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A B S T R A C T   

Automatic detection and classification of animal sounds has many applications in biodiversity monitoring and 
animal behavior. In the past twenty years, the volume of digitised wildlife sound available has massively 
increased, and automatic classification through deep learning now shows strong results. However, bioacoustics is 
not a single task but a vast range of small-scale tasks (such as individual ID, call type, emotional indication) with 
wide variety in data characteristics, and most bioacoustic tasks do not come with strongly-labelled training data. 
The standard paradigm of supervised learning, focussed on a single large-scale dataset and/or a generic pre- 
trained algorithm, is insufficient. In this work we recast bioacoustic sound event detection within the AI 
framework of few-shot learning. We adapt this framework to sound event detection, such that a system can be 
given the annotated start/end times of as few as 5 events, and can then detect events in long-duration 
audio—even when the sound category was not known at the time of algorithm training. We introduce a collec-
tion of open datasets designed to strongly test a system’s ability to perform few-shot sound event detections, and 
we present the results of a public contest to address the task. Our analysis shows that prototypical networks are a 
very common used strategy and they perform well when enhanced with adaptations for general characteristics of 
animal sounds. However, systems with high time resolution capabilities perform the best in this challenge. We 
demonstrate that widely-varying sound event durations are an important factor in performance, as well as non- 
stationarity, i.e. gradual changes in conditions throughout the duration of a recording. For fine-grained bio-
acoustic recognition tasks without massive annotated training data, our analysis demonstrate that few-shot 
sound event detection is a powerful new method, strongly outperforming traditional signal-processing detec-
tion methods in the fully automated scenario.  
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1. Introduction 

Machine listening, defined as the application of machine learning to 
audio content analysis, has untapped potential in the life sciences, 
applied to animal vocalisations. Because animal vocalisations vary sys-
tematically across species, across social/environmental/emotional 
contexts, and across individuals (Brown and Riede, 2017; Marler and 
Slabbekoorn, 2004), machine listening has the potential to provide 
crucial information on animal populations and communities as well as 
on individuals and their behavioral states. Hence, automated detection 
and analysis of animal vocalisations is not only valuable for our un-
derstanding of sound production but also for diverse research fields 
including animal behavior, animal welfare, neuroscience and ecology 
(Caiger et al., 2020; Gillespie et al., 2009; Gillings and Scott, 2021; 
Riede, 2018). Recent advances in consumer electronics have consider-
ably lowered the cost and weight of digital audio acquisition, thus 
allowing deployment of autonomous recording units at large spatio-
temporal scales (Hill et al., 2018; Roe et al., 2021; Sethi et al., 2020). 
However, massively distributed bioacoustic surveys have resulted in a 
“data deluge”, where data collection outgrows information manage-
ment. This issue is not limited to scientific research, where audio 
corpora serve to conduct statistical hypothesis testing. Difficulties in 
handling, analysing and interpreting large amounts of data also extend 
to applied fields in which animals can be monitored using sound: 
farming, conservation, and wind energy, to name a few. 

Since the beginning of the 21st century, the need for large-scale 
analyses of animal sounds has spurred the emergence of “computa-
tional bioacoustics” approaches, complementary to human surveys 
(Stowell, 2018). Methods have often been inspired by developments in 
neighbouring subfields of machine listening—music information 
retrieval and speech technology—as well as by computer vision. In this 
regard, the breakthrough of deep learning in automatic speech recog-
nition, around the year 2012, has profoundly influenced the orientation 
of computational bioacoustics research (Hinton et al., 2012). In partic-
ular, most deep learning systems for bioacoustics are trained as sound 
event classifiers: given a short audio excerpt, usually of constant dura-
tion, they return an element within a predefined class. This approach is 
derived from the “phone classification task” used in speech analysis, 
with animal vocalisations in lieu of human utterances, and a species- 
specific catalogue in lieu of a phonetic alphabet (Ganchev, 2017). 

However, the paradigm of supervised sound event classification 
based on speech is reaching its limits in computational bioacoustics. 
Indeed, the extrapolation between speech to other animal sounds is 
difficult and limited, due to differences in sound duration and units of 
interest, differences in context and taxonomy, as well as differences in 
recording conditions, among others. First, detecting the start and end 
time of animal sounds has a key role in community ecology, since so 
much of the structure lies in call-and-response and other patterns of 
influence (Logue and Krupp, 2016; Stowell et al., 2016). Secondly, 
bioacoustic practitioners operate at many different levels of granularity, 
from coarse (e.g., species classification) to fine (e.g., distinguishing call 
types or syllables from one individual); whereas speech science relies on 
limited levels of granularity where human phonemes or words are the 
fundamental units. Thirdly, non-human animal sounds are acquired 
with a plethora of diverse equipment, including far-field, on-body, and 
underwater, whereas speech sounds are typically acquired with an in-
dividual device, that is usually controlled by the person speaking. 

A main limitation in bioacoustics is the lack of a unified framework 
that can be applied to different vocalisations. Today, the literature on 
computational bioacoustics is fragmented into subdomains: marine 
versus terrestrial, individual versus species identification, handheld 
versus fixed equipment, and so forth (Frazao et al., 2020; Kahl et al., 
2020; Linhart et al., 2022). Overall, all these subdomains share a com-
mon definition of what constitutes a “sound event”: i.e., a recognisable 
auditory perception with an onset and offset. However, the spec-
trotemporal characteristics underlying these events vary dramatically 

across species and domains. Thus, bioacoustic event detection does not 
appear as a single “big-data” problem; but instead, as a juxtaposition of 
many small-data problems, each currently addressed by specialised 
systems. The field benefits from the common coarse-scale task of species 
classification, which has provided a clear and useful focus to drive 
computational bioacoustics into the deep learning era (Joly et al., 2019; 
Kahl et al., 2021). Yet, systems trained for coarse-scale tasks, even with 
massive data, do not automatically acquire the ability to make fine- 
grained or local distinctions, and must be further trained or custom-
ised (Lauha et al., 2022; Van Horn et al., 2021). Thus, much recent work 
(re)trains deep learning systems anew for each specific new task. 

Such fragmentation hinders the practical usability of deep learning 
in bioacoustics, and thus in the life sciences at large. Indeed to date, the 
success of deep neural networks in the supervised regime depends on the 
availability of a massive corpus of audio examples for the sound events 
of interest, paired with human annotations. Yet, temporally-precise and 
fine-grained annotation of audio demands expertise, and is thus costly 
and time-consuming. In many cases, the obstacle is not only to acquire 
annotations, but also the audio examples themselves: e.g. for rare spe-
cies, remote locations, or costly equipment. Furthermore, these 
numerous small-data scenarios remain outside the scope of digital bio-
acoustic archives, such as Xeno-Canto and the Macaulay Library. 

In this article, we aim to guide the development of an unified method 
that works across the many subdomains of computational bioacoustic 
sound event detection (SED). The benefit of doing so resides in the 
development of a robust and versatile system that could serve the sci-
entific community at large. Hence, we assembled a collection of 14 
small-scale datasets, between 10 min and 10 h in duration. Each of them 
reflects a genuine but slightly different application setting and are ob-
tained from completely different sources. The main originality of our 
work is in the proposal that, instead of training 14 individual machine 
listening systems (one per dataset), we train a single system to detect 
sound events on many different datasets, in which each dataset has a 
different category of sound event to be detected—that category only 
defined at “query time”. Furthermore, when being evaluated on an 
audio file, the system is prompted with the first five occurrences of the 
sound event of interest. This paradigm of machine learning is known as 
“few-shot learning”(FSL) (Snell et al., 2017; Wang et al., 2020a). 

Stated otherwise, our hypothesis is that bioacoustic event detectors 
can take advantage of whichever bioacoustic datasets are available at 
training time, and then generalise from a few (five) examples of the new 
target at deployment time. This is difficult under a standard supervised 
paradigm because the training set may not reflect real-world deploy-
ment conditions, nor cover all sound categories of possible interest. For 
these reasons, we place the concept of domain adaptation at the heart of 
the few-shot learning paradigm in bioacoustics: our goal is not only to 
learn a detector from limited labelled data but also to learn domain- 
agnostic representations of animal sounds which can readily adapt to 
unforeseen recording conditions (cf. Beery et al. (2018) in computer 
vision). 

In order to diversify methods and accelerate progress, we have 
organized an open-science challenge for a community of researchers 
named DCASE: “Detection and Classification of Acoustic Scenes and 
Events”. The challenge was open to everyone and consisted of public 
datasets, evaluation metrics, documentation, and baseline systems. 

In this paper we formulate bioacoustic sound event detection (SED) 
as a few-shot learning task. We describe our approach in the form of two 
ML systems customised to this new task (published openly as baseline 
methods), and we report on a public data challenge conducted over 
three years to generate and evaluate novel algorithmic solutions.2 We 
evaluate various dimensions of the ML paradigms that have been put 

2 Development data: https://zenodo.org/record/6482837Evaluation 
data https://zenodo.org/record/6517414Code: https://github. 
com/c4dm/dcase-few-shot-bioacoustic/ 
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forward for this task, and explore their ability to adapt to aspects of 
bioacoustic data presented in our datasets. Our study demonstrates that 
few-shot SED is a feasible way forward in bioacoustics. 

1.1. Related work 

Few-shot classification has been investigated generally, and also for 
audio (acoustic) data (Naranjo-Alcazar et al., 2022; Pons et al., 2019; Shi 
et al., 2020; Snell et al., 2017). However, SED has different requirements 
from classification: typically, the desired output includes the onset and 
offset times for each detected event (Mesaros et al., 2016), roughly 
similar to the “object detection” task in computer vision. 

One important insight behind few-shot learning is that of meta- 
learning (“learning to learn”), or the idea of leveraging past experience to 
speed-up new learning by improving the performance of the learner 
(Schaul and Schmidhuber, 2010). One approach to meta-learning is 
training a system across many loosely-similar tasks/datasets, such that 
the system is then well-configured to generalise from a few examples of a 
novel class (Ravi and Larochelle, 2017; Wang et al., 2020a). This de-
pends on a system learning something of the implicit commonalities and 
analogies across the tasks, which might then influence an algorithm’s 
learnt feature extraction, or its measure of similarity between data 
points, for example. Related work in computer vision explores the 
challenge of fine-grained classification and object detection in images 
from camera traps in novel conditions (Beery et al., 2018). 

Van Horn et al. (2021) introduced a wildlife image dataset with 
multiple subsets each defining a different binary question. This has a 
similar meta-learning spirit as our work, with the aim that a sophisti-
cated first stage of “representation learning” across multiple tasks can 
make future tasks simple. However, unlike the few-shot setting that we 
use, a lightweight (shallow) classifier must be trained for each new 
question from a non-trivial number of positive/negative examples. 

A previous data-driven challenge on animal vocalisation audio 
detection was focused on birds (Stowell et al., 2019). That challenge also 
aimed to generalise robustly to conditions not seen in the training data 
but was simpler than ours, in that it did not require systems to predict 
event onset or offset times, only presence/absence; it stayed within the 
framework of supervised classification rather than generalising from 
examples of new categories; and it didn’t include as broad a range of 
animal taxa. 

1.2. Novel approaches 

Deep learning models for few-shot learning problems can be broadly 
categorized into two approaches: meta-learning and transfer learning. 
Prototypical networks and matching networks (Vinyals et al., 2016), are 
good examples of meta-learning that have performed well in few-shot 
learning tasks across both image and audio domain. 

Meta-learning based methods rely on the assumption that the tasks 
belong to a single distribution, for example metric learning based 
methods require the tasks all coming from a similar domain such that 
there exists a uniform metric that could work across tasks (Wang et al., 
2019a). However, in real world scenarios this assumption does not al-
ways hold such as in case of our task where the datasets vary in terms of 
species, recording conditions and microphones, essentially rendering 
the problem as a cross-domain few-shot learning. In such cases, a hybrid 
meta-learning approach towards the task may be required, which moves 
beyond the assumption that future tasks are well-represented by the set 
of training tasks. A few hybrid methods are as follows:  

• Cross-domain few-shot learning - Very few methods specifically 
designed to account for cross-domain scenarios have been previously 
explored. Feature-wise transformation layers were introduced in 
Tseng et al. (2020) for augmenting the features using affine trans-
forms, in order to adapt to domain shift across tasks. In Dong and 

Xing (2019), an adversarial network based model is used for one-shot 
domain adaption from source to target domain.  

• Transductive few-shot learning - Meta learning methods aim to 
learn on scarce data in order to generalise to unseen tasks, which 
makes the problem fundamentally difficult. In order to mitigate the 
difficulty, transductive based methods utilise the information present 
in the unlabeled examples from the query set to adapt the model and 
improve its predictions. In Liu et al. (2018), the samples in support 
and query set are jointly modelled as nodes of a graph and the pre-
diction on query set is conducted by label-propagation algorithm. In 
Hou et al. (2019), a cross-attention based map is learnt between 
support set and query set in order to make predictions on individual 
query examples. 

Alternatively, transfer learning based methods rely on adapting to a 
new task through the transfer of knowledge from a related task that has 
already been learned (Parnami and Lee, 2022). First, a deep learning 
model is trained on large training set of base class and then fine-tuned on 
a few examples of the novel class. Fine-tuning on a few examples of the 
novel class can often lead to poor generalisation, hence techniques have 
to be adopted in order to avoid overfitting. For example, in Wang et al. 
(2021), a dynamic few-shot learning approach is adopted where an 
auxiliary model is used as a few-shot classification “weight generator” 
which uses an attention map between the existing classification weight 
vector of the base classes and the few-shot examples of the novel classes. 
SimpleShot (Wang et al., 2019b) uses a pretrained deep network to get 
feature embeddings for the input and query set and performs L2 
normalization on the obtained features, subsequently, an Euclidean 
distance based nearest neighbour classification is performed. A similar 
approach with cosine-distance was proposed in Chen et al. (2020). 

Through the outcomes of the public challenge, we evaluate some 
combinations of these novel approaches for the particular domain of 
bioacoustic SED. 

2. Method 

2.1. Task formulation 

We formulate few-shot bioacoustic sound event detection (FSED) as 
follows: 

Given one long audio recording (or multiple audio recordings), as well as 
annotations on the onset and offset time for each of the first five sound events 
of interest, identify the onset and offset times for all other such sound events in 
the recording(s) (Fig. 1a). 

To train a system for this using meta-learning, we make use of 
multiple bioacoustic datasets (Fig. 1b) representing a range of taxa and 
recording conditions, each annotated with a different target sound 
category (see next section). 

Note that we do not consider multiple classes in one dataset (Mesaros 
et al., 2019; Naranjo-Alcazar et al., 2022): each dataset represents a 
single-class problem. Other sounds are undoubtedly present in almost all 
audio recordings, but these are considered to be background noise 
(clutter/distractor events). Our formulation is easily extended to mul-
tiple classes in a scene by applying inference separately for each cate-
gory of interest. 

We choose few-shot rather than one-shot learning because animal 
sounds of interest often cover a range of variability: for example, there 
may be multiple call types in the set of sounds of interest, or calls from 
multiple distinct individuals within a group. Five as the number of ex-
amples is a conventional choice in few-shot learning, but could vary 
(Pons et al., 2019; Ravi and Larochelle, 2017; Snell et al., 2017). 

Note also that we choose to use the first occurring events as examples, 
rather than a randomly-selected set. This reflects typical practice in 
bioacoustics, in that acoustic data are typically labelled in contiguous 
time segments which may or may not be fully representative of the 
entire data set, and should be tractable for future users of few-shot 
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acoustic systems. It offers one benefit, that an algorithm may make use 
of the strong assumption that the periods between the first five examples 
fall into the negative class. It also aligns with common scenarios, such as 
manually labelling data during a pilot phase and then deploying a 
recognition system to automatically label incoming data. However, it 
also presents a risk: the first sequence of examples may be similar to each 
other in some way which is not representative of the whole set of events, 
for example if the acoustic environment or animal behaviours exhibit 
non stationary characteristics but change over time. 

2.2. Datasets 

A conventional machine learning experiment uses a single dataset 
partitioned into three subsets, used for training, validation, and evalu-
ation (test). In the few-shot formulation, we also divide the data into 
these three partitions (training/validation/evaluation), but each in fact 
contains multiple datasets, and each dataset represents one example of a 
few-shot task. Within each dataset, there are one or more audio files, 
each accompanied by a CSV text file giving the start time, end time and 
label of the targeted audio events. The label can be POS for a positive 
example of the target class, NEG for a negative example (background or 
non-target sound event), or UNK for unknown cases, where the human 
annotator(s) were unsure whether a sound event should be considered in 
the positive class. Such UNK cases may often occur in complex wildlife 
sound scenes; our chosen strategy was to explicitly label these cases, 
allowing algorithm designers to make their own decisions on how to 
handle them, but to exclude UNK time-regions from the evaluation 
measures (described later) since their correct label is ambiguous. For 
each dataset, the first five POS events are the “few shots” from which the 
rest should be inferred. 

A development set was provided for the task when the challenge was 
launched, consisting of the predefined training and validation sets to be 
used for system development. The development set consists of datasets 
from multiple sources with audio recordings and associated reference 
annotations in our specified format. More specifically, for the training 
set multi-class temporal annotations were provided for each recording 
(with multiple POS/NEG/UNK columns in the data, one per class), while 
for the validation set single-class temporal annotations (POS/UNK) were 
provided for each recording. 

A separate evaluation set was kept for evaluating the performance of 
the systems. During the task, only the five POS event annotations were 
provided for each of the recordings for the class of interest. The devel-
oped systems had to use those five annotated events and then learn to 

detect the same type of events throughout the rest of the recording. The 
true annotations for the rest of the recording were kept private for 
evaluation. 

Table 1: Information on each dataset used in the 2022 challenge. 
“Density” is calculated as in signal processing: (total duration of events) 
/ (total duration of audio), thus values close to 0 are sparse, and close to 
1 are dense. 

BirdVox-DCASE-10 h (BV-Training set): The BV dataset was pro-
duced as part of the BirdVox project Website of the BirdVox project: 
WebsiteoftheBirdVoxproject:\url{https://wp.nyu.edu/birdvox}, whose 
goal is to monitor bird migration with autonomous recording units 
(Lostanlen et al., 2018). The recordings were obtained in four locations 
of Tompkins County, NY, US, during the 2015 fall migration season. An 
expert ornithologist, Andrew Farnsworth, has annotated 2662 flight 
calls from 11 species of passerines, e.g., Swainson’s thrush (Catharus 
ustulatus) and White-throated sparrow (Zonotrichia albicollis. These 
flight calls have a duration in the range 50–150 milliseconds and a 
fundamental frequency in the range 2–10 kHz. 

Hyenas (HT-Training set): The HT dataset contains five recordings 
from hyenas. Spotted hyena vocalisation data were recorded on custom- 
developed audio tags (DTAG) designed by Mark Johnson and integrated 
into combined GPS/acoustic collars (Followit Sweden AB) by Frants 
Jensen and Mark Johnson, Johnson and Tyack (2003b). Collars were 
deployed on female hyenas of the Talek West hyena clan at the MSU- 
Mara Hyena Project (directed by Kay Holekamp) in the Masai Mara, 
Kenya as part of a multi-species study on communication and collective 
behavior. Spotted hyenas are a highly social species that live in “fission- 
fusion” groups where group members range alone or in smaller sub-
groups that split and merge over time. Hyenas use a variety of types of 
vocalisations to coordinate with one another over both short and long 
distances (Lehmann, 2020). Recordings used as part of this task contain 
a variety of different vocalisations which were identified and classified 
into types based on the established hyena vocal repertoire (Leblond 
et al., 2021). Fieldwork was carried out from November 2016–February 
2017 by Kay Holekamp, Andrew Gersick, Frants Jensen, Ariana 
Strandburg-Peshkin, Benson Pion, Morgan Lucot, and Rebecca LeFleur; 
labelling was done by Kenna Lehmann and colleagues. 

Meerkats (MT-Training set, ME-Validation set): The MT and ME 
datasets contains two recordings each from meerkats. Recordings used 
in this task were acquired at the Kalahari Meerkat Project (Kuruman 
River Reserve, South Africa; directed by Marta Manser and Tim Clutton- 
Brock), as part of a multi-species study on communication and collective 
behavior. Recordings of the development set (MT) were recorded on 

Fig. 1. (a) Few-shot sound event detection: the first 
5 sound events are given as examples—in standard 
supervised learning they would be considered the 
training set—and the remainder must then be 
detected. (b) Few-shot sound event detection as a 
meta-learning problem. Each of our datasets repre-
sents a different but related few-shot task. The 
overall goal is to use the training and validation 
datasets collectively to train or otherwise develop a 
system that, when presented with 5 sound events 
from any of the evaluation datasets, can perform 
well at detecting the remaining events.   
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small audio devices (TS Market, Edic Mini Tiny+ A77, 8 kHz) integrated 
into combined GPS/audio collars which were deployed on multiple 
members of meerkat groups to monitor their movements and vocal-
isations. Recordings of the evaluation set (ME) were recorded by an 
observer following a focal meerkat with a Sennheiser ME66 directional 
microphone from a distance of typically less than 1 m. Meerkats are a 
highly social mongoose species that live in stable social groups and use a 
variety of distinct vocalisations to communicate and coordinate with 
one another. Recordings were carried out during daytime hours while 
meerkats were primarily foraging and include several different call 
types. The meerkat vocal repertoire has been well characterised based 
on previous research, allowing calls to be reliably classified by human 
labellers (Manser, 1998; Manser et al., 2014). Fieldwork was carried out 
by Ariana Strandburg-Peshkin, Baptiste Averly, Vlad Demartsev, 
Gabriella Gall, Rebecca Schaefer and Marta Manser; and the recordings 
were labelled by Baptiste Averly, Vlad Demartsev, Ariana Strandburg- 
Peshkin, and colleagues. 

Jackdaws (JD-Training set): The JD dataset contains a 10-min on- 
bird sound recording of one male jackdaw during the breeding season in 
2015. This individual was recorded in a larger multi-year field study 
(Max-Planck-Institute for Ornithology, Seewiesen, Germany) in which 
wild jackdaws were equipped with small backpacks containing minia-
ture voice recorders (Edic Mini Tiny A31, TS-Market Ltd., Russia) to 
investigate the vocal behavior of individuals interacting with their 
group and behaving freely in their natural environment. Jackdaws are 
highly vocal corvid songbirds that usually breed, forage and sleep in 
large groups, but form a pair bond with the same partner for life. The 
sound recordings contain loud recordings of the focal bird, as well as 
background sounds from non-focal birds and other sound sources. 
Fieldwork was conducted by Lisa Gill, Magdalena Pelayo van Buuren 
and Magdalena Maier. Sound files were manually annotated by Lisa Gill, 
using Audacity software, following a previously established video- 
validation in a captive setting (Stowell et al., 2017). 

Western Mediterranean Wetlands Bird Dataset (WMW-Training 
set): The WMW dataset contains 161 files with bird sounds from 20 
endemic species that are typically inhabitants of the “Aiguamolls de 
l’Empordà” natural park in Girona, Spain. The audio files that compose 
this dataset were originally retrieved from the Xeno-Canto portal (Vel-
linga and Planqué, 2015). Xeno-Canto is a portal in which citizens can 
upload wildlife sounds. As the audio files are collected by a wide com-
munity of people, the recording devices used for gathering data can be 
different in every audio file. Depending on the species, audios contain 
vocalisations such as bird calls or songs; or sounds such as bill clapping 
(Ciconia ciconia species) or drumming (Dendrocopos minor species). For 
the WMW dataset, Juan Gómez-Gómez, Ester Vidaña-Vila and Xavier 
Sevillano manually cleaned and labelled downloaded audio files using 
the Audacity software (Gómez-Gómez et al., 2023). The cleaning and 
labelling process consisted in listening to every audio file in the dataset 
and annotating the specific parts of the file in which the bird is 

vocalizing, thus separating the bird vocalisations from background 
noise. 

HumBug (HB-Validation set): The HB dataset contains sounds of 
lab-cultured Culex quinquefasciatus mosquitoes from Oxford, UK, and 
various species captured in the wild in Thailand, placed into plastic cups 
(Li et al., 2018). Mosquitoes produce sound both as a by-product of their 
flight and as a means for communication and mating. Fundamental 
frequencies vary in the range of 150 to 750 Hz (Kiskin et al., 2020). As 
part of the HumBug project, acoustic data was recorded with a high 
specification field microphone (Telinga EM-23) coupled with an 
Olympus LS-14. The recordings used in this challenge are a subset of the 
datasets marked as ‘OxZoology’ and ‘Thailand’ from HumBugDB (Kiskin 
et al., 2021).3 

Polish Baltic Sea bird flight calls (PB-Validation set): The PB 
dataset consists of six 30-min recordings of bird flight calls recorded 
along the Polish Baltic Sea coast (Dąąbkowice near Darłowo). Three 
autonomous recording units were used with the same hardware settings 
(Song Meters SM2, Wildlife Acoustics, Inc). They were deployed close to 
each other (<100m) - near the lake, on the dune, and on the forest 
clearing - to provide diverse acoustic background. The recordings were 
acquired during the 2016, 2017 and 2018 fall migration seasons. The 
recordings are the excerpt from Hanna Pamuła’s project, focused on the 
acoustic monitoring of birds migrating at night along the Polish Baltic 
Sea coast (Pamula, 2022; Pamuła, 2022). The passerines night flight 
calls were annotated by Hanna Pamuła using the Audacity software. In 
each recording, only one bird species is the target class: song thrush, 
Turdus philomelos (3 recordings); blackbird, Turdus merula (3 re-
cordings). The usual fundamental frequency range for calls of the chosen 
species is 5–9 kHz, with standard call duration in the range of 10–250 
milliseconds. 

Transfer-Exposure-Effects dataset (CHE-Evaluation set): The 
CHE dataset contains bird vocalisations from the Chornobyl Exclusion 
Zone (CEZ). Data were collected using unattended acoustic recorders 
(Songmeter 3) to capture the Chornobyl soundscape and investigate the 
longterm effects of the nuclear power plant accident on the local ecol-
ogy. This dataset comes from the Transfer Exposure-Effects (TREE) 
research project.4 To date, the study has captured approximately 10,000 
h of audio from the CEZ. The fieldwork was designed and undertaken by 
Mike Wood (University of Salford), Nick Beresford (UK Centre for 
Ecology & Hydrology) and Sergey Gashchak (Chornobyl Center). Com-
mon Chiffchaff (Phylloscopus collybita) and Common Cuckoo (Cuculus 
canorus) vocalisations were manually annotated and labelled from these 
recordings by Helen Whitehead. 

BIOTOPIA Dawn Chorus (DC-Evaluation set): The DC dataset used 
as part of the evaluation set stems from dawn chorus recordings, made 

Table 1 
Overview of all the datasets in the development and evaluation sets used in the 2022 edition of the challenge.  

2022 Dataset Taxon Mic type # Files Total duration # Labels # Events Density Mean event length (sec) 

Training BV Birds fixed 5 10 h 11 9026 0.038 0.15 
HT Mammals on-body 5 5 h 5 611 0.047 1.42 
MT Mammals on-body 2 70 mins 4 1294 0.042 0.15 
JD Birds on-body 1 10 mins 1 357 0.062 0.11 

WMW Birds various 161 5 h 26 2941 0.25 1.54 
Val. HB Insects handheld 10 2.4 h 1 712 0.67 11.67 

PB Birds fixed 6 3 h 2 292 0.003 0.11 
ME Mammals handheld 2 20 mins 2 73 0.011 0.19 

Evaluation CHE Birds fixed 18 3 h 3 2550 0.263 1.94 
DC Birds fixed 10 95 mins 3 967 0.350 1.66 
CT Mammals on-body 3 48 mins 3 365 0.017 0.16 
MS Birds fixed 4 40 mins 1 1087 0.084 0.18 
QU Mammals (marine) on-body 8 74 mins 1 3441 0.045 0.06 

MGE Birds fixed 3 32 mins 2 1195 0.194 0.27  

3 https://github.com/HumBug-Mosquito/HumBugDB/  
4 https://tree.ceh.ac.uk/ 
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using Zoom H2 recorders at three different locations in Southern Ger-
many (Haspelmoor, Munich’s Nymphenburg Schlosspark, and Nantes-
buch). Many bird species produce vocalisations during the entire day, 
but their vocally most active period by far usually occurs around dawn. 
This natural phenomenon of dawn chorus has received a lot of attention 
in biological studies, and also appears to be the perfect time window for 
species detection, as it provides the largest likelihood of most in-
dividuals of the same and of different species signaling. Yet the sheer 
complexity of undirected dawn chorus recordings have made automatic 
species classification extremely difficult, leaving this potentially rich 
source of acoustically determined species data largely untapped. The 
Dawn Chorus project is a worldwide citizen science and arts project 
bringing together amateurs and experts to experience and record the 
dawn chorus at their doorstep, to draw a global picture of bird biodi-
versity through sound. The three recordings used in the present study 
were made and donated by two participants (Moritz Hertel and Rudi 
Schleich). The vocalisations of three target species (Common cuckoo, 
Cuculus canorus; European robin, Erithacus rubecula; Eurasian wren, 
Troglodytes troglodytes) were manually annotated by Lisa Gill, using 
Audacity. 

Coati (CT-Evaluation set): The CT dataset contains audio re-
cordings collected from two adult females from the same group on Barro 
Colorado Island, Panama in March 2020. These data are part of the 
Communication and Coordination Across Scales project. The two coatis 
wore collars which recorded high-resolution GPS data with an external 
attachment of a small audio recording device (TS Market, Edic Mini 
Tiny+ A77, 22.05 KHz). Audio data were recorded during their active 
foraging period in daytime hours when a variety of social and aggressive 
calls are commonly emitted. Coatis are omnivorous diurnal mammals 
that live in stable social groups consisting of females and related juvenile 
and subadult males. Coatis produce a number of call types that are used 
across a variety of different behavioral contexts. The documentation of 
their complete vocal repertoire is currently under development. The 
target calls used in this dataset are growls, chitters and chirp-grunts. 
Growls and chitters are used in aggressive contexts, whereas chirp- 
grunts are contact calls emitted when foraging and moving with the 
group. Several other call types that might be confused with the targets 
were captured in the recordings which present the main challenging 
aspect of this data. Fieldwork was carried out by Emily Grout, Josué 
Ortega and Ben Hirsch. Calls were labelled by Emily Grout using Adobe 
Audition. 

Manx Shearwater (MS-Evaluation set): The MS dataset contains 
vocalisations from Manx Shearwater individuals, which are procellari-
form seabirds that breed in dense island colonies in the North Atlantic, 
mostly in the British Isles, and winter in the South Atlantic off the South 
American coast. In a multi-year study, Audiomoth recorders were placed 
in burrows on Skomer Island to record the vocalisations of both adult 
Manx shearwaters and chicks during the breeding season. Adult Manx 
shearwaters make loud, distinctive vocalisations while present at their 
breeding colony in various contexts: in duets with their partner in their 
nesting burrow, to broadcast from their burrow, and during flight. Pairs 
of Manx shearwaters raise single chicks in underground burrows, 
regularly visiting the breeding colony at night to feed their chick. During 
these visits, the chick vocalises to ‘beg’ for food from the parent shear-
water; these vocalisations typically comprise bouts of short high-pitched 
‘peeps’. Fieldwork was undertaken by various members of the Oxford 
Navigation Group (OxNav), associated with the Oxford University 
Department of Biology and led by Professor Tim Guilford. Annotation of 
individual chick begging vocalisations was carried out by Joe Morford 
using Sonic Visualiser; these vocalisations, therefore, represent the 
target class in this dataset. 

Dolphin Quacks (QU-Evaluation set): The QU dataset contains 
recordings from bottlenose dolphin sounds from Sarasota, FL, obtained 
using sound-and-movement recording DTAGs Johnson and Tyack 
(2003a), attached with suction cups by Frants Jensen in collaboration 
with Drs. Peter Tyack, Vincent Janik, Laela Sayigh, Randall Wells and 

the Sarasota Dolphin Research Program. All tags were deployed during 
routine health assessments conducted by the Sarasota dolphin research 
project and under a National Marine Fisheries Service research permit to 
Dr. Randall Wells of Chicago Zoological Society. Bottlenose dolphins are 
highly acoustic animals with an expansive repertoire of acoustic signals 
used for social interactions. Male bottlenose dolphins (Tursiops trunca-
tus) in Sarasota form close pair bonds with other males that help them 
consort with females during the mating season. The target class is 
Quacks, which are short, low-frequency narrowband signals (around 
100 ms duration and main energy below a few kHz) Simard et al. (2011), 
and emitted at relatively high rates by one or both males in the alliance. 
These calls are produced in bouts often with hundreds of quacks in a 
single short vocal bout. Bouts of quacks were extracted from 4 bot-
tlenose dolphins tagged in 2013, 2014, and 2015. Quacks were labelled 
by Austin Dziki and validated by Frants Jensen using DTAG auditing 
tools in Matlab. 

Chick calls (MGE-Evaluation set): The MGE dataset contains three 
10-min recordings from three 1-day old domestic chicks (Gallus gallus). 
Vocalisations have been recorded in 2019 and annotated using Sonic 
Visualiser in the Prepared Minds Lab (Queen Mary University of Lon-
don5) by Dr. Versace’s staff (Shuge Wang, Michael Emmerson, Laura 
Freeland, Elisabetta Versace). Individual chicks had just been removed 
from the hatchery, and were free to explore the experimental arena. 
Chicks have been recorded in the controlled environment of the labo-
ratory, a 24–48 h after hatching. Chickens are a precocial social bird 
species and upon hatching they establish a strong attachment to their 
social companions, via a process called imprinting, where acoustic in-
formation strengthens affiliative responses Versace et al. (2017). During 
and after the imprinting process, chicks vocalise signaling that they are 
in close proximity to their social partners (i.e. pleasure calls) or that they 
are distant or separated from them (i.e. contact calls). The data gathered 
in the dataset present uneven time distribution. Calls typically have a 
short duration (100–400 milliseconds). In the dataset, only pleasure 
calls were annotated in recordings from chicks one and two, only contact 
calls were annotated in recordings from chick three. We defined calls 
based on previous literature (Marx et al., 2001). 

To summarise, these datasets together represent some of the wide 
variety of bioacoustic SED tasks, and were selected to give broad 
coverage of some of the key axes of variation, such as rate of occurrence 
of the target sound, length of calls, background noise (SNR), taxa, etc. 
Some of these quantitative characteristics are summarized in Table 1, 
and a visual representation of each dataset is presented in fig. A.8. 
Descriptive analysis of the datasets further illustrates the variation in 
temporal and spectral characteristics, for the target sounds as well as the 
background soundscapes. The spectral profile of each dataset is pre-
sented in Fig. 2, this shows the energy distribution across frequency 
bands for the POS and background in separate. A similar representation 
is used to create the temporal profiles shown in Fig. 3. 

The datasets represent diverse challenges for the few-shot SED sys-
tems that are trained and evaluated on them. For each dataset, the 
provided 5 events are used to specify the class of target sounds. The 
extent to which a small set of calls can be representative depends on 
various factors including stereotypy - the degree of how stereotyped are 
the calls, and vocabulary size. 

To approximately quantify stereotypy, for each class in the evalua-
tion set, we calculate similarity between sound events. We do this be-
tween the selected five events and the remaining events, as well as for 
the annotated calls more generally (Fig. 4). Together with the SNR and 
the sparsity/density of call events, this stereotypy aspect is expected to 
be one of the axes of variation among our datasets. (details in Appendix 
A.2). 

5 https://www.preparedmindslab.org/home 
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2.3. Baseline methods 

We propose two systems as baselines, representative of standard 
good-quality methods that can be applied to the task, and against which 
to measure the performance of novel submitted methods. One is an 
approach commonly used in bioacoustics based on spectrogram cross- 
correlation and the other is a deep learning approach based on proto-
typical networks, which have been used in other FSL work. 

2.3.1. Template matching (cross-correlation) 
Signal-processing methods have been used for decades to detect 

events of possible interest in audio data (Gillespie et al., 2009; Towsey 
et al., 2012). Common approaches include energy thresholding, which 
can work in low-noise scenarios only, and template matching, usually 
based on cross-correlation (matched filtering) of waveforms or spec-
trograms. Template matching can work well in noisy audio, providing 
the target signal is acoustically (a) distinct from the background sounds 
and (b) stereotyped, i.e. not strongly varying in character. We thus 
expect template matching to work well in some of the scenarios we 

study, but to perform very poorly in others. 
Our baseline cross-correlation method is based on scikit-image’s 

match_template function applied to spectrograms: it uses fast, normal-
ised cross-correlation to find instances of a template in an image, 
returning values ranged between − 1.0 and 1.0, with higher values 
corresponding to higher correlation. Our few-shot template matching 
method computes cross-correlation across the time axis between each of 
the events (shots) provided for a file and the rest of the recording. A 
different detection threshold is set for each audio file based on the max 
value of the cross-correlation results between the shots provided. Peak 
picking is performed on the results of the template matching algorithm, 
with any peak above the threshold corresponding to the center of a 
detected event in that recording. Borders of the predicted event are 
assumed to align with the beginning and end of the template when it 
matches. Each of the 5 templates is used separately for matching, and 
the resulting event predictions are collapsed into a single binary pre-
diction vector which will produce the final events predicted for the class 
of interest. 

Fig. 2. Spectral summary profiles of each dataset. For each frequency, we show mean and 90% confidence intervals of the energy distribution, for the foreground 
(POS events) and negative regions (background and non target sounds) separately. 
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2.3.2. Prototypical networks 
Our second baseline is based on prototypical networks, a deep 

learning technique whose training procedure is designed especially for 
few-shot learning (Snell et al., 2017). The networks are trained using 
episodic training: each “episode” is configured as an “N-way-k-shot” 
classification task, where N denotes the number of classes and k the 
number of known samples per class. In the present work k = 5, and N =

2 when there is only one sound event type to consider, in which case the 
two classes then represent active and inactive. Prototypical networks 
have previously been evaluated as highly promising for few-shot audio 
classification tasks (Pons et al., 2019). 

A prototype in this method is a coordinate in some vector represen-
tation, which is calculated as a simple centroid (mean) of the co-
ordinates for each of the k examples. The training data consist of a 
support set S consisting of k labelled samples from each class, with the 
remaining samples comprising the query set Q. Prototypical networks 
compute a class prototype cn through an embedding function fϕ : ℝD→ 
ℝM with learnable parameters ϕ. In our baseline system D = 128 and 
M = 64, and fϕ is a neural network. The prototype for class n is 
computed as the mean of the embedded support points belonging to that 
class: 

cn =
1
k

∑

(xi)∈Sn

fϕ(xi) (1)  

where Sn represents the subset of S from class n. 

Fig. 3. Temporal profiles of each dataset. We show the empirical distributions (kde smoothed) of durations of marked regions, for the foreground (POS events) and 
negative regions (all non-POS regions) separately. 

Fig. 4. Values of similarity between the annotated calls and the first 5 events 
(shots), and stereotypy for each class in the evaluation set. Classes are indicated 
in the horizontal axis by DatasetName_ClassName. Both factors are computed 
using a similarity metric based on the average maximum cross correlation be-
tween events. It ranges between 0 and 1, where values closer to 1 represent 
higher similarity. (the details on how these values are computed are presented 
in Appendix A.2). 
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Then, for each sample xq from the query set, a distance function is 
used to calculate the Euclidean distance of xq from each prototype, 
following which a softmax function over the distances produces a dis-
tribution over the classes. This directly implies that training the neural 
network to optimise these distances should move prototypes and their 
corresponding query points closer together in the embedding space 
created by fϕ, and further away from non-matching points. In other 
words, the training procedure creates a general representation in which 
similar sounds are close to each other. Nearest-neighbour algorithms 
such as k-means can then be used to label future data points—even those 
from novel categories, after a simple procedure of calculating the pro-
totype of a novel category as the centroid of its k shots. 

During evaluation, we adopt a binary classification strategy inspired 
by Wang et al. (2020b). The first 5 positive (POS) annotations are used 
for calculation of positive class prototype and the rest of the audio file is 
treated as the negative class, based on the assumption that the positive 
class is relatively sparse in the recording. We randomly sample time 
regions from the negative class to calculate the negative prototype. Each 
query sample is predicted to have the target sound active, if its 
embedding coordinate is closer to the positive prototype than the 
negative. The prediction process for each file is repeated 5 times, with 
the negative prototype created by random sampling each time. The final 
prediction probability for each query frame is the average of predictions 
across all iterations. Finally, post-processing is applied to the outputs in 
order to remove possible false positives. For each audio file, predicted 
events with shorter duration than 60% of the duration of the shortest 
shot provided for that file are removed. 

2.4. Evaluation and public challenge 

For the evaluation of this task, we employ an event-based F-measure 
with macro-averaged metric, to evaluate the match between true and 
predicted events. The main complexity is related to the detection of a 
match between ground truth events and predicted events. Traditional 
approaches use onset detection based metrics and fixed-size evaluation 
windows (Mesaros et al., 2019). Given the great variation between 
datasets and characteristics of the events we want to detect in this task, 
these approaches are not suitable. Instead, we use the Intersection over 
Union (IoU), with 30% minimum overlap to produce a list of possible 
matches of the predictions. Applied to temporal events we get a list of 
predicted events that overlap at least 30% with the ground truth events 
and thus are candidate matches. For each ground truth event, a single 
best match is selected by applying the Hopcroft-Karp-Karzanov algo-
rithm for bipartite graph matching, a similar procedure as used in the 
sed eval toolbox.6 

In a SED task we can define True Positives (TP) as predicted events 
that match ground truth events, False Positives (FP) as predicted events 
that do not match any ground truth events, and False Negatives (FN) as 
ground truth events that are not predicted. In this task, ground truth 
events consist of POS events of the class and UNK events that have some 
uncertainty associated to the assigned class. The UNK label is typically 
assigned if the annotator is not sure if the event belongs to the class of 
interest, in other situations the annotator knows it is not the class of 
interest however the event lookssounds like it could be. This decision is 
thus very subjective and dependent on each dataset. For evaluation 
purposes, matches to UNK events do not count towards calculating TP, 
FP or FN. In doing so, we ensure that the subjectivity associated with 
assigning the UNK label does not impact the performamce score of the 
systems. 

The procedure we employ is:  

1. Apply IoU and bipartite graph matching between predicted events 
and ground truth POS events only, resulting in TP. 

2. Apply IoU and bipartite graph matching between remaining pre-
dicted events, that did not match with any POS event, and ground 
truth UNK events only.  

3. Compute FP as the number of predicted events that were not 
matched to either POS or UNK events.  

4. Compute FN as the number of POS ground truth events that were not 
matched by any predicted event. 

This is applied to each dataset in the evaluation set where we 
compute the F-score metric. The reported results are the harmonic mean 
over all the datasets, which is appropriate for combining percentage 
results, and ensures that a system should perform well across all datasets 
to achieve a strong score. 

We thus use an averaged F-score as our main summary statistic for 
each submitted system. To explore system performance in more detail, 
we also inspect the F-scores per dataset, and per class in each dataset, in 
particular to examine whether differences in acoustic characteristics 
correlate with differences in performance. 

The F-score metric is designed to summarise how well a system’s 
outputs correspond to the desired outputs. However, there are many 
factors that affect the usefulness of such outputs, meaning that it is 
difficult to estimate a technology readiness level from only numerical 
scores. Hence, in addition to our quantitative analysis, we conduct a 
qualitative user-oriented analysis of selected system outputs, gathering 
feedback from expert users (annotators of the datasets). 

3. Results 

We report here the results of our public challenge. We have con-
ducted three editions to date (2021, 2022, 2023), and each year the 
evaluation dataset has been extended to cover a wider range of bio-
acoustic sources. After the first edition, it was agreed that evaluation 
datasets should be refined and expanded to give a more robust estima-
tion of system performance. We thus report here on the systems sub-
mitted to the second and third editions, evaluated on the datasets of the 
second edition for comparability. For completeness, a summary of the 
2021 outcomes is given in the Supplementary Information. 

In the 2022 edition, 15 teams participated submitting a total of 46 
systems and in 2023 there were 6 teams with a total of 22 systems. We 
present in Table 2 the overall scores of the best system submitted by each 
team in these two editions of the challenge. The challenge can be seen to 
be a difficult one: the baseline systems, and many teams, obtained F- 
score averages below 25%. On the other hand, methods could be 
designed which reach well over 40% F-score average, and up to 60% 
(Table 2). Such performances were much stronger than expected based 
on the task difficulty and 2021 results. 

Several systems adopted a prototypical network approach, perhaps 
influenced by the baseline code and/or the outcomes of the 2021 edi-
tion. Simple improvements over the baselines were achieved by 
applying data augmentation techniques and intelligent post-processing. 
Better ways to construct the negative prototype were also explored by 
some teams who reported improved results (Liu_Surrey, XuQianHu_-
NUDT_BIT, Jung_KT, Wu_SHNU, Jung_KT, Willbo_RISE). Transductive 
inference—adapting the learnt feature space at test-time based on the 
newly-presented positive and negative events—was also applied by 
some participants (Liu_Surrey, XuQianHu_NUDT_BIT, Li_QMUL, Tan_-
WHU, Zou_PKU). 

The top 2 scoring systems, (Du_NERCSLIP_23 and Du_NERCSLIP) 
belong to the same team, who was able to achieve the best score at both 
editions. Their implementation is based on the idea of learning frame- 
level embeddings, instead of an embedding for a whole segment. This 
confers to the system a high time resolution capability, which is 
important to perform particularly well on classes of very short duration 
such as QU, (Fig. 5). For the third edition of the task, they have 

6 http://tut-arg.github.io/sed_eval/generated/sed_eval. 
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incorporated this frame-level embedding idea into a multi-task learning 
framework, that also includes a speaker voice activity detection branch. 
This modifications are responsible for a score improvement of almost 2% 
points. 

The next system in rank, Liu_Surrey, implements a novel approach 
designed to optimise the contrast between positive events and negative 
prototypes. This, together with an adaptive segment length dependent 
on each target class, works well across all the evaluation sets. 

The problem of very different lengths of events across target classes 
was also directly addressed by other submissions. Both Martinsson_RISE 
and Zgorzynski_SRPOL implemented an ensemble approach where each 
individual model focuses on a different input size range. In Liu_BIT-SRCB 
this is explored through a multi-scale ResNet, and in Willbo_RISE with a 
wide ResNet containing many channels. Also in XuQianHu_NUDT_BIT, 
they implement a novel adaptive mechanism - squeeze/excitation block 
- designed to assign different weights to different channels of the feature 
map. 

Inspecting the characteristics of the methods performing most 
strongly in the challenge, broadly across all editions, we observe some 
general tendencies (Table 3). Firstly, there is relatively little variation in 
the acoustic features extracted, and the neural network architecture: 
most systems use Mel spectrograms with PCEN, and standard CNNs. The 
main innovation in this aspect comes from You et al. (2023), where the 
CNN is replaced by the audio spectrogram transformer (AST). However, 
there is considerable variation in the method of training the network, 
and performing inference. There is a roughly equal balance of the two 
main paradigms: meta-learning with prototypical networks, versus fine- 
tuning or otherwise adapting a network trained using cross-entropy. 

Within both paradigms there are instances of transductive inference 
(Yang et al., 2021),Liu_Surrey. The ‘dynamic few-shot learning’ (DFSL) 
method employed by Wu_SHNU is an alternative approach to query-time 
adaptation: the feature extraction, and the representation for previously- 
known classes, is never altered, but at query time the new task is 
considered to be a new class, whose representation is a weighted sum of 
those for the previously-known classes. This has the appealing charac-
teristics of combining stability with dynamic adaptation, unlike stan-
dard fine-tuning in which care must be taken not to overfit to the new 
examples. Despite these innovations, it is notable that multiple teams 
achieved strong performance without test-time adaptation of the learnt 
feature space. 

Many teams innovated in the way time-regions are selected for 

training an algorithm, both for computing the positive and negative 
regions (foreground and background). Multiple teams made use of 
pseudo-labelling as a way to bootstrap the amount of data presented to 
the system: this means using the system to make a first ‘draft’ identifi-
cation of which regions are positive/negative for the events of interest, 
and then using that estimated labelling to further train the system (Yang 
et al. (2021), Wu_SHNU and Du_NERCSLIP(23)). Pseudo-labelling has 
been explored in many machine learning domains for data-poor 
scenarios. 

Successful systems also commonly used explicit methods to control 
the duration of the detected events. In many cases this consists of 
postprocessing predictions to delete/merge very short events, or esti-
mating the typical duration from the examples. Du_NERCSLIP(23) and 
Wolters et al. (2021) made use of neural network architectures specif-
ically trained to infer and output region annotations. 

Overall, the different approaches submitted illustrate the introduc-
tion of ideas to address challenges related to this task: how to deal with 
very different event lengths; how to construct a negative class when no 
explicit labels are given for this; and how to bridge the gap between 
classification and detection for few-shot sound event detection. These 
challenges derive from the combination of few-shot learning with sound 
event detection, and hence are not addressed in standard few-shot 
learning (Wang et al., 2020a). 

3.1. Analysis of dataset dependencies 

The submitted systems exhibit variations in their performance across 
our datasets (Fig. 5). The same is true even when we look at the target 
class level, Fig. 6 presents the Fscore results for the different target 
classes in each dataset. The easiest classes to be detected are CHE_-
chaffinches, CT_chirpgrunts and DC_robins, where several systems reach 
above 75% F-score. On the other side, CT_Chitters, DC_Cuckoo and the 
QU_Quacks seem to be the classes where systems struggled the most to 
make correct predictions. The disparity in score between systems is also 
evident. The performance on MGE_Chick_Pleasure_calls is a good 
example where Du_NERCSLIP’s systems show a significant advantage 
over the others. 

To determine which data characteristics might be the strongest fac-
tors in these performance variations, we investigated five data attri-
butes, three commonly considered in soundscape analysis: SNR, event 
sparsity, and event length, plus similarity between events and the 5 shots 

Table 2 
F-score results (in %) per team (best scoring submission) on 2022 evaluation and validation sets. Systems are ordered by higher scoring rank on the evaluation set. 
These results and technical reports for the submitted systems can be found on task 5 results page (DCASE, 2022) and (DCASE, 2023).  

Team # Best submission Evaluation (95% CI) Validation 

Du_NERCSLIP_23 (Yan et al., 2023) 2 61.83 (61.23–62.32) 75.6 
Du_NERCSLIP (Tang et al., 2022) 2 60.22 (59.66–60.70) 74.4 
Liu_Surrey (Liu et al., 2022a) 2 48.52 (48.18–48.85) 50.03 
Martinsson_RISE (Martinsson et al., 2022) 1 47.97 (47.48–48.40) 60 
Hertkorn_ZF (Hertkorn, 2022) 2 44.98 (44.44–45.42) 61.76 
Liu_BIT-SRCB (Liu et al., 2022b) 4 44.26 (43.85–44.62) 64.77 
Wu_SHNU (Wu and Long, 2022) 1 40.93 (40.48–41.30) 53.88 
XuQianHu_NUDT_BIT (Liu et al., 2023) 3 37.71 (36.98–38.23) 63.94 
Moummad_IMT (Moummad et al., 2023) 2 37.32 (36.82–37.74) 63.46 
Zgorzynski_SRPOL (Zgorzynski and Matuszewski, 2022) 4 33.24 (32.69–33.69) 57.2 
Gelderblom_SINTEF (Gelderblom et al., 2023) 2 26.79 (26.13–27.29) 36.6 
Mariajohn_DSPC (Mariajohn, 2022) 1 25.66 (25.40–25.91) 43.89 
Jung_KT (Lee et al., 2023) 3 23.74 (23.14–24.17) 81.52 
Willbo_RISE (Willbo et al., 2022) 4 21.67 (21.32–21.97) 47.94 
Zou_PKU (Yang et al., 2022) 1 19.20 (18.88–19.51) 51.99 
Huang_SCUT (Huang et al., 2022) 1 18.29 (18.01–18.56) 54.63 
Tan_WHU (Tan et al., 2022) 4 17.22 (16.82–17.55) 54.53 
Li_QMUL (Li et al., 2022) 1 15.49 (15.16–15.77) 47.88 
Wilkinghoff_FKIE (Wilkinghoff and Cornaggia-Urrigshardt, 2023) 4 13.31 (12.83–13.67) 62.64 
baseline-TempMatch (Morfi et al., 2021) – 12.35 (11.52–12.75) 3.37 
baseline-ProtoNet (Morfi et al., 2021) – 5.3 (5.1–5.2) 28.45 
Zhang_CQU (Zhang et al., 2022) 4 4.34 (3.74–4.56) 44.17 
Kang_ET (Kang, 2022) 2 2.82 (2.76–2.87) –  
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and stereotypy (both defined in Section 2.2 and Appendix A.2). We 
performed a multivariate regression with different combinations of 
these variables. By evaluating and selecting the best model, we can 
verify which would be the best attribute or combination of attributes 
that predicts the Fscore. The possible 31 combinations of these attributes 
were used as the predictors of the average F-score across all systems 
scoring above the baseline. The resulting regression models were then 
evaluated by inspecting the p-values, adjusted R-squared, Akaike in-
formation criterion (AIC) and the Bayesian information criterion (BIC). 
The results indicate that none of these factors translating bioacoustic 
considerations was a strong predictor of differences in performance. A 
similar conclusion can be reached by observing Fig. 7. Here, the average 
F-score across systems performing above the baselines is plotted against 
Stereotypy, Mean event duration, SNR and Event density. The absence of 
clear correlations indicates the difficulty in selecting which could be the 
most important factors impacting the f-score. Furthermore, this lack of 
strong visual relationships between Fscore and data characteristics re-
mains even when only the scores of one individual system are used. 

3.2. Ablation study 

The developed systems are complex and most consist of various in-
dependent functional units coming together to solve the task. 

Here, we present the results of the ablation study performed on 
Liu_Surrey’s system (Liu et al., 2022a). The choice to perform the 
ablation analysis on this system is due to it being the highest scoring 
system with open access code. An ablation study consists in removing 
different parts of the network and evaluating the impact these changes 
have on performance. This allows for some increased understanding of 
how a system works, while providing a way in which it is possible to 
measure the contributions of each individual unit for the overall level of 
performance achieved. 

The experiments with variations to the system’s architecture can be 
organized into different categories: 1) exploring different input features, 
2) analysing the impact of Contrastive Learning and 3) impact of the 
number of “ways” used for episodic training (as in the Meta-learning 
setup N_way, K_shots): “ways” means the number of different sound 
categories considered at once). The F-score results are presented in 
Table 4. Because systems are developed based on the development and 

Fig. 5. F-Score results of 2022 and 2023 systems on each dataset of the 2022 evaluation set. Systems are ordered by overall highest scoring rank on the evalua-
tion set. 
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Table 3 
Methodological features of various systems of interest. Terms: Proto = prototypical network; x-ent = cross-entropy; Dist = distance-based; TI = transductive inference; DFSL = dynamic few shot learning; AST = Audio 
Spectrogram transformer; SCL = supervised constrastive learning; 5 = the original 5 shots are used; between-the-5 = the spaces between the 5 shots are used; pseudo-pos/pseudo-neg: pseudo-labelling is used to select 
additional examples; aug = data augmentation applied.    

Spectrogr. 
features 

Neural net 
arch. 

Training 
objective 

New class 
addition 

Inference Feature space 
changes? 

Negatives 
selection 

Positives 
selection 

Segment 
length 

technique 

Post-processing 

Baselines Prototypical Mel +PCEN CNN Proto Proto Dist:Proto No Whole audio 5 Derived from 
shots 

Delete very short 

Template matching Lin n/a n/a New 
templates 

Cross-correl No n/a 5 + aug Template 
length 

– 

Systems submitted 
to the public 

challenge 

Yang et al. (2021) Mel CNN x-ent Retrain (new 
pos + neg) 

Posterior TI x-ent Pseudo-neg Pseudo-pos  Peak picking, 
thresholding 

Tang et al. (2021) Lin + PCEN CNN Proto Proto Dist:Proto 
(Attention- 
weighted) 

No Whole audio 5  Peak picking, median 
filtering 

Du_NERCSLIP Mel +PCEN CNN 
framewise 

x-ent Finetune last 
layer 

Posterior Finetune x- 
ent 

Between-the-5 Pseudo-pos Adaptive 
length fixed 

shift 

CRNN event filter 

Liu_Surrey Mel +PCEN & 
delta-MFCC 

CNN Proto 
(modifed) 

Proto Dist:Proto TI, Retrain Between-the-5 +
Pseudo-neg 
(SpecSim) 

5 Derived from 
shots 

Split-merge-filter; 
delete very long/ 

short 
Wu_SHNU (+Wu 

2023 ICASSP) DFSL 
Mel +PCEN CNN (ResNet) x-ent DFSL 

attentive 
DFSL attentive No Pseudo-neg Pseudo-pos – – 

Moummad_IMT Mel CNN (ResNet) SCL Finetune last 
layer 

Posterior Finetune Between-the-5 5 Adaptive 
length 

– 

Other Wolters 2021 arxiv 
Perceiver 

Mel CNN + CRNN 
+Perceiver 

Proto +RPN 
(R-CRNN) 

Proto Dist:Proto No n/a 5 Region 
proposal 
network 

– 

You et al. (2023) 
(ICASSP 2023) 

Mel AST Proto Proto Dist:Proto Finetune, TI Between-the-5 5 + aug Derived from 
shots 

thresholding, merge/ 
filter small events  
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validation sets alone, the design decisions might not be what works best 
for the evaluation set, specifically in the case where these datasets vary 
substantially. This might explain why the original submitted architec-
ture (first row of Table 4) did not result in the best performance across 
all the variations tested here. In fact, instead of applying PCEN and Delta 
MFCCs as input features, the system modified to use Log Mel spectro-
grams resulted in the top performance on F-score. Similarly, here we see 
that including Negative Contrastive learning does not work well on this 
evaluation set and indeed the performance of the system decreases. 
Experimenting with different number of ways, confirms the expected 
that as the number of ways in the support set increases from 10 to 30, so 
does the performance. Finally, ensembling all the variations of the 
original system leads to an improved F-score. 

3.3. Expert use analysis 

We are interested in understanding how far away the best scoring 
systems are from being incorporated into the annotation practice and 

how helpful or misleading their predictions can be. The expert annota-
tors of QU, CT and MS datasets were given the predictions resulting from 
the 3 top scoring systems of the 2022 edition of this task, (Du_NERCSLIP, 
Liu_Surrey and Martinsson_RISE) and asked to analyse them in terms of 
a) Usability and b) Types of errors. Here are the main topics and high-
lights received. The full feedback can be read in Appendix A.3. 

All consider that at least one of the systems results in useful pre-
dictions that can be used as a starting point for manual editing. 

The best ranking system overall (Du_NERCSLIP) is not always the one 
selected by the experts as the best predictor of events in the different 
datasets and it also changes for different classes within the same dataset. 
However the experts’ selection almost always agree with the F-score 
results by class shown in Figs. 5 and 6. 

As to the type of errors, the experts identified several instances of 
missed detections, misclassifications either on non-target calls or noise 
events, and in general imprecise detection of the duration of calls. 

Another aspect highlighted for both QU and CT datasets were situ-
ations where the capability of the systems to produce correct predictions 
decreased over time, meaning that events happening further away from 
the beginning (where the 5 shots examples happen) were less well 
predicted. 

The reason for some missed detections might be due to the selection 
of the 5 examples from which the systems need to learn the pattern of the 
target class. For both MS and CT datasets the experts commented that 
the range of variation of the target calls was not well captured within the 
5 initial examples. This aspect is also expressed in Fig. 4. 

Finally the potential for using FSL to improve upon human manual 
annotations is illustrated in the feedback received for the CT dataset. 
The system ranked in second place overall, Liu_Surrey, was able to 
predict 20 new Growls that the human annotator had not identified. 

4. Discussion 

In this work we have formulated few-shot bioacoustic event detec-
tion as a machine learning task. We have evaluated many approaches to 
the task, and demonstrated that both the meta-learning and the transfer 
learning methodologies can successfully generalise to novel sub-tasks in 
bioacoustic FSED—thus, transcribing animal sounds with a precision 
unobtainable with other automated methods, in the absence of huge 
training datasets. Our sub-tasks were chosen to be diverse and non- 
trivial: they differed in taxon, target sound characteristics, background 
noise, stereotypy, stationarity, duration, and more. We believe that we 
have shown that the many related recognition tasks in computational 
bioacoustics can be unified within a generalised approach to machine 
learning. 

Leading systems achieve over 30% F-score on all 6 tasks. This is a 
dramatic improvement over classic template-matching, and also over a 
standard modern deep learning approach (both of which often achieved 
F-scores below 10%, in our baseline implementations). This reflects the 
fact that most bioacoustic sound event detection tasks have unique 
characteristics (such as noise, non-stereotypy, distractor sounds, non- 
stationarity) which make them distinct from each other and very hard 
to analyse with a conventional detection system. Although automatic 
detection has been in use for many years, it has often required manual 
tweaking of a system’s parameters for each new situation. Based on this 
study we believe our formulation of FSED is a useful one. It is applicable 
across a wide selection of bioacoustics tasks, and provides a good target 
for machine learning development. It is not trivially solved by prior art 
in few-shot learning, nor by pretrained networks; yet we report very 
strong progress through the public challenges. We also consider that our 
chosen evaluation measure—an event-based F-score—has good external 
validity, since it aligns well with expert evaluations of automatic 
transcripts. 

Our aim to generalise over a range of loosely-related datasets/tasks is 
of current interest in machine learning. There are some comparable 
initiatives in wildlife monitoring. The ‘BEANS’ project collects together 

Fig. 6. Fscore (%) results by class in the evaluation set. Note that QU and MS 
datasets only contain a single class and thus are not represented here. The 
systems are ordered by overall highest scoring rank on the evaluation set. 
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animal sound datasets and aims to provide a general evaluation 
benchmark (Hagiwara et al., 2022). Their work focuses on classification 
rather than temporal detection, and it does not consider few-shot 
learning or meta-learning—however it may be possible to re-use their 
data for such things. Similarly, in image recognition the NeWT bench-
mark provides a suite of tasks for wildlife images, using a classification 
framework to ask a very wide range of ecology questions from a single 
data representation (Van Horn et al., 2021). Key differences between 
these and our work are our few-shot setting, and the explicit inclusion of 
temporal structure in the input and output of our formulation. 

Based on the results presented here, are few-shot bioacoustic SED 
systems good enough to use? Yes, as determined by feedback from our 
panel of experts. Although the outputs from such systems are far from 
perfect, they were judged to be of sufficient quality for active use, in 
place of fully-manual annotation. The quantitative results demonstrate 
that, when presented with a new dataset with no large training corpus, 
few-shot bioacoustic SED outperforms common methods such as 
template-matching. It is worth remembering, however, that our para-
digm is designed for the case of detecting events for which no large 
training dataset is available. If large amounts of labelled data are 
available, or pre-trained networks whose training matches well with the 
intended use, then the more common machine learning method (i.e. 
supervised learning) would be expected to be the most reliable 

approach. 

4.1. Aspects of bioacoustic datasets that affect performance 

Many aspects of bioacoustic datasets make them complex to analyse: 
noise, highly sparse or dense events, varied levels of stereotypy, and 
non-stationarity (drift) in conditions. This is further illustrated when we 
show the variation in performance even across classes of the same 

Fig. 7. Scatter plots illustrating the relationship between several data characteristics and the F-score for each class of the evaluation set. Note the vertical axis 
represents an averaged F-score, which is calculated from all the systems scoring above the baseline. The horizontal axis displays four factors, namely similarity to 5 
shots, stereotypy, event length, event density and signal-to-noise ratio (SNR). 

Table 4 
F-Score results for the different system variations on the evaluation and vali-
dation sets. First row refers to the unchanged submitted system, all the other 
systems are simple modifications to this.  

System Variation F-score-eval F-score-val 

PCEN+DeltaMFCC (original submitted system) 35.019 38.350 
only PCEN 36.001 40.221 
only LogMel 40.355 45.330 
LogMel+DeltaMFCC 37.518 40.033 
w/o. Negative contrastive learning 39.637 46.614 
#ways 10 35.503 38.671 
#ways 20 35.866 43.634 
#ways 30 36.608 42.202 
#ways 40 36.021 42.015 
Ensemble all 50.624 54.485  
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dataset (Fig. 6). We selected datasets which varied across many of these 
characteristics, and we sought to evaluate which of them were key 
factors influencing the difficulty of the task. A quantitative analysis 
(multivariate regression) was unable to identify any factors that 
consistently affected the F-score results across these datasets. However, 
qualitative feedback from expert users indicated that non-stationarity 
exerted an effect: this was shown by a reduction in performance for 
time-regions distant from the annotated examples. 

A separate issue picked up by our annotators was that the support set 
was not always a good representation of the class to be detected, either 
because it did not include examples of every call type or due to the low 
stereotypy characteristics of certain classes. A trivial response is that we 
may include more than 5 examples, or curate the examples so they span 
the desired range of calls. In such cases we would expect stronger per-
formance, at the slight cost of reintroducing some manual intervention. 
Our design decision to use the first few examples in a dataset is reflective 
of initialising a system before deploying it in a new recording situation. 
With offline analysis, and more flexibility in selecting examples, higher 
performance can be achieved. 

Since bioacoustic targets may include multiple call types or non- 
stereotyped sounds, it is worth noting one aspect of prototypical net-
works. The formation of a single fixed prototype, by taking an average in 
a coordinate space, implies that the examples are in some sense all of one 
kind. This assumption is also challenged by non-stationarity, which we 
might think of as a prototype gradually drifting rather than remaining 
fixed. Transductive inference helps to reduce these issues by allowing 
the feature space to be updated at query time, and this was used by 
various strongly-performing systems. There remains much opportunity 
for multiplicity and drift to be included into designs for the concept 
formation of FSED systems. 

4.1.1. Duration of animal sound events 
The annotated durations of animal sound events can range over 

multiple orders of magnitude, from milliseconds to minutes. They result 
from diverse physical processes, from the impulsive (dolphin clicks) to 
the continuous (mosquito flight). In retrospect it is clear that this needs 
to be handled carefully in the design of an SED system, because many 
computational methods have inbuilt assumptions or limitations in the 
durations they can process. When at first we formulated the task, we did 
not foresee that correct handling of event durations would be an 
important factor in evaluation performance, but this was indeed the 
case. The variable scale of event durations is not a limitation in 
itself—the difficulty comes when we try to solve all these different tasks 
with very different characteristics, together in one algorithm. 

Many machine learning systems have pragmatic design constraints 
that limit the range of durations they can consider. Our template- 
matching method uses ranges directly inherited from the 5 annotated 
events, although there remain practical limits on very large templates, 
such as computer memory. In deep learning, long audio files are usually 
divided into shorter chunks (with fixed durations of e.g. 3 or 10 s), so 
that a whole batch can fit inside the limited memory of GPUs. To detect 
long events, detections that span these chunks are joined together in 
post-processing. This as well as other considerations meant that post- 
processing of outputs was an important aspect of all strongly- 
performing systems. 

The (deep) feature extraction procedure itself can place limits on 
event durations. Firstly the resolution of spectrograms, with a typical 
granularity around 10 ms per ‘frame’, often predetermines the finest 
scale that can be resolved. Datasets QU and MGE contained very short 
sounds at around this scale; Du_NERCSLIP(23)’s framewise CNN 
excelled on these datasets. Secondly, CNNs (used by all submitted sys-
tems) have relatively small “receptive fields” and do not consider the 
whole spectrogram but local feature patterns. Many of the strongest 
systems adapted themselves at query-time to the expected event length 
inferred from the 5 examples, in particular Martinsson_RISE who trained 
a set of embedding functions, each designed for a different duration. 

Some notable systems augmented their core CNN with architectures that 
are able to integrate information over long durations and directly infer 
onset and offset locations, such as a CRNN event filter (Du_NERCSLIP), 
perceiver and/or region proposal network (Wolters et al., 2021). We 
envisage that future developments on these lines may be fruitful, 
perhaps using further techniques from object detection. 

4.2. A single method for bioacoustic SED? 

Our baseline prototypical network is itself novel since FSL has been 
applied to sound event classification, but almost never (prior to our 
work) to SED. Through a public data challenge we have seen many 
different variations on this method, leading to strong results. Is it 
possible to recommend a single method to take forward for bioacoustic 
SED; and if so, does it use prototype-based meta-learning? 

We find that prototype-based meta-learning works well when taking 
care about certain aspects of the method (namely the choice of negative 
examples, and duration filtering / postprocessing of events). However, 
many of the strongest performing systems avoided the protoypical net 
method entirely (Du_NERCSLIP(23), Wu_SHNU, Moummad_IMT), 
showing that the paradigm is not a necessary component. Bioacoustic 
FSED can be addressed by either meta-learning or fine-tuning 
approaches. 

Query-time adaptation (transductive inference) was shown in mul-
tiple cases to lead to very strong performance, within both the proto-
typical and fine-tuning paradigms. This comes at a cost of added 
complexity and added query-time computation, since typically a new 
run of statistical optimisation must be performed for a new query task. 
Thus, from the present results we can recommend that a system should 
include query-time adaptation for the best possible detections, but that a 
system without query-time adaptation should be a widespread default. 
Such fixed embeddings can easily be used off-the-shelf, in the same way 
that other pretrained networks are now commonly downloaded and 
used. The DFSL method employed by Wu_SHNU is an alternative 
approach which combines an unchanging feature extraction with a 
query-time adaptive weighting. This combines stability with dynamic 
adaptation, and thus is worthy of further investigation. 

4.3. A single embedding for bioacoustic SED? 

Contrary to query-time adaptation, in machine learning there is 
current interest in learning good feature representations (good embed-
dings) from data. If an embedding can be re-used unmodified, this has an 
appeal of providing a general, reusable, and potentially low-complexity 
analysis tool, a component to be used in many systems. For audio data, 
some of the most widely-used deep embeddings are those derived from 
pretraining with the large-scale AudioSet dataset, originally designed for 
classifying many different (human-centric) acoustic categories (Gem-
meke et al., 2017). More recent work evaluates this and many more 
ways to create an embedding (Turian et al., 2022). 

Our evaluation shows that improved prototypical network methods 
create powerful embeddings, useful even with no test-time adaptation. It 
is impressive that a single vector space could be used to represent our 
diverse bioacoustic tasks. The present work on few-shot learning thus 
offers a different perspective on representation learning for sound in 
general, and animal sound in particular. 

5. Conclusion 

In this study, we have considered how best to automate the task of 
sound event detection in bioacoustics, and highlighted its potential as a 
few-shot learning problem. Unifying a set of loosely-related detection 
tasks makes possible the training of systems that do not need to be 
designed afresh, or trained afresh, for each new bioacoustic dataset. We 
have curated a rich and diverse set of data representative of many sub- 
tasks in this scenario, varying across many of the aspects a 
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bioacoustician might consider (such as SNR or stereotypy). 
We framed few shot bioacoustic event detection as a public chal-

lenge. Over the three editions of the challenge, the evaluation dataset 
has been extended with more bioacoustic sources, pushing participating 
teams to create systems with impressive generalisation capabilities. Our 
analysis indicates the validity of the few-shot formulation of the task. 
Submitted systems followed mainly two paradigms: meta-learning and 
transfer learning. Both methodologies can lead to good performance as 
long as certain aspects of the task are addressed, such as highly variable 
duration of events, high time resolution, and the selection of negative 
examples. Query-time adaptation is required for the best detection re-
sults, though even fixed embeddings can provide strong performance in 
situations where the computational expense of additional training is to 
be avoided. While we believe our initiative to have been successful, 
there is yet more scope to create generalisable bioacoustic detectors. 

Finally, it is possible to start envisioning the implementation of such 
systems for practical use. Our paradigm is not at all limited to just 5 
arbitrary examples per sound event, and can be used in any situation 
where training datasets are not large. Manually curating a small but 
high-quality set of examples falls outside the present study, but can 
easily be expected to boost performance beyond the fully hands-off re-
sults reported here. Our formulation, and the diverse strongly- 
performing systems analysed in our public evaluation, thus move us 
towards a post-template matching era for bioacoustic sound event 
detection. 
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