2015; Mastin et al., 2020). As stated previously, one of the most 

documented early detection models is the rule of thumb derived by Parnell et al. (Parnell et 

al., 2012). This model accounts for sampling efforts and epidemiological growth rates to 

predict how much pest will be present when a pest is first detected (Parnell et al., 2012). 

Mastin et al. (2019) expanded on this model to account for sensitivity structure (Mastin et al., 

2020). 

Chapters three and four investigated the influence of epidemiology and landscape structure 

on the ability to predict the plant pest detection using the rule of thumb. However, this also 

depends on the implementation of the surveillance program itself. In practice surveillance 

programs differ markedly depending on the resources available to an NPPO, the awareness of 

the pest threat and logistical issues that influence the frequency and intensity of surveillance 

resources (Moore et al., 2010; Barnes et al., 2019; Cacho et al., 2010). In addition, they also 

differ in the sensitivity of the detection methods available for the pest (EFSA, 2020). Assays 

used for detecting plant pests differ in their effectiveness to identify these pests, referred to as 

the assay’s sensitivity. Choosing the most appropriate assay is often dependent on the scale 

and objectives of assessment; visual assays may be less sensitive than molecular techniques 

such as Electrochemical Impedance Spectroscopy (EIS) when detecting asymptomatic pests 

(Mohd Ali et al., 2019). However, when there is a need to monitor the progression of 

symptoms or minimise costs for surveying pests more frequently, visual assays are often 

more suitable (Buja et al., 2020; Balodi et al., 2017; Mastin et al., 2020). Therefore, the 

ability to detect a pest based on the sensitivity of the assay chosen is contingent on the 
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general objective of the chosen surveillance strategy. Recently, investment has been directed 

to innovations in novel detection techniques, with an emphasis on standardising assays that 

are fast, accurate and inexpensive (Buja et al., 2020). These assays work effectively only 

when strategy is designated prior to deployment to account for pest progression, which 

should be based on appropriate modelling (Parnell et al., 2017; Bebber & Gurr, 2015; 

Cunniffe et al., 2015). Ultimately, the overall sensitivity of a detection method will depend 

on both the sampling effectiveness (the probability to collect infected samples from an 

infected host unit) and the diagnostic sensitivity (the  probability to correctly identify an 

infected sample as infected) (EFSA, 2020). 

Therefore, the research questions this thesis chapter seeks to address are:  

• How much does the sensitivity of detection methods impact the accuracy of simple 

early detection models such as the rule of thumb when using a spatially-explicit 

stochastic epidemiological model (Parnell et al., 2012)? 

• How do epidemiological phenomena interact with these simple early detection model 

surveillance modifications? 

• How accurate is the Mastin et al. derivation of the rule of thumb when applied to a 

spatially-explicit stochastic epidemiological model (Mastin et al., 2020)? 

• Is the accuracy of the early detection models affected by a restricted pool of 

surveillance resource allocation? 

To address these research questions, in this chapter I will expand upon the spatially-explicit 

stochastic epidemic simulation model developed in chapters three and four. This model is 

sufficiently complex enough to include epidemic behaviours i.e. the dispersal θ and 

transmission coefficient β, whilst flexible enough to represent a wide range of plant pest 

epidemics (Bourhis et al., 2019). I will also modify the model to include a range of detection 



 

96 

 

sensitivities. Furthermore, I will explore varying surveillance strategies given a limited set of 

surveillance resources. I will be performing the spatially-explicit stochastic simulation model 

in tandem with a spatially-explicit stochastic surveillance model to simulate the prevalence of 

pests at detection and compare this against Parnell et al. early detection model for a range of 

surveillance strategies (Methods, Figure 5.1). Furthermore, I will be investigating the Mastin 

et al. rule of thumb model with sensitivity modification for a range of detection sensitivities 

within the surveillance model; by doing so expand the understanding of the applicability of 

these early detection models across myriad epidemics. To my knowledge, this has not been 

explored previously.  

Furthermore, I will integrate pest dispersal and likelihood of infection based on spatial 

constraints within this model thereby making it possible to explore pest and surveillance 

interactions over time and space (Rohani & Keeling, 2013). For the purposes of simplicity, I 

will use an exponential dispersal kernel to define the range of expected epidemics, which is 

commonly referenced in the literature to approximate the spread of plant pests (Bourhis et al., 

2019). Therefore, the model developed for this research will demonstrate realism within a 

range of epidemics that could potentially prepare appropriate stake holders for novel 

emerging plant epidemics. Given the precedent of biosecurity standards many NPPOs wish to 

encompass, this research chapter could contribute useful predictive insights that will assist 

strategic decision making within the context of plant pest management.  

5.3. Methods 

5.3.1. Epidemiological model 

The epidemiological model used in this chapter for the purposes of simulating epidemics was 

identical to the model used in previous chapters. The model tracked plants represented as 

points in space, where host status could either be susceptible (S) or infected (I) within a 



 

97 

 

simple SI compartmental model. If host i was susceptible at time t, then the probability of 

infection of i was given by: 

     𝜑𝑖(𝑡) =  ∑ 𝐾(𝑑𝑖𝑗; )𝑗  

          (Eqn 5.1)   

ϕi(t) was the rate of infection at time t,  was the transmission coefficient that defined the rate 

for any given distance within the kernel, and the summation ran over all infectious hosts j at 

time t. The dispersal 𝐾(𝑑𝑖𝑗; ) set the rate of disease transmission between a pair of hosts 

separated by distance 𝑑𝑖𝑗, and was parameterised by the dispersal scale parameter . 

Therefore,   is a rate and   has the units of distance. To allow robustness in dispersal 

mechanics if needed based on the dispersal kernel tail, I included the power exponential 

function dispersal kernel explored by previous authors (Bourhis et al., 2019; Rieux et al., 

2014). I fixed the scale parameter   as the thin-tailed exponential kernel in this study, and 

then normalised so that the probability of infection translated to a total probability of 1 for the 

entire kernel at any given time: 

     𝑛𝑜𝑟𝑚 =
1

222
  

          (Eqn 5.2) 

In order to reduce the time taken to run epidemic simulations, I used the tau-leap Gillespie 

algorithm (Gillespie, 2001). This algorithm was defined as: 

𝛿𝐼𝑇 ≈ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑆𝑡𝜑𝑖(𝑡)𝜏) 

          (Eqn 5.3) 
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Where 𝜏 was the time leap between the initial state and updated state of the simulation 

process, (T – t).  

The mean dispersal distance for the exponential kernel was equal to twice the value of the θ 

(metres) parameter, as given by the equation stated in Bourhis et al., (2019): 

ϕ =  
𝜃𝛤(

3
𝑏

)

𝛤(
2
𝑏

)
 

           (Eqn 5.4) 

Where θ is the dispersal parameter, b is the shape parameter, Γ is the gamma function and φ 

is the mean dispersal distance. 

5.3.2. Simulating Host Landscapes 

1000 hosts were given co-ordinates drawn from a uniform distribution in a 1km2 area using 

the R environment using the spatstat package (Baddeley & Turner, 2005). This process was 

repeated for 2000 iterations per epidemiological parameter combination. The chapter 

followed the previously established generation of clustered landscapes and reallocation of 

points according to random landscape factor  set to 1 (Chapter 3.3 methods). This was the 

chosen method given time constraints. 

5.3.3. Storing epidemic growth data 

I initiated epidemics with one random host infection at time t = 0, and the initial host was 

randomly selected for each epidemic run, which continued until all hosts were infected or the 

maximum time had been reached (tmax = 3650 days). I selected a range of realistic dispersal 

distances (θ) and transmission coefficients (β) based on the findings of chapter three and four 

(Table 5.1 & 5.2). These findings were based on realistic epidemic growth curves as observed 
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in literature (Alonso Chavez, 2016). For example, the range of r selected in this chapter were 

between 0.011-0.022, which would represent the growth rate of Citrus Canker. These values 

were produced through iterative exploration of the model initially, to determine growth rates 

that reflected real proliferation of plant diseases with suitably realistic dispersal. After 

epidemics were stopped, epidemiological data was stored and the mean growth rate of each 

set of 2000 simulations was estimated. I estimated the epidemiological growth rate (r) by 

using a linear transformation on the initial growth phase of the epidemic, corresponding to 

the first quartile of transition events and measuring the mean gradient of the curve. The 

average of these 2000 r values was then used as input within the rule of thumb models (Eqn 5 

& Eqn 6). For N and Δ in the above equation, these values were taken from the surveillance 

model as defined above. 

5.3.4. Surveillance model 

A spatially stochastic surveillance model was developed by randomly sampling hosts at set 

time intervals using the stored epidemic data generated previously to estimate the mean 

growth rate of epidemics. At the point of pest detection, I stopped surveillance and the 

prevalence at the time point of detection was recorded and stored.  An average of these 

prevalence values was then calculated for each set of 2000 simulations. The compatibility of 

the surveillance model with the epidemiological model ensured that time units remain 

coherent i.e. the time units were arbitrary and required no conversion between models; here 

time units are discussed as if days. 

5.3.5. Detection Method Sensitivity 

To investigate the degree to which sensitivity of assays affect the accuracy of the rule of 

thumb model, I included a sensitivity modifier within the detection procedure. This modifier, 

, stated that should a host be inspected for its pest status and the plant was already infected 
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then the probability of an inspection detecting the pest was determined by a probability 

between 0 and 1.  

5.3.6. Varying surveillance frequency and intensity 

To investigate the effect of different sampling factors, I varied sampling size and sampling 

frequency whilst keeping the surveillance intensity fixed at one (i.e. so that the average 

number of samples per day is equal to one, but how they are distributed over time was 

allowed to vary). Specifically, I explored several factors of 180 as my maximum sampling 

size and frequency: including 1, 2, 3, 12, 36, and 180. By doing so, it was possible to 

examine how changes in the sampling rounds whilst intensity was fixed affected the accuracy 

of the rule of thumb model.     

5.3.7. The rule of thumb model 

Parnell et al.’s rule of thumb was defined as (Parnel et al., 2012): 

𝑞∗ =
𝑟

𝑁
 

           (Eqn 5.5) 

Where 𝑞∗was the theoretical detection prevalence which was determined by the relationship 

between the growth rate of the epidemic 𝑟 and the surveillance protocol,  was the interval 

between surveillance rounds, and 𝑁 was the sample size taken for inspection each 

surveillance round. The derivation of this equation was discovered as follows: by the 

assumption that if an epidemic grows exponentially, then the probability of detecting the 

disease at any given time was a simple interaction between rate of surveillance and the 

exponential growth of the epidemic (Parnell et al., 2012). By solving this equation via 

integration, Parnell et al. (2012) arrived at the total probability of detection at the point of 
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detection. Using a random variable transformation of the initial time with an exponential 

growth assumption, the prevalence at the time of detection was translated from this 

probability using the Jacobian of the transformation. A full derivation of the approach can be 

found in Parnell et al (2012; 2015). Thereby, the above rule of thumb stated that given the 

epidemic growth parameter (r), the surveillance frequency (Δ) and the sample size (N), then 

the prevalence of disease at detection (q*) is estimated as an approximation of the true 

prevalence of disease at detection. Key assumptions from the rule of thumb are exponential 

increase of the pathogen population and continuous monitoring of the host population with 

time.  

5.3.8. The sensitivity rule of thumb model 

The sensitivity rule of thumb model was derived based on the formulation provided in Mastin 

et al. (2019), including the sensitivity of the assay within the underlying assumption of the 

model (Mastin et al., 2020). This equation is modelled as: 

     

𝑞𝑠𝑒𝑛 =
𝑟

𝑁𝜎
 

   (Eqn 5.6) 

5.3.9.  The comparison metrics 

To compare the differences in accuracy between the rule of thumb models and the simulated 

detection prevalence, I used the indices of absolute difference and relative difference. I 

calculated the absolute difference as the difference between q* or 𝑞𝑠𝑒𝑛 and the average 

epidemic prevalence at detection. The relative difference was the absolute difference further 

divided by the average epidemic prevalence. Therefore, the absolute difference informs the 

reader as to the difference between epidemic sizes regardless of the total epidemic size itself. 
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Whereas, the relative difference also took into account the relative size of the epidemic at 

detection, which may be more heavily influenced by the epidemiological parameters within 

the spatially-explicit stochastic epidemiological model. 

Table 5.1. List of epidemiological parameter values for chapter five. Two transmission 

coefficient (β; rate of infection) values and two dispersal distance (θ; metres) values are 

selected and for each epidemiological parameter combination, a range of surveillance 

frequencies (Δ) and sample sizes (N) are selected. 

β θ 

50 10 

150 70 

 

Table 5.2. List of the surveillance parameter values for chapter five. Frequency (Δ) is in days 

and sample size (N) is individual plant units.  

Δ N 

15 15 

30 30 

45 45 

60 60 

75 75 

90 90 

105 105 
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Table 5.3. List of the sensitivity values for chapter five. σ values are selected as a range 

between 0.1-1 and then three θ values are selected to create figures for analysis. 

Sensitivity of 

assay (σ) 

.1 

.2 

.3 

.4 

.5 

.6 

.7 

.8 

.9 

1 
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Table 5.4. List of the sampling protocols selected for this chapter. Sample rounds with a fixed 

intensity (N/Δ= 1) are varied by choosing a maximum N and Δ of 180 (approximately equal 

to a sample round once every half a year) and then calculating a range of factors of 180, so 

that sampling intensity remained constant. 

Sample rounds (Fixed intensity, 

N/Δ= 1) 

1  

2 

3 

5 

12 

36 

180 

 

Table 5.5. List of dispersal distance parameter values (θ; metres) selected for this chapter. 

Dispersal Distance (θ) 

10 m 

60 m 

110 m 
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5.4.  Results 

My findings indicated that there were interactions between the surveillance parameters and 

the epidemiological parameters when evaluating the accuracy of Parnell et al.’s rule of thumb 

model (Parnell et al., 2012) (Figures 5.2 & 5.3). Furthermore, Figures 5.4 and 5.5 

demonstrated a relationship in between detection sensitivity (σ) and Parnell et al.’s rule of 

thumb model and Mastin et al.’s model as indicated by the absolute and relative differences 

(Figures 5.4b & 5.5b). In addition, Figure 5.4 and 5.5 explore varying sampling rounds with 

fixed sampling intensity (Figures 5.4a & 5.5a). These figures collectively provide a 

comprehensive overview of the performance and implications of different early detection 

models with regards to surveillance strategy across a broad range of epidemics.  
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Figure 5.1. The relative differences between the mean detection prevalence for the rule of 

thumb predictive model and the simulated detection model for different samples sizes (N) 

sampling intervals (Δ). (β = 50, 150; θ = 10, 70). 
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Figure 5.2. The absolute differences between the rule of thumb predictions and the simulated 

detection prevalences for different samples sizes (N) and sampling intervals (Δ).  (β = 50, 

150; θ = 10, 70). 
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Figure 5.3. Absolute differences in the mean detection prevalence. a. the relationship between 

sampling allocation with fixed surveillance intensity and the absolute difference between 

Parnell et al.’s rule of thumb and the estimated simulated prevalence of pest at detection. 

Solid line is θ of 10, dashed line is θ of 60 and dotted line is θ of 110. b. the relationship 

between the detection sensitivity (σ) and the absolute difference between the estimated 
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simulated detection prevalence and the two models (Mastin et al.’s and Parnell et al.’s) for 

three different θ values.  Solid line is θ of 10, dashed line is θ of 60 and dotted line is θ of 

110. Blue line is Parnell et al.’s rule of thumb and red line is Mastin et al.’s rule of thumb. 

Sensitivity of detection assay within the simulation σ is on the x-axis. 
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Figure 5.4. Relative differences in the mean detection prevalences. a. the relationship 

between sampling allocation with fixed surveillance intensity and the relative difference 

between Parnell et al.’s rule of thumb and the estimated simulated prevalence of pest at 

detection. Solid line is θ of 10, dashed line is θ of 60 and dotted line is θ of 110.  b. the 

relationship between the detection sensitivity (σ) and the relative difference between the 
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estimated simulated detection prevalence and the two models (Mastin et al.’s and Parnell et 

al.’s) for three different θ values. Solid line is θ of 10, dashed line is θ of 60 and dotted line is 

θ of 110. Blue line is Parnell et al.’s rule of thumb and red line is Mastin et al.’s rule of 

thumb. Sensitivity of detection assay within the simulation σ is on the x-axis. 

Figure 5.2 illustrated the relative differences between the rule of thumb approximation and 

the simulated prevalence of pest at detection, whereas Figure 5.3 illustrated the absolute 

differences between the rule of thumb approximation and the simulated prevalence of pest at 

detection. Decreasing the pest dispersal parameter (θ) led to a reduction in the relative 

accuracy of the rule of thumb. However, when considering the absolute differences I 

observed that this increase in difference is due to smaller final epidemic sizes, which impacts 

the final output of the relative differences. These findings highlighted that the choice of 

measurement of accuracy is complex, since it relied on an interplay between the epidemic 

and surveillance parameters, and must be suited for the research question as necessary. In 

addition, these findings indicated that the relationship between the epidemiological 

parameters and the accuracy of the Parnell et al. model were complex. Figure 5.2 and 5.3 also 

highlighted that increasing the interval between sampling rounds (Δ) led to a reduction in the 

accuracy of the rule of thumb. The general trend indicated that the accuracy of the rule of 

thumb also decreased as the sample size within the sampling round decreased (N). This was 

also more impactful as the epidemiological parameters increased. Of course, given the that 

the final epidemic sizes were larger in these faster epidemics, the relative differences did not 

adequately capture this effect. It is important to note that for the smallest sample size in the 

epidemic set with the largest values of epidemiological parameters, the absolute differences 

were small. As to why this may be the case requires further investigation. Overall these 

results suggested that increasing Δ and decreasing N would lead to a reduction in the accuracy 
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of the rule of thumb, and that this effect was intensified by increasing epidemiological 

parameter values. 

Figures 5.4 and 5.5 were the absolute and relative differences between the rule of thumb 

approximation and the simulated detection prevalence of pest for a range of detection 

sensitivities and sample rounds with surveillance intensity fixed. Figure 5.4a and 5.5a showed 

the absolute and relative differences between the rule of thumb approximation and the 

simulated detection prevalence of pest for a range of sampling rounds whilst keeping the 

sampling intensity fixed for three values of θ. There was no significant difference between 

the sampling round choices for the range of θ. The relative difference between the rule of 

thumb approximation and the simulated detection prevalence of pest was larger for the 

shortest dispersal distance (θ = 10) than the longest dispersal distance (θ = 70), and this 

difference remained constant across the sampling rounds. Figure 5.4b and Figure 5.5b 

showed the relative differences between two different early detection models predictions and 

the simulated detection prevalence of pest. Here it was observed that the Mastin et al. model 

had the greater accuracy, except for small detection assay values on a short dispersed 

landscape. The model generally performed better than the Parnell et al. model, with the 

largest increase in accuracy being observed for the smallest sensitivity values in epidemics 

that were not modelled for short dispersal (θ = 10). For the smallest value of θ, the accuracy 

of Mastin et al. model converges upon a relative difference of approximately 0.6, though 

when sensitivity (σ) is much smaller than 1, the difference between the early detection 

models is greater.  
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5.5. Discussion 

In this chapter, I sought to address the challenge of model verification and reliability in the 

context of early plant pests detection modeling whilst also providing insight into optimising 

surveillance strategy with limited resource allocation. Assay sensitivity plays a crucial role in 

determining the likelihood of the early detection of pests, and different assay techniques may 

be more suitable depending on the scale and objectives of assessment (Martin et al., 2000). In 

this chapter I aimed to explore the challenge of allocating the distribution of resources from a 

limited sampling effort pool. This question is outstanding in the literature and is of significant 

concern for designing surveillance strategies within the context of plant pest management. 

Therefore, my research questions aimed to address the impact of detection method sensitivity 

on the accuracy of simple detection models, the interactions between epidemiological 

phenomena, early detection model considerations such as limited resource allocation, and the 

potential for selecting the most appropriate early detection model. To tackle these questions, I 

deployed a spatially-explicit stochastic epidemic simulation model which captured dynamic 

epidemic behaviours whilst accommodating for a range of plant pest scenarios. By 

integrating pest dispersal and the transmission coefficient of pests, I aimed to unravel the 

complex interactions between pathogens and surveillance strategy in a spatially-explicit 

stochastic environment through simulating realistic epidemic behaviour and measuring the 

performance of the rule of thumb models.  

Here, I showed that decreasing the pest dispersal parameter (θ) heightened the impact of 

reducing surveillance intensity on the reduction in accuracy of the Parnell et al. early 

detection model. This result indicated that for shorter dispersed pests, such as soil-borne 

nematodes and pests carried by short flight-distance vectors, an increased surveillance 

intensity protocol is recommended. By increasing the surveillance intensity, the reduction in 

the accuracy of the Parnell et al. model is minimised, thus facilitating more accurate 
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estimations of pest at first detection. However, it is crucial to consider the absolute 

differences in this context. The increase in relative differences can be attributed to smaller 

final epidemic sizes, which have an impact on the final output of relative differences. These 

findings highlighted the complexity of accurately measuring and interpreting accuracy in the 

context of surveillance models. The absolute accuracy represented the true prevalence of 

pests at detection, and this may be more informative when determining tolerable levels of 

prevalence when first detected (Magarey & Sutton, 2007). It is also important to note that 

quantifying detection sensitivity in practise is difficult; EFSA define detection sensitivity as a 

combination of sampling effectiveness and diagnostic sensitivity, however the commonly 

used visual assay detection method is very difficult to quantify. In practice, although lab 

sensitivity is often quantified, it is very rare for sampling effectiveness of the sensitivity of 

visual inspection to be quantified. There are however a small number of exceptions to this 

generalisation e.g. Futch et al., 2009 (Futch et al., 2009). 

However, the results were complicated by the interaction with the epidemic parameters and 

less clear in some instance when the differences were expressed through the relative 

differences. The relative differences between the rule of thumb and epidemic simulation 

model contradicted the findings of the absolute differences between the rule of thumb and 

epidemic simulation model.  This is because whilst there were larger absolute differences 

between the epidemic simulation model and the rule of thumb, the total size of the epidemic 

reflected a relatively smaller drop in accuracy for the less intense surveillance strategies with 

larger epidemic parameter values. This means that if epidemic size when first detected is to 

be considered for future scientists and stakeholders, then the results indicate that the rule of 

thumb is more accurate for wider spread epidemics than for thinner epidemics. The coupled 

use of relative differences and absolute differences in this chapter is perhaps a recommended 

strategy to determining the accuracy of pest detection prevalence prediction and the limits on 
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accuracy for tolerable pest threshold respectively. The use of absolute values and relative 

transformations have been utilised previously to highlight the importance of variables of 

particular interest within plant science (Jung et al., 2000; Henson & French, 1993; Patil & 

Bodhi, 2011). For example, Jung et al., 2000 demonstrated that when the relative health of 

oak roots in association with Phytophthora spp. was measured relative to weather and 

seasonal conditions, the correlative index indicating the soil type and pH values associated 

with pest increased in significance than absolute values alone (Jung et al., 2000). Similar 

methods have been used in microbiological techniques to quantify the differences in plant 

DNA and RNA scarcity and in quantifying the degree of pest severity in plant samples using 

imaging techniques (Henson & French, 1993; Patil & Bodhi, 2011).  

It is important to note that the smallest N in the epidemic set with the largest values of 

epidemiological parameters exhibited small absolute differences, justifying further 

investigation. Overall, these results suggest that the choice of surveillance parameters can 

impact the accuracy of the early detection models, and this effect is intensified by higher 

epidemiological parameter values when comparing the absolute difference between 

prevalence at detection and Parnell et al.’s model. Whilst the accuracy of the model improves 

with increasing epidemiological parameter values, it is important to note that prevalence at 

detection may be beyond acceptable levels and an increase in accuracy is coupled with a 

sacrifice in early pest management. My findings indicated that less virulent (β = 50) 

epidemics with longer pest dispersal (θ = 70) led to greater predictions in the accuracy of pest 

prevalence when detected for the first time. This difference between virulence estimations 

was more significant when surveillance resources were scarcer. This indicated that resource 

allocation should be prioritised for longer-dispersal pests which proliferate faster because it is 

hypothesised that the increase in the number of hosts infected via increased pest virulence 

leads to more stochastic events occurring, which would lead to less accurate approximations 
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of prevalence when first detected. This has implications for management strategies, as often 

control methods are labour intensive and expensive, or the damage caused by a pest may be 

significant. Therefore, surveillance allocation should be proportional to the total cost of pest 

incursion should a pest invade (Kompas et al., 2019). If the modelling attempts to quantify 

the total amount of pest prevalence become less accurate when a pest is deemed a worse 

threat for biosecurity, then additional surveillance resources should be assigned, going 

beyond the anticipated required resources based on the damage a pest may cause. Ultimately, 

it would be prudent to take a more cautionary approach when allocating resources towards 

the most virulent and highly dispersed plant pest that could potentially invade.  

My chapter also provided valuable insight into the effects of changing sampling rounds 

whilst fixing surveillance intensity. This was equivalent to having a set amount of 

surveillance resources and deciding how frequently to allocate those surveillance resources 

during the early monitoring process of a potential pest incursion. My results indicated that 

apart from applying all resources in one round of monitoring, varying the allocation of 

resources across time does not significantly impact the accuracy of Parnell et al.’s model 

(Figure 5.4a and 5.5a). This is a promising result with implications for pest management; my 

results indicated that if the appropriate amount of surveillance is allocated within sampling 

rounds, the stake holder can afford to use fewer sampling rounds without a drop in accuracy 

in the prediction of prevalence of pest when first detected. This would be useful in scenarios 

where sampling may need to be “time-dependent”, i.e. timing the surveillance in line with the 

emergence of plant pest during the crop season. Other research has indicated that these “time-

dependent” sampling events are of relevance for pests beyond those affecting plant species 

(Magnani et al., 2005). This is of course contingent on the appropriate surveillance intensity 

being applied, less frequent sampling efforts will not be effective if the sample size does not 

match the required intensity for sufficiently accurate prediction. Furthermore, epidemics may 
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behave differently if the early expansion phase is too fast to afford a relaxed surveillance 

frequency.  

My results also provided key insights into the impact of detection sensitivity and sampling 

round frequency on the accuracy of plant pest detection models. It is evident that the Mastin 

et al. variant consistently outperforms the Parnell et al. variant, particularly as the sensitivity 

decreases (Figures 5.4b & 5.5b). Notably, for smallest pest dispersal (θ = 10), the Mastin et 

al. model converges upon a relative difference of approximately 0.6. Consistent with the 

findings in Figure 5.4, the Mastin et al. variant exhibits superior performance, especially for 

smaller θ values. It is hypothesised that the low detection sensitivities for shortly dispersed 

simulations led to higher final epidemic sizes upon detection and this was the causal reason 

as to why Mastin et al.’s rule of thumb performed less well for shortly dispersed epidemics 

with low detection assay sensitivity. Notably, as the detection sensitivity decreased, the 

difference between the accuracy of the two models became more pronounced. These results 

emphasized the critical role of detection sensitivity in influencing the accuracy of plant pest 

detection models, where the choice of model played an important role in the achievement of 

precise predictions. Moreover, the findings underscored the need for careful consideration 

and calibration of detection sensitivity parameters when designing surveillance modelling 

approaches for effective plant pest management.  The detection sensitivity of an assay is 

largely dependent on the unique characteristics of the assay, and the stage in which the pest 

has progressed within a population. With asymptomatic pests, early detection is often 

difficult and requires advanced technologies such as hyperspectral reflectance and machine 

learning algorithms for processing (Rumpf et al., 2010). With advances in technology, the 

sensitivity of assays are becoming increasingly accurate however classical methods such as 

visual inspection may still be deployed (Sankaran et al., 2010). Early detection of pest is 

paramount to effectively managing plant pest epidemics (Parnell et al., 2017). Having a 
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model that can include a variable sensitivity parameter is important to exploring the ongoing 

challenges of identifying and quantifying pest incursion during the early phase of 

establishment, when effective pest management is more feasible.  

In conclusion, this chapter has provided valuable insights into the complex dynamics of plant 

pest detection modeling and the impact of changing surveillance dynamics and detection 

sensitivities on the accuracy of early detection models. The sensitivity of detection methods 

and the choice of early detection models were identified as key elements in influencing the 

accuracy of early pest prevalence prediction. My results emphasized the importance of 

careful calibration and evaluation of detection sensitivity parameters when designing an early 

detection surveillance modelling approach. Additionally, my chapter demonstrated the 

intricate interactions between epidemiological parameters, resource allocation, and the 

accuracy of detection models. It is noted that the more highly-dispersed virulent epidemics 

should require more surveillance resources to be allocated to ensure effective estimations 

when modelling prevalence at first detection. In addition, shortly-dispersed epidemics also 

produce less accurate estimations, regardless of virulence, and should be monitored carefully 

to facilitate accurate prediction. Though these pests produce less risk in becoming 

unmanageable. Consequentially, my research findings have practical implications for 

stakeholders involved in developing biosecurity strategies and predictive modeling 

approaches for plant pest management. By providing insights into the evaluation of early 

detection modelling techniques, this chapter contributes to enhancing the effectiveness of 

plant pest management practices. Further research is needed to explore and refine these 

modeling approaches, incorporating advancements in detection technologies and considering 

the specific characteristics of different plant pests.  
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6. Chapter six: A study of Oak Processionary Moth as an 

example of the application of an early detection 

surveillance model 

6.1. Chapter Summary 

Climate change and globalisation driven range expansion of Oak Processionary Moth 

(Thaumetopoea processionea; OPM) means it is an increasing problem in Northern Europe, 

causing significant defoliation of oak trees, potential allergic reactions in humans and 

animals, and increasing the risk of exposure to further pests within ecosystems. This chapter 

explores the effectiveness of surveillance strategies for early detection of invading OPM 

populations. It also explores to what extent simple spread models can accurately capture the 

performance of surveillance strategies for the pest. I use a spatially-explicit stochastic 

epidemiological model to simulate OPM dispersal and prevalence at the point of detection 

with a spatially-explicit stochastic surveillance model. I compare the output of this 

experiment with the Mastin et al. (2019) rule of thumb. My primary findings highlight that 

there is a correlation between lower levels of surveillance and a higher prevalence of OPM 

when it is first detected. This indicates that current surveillance may be missing early 

infestations, allowing the moths to establish more extensively before being found by 

surveillance. These results could inform plant health managers within NPPOs as to a more 

realistic surveillance protocol to manage emerging OPM populations, reducing the rate of 

defoliation and presentation of allergic reactions. OPM will continue to proliferate under 

favourable conditions, though effective early detection modelling will help to manage this 

proliferation. However, tools like the rule of thumb have limitations based on the 

assumptions they use and are not applicable when surveillance frequency is too high. This 

implies that there is a disconnect between epidemic speed and frequency of detection; if the 
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delay between sampling rounds is sufficiently wide enough, epidemics will be spreading too 

fast for representation by the rule of thumb. 

6.2. Introduction 

The sharp increase in the major introduction of exotic plant pests to the United Kingdom over 

the past 100 years is indicative of the increase in the establishment of invasive species 

globally (Spence, 2020). The establishment of invasive species within the United Kingdom is 

a consequence of the development of global trade networks and the large-scale mixing of 

biota (Spence, 2020). The importance of managing plant diseases effectively is stated in 

Chapter 3. Therefore, it is crucial that the repertoire of epidemiological models available are 

tested and validated under different epidemic scenarios using simulation modelling before 

application in the real world to maximise their utility (Cunniffe et al., 2016).  If early 

detection models have not been validated prior to pest incursion, then predictions derived 

from the model may under-estimate or over-estimate the total presence of the pest, leading to 

the misallocation of resources which will further increase cost (Moffit et al., 2006). Failure to 

validate models that have potential application during early pest incursion may result in 

epidemics that are costly, leading to a high burden on National Plant Protection Organisation 

(NPPO) resources (Cunniffe et al., 2016; Carpenter et al., 2011). 

 An example of such a pest that threatens species of Oak (Quercus spp.) within the UK is Oak 

Processionary Moth (Thaumetopoea processionea) (Godefroid et al., 2020). Oak 

Processionary Moth (OPM) is an emerging plant pest threat to the UK that was introduced in 

2005 via imported trade material (Forest Research, 2021). OPM is native to the 

Mediterranean basin but has expanded to many countries within Europe due to changes in 

climatic conditions and accidental transportation of infested Oak material (De boer, 2020; 

Groenen & Maurisse, 2012). OPM is a priority pest because as well as causing defoliation of 
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oak trees, leading to vulnerability to other stressors, the caterpillars of OPM produce 

urticating hairs which are major irritants to animals and people (Groenen & Maurisse, 2012; 

Suprunenko et al., 2021; Rahlenbeck & Utikal, 2015). OPM is a univoltine species that feeds 

off oak trees, the epidemics are predominantly proliferated by the female moths that lay eggs 

in the upper canopy of oak trees (Suprunenko et al., 2021). The eggs hatch through spring 

and go through six instars of development (Suprunenko et al., 2021). The larvae pupate in 

nests and emerge as adults temporarily during mid-July to mid-September during which 

period the adults seek out new oak trees to establish upon (Suprunenko et al., 2021). 

Gottschling & Meyer provide an excellent summary table of this development (Table 1) 

(Gottschling & Meyer, 2006). Dispersal only occurs through the movement of larvae, the 

movement of adult females and accidental human-mediated transportation (Suprunenko et al., 

2021). Since 2005, the expansion of OPM has increased rapidly within the UK (Suprunenko 

et al., 2021). Research indicates that the distribution of OPM, initially introduced into the UK 

via contaminated trade goods from the Netherlands, has increased from the Greater London 

region to beyond the borders of Greater London (Suprunenko et al., 2021). OPM initially 

expanded at a rate of 1.66km per year, but this increased to 6.17km per year in 2015. 

Fortunately, the UK government is responsible for reducing the overall size of this expansion 

via restricting trade of oak material surrounding the Greater London region, effectively 

creating a buffer zone in which material cannot be realistically transported across (Forestry 

Commission, 2022).  
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Table 6.1. Chart of the yearly Oak Processionary Moth life cycle. The life cycle of the 

univoltine OPM, with the length of bars representing the duration in months for each stage of 

the OPM life cycle. The bars also correspond to the specific months within the year in which 

each stage of the life cycle occurs. Taken from An epidemic airborne disease caused by the 

Oak Processionary Caterpillar (Gottschling & Meyer, 2006). 

 

Similarly to the expansion of Pine Processionary Moth in central Europe, managing the 

expansion of OPM is contingent on sufficient data to determine whether the costs of short 

term management such as quarantine and horizon scanning is more or less expensive than 

managing the pest long term with surveillance and eradication (Moffit et al., 2006; Welsh et 

al., 2021; Cayuela et al., 2011). Surveillance efforts are a determining factor in the 

prevalence of pest when first detected, which is important because early detection can 

significantly influence containment and mitigation strategies, allowing for more efficient 

allocation of resources and reducing the potential damage these pests can inflict (Cunniffe et 

al., 2016; Parnell et al., 2015). Therefore, utilizing modelling strategies, I explore a current 

OPM surveillance strategy within the UK and compare it against other possible surveillance 

strategies. Officially, it is the responsibility of official inspectors to inspect Oak trees for 

possible infestations using post planting inspection forms. However, to my knowledge, 

beyond the current recommended modelling strategy, there is no UK wide policy on the 

number of trees to be inspected at what interval for native forests as opposed to trade material 

(Forestry Commission & Defra, 2023).  
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Secondly, I utilize the early detection model established by Parnell et al., 2012 and adapted 

by Mastin et al., (2020) which was investigated in previous chapters (Parnell et al., 2012; 

Mastin et al., 2020). I seek to understand how the prediction would match surveillance 

efforts, and how the accuracy of the model would change with changing surveillance 

strategy. Therefore, the research questions in this chapter are: 

• How well does the current OPM surveillance modelling strategy in the UK perform? 

• How are early detection models sensitive to changing surveillance conditions? 

6.3. Methods 

6.3.1. Epidemiological model 

The model tracked simulated host plants in a two compartmental model (Keeling & Rohani, 

2007): susceptible (S) hosts were uninfected and infected (I) hosts were infectious. If host i 

was susceptible at time t, then the probability of infection of i was given by: 

     𝜑𝑖(𝑡) =  ∑ 𝐾(𝑑𝑖𝑗; )𝑗  

           (Eqn 6.1) 

ϕi(t) was the rate of infection at time t,  was the transmission coefficient that defined the rate 

for any given distance within the kernel, and the summation ran over all infectious hosts j at 

time t. The dispersal 𝐾(𝑑𝑖𝑗; ) set the rate of disease transmission between a pair of hosts 

separated by distance 𝑑𝑖𝑗, and was parameterised by the dispersal scale parameter . 

Therefore,   is a rate and   has the units of distance. To allow robustness in dispersal 

mechanics if needed based on the dispersal kernel tail, I included the power exponential 

function dispersal kernel explored by previous authors (Bourhis et al., 2019; Rieux et al., 

2014). I fixed the scale parameter   as the thin-tailed exponential kernel in this study, and 
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then normalised so that the probability of infection translated to a total probability of 1 for the 

entire kernel at any given time: 

     𝑛𝑜𝑟𝑚 =
1

222
  

           (Eqn 6.2) 

In order to reduce the time taken to run epidemic simulations, I used the tau-leap Gillespie 

algorithm (Gillespie, 2001). This algorithm was defined as: 

𝛿𝐼𝑇 ≈ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑆𝑡𝜑𝑖(𝑡)𝜏) 

           (Eqn 6.3) 

Where 𝜏 was the time leap between the initial state and updated state of the simulation 

process, (T – t).  The time steps between OPM movement were restricted to 40 day intervals. 

The mean dispersal distance for the exponential kernel was equal to twice the value of the θ 

parameter, as given by the equation stated by Bourhis et al. (2019) (Bourhis et al., 2019): 

ϕ =  
𝜃𝛤(

3
𝑏

)

𝛤(
2
𝑏

)
 

           (Eqn 6.4) 

Where θ was the dispersal parameter, b was the shape parameter, Γ was the gamma function 

and φ was the mean dispersal distance. 

6.3.2. Estimation of the dispersal distance parameter 

To calculate a realistic dispersal of a single OPM, I utilised the 95th percentile to convert 

expert knowledge collected from an OPM management team at Defra on OPM dispersal into 
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a defined dispersal distance parameter (θ) (Hoppit, 2023). The equation that defined the 95% 

of an exponential decay distribution was given by: 

95𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 =  
−𝑙𝑛 (0.05)

𝜆
 

           (Eqn. 6.5) 

Where 𝜆 was given by the inverse of the mean dispersal distance. 500 meters was given as 

the natural dispersal of a single OPM moth between oak trees, assuming no human-mediated 

or weather-mediated transport as provided by lead UK OPM government expert Andrew 

Hoppit. By rearranging this equation and using 500 meters as the maximum dispersal of 

OPM, I estimated mean dispersal distance of OPM as 167 meters (Hoppit, 2023). Using 

equation 4 above, I estimated 𝜃 as approximately 83.5.  

6.3.3. Estimation of the transmission coefficient parameter 

By using the spread model defined above in section 3.1., I recorded the flight distances of the 

simulated OPM from the point of infestation across 2000 simulations. For each simulation, 

the transmission coefficient (β) was considered for the above θ of 83.5. I chose the 

transmission coefficient that produced the 95% percentile of maximum distance that 

corresponded to the reported expansion rate upon establishment in London, UK in 2006 

(Figure 6.1) (Suprunenko et al., 2021).  
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Figure 6.1. The simulated final distance from the source of infestation using the estimated 

OPM dispersal parameter. Based on expertise and a transmission coefficient that generates 

5% total simulations above the reported annual expansion rate in London UK upon 

establishment in 2006 (Hoppit, 2023; Suprunenko et al., 2021). 

6.3.4. Landscape generation 

I initially modelled the landscapes as 5km2 areas containing 5000 hosts, with coordinates 

drawn from a uniform distribution, which reflected a realistic oak tree density according to 

literature; to visit the databases used to calculate this see Hill et al. (2017) (Hill et al., 2017). 

These landscapes were generated in the R environment using the spatstat package (Baddeley 

& Turner, 2005). I initiated epidemics with 1 randomly selected host infection at time t = 0, 

and the initial host was re-selected for each epidemic run within the simulation, which 

continued until the end of one year. This method was chosen for pragmatic reasons; OPM 

epidemics spread rapidly. Time constraints were also a consideration. These experiments 

informed the selection of epidemiological parameters. I reduced the landscapes to 1km2 

whilst maintaining the same host density to reduce computational time. 
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6.3.5. Surveillance model 

I developed a spatially-explicit stochastic surveillance model. This model was designed to 

consider the randomness inherent in a random surveillance protocol. Utilizing this model, I 

sampled hosts at consistent time intervals. This method was adopted to capture the temporal 

evolution of the epidemic. I relied on previously generated epidemic data as the basis for the 

sampling events. I stopped the surveillance model at the point at which the epidemic was 

detected for the first time, and total prevalence in the simulation run was recorded.  I then 

calculated the average prevalence for the complete simulation set (2000 simulations). The 

initial sample size per sampling round was 24 hosts (N), with the interval between 

surveillance rounds () set to 182 days at a scale of 1km2. This reflects current surveillance 

allocation in the UK for the monitoring of new OPM populations in susceptible regions 

(Andrew Hoppit, 2023). I then fixed surveillance interval and sampling size respectively 

whilst changing the other surveillance parameter. The surveillance combinations were based 

on the current strategy reported by a specialist within the UK Government (Hoppit, 2023). 

Surveillance parameters of frequency interval and sample size were increased and decreased 

and prevalence at detection were recorded. The list of explored surveillance strategies is 

written below (Table 6.2). 
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Table 6.2. List of the surveillance protocols tested for chapter six. Surveillance strategy was 

initiated at a random value in between 0 and Δ. 

Sampling Size (N) Sampling Interval (Δ) 

24 14 

24 28 

24 42 

24 56 

24 70 

24 84 

24 98 

24 112 

24 126 

24 140 

24 154 

24 168 

24 182 

48 182 

72 182 

96 182 

120 182 

144 182 

168 182 

192 182 

216 182 

240 182 
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6.3.6. The rule of thumb model 

Parnell et al.’s 2012 (Parnel et al., 2012) rule of thumb was defined as: 

𝑞∗ =
𝑟

𝑁
 

           (Eqn 6.6) 

Where 𝑞∗was the theoretical detection prevalence which was determined by the relationship 

between the growth rate of the epidemic 𝑟 and the surveillance protocol,  was the interval 

between surveillance rounds, and 𝑁 was the sample size taken for inspection each 

surveillance round. The derivation of this equation was discovered as follows: by the 

assumption that if an epidemic grows exponentially, then the probability of detecting the 

disease at any given time was a simple interaction between rate of surveillance and the 

exponential growth of the epidemic (Parnell et al., 2012). By solving this equation via 

integration, Parnell et al. (2012) arrived at the total probability of detection at the point of 

detection. Using a random variable transformation of the initial time with an exponential 

growth assumption, the prevalence at the time of detection was translated from this 

probability using the Jacobian of the transformation. A full derivation of the approach can be 

found in Parnell et al (2012; 2015). Thereby, the above rule of thumb states that given the 

epidemic growth parameter (r), the surveillance frequency (Δ) and the sample size (N), then 

the prevalence of disease at detection (q*) is estimated as an approximation of the true 

prevalence of disease at detection. Key assumptions from the rule of thumb are exponential 

increase of the pathogen population and continuous monitoring of the host population with 

time.  

Based on the previous research findings, I used a modified rule of thumb to account for 

sensitivity as derived by Mastin et al. (2019). This modified rule of thumb is defined as: 
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𝑞∗ =
𝑟

𝑁𝜎
 

           (Eqn 6.7) 

Where 𝜎 is defined as the sensitivity of the detection method used.  

I performed for every unique epidemiological parameter combination of θ and β, 2000 

simulation runs, providing a unique set of a growth rate values (r). I estimated r by using a 

linear transformation on the initial growth phase of the epidemic, corresponding to the first 

quartile of transition events and measuring the mean gradient of the curve. The average of 

these 2000 r values was then used as input within the modified rule of thumb (Eqn 7). For N 

and Δ in the above equation, these values were taken from the surveillance model as defined 

above. Based on expertise this value for sensitivity of detection assay is defined as 0.8 for 

OPM surveillance (Hoppit, 2023). This is based on the visual inspection of OPM nests where 

20% of inspections result in false negatives. 

6.4. Results 

In this section, I present the findings from my surveillance and modelling efforts for OPM. 

The results are categorised into two primary aims:  

• The simulated detection prevalence of OPM according to varying surveillance 

strategies 

• The performance of a simplistic epidemiological early detection modelling approach 

6.4.1. The simulated detection prevalence of OPM according to varying 

surveillance strategies 

Figure 6.2 represented the 2000 simulated epidemic growth curves for the OPM parameters 

(Figure 6.2). The growth curve was included derived from the average growth rate of the 
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2000 simulations. By day 100, 50% prevalence was nearly achieved. This aligned with my 

models projections based on the expansion behaviour of OPM (Suprunenko, 2021). When I 

modelled this growth, I took into account both the transmission coefficient and dispersal 

distance of OPM. Figure 6.3 illustrated four combinations of surveillance strategy with the 

recorded prevalence of pest at detection within the simulation model for the OPM parameters 

(Figure 6.3). 

 Below are described the outcomes of these combinations (Figure 6.3.): 

a. The most intense surveillance sampling protocol. 

b. The sample protocol with small but frequent sampling, most reported prevalence at 

detection were less than 0.1. 

c. The sampling protocol with large but infrequent sampling, there is a divide between 

early detection and missing the epidemic completely. 

d. The least intense sampling, the current protocol. 

6.4.2. The performance of a simplistic epidemiological early detection 

modelling approach 

Figures 6.4-6.9 were the simulated prevalences at detection versus the recorded rule of thumb 

prediction with a modifier to account for the sensitivity of sampling (β, rate of infection; θ, 

metres) (Mastin et al., 2020). Figure 4.5 showed varying sample frequency with fixed sample 

size and varying sample size with fixed sample frequency. Figure 6.7 showed varying sample 

frequency with fixed sample size and varying sample size with fixed sample frequency 

respectively on a clustered type of landscape. Figure 6.8-6.9 showed varying sample 

frequency with fixed sample size and varying sample size with fixed sample frequency 

respectively on a partially clustered/random type of landscape.  
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Figure 6.2. The epidemic growth curves for the OPM parameters. 2000 simulations are 

reported as the black lines (β = 315, θ = 83.45). The red line is the average growth curve (r = 

0.063).  

 

Figure 6.3. The distribution of detection prevalences of OPM for different surveillance 

strategies. a. N=240, Δ = 14 b. N=240, Δ = 182 c. N= 24, Δ = 14 d. N = 24, Δ = 182. 
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Figure 6.4. The relationship between the frequency of sampling and the prevalence of pest at 

detection for both the simulated model and the modified rule of thumb. Sample size is fixed 

at 24 per round. Landscape parameter set to random (ξ = 1). Blue indicates the simulated 

prevalence of pest at detection and red indicates the early detection model prediction. 
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Figure 6.5. The relationship between the sample size per round and the prevalence of pest at 

detection for both the simulated model and the modified rule of thumb. Sample frequency is 

fixed at 182 days. Landscape parameter set to random (ξ = 1). Blue indicates the simulated 

prevalence of pest at detection and red indicates the early detection model prediction. 
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Figure 6.6. Showing the relationship between the frequency of sampling and the prevalence 

of pest at detection for both the simulated model and the modified rule of thumb. Sample size 

is fixed at 24 per round. Landscape parameter is set to clustered (ξ = 0). Blue indicates the 

simulated prevalence of pest at detection and red indicates the early detection model 

prediction. 
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Figure 6.7. Showing the relationship between the sample size per round and the prevalence of 

pest at detection for both the simulated model and the modified rule of thumb. Sample 

frequency is fixed at 182 days. Landscape parameter is set to clustered (ξ = 0). Blue indicates 

the simulated prevalence of pest at detection and red indicates the early detection model 

prediction. 
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Figure 6.8. Showing the relationship between the frequency of sampling and the prevalence 

of pest at detection for both the simulated model and the modified rule of thumb. Sample size 

is fixed at 24 per round. Landscape parameter is set to clustered (ξ = 0.5). Blue indicates the 

simulated prevalence of pest at detection and red indicates the early detection model 

prediction. 
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Figure 6.9. Showing the relationship between the sample size per round and the prevalence of 

pest at detection for both the simulated model and the modified rule of thumb. Sample 

frequency is fixed at 182 days. Landscape parameter is set to clustered (ξ = 0.5). Blue 

indicates the simulated prevalence of pest at detection and red indicates the early detection 

model prediction. 

I estimated simulated prevalence of approximately 63% with the current surveillance strategy 

of 24 trees inspected twice a year (Figure 6.4 & 6.5). As sampling frequency was increased, 

both the simulated and predicted prevalence at detection reduced (Figure 6.4). This 

relationship between the simulated and predicted prevalence was relatively concordant, the 

prediction was useful in the regards that the output produced some degree of accuracy (see 

Figure 6.4). The range of simulated prevalence across the surveillance interval space was 

between 0.06 and 0.63. 

The relationship between sample size and prevalence at detection indicated that the accuracy 

of the modified rule of thumb dropped off as sample size continued to grow (Figure 6.5). 

While the drop in accuracy was evident, it is important to evaluate further whether this 

decline was substantial enough to impact real-world application. The modified rule of thumb 
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demonstrated an exponential decrease in the predicted prevalence of pest at detection whilst 

the simulation model demonstrated a linear decrease in prevalence as sample size increased 

(Figure 6.5). The range of simulated prevalence across the surveillance sample size space 

ranged from 0.48 to 0.63. This range was much more limited that by the effects of changing 

the surveillance frequency. 

Figure 6.9 was representative of changing surveillance sample size and surveillance 

frequency on more aggregated landscapes (Figure 6.9). The results from these landscapes 

indicated similar results to the homogenous landscapes of Figures 6.4-6.5 (Figures 6.4-6.5). 

Figures 6.6-6.9 were like Figures 6.4-6.5 in that the relationship between surveillance 

frequency and sample size and the rule of thumb accuracy was consistent. The surveillance 

frequency protocol changed to match the prevalence of pest at detection and the early 

detection model prediction with more accuracy than changing the surveillance sample size 

protocol. From this investigation, it appeared that even with different types of landscapes, 

varying from homogenous to heterogenous, that similar estimates of accuracy for the rule of 

thumb were generated. 

6.5.  Discussion 

The fundamental message from the results of this chapter was that surveillance allocation 

according to recommended modelling structure and subsequent strategies is limiting the 

potential to manage the current expansion of OPM (Figures 6.4-6.9). Typical losses of around 

0.05 are acceptable, and pest management strategies such as sanitation modelling are used to 

approach this value (Magarey & Sutton, 2007). Control methods for OPM include biological 

spraying and nest removal (Wadkin et al., 2022). However, matching control methods to 

prevalence requires sufficient surveillance prior to unmanageable disease expansion.  
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The results demonstrated that improving the prevalence estimates of pest is directly related to 

increasing sampling intensity. Specifically, by increasing the number of trees sampled and the 

frequency in which trees are sampled. There was a disproportional impact of surveillance 

frequency as opposed to the impact of surveillance sampling size (Figures 6.4, 6.6 & 6.8). 

From this result, it can be inferred that increasing the sampling size of oak trees within a 

surveillance region in the UK will not lead to earlier or more accurate detection of OPM 

infestations. In fact, by only increasing sampling size, the prevalence of the pest upon 

detection remained relatively high. This is counterintuitive to the assumption that an 

increased surveillance sampling size protocol would yield a more comprehensive 

understanding of OPM prevalence. 

The greater efficacy of enhanced surveillance frequency highlighted the importance of more 

frequent surveillance and timely assessment. More regular or frequent inspections may 

facilitate earlier detection of incursions and thereby increase the likelihood of successful 

intervention. From a practical perspective, these findings presented a significant implication 

for current OPM management strategies. Resources may be more effectively allocated to 

increasing the frequency of surveillance rather than expanding the total number of trees 

inspected. This shift could lead to more efficient use of resources, quicker detection, and 

more effective management of OPM outbreaks. 

Moreover, it’s important to consider the constraints of this possible strategic shift. More 

frequent surveillance may require additional manpower or financial resources. Finding the 

balance between increasing surveillance frequency and the costs of delaying management 

activity is left to the discretion of stakeholders and NPPOs. 

Figure 6.3 demonstrated the effects of changing the sampling protocol from the current 

strategy of 24 trees twice every year (Figure 6.3). Here, I found that increasing the frequency 
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of sampling decreased the prevalence of OPM at detection, concordant with the other results 

from this chapter. The distribution of output from the simulations indicated that increasing 

the sampling size of oak trees did reduce some prevalence of pest at detection, however, 

many of the simulations resulted in very large prevalence of pest at detection. This would 

explain why the increase in sampling did not reduce the prevalence of pest at detection by a 

large degree. Many of the infestations within the simulation were simply proliferating too 

quickly given the large interval between detection events, regardless of sampling size.  

Currently, it is understood that for a region of approximately 1km2 the modelling strategy is 

the allocation of 24 tree inspections twice a year (Hoppit, 2023). Surveillance allocations 

should be informed by modelling approaches such as the use of the proportional odds model 

(POM) (Irvine & Rodhouse, 2010). The use of such models as the POM are the given 

benefits of knowing how much allocation is appropriate to detect trends in the changing 

prevalence of pest (Irvine & Rodhouse, 2010; Pocock et al., 2017). The implications of the 

rule of thumb prescribe further methodology for choosing appropriate pest surveillance, from 

my results there was an impact in changing the surveillance sample size on the accuracy of 

the rule of thumb (Figures 6.5, 6.7 & 6.9).  

The reduction of accuracy in the rule of thumb model with increasing sample size was 

attributed to the nature of the early epidemic expansion phase. The epidemiological 

simulation model assumed that epidemics would be initiated at some time point in between t0 

and the initial sampling protocol. With the relatively long-time interval of 182 days, there 

was sufficient time for the epidemic to initially proliferate without sampling occurring. This 

led to mathematical representations beyond the rule of thumb assumption of constant 

sampling from time point t0 (Parnell et al., 2015). Furthermore, the longer the first sampling 

effort was left whilst the epidemic proliferated, the less likely that the epidemic was 



 

142 

 

representative of a very small initial prevalence. This is hypothesised to have an impact on 

the resulting accuracy of the rule of thumb, though confirmation requires mathematical 

analysis and further experimentation. In effect, where sampling is infrequent (certainly when 

the beginning of an epidemic is unknown), the experimental results will reflect the lag 

between sampling points and the continuous growth of an epidemic. More frequent sampling 

will give more accurate prediction estimates because the epidemic will be detected before the 

exponential assumptions of the rule of thumb are not applicable. In addition, with finer 

sampling protocol, there are more opportunities for assessment and hence by the time the 

epidemic is detectable there will be a surveillance event within a short time frame of this 

occurrence, this in principle is a key assumption of the rule of thumb (continuous sampling). 

The implication of this finding is that surveillance efforts should be largely focused on the 

repeated exploration of a region, as opposed to the allocation of more resources conditioned 

on the existing surveillance structures. To this end, to service the protection of Oak trees for 

horticultural purpose it is recommended that citizen scientists are actively recruited to survey 

possible OPM regions of establishment and encouraged to report sightings as regularly as 

possible (Pocock et al., 2017).  

Facilitating such activities requires the co-ordinated activity of NPPOs and stake holders. The 

benefit of the modeling process deployed in this chapter is based on the fundamental 

prediction knowledge acquired from the epidemiological simulation model itself. Clearly, 

prevalence of pest above 50% upon detection is challenging for stake holders to manage. The 

threshold for acceptable plant pest levels is usually defined as 0.05, though the broader 

definition of integrated pest management includes preventing damage to the extent that it 

causes significant economic damage (Ciancio & Mukerji, 2007; Nutter, 2007). Furthermore, 

evidence suggests that despite significant funding being allocated to the eradication of this 
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pest by Defra after legislation implementation by Forestry Commission, eradication of OPM 

has been a failed objective until now (Suprunenko, 2021). How much of this is dependent on 

early surveillance of the pest in 2005 when it was first identified? Recent research efforts into 

modelling this pest have struggled due to OPM’s complicated aetiology despite an official 

pest status under the updated 10-GM, now 11-GM (Rahlenbeck & Utikal, 2015). Urticating 

hairs have the potential to spread several hundred meters; coupling the dispersal of OPM 

moths with the dispersal of their urticating hairs could be of benefit to scientists and 

stakeholders within the future. 

I used an exponential decay dispersal kernel to shape the dispersal gradient of the pest with 

parameters calibrated to the 95% percentile of dispersal events occurring above 1.66 km 

(Suprunenko, 2021). This value reflected the early expansion phase of OPM, and may go to 

some way to explaining why expansion has increased since 2014. However, using this model 

to predict the behaviour of OPM has caveat assumptions. For example, the true nature of 

OPM dispersal has yet to be defined, with varying results in literature and expert opinion 

(Hoppit, 2023; Groenen & Meurisse, 2012). I used a modified gamma-function dispersal 

gradient but fixed this gradient to power-exponential dispersal for simplicity. The 95% 

percentile dispersal gradient was then calculated. Previous efforts have made excellent 

advancements in modelling the dispersal of urticating hairs in processionary moth species 

(Toffolo et al., 2014). However, modelling efforts have not been made to match the dispersal 

of urticating hairs and the dispersal of the moth itself. Studies have tactically diverted 

attention to the establishment of nests, with various modelling approaches available for the 

consolidated understanding of OPM pest dynamics including geostatistical and bayesian 

approaches (Suprunenko et al., 2021; Wadkin et al., 2022).  
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As is the case for Pine Processionary Moth (PPM) in the Estemadura Province of Portugal, 

there is a noticeable lack of control of OPM around the greater London Metropolitan area due 

to the costs of managing a pest that is already firmly established (Gatto et al., 2009). The 

short-term benefits of avoiding control measures may impact the long-term trends in market 

value of timber (Gatto et al., 2009). Arguably, the prevalence estimates from this paper 

indicate that OPM early management strategies as it stands is not sufficiently efficient 

enough to remain below “economically acceptable thresholds” (Magarey & Sutton, 2007). 

The results of this paper indicate that surveillance efforts should be targeted towards the 

deployment of plant inspectors at more frequent intervals. Concurrently, promoting the issue 

of OPM to citizens is recommended to improve the rate at which trees are inspected. Efforts 

of co-ordinating citizen science efforts such as the Open-Air Laboratory are increasing, and 

these efforts could be potentially encouraged by concerned NPPOs (Brown & Williams, 

2018; Pocock et al., 2017). 

It is hypothesised that the early detection model did not account for the early expansion phase 

of the epidemic, especially given the high transmission coefficient parameter value of OPM 

within my spatially-explicit stochastic epidemiological model. Similarly, pests with 

asymptomatic phases will present difficulties if the early detection model is to be applied. 

To compare the effects of the proliferation of OPM between different landscape types, the 

simulation and surveillance models were run across different degrees of landscape clustering 

configurations, according to the reallocation algorithm described in the Methods of Chapter 

Four (See Methods, Chapter Four) (Figures 6.6-6.9). In concurrence with the findings of 

Chapter 2, changing the landscapes did have a small effect on the prevalence of pest, 

however, this was relatively small. It was inferred here that changing the landscape parameter 

did not have a large effect on the accuracy of the early detection model because overall the 



 

145 

 

dispersal parameter of OPM was large enough that the effects of changing landscape 

dynamics were effectively mitigated.  My findings are a positive indicator that landscape 

heterogeneity is not a priority consideration when modelling OPM.  

Overall, the efforts to minimise the damage caused by OPM could see significant 

improvement if surveillance were allocated much more frequently, ideally once a fortnight as 

opposed to once every half a year. It is also clear that developing models for the better 

understanding of OPM dynamics requires a synthesis of previously existing knowledge, 

though additional efforts to model key criteria in the management of the establishment of 

OPM in novel regions is necessary. In conclusion, the results of this thesis have been 

hopefully synthesised together in this chapter with a focus on OPM as a priority pest within 

the UK. It is hoped that the reader, having read the thesis, has understood as to why 

modelling the early detection of novel pests such as OPM given the current surveillance 

strategies is a challenge for several reasons; these reasons are the summation and integration 

of surveillance strategy, epidemiological behaviours, and landscape dynamics. 
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7. Chapter seven: Discussion 

The overall objective of this thesis was to explore the extent to which simple models for 

complex epidemics can be used to inform early detection surveillance. I have investigated 

epidemiologically relevant parameters (including dispersal gradients), landscape 

heterogeneity, varying detection sensitivities and surveillance intensities. These variables 

have all been indicated to influence the accuracy of previous modelling approaches (Donatelli 

et al., 2017; Carrasco et al., 2010; Mastin et al., 2020; Parnell et al., 2015). In addition to 

this, I have applied the simple detection model to the case study of Oak Processionary Moth 

(OPM), demonstrating the insight such a model can provide and exploring implications for 

surveillance strategies. The purpose of these experiments was to better understand what 

drives epidemics in their early phases, and to use models to explore these dynamics and 

inform plant pest management with regards to surveillance. In addition, I have developed a 

useful methodology in validating simple epidemiological models with a stochastic spatially-

explicit stochastic modelling approach.  

I discovered that the dispersal distance of inoculum drastically affects the accuracy of the rule 

of thumb, and in doing so I have demonstrated how epidemiological parameters can affect the 

transferability (generality) of an epidemic model; the rule of thumb model explored in this 

thesis is most transferable to epidemics with dispersal distances greater than 60 meters, with 

smaller dispersal distances accuracy declines. However, the caveat is that the relative 

accuracy of the rule of thumb is influenced by the infection rate of the epidemic. Hence, 

whilst for two given epidemics with similar growth rates, a longer dispersal distance will 

provide greater accuracy; this information is contingent on knowing the general growth speed 

of the epidemic. How useful the rule of thumb potentially can be is contingent on the 

availability of data prior to epidemic growth, thus highlighting the importance of 

international co-operation and sharing of data.  
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 In addition, with the introduction of spatial heterogeneity, I have demonstrated that early 

epidemic behaviours are influenced by the distribution of hosts within a range of 

epidemiological parameter values with regards to the dispersal distance of pests and the 

virulence of pests. I have shown that increased spatial heterogeneity of hosts reduces the 

transferability of the rule of thumb model and in doing so I have highlighted the importance 

of considering spatial heterogeneity when applying epidemiological models of this type.  I 

have also showed that the accuracy of the rule of thumb reduced at lower detection 

sensitivities, showing how the transferability (generality) of epidemic models can be 

impacted by the efficacy of detection methods. However, detection sensitivities are often 

known, and I have shown that by including a modification which accounts for detection 

sensitivity, the accuracy of the rule of thumb model under different detection sensitivity 

scenarios, and thus the model’s transferability, can be enhanced. 

Together my findings, which are explored in more depth below, have added to our 

understanding of early detection models, their transferability (generality) and their utility for 

informing surveillance strategies. 

7.1. Epidemiological parameters affect model transferability 

(generalisability) 

In chapter three, I explored two epidemiological parameters associated with disease 

proliferation within the spatially-explicit stochastic model. These parameters were the 

transmission co-efficient of infection (virulence) and the dispersal distance of inoculum 

respectively. Here, I observed that by increasing the dispersal distance of inoculum, the 

accuracy of the rule of thumb increased. Furthermore, as dispersal distance increased the 

impact of the transmission co-efficient became less impactful on the accuracy of the rule 

thumb. It is important that an understanding of how epidemiological parameters affect model 
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transferability is integrated into considerations of the use of this early detection model. If a 

plant disease is constrained to dispersal distances less than 60 meters, the variability in the 

accuracy of the rule of thumb will be more contingent on the virulence of an epidemic. 

Epidemics that spread shorter distances will be more difficult to detect early on if 

surveillance is spread across the landscape (Meats et al., 2007). If an epidemic spreads 

quickly before it has been detected, then more infection events have a chance to occur and 

stochastic forces will negatively impact the accuracy of the rule of thumb. This has the 

disadvantage of reducing the usefulness of the rule of thumb when a disease is potentially a 

higher risk for affecting the stakeholder i.e. if a disease is spreading with a very clear wave 

front quickly from a relatively small and localised source of inoculum. The rule of thumb will 

be less accurate when these short wavefront (where the “frontline” of newly infected plants 

are relatively constrained or compressed in terms of distance spread), highly virulent diseases 

are spreading, and consequently cannot be applied so confidently, reducing the overall 

generalisability of the rule of thumb model. However, the research of chapter three 

demonstrates that the impact of short-distance, highly virulent epidemics can be mitigated by 

increased allocation of surveillance resources. This indicates that the rule of thumb 

generalisability is also contingent on apriori knowledge of disease parameters, and the active 

role of the stake holders in accounting for these reductions in accuracy. 

7.2. Distribution of hosts affects Epidemiological model 

transferability  

Chapter four was an exploration into the effects of landscape heterogeneity. To my 

knowledge, this has not been explored previously. During this exploration, a notable finding 

was that clustering of hosts in the landscape led to a reduction in the accuracy of the chosen 

early detection model. This reduction can be traced to factors relevant to landscape 

epidemiology. Specifically, by incorporating patches into the landscape, disease progression 
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is slowed down by the emergence of edges, where disease inoculum has difficulty in 

transitioning across to other patches of susceptible hosts. The rule of thumb assumes the non-

spatial exponential growth of the early phase of an epidemic. However, the results of this 

chapter indicate that the early detection model is compromised under realistic epidemic 

scenarios by landscape heterogeneity. This effect diminished with increasing scale, where the 

clustering effects, as depicted by the Matérn cluster process, are less pronounced with 

identically fixed parameters. Where there are more clusters in the landscape but an overall 

reduction in the total hosts per cluster, landscapes align closer to randomised landscapes and 

subsequently are less subject to reductions in accuracy. This finding is important, because it 

indicates that when applying early detection models in the future, landscape heterogeneity is 

going to heighten the reduction in accuracy of models that include epidemiological 

parameters such as dispersal distance and transmission coefficients. Which means that again 

for the short wavefront, highly virulent epidemics accounting for landscape heterogeneity 

through increased surveillance protocol would be necessary to maximise the generalisability 

of the rule of thumb model. 

It was the objective of this chapter to explore how host density and landscape aggregation 

were related to dispersal. Fundamentally, it was important to explore the transmission 

coefficient of dispersal kernel models under changing scale and landscape conditions because 

the aim of this thesis was to explore the early expansion phase of mechanistic epidemic 

modelling in the context of surveillance. In retrospect, perhaps I could have verified whether 

the algorithm for generating landscapes was correctly programmed through select graphical 

plots. The findings from chapter three demonstrated that the transmission coefficient β 

influenced the accuracy of the rule of thumb model when large and also when the dispersal 

distance θ was short. Based on these findings, it is inferred that the transmission coefficient β 

will decrease accuracy of the output of the rule of thumb when applied to heterogenous 
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landscapes if sufficiently large enough. The aggregated effects of landscape heterogeneity 

and high virulence are expected to enhance the difference between the non-spatial 

assumptions of the early detection model and the simulated model with edge effects. The 

effects of each constituent of the spatially-explicit stochastic epidemiological model have 

influenced the accuracy of the rule of thumb. My findings suggest that with increasing 

complexity in epidemiological model simulations, the further accuracy deviations will occur 

for early detection models such as the rule of thumb. The implications of these findings 

indicate that surveillance modelling would benefit from further exploration.  

Chapter four demonstrated that the effects of landscape aggregation impacted the accuracy of 

the rule of thumb, though again the dispersal parameter is the most defining parameter in the 

accuracy of the rule of thumb. This finding indicates that the rule of thumb is most 

generalisable for long distance dispersal events. As research indicates that climate change is 

leading to more extreme weather events, and that the movement of commodities across 

borders is at historic highs, the likelihood of long-distance dispersal events is hypothesised to 

be increasing (Defra, 2023). Of course, the focus of this thesis was not on these extreme 

movement events; the thesis does however indicate that the rule of thumb is most suited to 

large scale surveillance efforts. As with statistical methodology, the sample size of the 

subpopulation under question will only partially reflect the true total size of the population to 

some degree. In this sense, measuring the accuracy of the rule of thumb on 1km2 regions is a 

productive foundation to exploring the parameters associated with the accuracy of early 

detection model, but much benefit could be derived from expanding the modelling approach 

to the region or intercontinental scale.  
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7.3. The impact of detection sensitivity on transferability can be 

accounted for with a modifying parameter  

In Chapter five, I explored the nature of sensitivity and myriad surveillance strategies as the 

focal point for measuring the association between early phase epidemic behaviour and the 

accuracy of the rule of thumb. I achieved this by varying the sensitivity of the detection 

likelihood parameter within the designed surveillance model whilst also exploring the 

frequency of sampling rounds and number of plants sampled within each round. This chapter 

was founded in the observation that surveillance methods vary in sensitivity, or the likelihood 

to detect disease when assayed. My findings indicated that the rule of thumb dropped in 

predictive accuracy when the sensitivity of detection was low. This is understandable, the 

rule of thumb assumed that detection events are occurring with 100% accuracy. I introduced 

a modifying parameter to account for the drop in accuracy and verified this by simulation to 

be more accurate than the rule of thumb alone. However, the models both performed best 

with 100% detection accuracy, which in reality is difficult to achieve. Fortunately, the 

modified rule of thumb’s performance was more acceptable, and hence increased in theory 

the generalisability of this rule of thumb. The results indicated that for the shortest dispersal 

distance, relative accuracy of the Parnell et al.’s (2012) rule of thumb was actually improved 

by low sensitivity values. This result was counter intuitive, though it is hypothesised for low 

values of dispersal distance, a low accuracy in detection sensitivity will delay the time point 

of detection, allowing for the total prevalence at detection to increase and hence the total 

percentage difference between the rule of thumb prediction and simulated prevalence at 

detection to reduce. This is an important finding because it indicates that for shortwave front 

highly virulent epidemics, the selection of the rule of thumb model that will be most useful is 

dependent on the sensitivity of the assay choice. This has implications for generalisability of 

the rule of thumb model, as it is not perfectly clear which is the preferred model for these 

short wavefront epidemics.  
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Previous research has also confirmed that this modified early detection model works 

according to mathematical derivation (Mastin et al., 2020). The modifier accounts for the 

entire range of sensitivities available to practitioners. Overall, this is a promising result for 

increasing the generalisability of the early detection modelling approach. The results of this 

chapter indicate that a modified early detection model could have potential beneficial 

application for real world scenarios where the detection assay sensitivity is less than 100% 

accurate and indicates how a model can be made more generalisable through scientific 

investigation. 

7.4. Transferability appears independent of surveillance 

allocation (sampling intensity)  

In addition, an investigation into the dynamics of surveillance modeling with fixed sampling 

intensity was conducted. My findings indicated that regardless of how sampling intensity was 

deployed, the accuracy of the rule of thumb model would remain consistent. This finding was 

promising, as it implied that surveillance operations have some degree of flexibility with 

regards to managing an early phase epidemic, assuming that successful management hinges 

on the reliability of the prediction of prevalence at first detection. Surveillance strategy is 

flexible and context-dependent. Therefore, having this degree of accuracy consistency 

independent of surveillance intensity could be of use for stakeholders. This implication is of 

course assuming that epidemiological parameters are within the range defined in this 

experiment. For example, by increasing the transmission coefficient β beyond the range 

explored here, epidemics may proliferate so fast that there is little allowance for flexibility in 

surveillance allocation. This may be the case with OPM as explored in chapter six. An 

additional experiment was designed to explore the effects of changing surveillance allocation 

and its impact on the accuracy of the early detection model. The findings of this experiment 

indicated that decreasing the sampling size and increasing the frequency interval of sampling 
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decreased the accuracy of the rule of thumb. This was indeed further corroborated by the 

findings for chapter six with the study of OPM. By parameterising OPM and applying the 

early detection model, I have demonstrated for the first time that the applicability of the rule 

of thumb for OPM was largely dependent on surveillance intensity. Returning to chapter five, 

across the parameter range this finding for changing surveillance intensity was consistent; 

this indicated that the accuracy of the early detection model explored in this chapter was 

largely dependent on the parameters of not only the epidemiological model but also the 

surveillance model. I recommend future research focuses on testing hypothetical areas of 

total sampling and total frequency and gradually reducing each parameter respectively to 

monitor how the growth curve deviates from perfect alignment. This iterative approach is one 

suggestion for how it would be possible to quantify the reduction in accuracy of the early 

detection model. Ultimately, the early detection model assumed constant sampling from t0 

which may have led to inaccuracies for realistic sampling protocol that used a delayed first 

response. This result is corroborated in chapter six, where the sample size had little impact on 

the prevalence of OPM when first detected because the early phase epidemic had expanded 

rapidly regardless of how much sampling was allocated. As for the transmission coefficient β 

and dispersal distance θ parameters, I observed an increase in the accuracy of the rule of 

thumb model with increasing dispersal distance, with the transmission coefficient causing the 

early detection model to be more sensitive on shorter dispersal distances. These results 

correspond to the results of chapter three and hence further validate the methodology of the 

spatially-explicit stochastic modelling approach deployed in this thesis. By gradually 

introducing variability in parameters across the thesis, I have demonstrated that the results of 

this thesis are consistent, which I hope increases the reader’s confidence in the findings of the 

thesis. 
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7.5. Transferable epidemic models can enable better informed 

surveillance strategies  

In Chapter six, I explored OPM dynamics in the context of early detection surveillance 

modelling. The results of this chapter indicated that the occurrence of OPM within the UK 

and its antecedent establishment in the Greater London region may be associated with a lack 

of sufficient surveillance resource deployment. Logistically, it is challenging to co-ordinate 

the activities of NPPOs and stakeholders, however, the cost of not deploying enough 

surveillance resources could outweigh the possible benefits of increasing surveillance 

intensity. Furthermore, the results indicated that allocating surveillance at more regular 

intervals as opposed to allocating more sampling on sites is a strategic decision that should be 

considered. There was a reduction in the accuracy of the rule of thumb when increasing 

surveillance intensity via sampling. This further corroborated the strategic decision to 

decrease the interval between sampling events. The reasoning behind the apparent reduction 

in the accuracy of the rule of thumb and inefficient means of reducing prevalence via 

increasing sampling was hypothesised to be due the early phase of expansion not being fully 

accounted for within the rule of thumb prediction within the context of the spatially-explicit 

stochastic epidemiological model. The expansion rate of OPM within the UK is rapidly 

increasing, the research here suggested that this expansion rate could be better managed if 

more surveillance were allocated sooner to intervene when prevalence within a novel region 

is low. Ultimately, the rule of thumb is only useful when surveillance frequency is fast 

enough to represent with confidence the underlying assumption of constant sampling (Parnell 

et al., 2012). By increasing the rate of surveillance frequency, as also observed in chapter 

five, it is possible to increase the accuracy of the rule of thumb. This is important, because 

stakeholders and NPPOs require informed decision-making to ensure that efficient plant 

disease management strategies can be deployed through the adequate allocation of resources 

such as bio-controls and biological pesticides.  
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7.6. Limitations 

Firstly, how early detection models are expected to perform on differing scales with clustered 

dynamics and host densities similar to the 1km2 scale experiment designed has yet to be 

explored. Experimental evidence from field studies indicate that clustering slows down the 

rate of epidemic spread, however the expansion of this data analysis to various scales ranging 

from less than 1km2 to above 100km2 requires further investigation (Tortosa et al., 2023). 

Secondly, the explorations of this thesis did not account for other relevant parameters to the 

expansion of plant pests and early detection modelling. There are numerous other 

compartmental models to account for, such as asymptomatic phases of disease progression 

that would significantly alter modelling approaches and disease dynamic behaviour (Ngah et 

al., 2018; Cunniffe et al., 2016). In addition, environmental considerations such as 

urbanisation (i.e. landscape channels for OPM forming indirectly through building clusters) 

are not accounted for in this thesis (Wang et al., 2019). Ultimately, the disease triangle is the 

underpinning foundation to modeling plant pests, further investigation into its components is 

necessary to build upon the research established in this thesis. 

7.7. Future works 

The modelling approach taken in this thesis has been restricted to a SI compartmental model, 

though expansion into other models appears very feasible. By integrating other parameters 

into a spatially-explicit stochastic epidemiological model, it would be possible to explore 

other compartmental models in a similar fashion to the methods presented here to expand the 

knowledge of the rule of thumb’s generalisability for myriad plant pests. Integrating other 

factors such as urbanisation, weather conditions and landscape topography I believe would 

present a deeper challenge to future scientists. By adjusting the rule of thumb to these other 

considerations or alternatively accounting for the reductions in accuracy of the rule of thumb 
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with these other considerations, the repertoire of scenarios known in which the rule of thumb 

could be applied would be expanded; hence, generalisability would be increased. These 

efforts I suspect would be of much benefit to further exploring how epidemiologically 

relevant parameters alter the predictive accuracy of early detection models. Inevitably, further 

models will be developed with better understanding of epidemic behaviours and how 

epidemics interact with monitoring efforts.  

7.8. Conclusion 

From this research, I hope to have presented to the reader a sufficient picture of the 

complexities inherent in generalisable modelling; specifically in the context of early plant 

pest surveillance. Early plant pest surveillance modelling presents a unique set of challenges: 

namely capturing the mechanistic processes associated not only with the plant disease 

triangle but also the surveillance efforts that must be included within the modelling process to 

describe even the simplest of surveillance modelling approaches. Surveillance is a 

fundamental aspect of early plant pest management, and from my findings I have concluded 

that more surveillance leads to more accurate prediction, and subsequently better 

management of plant pests. This is a double-edged conclusion, as an increased allocation of 

surveillance resources inevitably leads to higher costs of management. Thankfully, the results 

of this thesis indicated that it might be possible to prioritise pests according to their virulence 

and dispersal capabilities.  

To my knowledge, the application of the rule of thumb to OPM is novel, and in addition the 

exploration of the parameters highlighted in this thesis in a synthesised systematic approach 

has yet been performed in the context of early detection modelling. The findings of this thesis 

are intricate, it is difficult to summarise any particular rules for early surveillance modelling 

without first investigating a pest on case by case basis. However, by synthesising a range of 
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realistic scenarios, generalised expectations of performance of the rule of thumb have been 

observed.  

The results of this thesis have indicated that the rule of thumb model is more generalisable 

when stake-holders take an active role in determining a surveillance intensity which is most 

appropriate for the disease. Short wavefront highly virulent epidemics will decrease the 

accuracy of the rule of thumb more so than other types of epidemics, and to maximise the 

generalisability of the model, it is recommended that stakeholders use heavy surveillance 

intensity to account for this drop in accuracy. Furthermore, this reduction in accuracy is 

heightened by landscape heterogeneity, though only to a small degree which may be 

acceptable to stakeholders in terms of accuracy reduction. The application of the rule of 

thumb model and the spatially-explicit stochastic epidemiological model to OPM is novel and 

has highlighted that the prevalence of OPM currently expanding in the UK may be linked to a 

limited surveillance intensity. The OPM study also highlighted that surveillance frequency is 

a more important component than sample size in detecting a disease whilst it is still within 

early expansion phase. The accumulated efforts of this research project will hopefully inform 

future researchers in the field of early detection surveillance modelling as to the complexities 

inherent in discovering the realistic accuracy of early detection models. 
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9. Appendices 

9.1. Chapter Three 

 

Figure 9.1. The growth rate values for the epidemic parameter combinations. Parameter 

values of transmission coefficient β and dispersal distance θ are shown (β = 10 to 70; θ=10 to 

70). 2000 iterations per parameter combination were performed. 
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9.2. Chapter Four 

 

Figure 9.2. The distribution of hosts on a. 1 km2 and b. 2 km2. Cluster parameters are fixed 

on both landscapes. The scale on the axes is in meters. 
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Figure 9.3. a. The absolute difference and b. The relative difference across a range of 

parameters for scales of 1000 m2, 1500 m2 and 2000 m2. Note that the scale on the y axes of 

the absolute difference are unique to each scale within the plot.   

 

 

 
 
 
 

 
 
 
 

 
 
 
 

      

    
    
    
    

    
    
    
    

    
    
    
    

 

 

  

   

   

 

 

 

 
 
  
  
 
 
  
  
  
  
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

      

     
     
     
     

    
    
    

    

    

    

    

 

 
 
 
 
  
  
  
  
  
  
 
 
 

 

  

   

   

 

 

 

  

  


