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ABSTRACT  

To determine the degree of diffuseness of a particular 

acoustic field, an oft-considered metric is the coherence 

between spaced pairs of measurement microphones. This 

is useful because the expected theoretical ‘sinc2’ trend for 

a diffuse field is well known from the literature. An issue 

with application to date, however, is that this has been 

used without recognising in any systematic way that a 

measured coherence estimate is a random sample, with 

its own natural variance and probability distribution. 

Instead, plots are typically shown with all the raw data 

and users are required to estimate the statistics by eye. 

Part of the challenge is that the variance and confidence 

intervals of coherence estimates are not straightforward 

functions, changing from vanishing variance when a pair 

of microphone signals are fully correlated to a wide and 

asymmetric distribution when they are independent (or 

close to). This paper aims to address this knowledge gap 

by exploring the probability density and cumulative 

distribution functions of coherence, which are needed to 

determine confidence intervals, such that sound field 

specifications and comparisons can be made more 

appropriately based on the derived confidence intervals. 

Moreover, it explores a ‘warped’ space in which the 

probability distribution of coherence is close to Gaussian. 

Implications for DFAN best practice are discussed. 

1. INTRODUCTION 

Within the space-launch industry, there is a need for 

acoustic environmental testing. This aims to replicate, in 

a precisely controlled way, the damage and/or fatigue 

that might occur during launch due to the extreme 

acoustic environment [1]. It is used both to qualify new 

payload designs and for pre-flight-testing purposes. 

Traditionally, such tests have been performed in 

Reverberant Acoustic Test Facilities (RATFs), but these 

have disadvantages including high construction and 

operation costs, and that the payload must always be 

brought to the test facility, which can be costly when 

large payloads and/or distances are involved. 

Since the mid-1990s, Direct Field Acoustic Noise 

(DFAN) testing – also known as Direct Field Acoustic 

Testing (DFAT®) – has existed as an alternative. In this, 

large arrays of high-powered loudspeakers are used to 

produce the necessary acoustic environment. Such 

systems are typically cheaper than a RATF and allow the 

test system to be brought to the test article. The scope of 

what sound field DFAN testing systems could render is 

broad, enabled by the powerful control systems they use 

[2,3], but demand from the space launch industry has, to 

date, been for them to replicate the sound field produced 

by RATFs, since this derisks the transfer from one testing 

technology to the other.  

There is, therefore, a demand for evidence that the sound 

field produced by a DFAN testing system is equivalent to 

that produced by a RATF. By design, both produce sound 

fields that are inherently random, so what is required to 

compare them is metrics that capture and quantify the key 

characteristics of these random sound fields. Coherence 

𝛾2 between spaced microphone pairs is an established 

metric for this purpose, one of the first appearances of 

which within the DFAN literature being [4] in 2012. 

RATF are assumed to produce a perfectly ‘diffuse’ field, 

in which there is equal probability of arrival of sound 

energy from any direction. It is well known that under 

this assumption, plus another that energy from these 

directions is uncorrelated, the coherence between signals 

from a spaced pair of omnidirectional microphones 

follows a sinc2 𝑘𝑟 trend [5], where 𝑘 = 2𝜋𝑓 𝑐0⁄  is the 

wavenumber in radians per metre, 𝑟 is microphone 

separation distance in meters, 𝑓 is frequency in Hz, and 

𝑐0 is the speed of sound in meters per second. Figure 1 

shows this trend for three microphone spacings. This has 

been proven experimentally in reverberation rooms [6], 

subject to certain methods of averaging and caveats. 

Hence, there is an appetite to demonstrate that coherence 

measurements from DFAN tests follow the theoretical 

sinc2 𝑘𝑟 trend.  Emphasising this demand, a metric – the 

now so-called “Sinc Indicator Function (SIF)” – has 

recently been proposed [7] that normalises the difference 

between measurements and the theoretical trend, then 

averages over microphone pairings to reduce this to a 

single figure of merit. 

Figure 1: Theoretical value of coherence in a diffuse 

field, plotted for three microphone spacings. 



An interesting consequence of such metrics is that 

practitioners are now also applying them to reverberation 

rooms – as is done as an example herein – and showing 

the limitations in how well they achieve their assumed 

diffuse field conditions. This is a known issue in 

reverberation chambers used for Room Acoustic testing 

[8,9], and a revision of ISO 354 is underway with the aim 

of mitigating some of the consequences of these issues. 

Despite these advances, a weakness of all works the 

authors have witnessed to date is an absence of the 

consideration of confidence intervals and uncertainty on 

both the measured data and the theoretical bound. 

Measured samples of random signals, as are being 

considered here, are always estimates of the signals’ true 

statistics, and this applies to coherence too. Thus, even 

the theoretical trend should have confidence limits to 

show the amount of measurement spread that should be 

expected given the number of observations made and 

averaged. This paper presents methods to achieve this. 

The paper is structured as follows. Section 2 reviews 

common definitions of coherence and methods for its 

measurement. Section 3 presents how its statistics are 

affected by measurement parameters, including newly 

computed confidence limits for the theoretical trend, 

which section 4 then applies to DFAN and RATF data. 

Section 5 explores a transform that warps coherence data 

such that its statistics are close to Gaussian and section 6 

presents results from a Monte Carlo testbed, which is 

used for validation of analytical trends and to explore 

trends relevant to DFAN. Finally, section 7 draws 

conclusions & identifies areas requiring further research. 

2. COHERENCE AND ITS MEASUREMENT 

The ordinary coherence function, as we are considering 

here, is a well-established quantity that is widely used in 

the literature. In descriptive terms, it quantifies the degree 

to which two signals are correlated with one another, with 

a value of 0 indicating that they arise from completely 

independent sources, a value of 1 indicating that they 

arise from the same source via linear, time-invariant 

paths, and values in between indicating some degree of 

dependent / independent mixing and/or nonlinearity. 

Nonetheless, there is scope for confusion as one can 

typically encounter three versions of coherence with 

different numeric values that often go by that same name:  

• Magnitude-Squared Coherence (MSC) is the most 

widely used and reported, defined as: 

𝛾𝑘𝑙
2 (𝑓) =

|𝑔𝑘𝑙(𝑓)|2

𝑔𝑘𝑘(𝑓)𝑔𝑙𝑙(𝑓)
. (1) 

• Magnitude coherence, defined as: 

𝛾𝑘𝑙(𝑓) =
|𝑔𝑘𝑙(𝑓)|

√𝑔𝑘𝑘(𝑓)𝑔𝑙𝑙(𝑓)
. (2) 

• Complex coherence, also called coherency (a term 

coined by Weiner in 1930 [10,11]), defined as: 

𝛾𝑘𝑙(𝑓) =
𝑔𝑘𝑙(𝑓)

√𝑔𝑘𝑘(𝑓)𝑔𝑙𝑙(𝑓)
. (3) 

In the above, the dependency of coherence on frequency 

𝑓 has been acknowledged. The subscripts 𝑘 and 𝑙 relate 

to selections of pairs of signals from a set of signals being 

analysed – typically control and/or monitor mic pairs in 

our application – where the terms 𝑔𝑘𝑙, 𝑔𝑘𝑘, and 𝑔𝑙𝑙  can 

be drawn from a matrix called a Spectral Density Matrix 

(SDM) [12]. These are extensively used in the definition, 

control, and analysis of DFAN sound fields [2,3], and 

have real-valued auto Power-Spectral-Density (PSD) 

terms (𝑔𝑘𝑘, and 𝑔𝑙𝑙) on the diagonal and complex Cross-

Power-Spectral-Density (CSD) terms (𝑔𝑘𝑙) elsewhere. It 

follows from their definitions that (eq. 1  and 2) lead to 

real coherence values in the range [0 … 1], whereas eq. 3 

defines a complex coefficient with magnitude ≤ 1. 

In what follows, the paper will use the definition given 

by eq. 1, i.e., Magnitude-Squared Coherence (MSC), 

exclusively, since this is the variant most widely used in 

Acoustics. To aid readability of the discussion, the term 

‘coherence’ will be used to denote MSC, as is common. 

Fortuitously, MSC is also the variant for which a 

numerically efficient closed-form analytical statement 

exists for the probability distribution and cumulative 

distribution functions of its estimates [11]. This will be 

presented in section 3 and follows work by Fisher [13], 

Goodman [14], and Carter et al. [10,11], motivated by 

applications in SONAR. This work has found application 

in the biomedical sector – for example, processing MRI 

signals – but we believe the use herein to inform acoustic 

diffuse field assessment to be novel. 

Statistical and Probabilistic Theory Associated with 

Coherence Estimates 

It is commonplace to obtain measured estimates for the 

SDM terms – and from these, coherence – from acquired 

signals via averages of FFT blocks according to Welch’s 

Method [11,12]. Signal blocks are typically multiplied by 

window functions pre-FFT to minimise spectral leakage 

and may be overlapped [8,15]. The estimates are: 

�̂�𝑘𝑙(𝑓) =
1

𝑁∆f

∑ �̂�𝑘𝑛
(𝑓)�̂�𝑙𝑛

̅̅ ̅̅ ̅(𝑓)

𝑁

𝑛=1

, (4) 

𝛾𝑘𝑙
2 (𝑓) =

|�̂�𝑘𝑙(𝑓)|2

�̂�𝑘𝑘(𝑓)�̂�𝑙𝑙(𝑓)
. (5) 

Here, �̂�𝑘𝑛
 and �̂�𝑙𝑛

 are the ∆f Hz resolution FFT 

respectively of the nth blocks from the 𝑘th and 𝑙th signals, 

likely arising from microphones in our application. 𝑁 

blocks are averaged (in eq. 4) to arrive at the estimate of 

the SDM entries �̂�𝑘𝑙, and these are divided (in eq. 5) to 

give an estimate of 𝛾𝑘𝑙
2  of the coherence between each 

signal pair 𝑘, 𝑙. These subscripts are mostly dropped from 

these quantities throughout the remainder of the paper, 

along with dependence on frequency (𝑓), to aid clarity. 

 



The estimates in eq. 4 and 5 are ‘hatted’ to distinguish 

them from known spectra in eq. 1  and 2. They can have 

random and/or deterministic estimation errors depending 

on how the parameters of eq. 4 (FFT size, windowing, 

overlapping, and number of averages 𝑁) are chosen. 

Validity of the above estimators assumes that the signals 

are jointly Gaussian and ergodic, which is typically true 

for DFAN signals once control adjustments stabilise. It 

should also be noted that estimation of coherence by eq. 

2 can be biased (always underestimated) when analysing 

a coherent pair of signals that are separately by a delay 

that is significant compared to the FFT length [12]. But 

this should not be an issue in DFAN. Typical FFT 

resolution ∆f for DFAN analysis and control is ~3Hz, in 

which time sound can propagate over 100m, which is 

very large compared to typical microphone spacings. 

Effective Degrees of Freedom (EDOF) 

The theoretical statements presented in the next section 

were derived in their source works under the assumption 

that the data in each set of FFT blocks is independent. 

This is the case when no windowing and no overlapping 

is used, but this is not ideal for practical use. Window 

functions are required to minimise spectral leakage, after 

which overlapping is logical since it makes best use of 

data that is otherwise excluded by the window [15]. 

Hanning or Hamming windows with 50% overlap are 

common. The important parameter then is one that 

measures the amount of independent data that remains. 

It is well known that the FFT of a real Gaussian signal 

has Gaussian-distributed real and imaginary parts at each 

frequency. Equation 4 averages the product of pairs of 

such spectra, giving an estimate of the power spectral 

density �̂�𝑘𝑙 that, in each frequency bin, follows a chi-

squared (Χ2) probability distribution with 2𝑁 degrees of 

freedom (though there are some additional complications 

in cases of low coherence [16]). 

But if FFT blocks are drawn from overlapping signal 

segments, as is often done, then the amount of 

independent data is reduced, and the number of 

‘Effective Degrees of Freedom’ (EDOFs) reduces too. 

The extent of this depends on the degree of overlap and 

the choice of window function, and is parameterised by a 

factor 𝜈, so EDOF = 𝜈 × 𝑁. Using this formulation, we 

have that �̂� = EDOF 2⁄ = 𝜈𝑁, where �̂� is the effective 

number of independent blocks that should be used in the 

theoretical models and confidence limits that follow 

(when coherence is measured according to eq. 4 and 5). 

Depending on the application, EDOF or �̂� can be found 

from 𝑁 using a multiplier 𝜈 from Table 1 [17]. Note that 

with an overlap of 50% and the Hanning window, Table 

1 shows that just over half the data with an overlap of 

50% can achieve nearly the same �̂� as the original 𝑁 with 

no overlap and a similar resulting EDOF. 

3. PROBABILITY DENSITY FUNCTION OF 

COHERENCE ESTIMATES 

The Probability Density Function (PDF) and Cumulative 

Distribution Function (CDF) of coherence estimates 𝛾2 

are more complex than those for PSD and CSD estimates. 

These depend on the ‘true coherence’ 𝛾2, the spacing 

between microphones, and involve long and numerically 

sensitive calculations within their determinations. Since 

these calculations depend on knowing ‘true coherence’, 

which is typically unknown, the calculation of these 

important functions can be somewhat circular, since in 

general cases, a value for ‘true coherence’ would have to 

be also estimated or assumed. 

However, for Acoustic fields we have three simplifying 

conditions that make the task of deriving confidence 

intervals for coherence estimates feasible:  

a) The underlying microphone response data for DFAN 

is typically jointly Gaussian and wide-sense 

stationary at full-level, which makes it possible to 

have exact formulations to calculate the needed PDF 

and CDF functions, going back to Fisher [11,13]. 

b) There are straightforward methods available to 

calculate the number of EDOFs used to estimate the 

PSD and CSD spectra [15,16] needed to determine 

confidence intervals on 𝛾2, given the overlap factor 

and the type of window used [15]. 

c) We have a model for ‘true coherence’ in the form of 

the sinc2 characteristic for an ideal diffuse acoustic 

field [6], which measured coherence estimates 

during a DFAN need to match approximately. This 

removes the inherent circular nature of depending on 

an approximate ‘true coherence’ value. 

Given a-c, we have that the first order PDF for the 

estimate of coherence function 𝛾2 between a pair of 

microphones, given its true value 𝛾2 and the number of 

independent blocks 𝑁 of microphone time-history data 

used to estimate the PSDs �̂�𝑘𝑘 and �̂�𝑙𝑙 and CSD �̂�𝑘𝑙 from 

eq. 4 and 5 is given [11] by:

PDF(𝛾2| 𝑁, 𝛾2) = (𝑁 − 1) [
(1 − 𝛾2)(1 − 𝛾2)

(1 − 𝛾2𝛾2)2
]

𝑁
1 − 𝛾2𝛾2

(1 − 𝛾2)2
𝐹1

2(1 − 𝑁, 1 − 𝑁; 1; 𝛾2𝛾2). (6) 

Window type EDOF multiplier 𝝂 

Rectangular 1.33 

Triangle 1.78 

Hanning 1.90 ≈ 2 

Hamming 1.80 

Table 1: EDOF multiplier when using 50% overlap 

is used to evaluate the FFTs feeding eqs. 1-3. 



Here 𝐹1
2(1 − 𝑁, 1 − 𝑁; 1; 𝛾2𝛾2) is a hypergeometric 

function that can be simplified as follows (eq. 7 to 9): 

𝐹1
2(1 − 𝑁, 1 − 𝑁; 1; 𝛾2𝛾2) = ∑ 𝑇𝑛

𝑁−1

𝑛=0

, (7) 

where we have that: 

𝑇0 = 1, 

𝑇𝑛 = 𝑇𝑛−1 ×
(𝑛 − 𝑁)(𝑛 − 1 + (1 − 𝑁)𝛾2𝛾2)

𝑛2
. 

(8) 

This expresses the hypergeometric function as a 

straightforward polynomial of 𝛾2, and the probability 

density function for the estimated coherence 𝛾2 [11]. 

A special case for the PDF occurs, when 𝛾2 = 0: 

PDF(𝛾2 | 𝑁, 0 ) = (𝑁 − 1) × (1 − 𝛾2)𝑁−2. (9) 

Figure 2 contains a plot that displays the PDF of 

coherence estimates for 𝑁 = 100, true coherences: 0.0, 

0.2, 0.4, 0,6, 0.8, 0.9, 0.95 and 0.99; a linear true 

coherence x-axis; and logarithmic PDF magnitude y-axis 

format, given its wide range of amplitude, where the PDF 

becomes narrower, taller as 𝛾2→1, and ∞ when  𝛾2=1. 

Determining the cumulative distribution function of 

Coherence Estimates: 

Given the previous conditions a-c, we also have that the 

first order Cumulative Distribution Function (CDF) for 

the estimate of coherence 𝛾2 between a pair of 

microphones, given its true value 𝛾2 and the number of 

independent blocks, 𝑁, of microphone time-history data 

used to estimate the PSDs (eq. 4 and 5), is [11]:

CDF(𝛾2 | 𝑁, 𝛾2) = 𝛾2 [
1 − 𝛾2

1 − 𝛾2𝛾2
]

𝑁

[∑ (
1 − 𝛾2

1 − 𝛾2𝛾2
)

𝑛𝑁−2

𝑛=0

𝐹1,𝑛
2 (−𝑛, 1 − 𝑁; 1; 𝛾2𝛾2)]. (10) 

Here (eq. 10), 𝐹1,𝑛
2 (−𝑛, 1 − 𝑁; 1; 𝛾2𝛾2) is the same 

hypergeometric function with different parameters used 

for the CDF calculation for each summand. This differs 

from the previous PDF determination (eq. 6), where it 

was evaluated only once. 

A special case for the cumulative distribution function 

also occurs when 𝛾2 = 0, which is: 

𝐶𝐷𝐹(𝛾2 | 𝑁, 0 ) = 1 − (1 − 𝛾2)𝑁−1.  (11) 

Figure 3 contains a plot that shows the CDF of coherence 

estimates with 𝑁 = 100, true coherences: 0.0, 0.2, 0.4, 

0,6, 0.8, 0.9, 0.95 and 0.99; a linear true coherence x-axis 

and a linear probability y-axis format. Note the 

steepening of the slope as 𝛾2 = 0 increases to 1. 

Note that the CDF also has a finite support like PDF. 

Additionally, both the PDF and CDF are needed to obtain 

the confidence intervals about the true value of 

coherence,  𝛾2, where estimated coherence, 𝛾2, can have 

values within the given probabilities specified for a given 

confidence interval, say within 95, 99, 99.9 or 99.99% 

and even 99.999% confidence, if needed. The 

methodology used is discussed in the following section. 

4. OBTAINING EXACT CONFIDENCE 

INTERVALS FOR DFAN AND RFAT 

MICROPHONE RESPONSE DATA 

The confidence intervals methodology that was obtained 

during the research for this paper provides a scale around 

the ideal sinc2 𝑘𝑟 function, which represents the 

coherence of a pair of microphones in an ideal diffuse 

field [6] at a particular frequency and given separation, to 

quantify how well a particular DFAN test’s acoustic field 

approximates an ideal acoustic field [2,3]. This 

methodology is also similarly applicable to estimated 

coherence spectra from pairs of microphones in a field 

from a particular Reverberant Field Acoustic Test 

(RFAT) or from other such acoustic fields to determine 

the degree to which those fields are nearly diffuse. 

In general, given the CDF we obtained in the previous 

section, a confidence interval with any specified 

Figure 2: PDFs of the MSC estimate 𝛾2 for eight 

values of true MSC 𝛾2, with 𝑁 = 100 ≡ 200 EDOFS 
Figure 3: CDFs of the MSC estimate 𝛾2 for eight 

values of true MSC 𝛾2, with 𝑁 = 100 ≡ 200 EDOFS 



probability, say 1 − 𝛼, where 0 ≤  1 − 𝛼 ≤  1 [20,21], 

can be obtained. This interval needs to be defined by its 

upper and lower bounds, 𝑏𝑢 and 𝑏𝑙, where 0 ≤ b𝑙 ≤
b𝑢 ≤ 1, with the probability 1 − 𝛼 that a given estimated 

coherence, 𝛾2 will occur within the closed interval 
[𝑏𝑙 … 𝑏𝑢], that is: 

P( b𝑙 ≤ 𝛾2 ≤ b𝑢) 

= CDF(𝑏u| 𝑁, 𝛾2) − CDF(𝑏l| 𝑁, 𝛾2) 

= 1 − α, 

(12) 

demonstrating [𝑏𝑙 … 𝑏𝑢] was designed to contain 

estimates 𝛾2, from an average of 𝑁 independent blocks 

with a true coherence of 𝛾2 and a probability of 1 − 𝛼. 

To calculate what until now are the unknown bounds, 𝑏𝑢 

and 𝑏𝑙, of the interval with the specified probability, we 

need to find the roots to two equations, in order to obtain 

a symmetric confidence interval for any given estimated 

coherence, 𝛾2, from the average of 𝑁 independent blocks 

as in (eq. 4 and 5), around a given true coherence, 𝛾2. 

Specifically, we need to find the needed bounds of the so 

specified confidence interval, 𝑏𝑢 and 𝑏𝑙, by finding the 

roots of both of the following non-linear equations: 

CDF(𝑏u| 𝑁, 𝛾2) − (1 −
𝛼

2
) = 0, 

CDF(𝑏l| 𝑁, 𝛾2) −
𝛼

2
= 0. 

(13) 

However, finding the roots of eq. 13, can be problematic, 

as [19] discusses about [18].  Furthermore, for DFAN, 

it’s typical to use 200 EDOF (𝑁 = 100) to estimate 

coherence, for which the slope of the CDF is steep, as 

shown in Figure 3, which can result in instabilities in the 

root finding procedure needed to solve it. 

Because of these instabilities and other issues, a new 

root-finding procedure was devised and implemented, 

that can solve (eq. 13) in a stable and rapid fashion using 

modern optimization methods. This converges quickly to 

confidence interval boundaries with relative errors  

< 10−5, resulting in virtually exact confidence intervals, 

with no additional approximations needed.  

These findings reduce the need to use approximate PDFs 

and CDFs, as motived the work in [20-22] that is the 

origin of the method in section 5. 

Figure 4 shows the resulting exact confidence intervals 

for 95, 99, 99.9, and 99.99% vs. 𝛾2 with 𝑁 = 100. It also 

shows that the intervals have a width approximately 

(though non-linearly) inversely proportional to the value 

of true coherence, 𝛾2, and confidence level, which is 

widest where 𝛾2 → 0, and asymmetrical due to the 

constraint of 𝛾2 ≥ 0, and narrowest as 𝛾2 → 1. 

Figure 4 is primarily intended to show how confidence 

intervals behave as functions of 𝛾2 and values of 

confidence, which is complex as discussed. To see how 

well these confidence bounds work for actual coherence 

estimates with known true coherence values, 8 time-

histories were synthesized with a Jaguar utility that 

creates time histories having a specified 8x8 SDM, where 

the 28 coherence spectra possible between signals were 

all set to linearly increase from 0, at 20 Hz, to 1 at 10 

kHz, as in Figure 4.  The 8 diagonal PSDs were specified 

to be flat from 20 Hz to 10 kHz with a resulting numerical 

RMS of 3.16, and the 28 phase spectra were defined to 

have a constant 0.0 degrees between signals.  With this 

SDM specification, the utility was used to create 8 time-

histories that were jointly Gaussian, Stationary, and 

Ergodic at this constant RMS level for 1 minute, sampled 

at 25.6 Ksamples/second, to simulate the data acquisition 

typically used for MIMO DFAN control.  

These resulting 8 time-histories were then processed into 

an estimated 8x8 SDM using synchronous averaging and 

a 3.125 Hz resolution from 0 to 10 kHz, with its matrix 

Figure 4: 95%, 99%, 99.9%, and 99.99% confidence 

intervals of 𝛾2 around 0 ≤ 𝛾2 ≤ 1, for 𝑁 = 100 

Figure 5: 95%, 99%, 99.9%, and 99.99% confidence 

intervals around estimated SDM coherences ([2,3]) 

Top: two signal pairings. Bottom: the 28 unique 

pairings possible between 8 signals. 

b) 

a) 



elements consisting of 3201-line spectra as described, 

which again, is typical for 10 kHz MIMO DFAN tests.  

This provided a set of 28 estimated coherence spectra, 

each with 3193 coherence estimates displayed. 

To simplify the discussion, the subplots of Figure 5 

compare plots with 2 and 28 coherence estimated spectra 

to demonstrate how their statistical “scatter” compares 

for the previously discussed 95 to 99.99 intervals (with a 

99.999% interval added to Figure 5b). 

Observe that between 20 and 10 kHz the two coherence 

spectra in Figure 5 follow their true coherence specified 

spectrum (yellow) well with a statistical scatter beyond 

the 99.9% confidence intervals, which is consistent with 

2 × 3193 = 6386 coherence estimates being displayed. 

Notice that the statistical scatter demonstrated by Figure 

5b is only slightly larger than we see in Figure 5a, but 

where we now have 28 spectra for a total of 28 × 3193 =
89404 coherence estimates which causes a few of them 

to just exceed the 99.99% confidence intervals (which 

they have a 1/10000 probability of exceeding). Thus, 

both examples verify empirically that the exact 

confidence intervals that have been presented are correct, 

which is no surprise as their validity has long been 

established [10,11]. 

Figure 6 illustrates how the same confidence intervals 

look when plotted vs. 𝑘𝑟 around the sinc2 𝑘𝑟 trend, with 

low spacing to show its main lobe well. It is plotted with 

similar conditions as before, but with the addition of a 

99.999% interval due to the larger number of coherence-

estimates to be displayed later. The reference true value 

of coherence 𝛾2 is set to equal sinc2 𝑘𝑟. This is 

continuously varying over the almost 3200 points being 

displayed from 20 to 10 kHz, where the spacing is used 

to convert frequency in Hz to 𝑘𝑟 in radians.  

Coherence vs. 𝑘𝑟 graphs are useful since they allow 

multiple coherence spectra to be plotted on the same 

display and simultaneously compared to the sinc2 𝑘𝑟 

coherence expected from an ideal diffuse field [6], 

despite them manifesting due to different spacings. This 

topic is discussed in [2] in more detail, comparing the 

results of various DFAN tests and one RFAT result, but 

without the benefit of this newly developed confidence 

interval methodology. The display in Figure 6 – complete 

with confidence limits – is anticipated to be overlaid on 

measured data, thereby providing the user with more 

information than the reference sinc2 𝑘𝑟 curve – as is 

typically currently overlaid – does alone. 

This is done in Figure 7, which realises the main interest 

of this investigation, being to see how well this developed 

methodology can be used to compare acoustic fields from 

DFAN testing (also called DFATTM in USA) and from 

RFAT (Reverberant Field Acoustic Testing). 

Figure 7 compares coherence spectra obtained from a 

pair of equivalent RFAT and DFAN tests. Full details of 

these – including a more detailed comparison – can be 

found in in [2]. In both cases the target spectrum followed 

a ‘haystack’ profile, having roughly constant SPL in the 

85 - 250Hz third octave bands, and gently rolling off 

above and below that [2].  

Figure 7a, using the conventions of Figure 6, displays 

32,200 EDOF 3201-line spectra to demonstrate the use 

of this method to evaluate the results of a past RFAT at 

the Goddard Space Flight Centre’s (GSFC) RATF. This 

consists of a 10m x 8.2m x 12.8m reverberation chamber 

with 1050 m3 volume, 2 horns and a closed loop control 

system. Figure 7b displays the same type of results, but 

from a DFAN test creating a near diffuse acoustic field 

from MSI-DFAT. This uses the same exactly placed 

subset of the 24 control-microphones arranged in a 

circular configuration around the same resonant 4’x8’ 

honeycombed aluminium plate. 

Figure 7a demonstrates that the degree of diffuseness of 

this RFAT is not very good at low frequencies but is 

Figure 7: Confidence intervals around 𝛾2 = 𝑠𝑖𝑛𝑐2 𝑘𝑟 

trend as in fig. 5 but with 32 measured coherence 

spectra [2]. Top (a) RFAT in GSFC RATF.  

Bottom (b): in MSI-DFAT near diffuse field test. 

a) 

b) 

Figure 6: 95%, 99%, 99.9%, and 99.99% confidence 

intervals around 𝛾2 = 𝑠𝑖𝑛𝑐2 𝑘𝑟, for 2 ≤ 𝑘𝑟 ≤ 2000. 



within the confidence intervals mostly by 𝑘𝑟 ≈ 150 

radians, which is at the highest frequencies above 2.5 

kHz [2]. Figure 7b demonstrates that the estimated 

coherence vs. 𝑘𝑟 spectra from the near diffuse DFAN is 

nearly within the confidence intervals, unlike the RFAT, 

below 200 Hz [2]. The RFAT’s microphone SPL ⅓ 

octave spectra are also not as uniform as what is seen with 

that DFAN test [2]. Both issues are probably due to the 

low acoustic modal density at the lower frequencies due 

to the chambers 1050 m3 volume, which appears to 

compromise both diffuseness and uniformity. 

Figure 7b shows that the 32 estimated coherence spectra 

mostly stay within the 99.999% (1 part per 100000) 

intervals below 2 radians. There are over 102K estimated 

coherence values in both plots in this figure, thus having 

a few points outside the 99.999% confidence intervals is 

expected. Above ≈8 radians, the Goddard RFAT result in 

Figure 7a achieves lower coherences than what the 

DFAN test result achieves, but it has higher coherence 

than the DFAN test below 8 radians. 

This example demonstrates the added understanding that 

can be gleaned from overlaying confidence limits on 𝑘𝑟 

plots of measured coherence data. 

5. A TRANSFORM THAT MAKES COHERENCE 

ESTIMATES QUASI-GAUSSIAN 

Despite all that has been said above about the complex 

nature of confidence bounds for coherence, a transform 

has long been known that warps coherence results so that 

their PDF becomes quasi-Gaussian. This originates from 

Fisher [13] in 1928 and was first studied numerically by 

Enochson and Goodman [20] in 1965, with an 

improvement concerning bias correction proposed by 

Benignus [23] in 1969. Nuttall and Carter resumed this 

topic of study from 1976 [21,22], though appear unaware 

of the preceding work (except Fisher). The aim of these 

works was mainly to achieve approximate confidence 

limits for coherence, since computations of the type that 

we have performed in section 4 are beyond the computing 

resources of that time. The new results herein nullify that 

need, but another purpose has been identified, which will 

be described later, hence this section is included. 

The transform is shown in Figure 8a. It can be stated in 

the notation of Nuttal and Carter (1981) as: 

𝐷 = tanh−1 √𝐶. (14) 

Here 𝐶 ≡ 𝛾2 in its standard space 0 ≤ 𝛾2 ≤ 1, as plotted 

up to now, and 𝐷 is 𝛾2 remapped into the new space in 

which it’s PDF is quasi-Gaussian. This occupies the 

limits 0 ≤ 𝐷 ≤ ∞, with 𝐷 → ∞ as 𝐶 = 𝛾2 → 1. 

The result of applying the warping in eq. 14 to the PDFs 

of 𝛾2 in Figure 2 is shown in  Figure 9a. The mean of the 

PDF for each value of true coherence 𝛾2 is computed 

using the statements in [22] and shown with triangle 

markers as a validation of both statements. This is shown 

without (red) and with (green) bias correction. It can be 

seen that the bias correction is negligible and the markers 

match with the peaks of the PDFs very closely. The 

exception is the 𝛾2 = 0 case. Here the red mean with 

without bias correction sits at the peak of the distribution, 

but the fact that the distribution is one-sided means the 

corrected marker (green) is biased to one side.  

It can be observed qualitatively that all the PDFs 

represent bell curves, but the heights are anomalous. The 

reason is that Figure 9a has omitted the Jacobian of the 

warping transform, which is required because the PDF is 

a density. The Jacobian can be shown to be: 

Figure 9: Theoretical PDFs of the warped MSC 

estimate for eight values of true MSC 𝛾2, with 200 

EDOFS, omitting (a) and including (b) Jacobian. 

a) 

b) 

Figure 8: Warping function 𝐷 = 𝑡𝑎𝑛ℎ−1 √𝐶 (top)  

and its Jacobian (bottom) 

a) 

b) 



𝑑𝐶 𝑑𝐷⁄ = 2 tanh(𝐷) sech2 𝐷 = 2√𝐶 sech2 𝐷. (15) 

This Jacobian has not been mentioned in the literature to 

the best of our knowledge. Notably, [21,22] consider 

CDFs, which – not being densities – don’t require it. 

This is applied as a multiplicative scaling in Figure 9b 

and it can be seen equalise the peak levels of the PDFs, 

again except for the asymmetrical 𝛾2 = 0 case. Here the 

Jacobian has attenuated the PDF as 𝛾2 → 0, shifting the 

peak so it aligns with the green bias-corrected marker.  

A more rigorous validation is presented in Figure 11 in 

the Appendix. This shows histograms computed via a 

Monte Carlo method, details of which are given in the 

next section. An excellent match can be observed. 

Again, all PDFs appear visually Gaussian, except again 

for the asymmetrical 𝛾2 = 0 case. This hypothesis was 

tested using a Kolmogorov-Smirnov (KS) test, following 

the precedent in [24]. The p-value indicating the PDF is 

Gaussian, with mean and variance matching the 

statements in [22], comfortably exceeds the 95% 

threshold for all PDFs with 𝛾2 > 0.05. A more 

sophisticated warping function that might improve this 

was presented in [21] but was not investigated here. 

An important feature of Figure 9b is that all the PDFs 

(except 𝛾2 = 0) have the same variance. This agrees with 

the theoretical value 1 2(𝑁 − 1)⁄  given in the literature 

[20-24], which notably has no dependency on 𝐶.  

This feature may prove extremely useful in applications 

that require coherence measurements to be averaged, as 

is required by the proposed ‘Sinc-Indicator Function’ 

(SIF) [7]. It can be seen from figures 2 and 4-7 that the 

spread of measured 𝛾2 varies greatly depending on the 

true coherence 𝛾2 of whatever relationship is being 

measured, thus averaging these estimates may lead to 

unexpected results. But were that data first warped 

according to eq. 14 then the estimates would all have the 

same variance, so could be averaged in a more valid way 

before being transformed back into the standard range. 

6. MONTE CARLO DIFFUSE FIELD TESTBED 

To validate the analytical results shown in the previous 

section and provide a testbed for further study, a Monte 

Carlo method was implemented. To some degree this 

replicates the validation performed in Figure 5, but here 

a slightly different methodology was followed. In section 

4, the 28 unique pairings possible from the 8 signals 

generated formed the ensemble of realisations from 

which the randomness of the estimators could be 

visualised. Here, the purpose was to plot histograms, so 

a far greater number of realisations were required.  

Instead of starting with time-domain signals (as was also 

done in [11]), complex amplitude spectra were generated 

directly in the frequency domain using a variant of the 

method in [25]. Doing this avoids any concerns over 

windowing or overlap and fixes the EDOF firmly at 2𝑁. 

These were then converted to SDMs and 𝑁 realisations 

a) 

b) 

c) 

Figure 10: Histograms versus MSC (a&b un-warped, 

c&d warped) and 𝑘𝑟 from a Monte Carlo Diffuse Field 

Testbed, with 128 EDOFS and 1,000 realisations.  

d) 



were averaged, in a process equivalent to averaging FFT 

blocks (eq. 4), then coherence was calculated from the 

averaged SDM. This entire process was repeated a 

specified number of times to create an ensemble of 

coherence estimator 𝛾2 realisations, from which 

histograms could be generated. The plots in Figure 11 in 

the Appendix used only two signals but used an ensemble 

of 20,000 realisations to achieve smooth histograms. 

Figure 10 shows results achieved by an extension of this 

methodology to model random realisations of a diffuse 

field. In this, many more signals are generated (albeit as 

SDMs), then these are propagated as plane waves and 

summed in an adaption of the modelling method in [26]. 

This produces new SDMs for the signals sensed a set of 

virtual microphones, which are then average over 𝑁 

realisations and 𝛾2 calculated. Again, this is all repeated 

many times creating an ensemble of realisations for 𝛾2. 

The computational cost of this is substantial, being 

dominated by either the number of microphones or wave 

directions (whichever is larger), multiplied by the 

number of blocks and the number of realisations. The 

results in Figure 10 were generated with just 2 virtual 

microphones (more are possible), but 1,000 wave 

directions, 𝑁 = 64 blocks, and 1,000 realisations, which 

was at the limit of the computational capacity of the 

workstation available. 

It is worth noting that a much more efficient version of 

this testbed is also available, which computes the 𝑁 → ∞ 

limit by inserting the asymptotic limits of the estimators 

directly into an SDM. This is far faster, since neither 

block averaging nor ensemble generation is necessary 

(the method is deterministic). But the results are not 

shown here since they are not especially interesting (in 

the 𝑁 → ∞ limit the PDF of 𝛾2 becomes a Dirac delta 

and all plots simply reproduce the sinc2 𝑘𝑟 trend). 

Instead, results with realistic EDOF = 128 are shown, 

allowing the spreading caused by the estimator PDF to be 

seen. Figure 10 used far fewer realisations compared to 

Figure 11 – replicating the latter was prohibitive because 

of computation time, due to the number of plane waves 

required for good accuracy at large 𝑘𝑟 – meaning the 

histograms are ‘noisy’, but the PDFs can still be seen.  

Figure 10 shows the same data four ways: a) shows all 

the individual coherence realisations, plus their mean in 

red and the sinc2 𝑘𝑟 trend in black (these are overlaid on 

a-c). b) shows the same data as a histogram. Here the 

peak value for each 𝑘𝑟 bin (column of the grid) is 

normalised to its peak value. The colours scale is 

logarithmic, and its range covers a factor of 1,000.  

c) shows the same but with the vertical coherence scale 

warped according to eq. 14. Finally, d) shows the same 

data as an area plot for selected 𝑘𝑟 values, allowing the 

Gaussian nature of the PDF to be seen clearly. 

These results are included both because it was felt that 

they illustrate the effect at the core of this paper clearly 

and convincingly (being via a different methodology), 

and as an illustration of what this testbed could be used 

to investigate in future works. For example, it could be 

used to investigate why DFAN coherence is often seen to 

be higher at high frequencies (Figure 7b compared to the 

equivalent RATF test Figure 7a). This could, perhaps, 

lead to improvements in control and/or system design. 

Alternatively, it could allow investigation into why 

spatial averaging of SDMs is required in RATF in order 

to perfectly match the sinc2 𝑘𝑟 trend [6]. 

7. CONCLUSIONS AND DIRECTIONS FOR 

FURTHER DEVELOPMENT 

This paper has given an exposition of the statistical and 

probabilistic properties of the Magnitude Squared 

Ordinary Coherence function, whose widespread use 

belies the complexity of these properties. Expressions for 

its Probability Density and Cumulative Distribution 

Functions have been transferred from SONAR literature, 

validated using novel Monte Carlo approaches, and a 

new root-finding algorithm developed allowing precise 

evaluation of confidence intervals. The usefulness of 

these has been demonstrated by overlaying them on real 

DFAN and RFAT measured coherence data. 

Furthermore, a transform that warps coherence such that 

it follows a quasi-Gaussian distribution with uniform 

variance has been presented. This appears that it could 

find application in methods that need to average 

coherence data, e.g., as the ‘Sinc-Indicator-Function’ 

(SIF) does to achieve a single figure of merit. [7]. 

Further work is to investigate the potential of the warping 

transform further, including whether the more elaborate 

warping function in [21] brings any benefits, and what 

this might offer to metrics such as the SIF. Alternative 

measures may also prove superior, e.g., ones based on 

isotropy [26]. The new Monte Carlo testbed is expected 

to be useful to investigate these research questions, plus 

others on DFAN and RATF performance. 
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APPENDIX 

Figure 11 (overleaf) reproduces the PDFs from figures 

Figure 2 and Figure 9b, along with histogram results 

generated following the methodology described in 

section 6. Note that the Jacobian in eq. 15 and Figure 8b 

need not be applied since the effect it applies to the PDF 

comes out naturally in the skew of the population into the 

histogram bins. These close matches validate both our 

implementation of the analytical results from the 

literature and the Monte Carlo testbed.



Figure 11: Histograms of Monte Carlo realisations, with theoretical PDF in red, for normal (left column) and warped 

(right column) MSC, with (top to bottom) 𝛾2 = 0, 0.2, 0.6, 0.9, 0.95, using EDOF = 256 & 20,000 realisations. 

a) 

b) 

c) 

d) 

e) 

f) 

g) 

h) 

i) 

j) 



REFERENCES 

1. Hargreaves, J. A. (2022), Literature review of 

Direct Field Acoustic Noise (DFAN) testing, 

University of Salford Report. 

https://doi.org/10.17866/h20g-8587. 

2. Underwood, M. A. (2023) “A New Method Using 

Pseudo-Velocity-Based Stress Analyses to Evaluate 

Effectiveness of Acoustic Fields Used for Acoustic 

Testing”, in: Proc. 33rd Aerosp. Test. Semin.  

3. Underwood, M. A. (2022) “New Method 

Determines Optimized Reference SDM for MIMO 

Testing,” Journal of the IEST 65 (1): 21–50. 

4. Maahs, G. (2012). DFAT Development and Flight 

Testing of Radiation Belt Storm Probe (RBSP) 

Satellites, in: Proc. 27th Aerosp. Test. Semin. 

5. Cook, R.K. et al (1955), "Measurement of 

Correlation Coefficients in Reverberant Sound 

Fields", J. Acoust. Soc. Am. 27: 1072–1077. 

6. Jacobsen, F. and Roisin, T. (2000) “The coherence 

of reverberant sound fields,” J. Acoust. Soc. Am. 

108 (1): 214-210. 

7. Carrella, A., and Mayne, W. 3rd (2022) "Insight into 

the Sound Field During a Direct Field Acoustic 

Test", in: Proc. Internoise, Glasgow, UK. 

8. Halliwell, R. E. (1983) “Inter-laboratory variability 

of sound absorption measurement,” J. Acoust. Soc. 

Am. 73(3): 880–886  

9. Nolan, M., et al (2014) “The use of a reference 

absorber for absorption measurements in a 

reverberation chamber,” in: Proc. Forum 

Acusticum, Krakow, Poland. 

10. Scannel, E. H. and Carter, G. C. (1978) 

“Confidence Bounds for Magnitude-Squared 

Coherence Estimates”, IEEE Trans. Acoust. 

Speech. Sig. Proc. 26(5): 475-477. 

11. Carter, G. C. et al (1973) “Estimation of the 

Magnitude-Squared Coherence Function Via 

Overlapped Fast Fourier Transform Processing,” 

IEEE Int. Conf. on Audio and Electroacoustics, 

21(4): 337-344. 

12. Bendat, J. S. and Piersol, A. G. (2010) “Random 

Data: Analysis and Measurement Procedures 4th 

Edition,” John Wiley & Sons Inc. 

13. Fisher, R. A. (1928). "The general sampling 

distribution of the multiple correlation coefficient", 

in: Proc. R. Soc. Lond. A. 121654–673 

14. Goodman, N. R. (1957) "On the Joint Estimation of 

the Spectra, Cospectrum, and Quadrature Spectrum 

of a Two-Dimensional Stationary Gaussian 

Process," Scientific Paper 10, Engineering Statistics 

Laboratory, NYU, New York. 

15. Harris, F. J. (1978) “On the Use of Windows for 

Harmonic Analysis with the Discrete Fourier 

Transform,” Proc. IEEE, 66(1): 51-83. 

16. Jenkins, G. M. and Watts, D. G. (1968) “Spectral 

Analysis and its Applications,” Holden-Day 

17. Gille, S. (2021) “Lecture 11: Degrees of freedom 

for overlapping segments, and other approaches to 

computing spectra,” http://pordlabs.ucsd.edu/sgille/ 

sioc221a/lecture11_notes.pdf. Accessed June 2024. 

18. Wang, S. Y. and Tang, M. X. (2004) “Exact 

Confidence Interval for Magnitude-Squared 

Estimates,” IEEE Sig. Proc. Let: 11(3): 326-329. 

19. Zoubli, A. Z. (2005). “On Confidence Intervals for 

the Coherence Function,” Proc. ICASSP. 

20. Enochson, L. D. & Goodman, N. R. (1965) 

“Gaussian Approximations to the Distribution of 

Sample Coherence,” Tech. Rept. AFFDL-65-57. 

21. Nuttall, A. H. (1980) "Approximations to the 

cumulative distribution function of the magnitude-

squared coherence estimate". NUSC Tech. Rep. 

6327. 

22. Nuttall, A. H., & Carter, G. C., (1981), "An 

approximation to the cumulative distribution 

function of the magnitude-squared coherence 

estimate," IEEE Trans. Acoust. Speech, Sig. Proc. 

29(4): 932-934, 

23. Benignus, V. (1969), "Estimation of the coherence 

spectrum and its confidence interval using the fast 

Fourier transform," IEEE Trans. Audio and 

Electroacoustics 17(2): 145-150, 

24. Bortel, R. & Sovka, P. (2007), "Approximation of 

statistical distribution of magnitude squared 

coherence estimated with segment overlapping". 

Sig. Proc. 87(5):1100-1117. 

25. Smallwood, D. O. & Paez, T. L. (1993), "A 

Frequency Domain Method for the Generation of 

Partially Coherent Normal Stationary Time Domain 

Signals", Shock and Vibration, 1, 537658, 9 pages. 

26. Nolan, M. et al (2018). “A wavenumber approach 

to quantifying the isotropy of the sound field in 

reverberant spaces,” J. Acoust. Soc. Am., 143: 

2514–2526. 

https://doi.org/10.17866/h20g-8587
http://pordlabs.ucsd.edu/sgille/sioc221a/lecture11_notes.pdf
http://pordlabs.ucsd.edu/sgille/sioc221a/lecture11_notes.pdf

