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A B S T R A C T

Drug discovery and development is a time-consuming process that involves identifying, designing, and testing
new drugs to address critical medical needs. In recent years, machine learning (ML) has played a vital role
in technological advancements and has shown promising results in various drug discovery and development
stages. ML can be categorized into supervised, unsupervised, semi-supervised, and reinforcement learning.
Supervised learning is the most used category, helping organizations solve several real-world problems. This
study presents a comprehensive survey of supervised learning algorithms in drug design and development,
focusing on their learning process and succinct mathematical formulations, which are lacking in the literature.
Additionally, the study discusses widely encountered challenges in applying supervised learning for drug
discovery and potential solutions. This study will be beneficial to researchers and practitioners in the
pharmaceutical industry as it provides a simplified yet comprehensive review of the main concepts, algorithms,
challenges, and prospects in supervised learning.
1. Introduction

Drug discovery and development is a time-consuming process that
involves identifying, designing, and testing new drugs to address crit-
ical medical needs (Aly & Alotaibi, 2023; Athreya et al., 2019; Ekins
et al., 2019; Sarkar et al., 2023; Vamathevan et al., 2019). Once a
promising compound is identified, it undergoes rigorous testing in pre-
clinical and clinical trials to assess its safety, efficacy, and potential side
effects (Jantan, Ahmad, & Bukhari, 2015; Koivisto, Belvisi, Gaudet, &
Szallasi, 2022; Zhou et al., 2016). This process can take years, involving
collaboration between scientists, physicians, regulatory agencies, and
pharmaceutical companies. Despite these challenges, successful drug
discovery can lead to groundbreaking treatments that improve patients’
lives and advance medical science.
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In recent years, technological advancements have revolutionized
various aspects of the drug discovery process, streamlining and accel-
erating certain stages (Mak, Wong, & Pichika, 2023; Rubin, Tummala,
Both, Wang, & Delaney, 2006; Selekman et al., 2017). High-throughput
screening techniques allow researchers to rapidly test thousands of
compounds for potential therapeutic effects, significantly speeding up
the initial identification phase. Additionally, computational methods,
such as artificial intelligence are increasingly utilized to predict the
properties and behavior of drug candidates, reducing the reliance on
traditional trial-and-error approaches (Fu et al., 2024; Janakiraman,
Khanna, & Ramkanth, 2023; Marchetti, Moroni, Pandini, & Colombo,
2021; Tayyebi et al., 2023; Wallach, Dzamba, & Heifets, 2015; Zhang
& Liu, 2019).
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Machine learning (ML), a subset of artificial intelligence (AI), gives
systems the ability to learn from data without being explicitly pro-
grammed (Rustam et al., 2020). It has played a significant role in
recent innovations in various fields. For example, ML algorithms have
been utilized to diagnose diseases and predict patient outcomes based
on their medical history and lifestyle factors (Aruleba et al., 2020;
Cheong, Au Yeung, Quon, Concepcion, & Kong, 2021; Mienye, Sun,
& Wang, 2019; Obaido et al., 2024; Obaido, Ogbuokiri, Mienye, &
Kasongo, 2022). In finance, ML has been used to develop models for
fraud detection, credit risk prediction, credit scorecards, and decision
engines (Mienye & Sun, 2023). Furthermore, ML has been used in retail
to build models that predict the product a customer is likely to pur-
chase. ML is revolutionizing many industries by simplifying and solving
complex problems. The integration of ML and AI in drug discovery has
sparked a transformative shift in the pharmaceutical industry, leading
to enhanced efficiency and efficacy in the development of novel thera-
peutics (Abeel, Helleputte, Van de Peer, Dupont, & Saeys, 2010; Dipnall
et al., 2016; Ghosh et al., 2022; Gutiérrez-Gómez, Vohryzek, Chiêm,
Baumann, Conus, Do Cuenod, Hagmann, & Delvenne, 2020; Hajjo,
Sabbah, Bardaweel, & Tropsha, 2021; Rehman, Zhuang, Muhamed Ali,
Ibrahim, & Li, 2019; Salvatore et al., 2015; Xie et al., 2021; Zhang,
Jonassen, & Goksøyr, 2021; Zhang & Liu, 2019). ML algorithms have
been employed across various drug discovery subdomains such as ge-
nomics, proteomics, and transcriptomics, uncovering critical molecular
pathways and biomarkers associated with different diseases. This has
enabled the prioritization and validation of viable drug targets.

Meanwhile, ML algorithms are usually grouped into four main
types, including supervised, unsupervised, semi-supervised, and rein-
forcement learning (Dalal, 2020; Haldorai, Ramu, & Suriya, 2020).
Supervised learning (SL) algorithms are employed for problems in
which the training data contains labeled samples (Fabris, Magalhães,
& Freitas, 2017). In contrast, unsupervised learning involves building
models using unlabeled data, and the algorithm is expected to de-
tect patterns and relationships in the data without any pre-defined
labels. Semi-supervised learning combines supervised and unsupervised
learning, where a few labeled data are used together with a larger
number of unlabeled data (Yang, Song, King, & Xu, 2021). Furthermore,
reinforcement learning (RL) methods enable an intelligent agent to
communicate with the environment and learn via trial and error with
feedback from its actions (Gronauer & Diepold, 2022). The feedback
can be positive or negative, representing a reward or punishment
to maximize the reward function. RL-based models learn from their
mistakes, offering AI systems that closely mimic human intelligence.

SL algorithms have wider applications and are more popular
(Huang, Chen, Lin, Ke, & Tsai, 2017; Sindhu Meena & Suriya, 2020;
Uddin, Khan, Hossain, & Moni, 2019). The most commonly used SL
algorithms include logistic regression (LR), decision trees (DT), support
vector machines (SVMs), random forest (RF) and neural networks (Es-
teva et al., 2017; Obaido et al., 2024; Sindhu Meena & Suriya, 2020;
Uddin et al., 2019). Each of these algorithms has its strengths and
limitations, and the choice of algorithm mainly relies on the specific
problem. This survey provides an overview of the main SL algorithms
and the challenges and prospects for future research. The survey is
important and timely because of the increasing use of ML in various
applications and the need for a comprehensive understanding of its
capabilities and limitations, together with their mathematical formu-
lations. By understanding the strengths and limitations of the different
algorithms, researchers and practitioners can make informed decisions
about which approach to use for a given problem.

Fig. 1 describes the different application phases of supervised ML
to drug discovery and development. Each phase contributes to a more
integrated and targeted approach to drug design and personalized
medicine, ensuring that treatments are not only effective but also
safer and more tailored to individual needs. Furthermore, despite the
widespread use of ML algorithms, researchers and practitioners en-

counter several challenges to drug discovery and development. This

2 
survey addresses some of these challenges, such as overfitting, data
imbalance, bias and fairness, and interpretability of models. In partic-
ular, by highlighting and discussing these challenges, the survey can
guide future research efforts to address these issues and improve the
performance and interpretability of SL models in the drug design field.

The rest of the paper is structured as follows: Section 2 reviews
related works in recent literature, while Section 3 presents an overview
of ML. Section 4 provides a detailed summary of SL algorithms, and
Section 5 provides several performance metrics applied for SL, espe-
cially for classification and regression tasks. Section 6 describes their
application to drug design. Section 7 highlights notable challenges in
SL. Section 8 discusses the study’s findings and suggests future research
directions, while Section 9 concludes the study.

2. Related works

Several researchers have reviewed SL and provided valuable in-
sights. For instance, Singh, Thakur, and Sharma (2016) conducted a
comprehensive review that grouped SL algorithms based on their ability
to categorize data from prior information. This study emphasized the
effectiveness of these algorithms, considering factors such as speed,
accuracy, complexity, and the risk of overfitting. Similarly, Osisanwo
et al. (2017) presented a review of several SL algorithms, including LR,
DT, SVM, and several linear classifiers, and evaluated their performance
on both small and large datasets.

Choudhary and Gianey (2017) provided a comprehensive compar-
ison of various SL algorithms, including regression algorithms (linear
regression, SVM regressor, DT regressor, and LASSO) and classification
algorithms (LR, Naïve Bayes (NB), k-Nearest Neighbors (k-NN), and
DT). Their work emphasized that each algorithm is unique, tailored
to specific applications, and there is no one-size-fits-all ‘‘powerful’’
algorithm; and that the choice of an algorithm should be contingent
on the nature of the task and the available data. Furthermore, Nasteski
(2017) reviewed four SL algorithms, namely DT, Linear regression, NB,
and LR, and noted that this ML method has remained dominant due to
their clearer criteria for model optimization.

Some researchers have thoroughly reviewed supervised ML algo-
rithms, specifically exploring their applications in real-world scenarios.
For example, in ecological contexts, Crisci, Ghattas, and Perera (2012)
reviewed several well-known supervised ML algorithms, including DT,
RF, SVMs, and k-NN. Similarly, Uddin et al. (2019) performed a review
of SL algorithms for detecting disease risk. The algorithms include SVM,
LR, DT, k-NN, RF, NB, and multi-layer perceptron (MLP). The study
recognized the challenge posed by the wide variability in clinical data
and research scopes across disease prediction studies. To address this
challenge, the study established a common benchmark by selectively
choosing studies that implement multiple ML methods on the same
dataset and scope for disease prediction.

Belavagi and Muniyal (2016) evaluated four supervised ML algo-
rithms, namely LR, NB, SVM, and RF, for intrusion detection using a
popular dataset containing normal and intrusion cases. Patel and Patel
(2021) reviewed several SL techniques for predicting agricultural crop
yield. These techniques include k-NN, SVM, RF, and NB for predicting
a suitable crop for a specific piece of land using data containing
seasons and soil parameters. With a focus on supervised ML algorithm
applications in banking, Hu et al. (2021) presented an overview of
DT, ensemble methods (boosting and bagging), and artificial neural
network (ANN), highlighting the importance of these algorithms in
the banking sector and demonstrating their utility in a variety of
applications, including risk assessment and customer segmentation.

While numerous reviews have extensively covered various domains,
the majority exhibit a narrow focus, particularly as seen in refer-
ences (Nasteski, 2017; Osisanwo et al., 2017; Singh et al., 2016; Uddin
et al., 2019). Notably, these reviews have not sufficiently addressed
the range of supervised deep-learning algorithms across essential appli-

cation areas. Our contribution in this context is significant—following
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Fig. 1. Supervised ML-based areas in drug discovery and development.
the emergence of numerous supervised deep learning algorithms, there
has been a noticeable lack of comprehensive reviews. Consequently,
our review is timely and serves to fill this research gap, providing a
more inclusive examination of SL, including supervised deep learning
algorithms.

3. Overview of machine learning

ML allows computers to learn by experience and make predictions
without being explicitly programmed. It involves using algorithms that
can recognize patterns and predict from a given data (Sarker, 2021).
There are different ML types based on the training data (as shown in
Fig. 2), and they are discussed as follows:

• Supervised learning: This involves using labeled data in train-
ing the model (Aruleba et al., 2022). The trained model can
then be applied to classify or predict unseen instances. SL can
be further split into classification and regression. Classification
uses algorithms to predict a categorical label, such as whether a
patient is sick or healthy (Agbele, Oriogun, Seluwa, & Aruleba,
2015; Aruleba et al., 2022). The algorithm receives a set of
labeled data and learns to classify new data into one of the
predefined categories. For example, given a dataset containing
patients’ records, a classifier can learn to differentiate between
the sick and healthy classes and accurately classify them into
either class. Meanwhile, regression involves using the algorithm
to learn to predict a continuous numerical value, such as a house
price. The model learns from a dataset of labeled samples and
generates a function that can predict the numerical value of
unseen instances (Baştanlar & Özuysal, 2014).

• Unsupervised learning: In this ML type, the algorithm learns and
finds patterns in data without prior knowledge of the outcomes.
It is used when the data is not labeled (James, Witten, Hastie,
Tibshirani, & Taylor, 2023). It can be further divided into two
groups: clustering and association. Clustering involves grouping
similar data points, while association involves finding relation-
ships between features in the data. Both techniques help identify
patterns and gain insights from unstructured data.
3 
• Semi-supervised learning: This ML type incorporates unsuper-
vised and supervised learning methods. It is used when there is in-
sufficient labeled data, and the cost of labeling more data is high.
It involves using a small set of labeled data to guide the model
in learning the hidden patterns in the data, which is then used in
making predictions on unlabeled data. Therefore, the algorithm
can learn from both labeled and unlabeled data and gradually
enhance its performance. Some widely used approaches include
co-training, self-training, and multi-view learning (Kumar, Kaur,
& Singh, 2020).

• Reinforcement learning: Reinforcement learning (RL) involves
training a model using an approach of rewards and punishments,
where the algorithm learns to take actions that maximize the
reward over time. The aim of RL is for the agent to learn a strategy
that maximizes its long-term reward (Sarker, 2021). It has been
applied in several fields, including gaming, robotics, and self-
driving cars. Several popular reinforcement learning algorithms
have been developed, such as Q-learning, a model-free algorithm
that uses a table to store the values of the state–action pairs (see
Fig. 2).

4. Supervised learning algorithms

There are different SL algorithms and numerous groupings avail-
able in the literature. In this study, the algorithms are categorized
into probabilistic, linear, nonlinear, DT, boosting, and deep learning
techniques.

4.1. Probabilistic models

4.1.1. Naïve Bayes
NB is a probabilistic algorithm that calculates the likelihood that a

given input will belong to a specific class based on prior probabilities
and probabilities (Arar & Ayan, 2017). This algorithm assumes that all
the features are independent of each other. Gaussian, Bernoulli, and
Multinomial NB are three types of Naive Bayes classifiers (Xu, 2018).
The Gaussian NB assumes that the input features follow a Gaussian
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Fig. 2. Types of ML based on training data (El Naqa & Murphy, 2022).
distribution. The Bernoulli NB classifier is used when the input features
are binary, such as the existence or absence of a specific attribute,
and the Multinomial NB classifier is used when the input features are
discrete counts (Singh, Kumar, Gaur, & Tyagi, 2019).

NB is mostly useful when there is a high number of input features
and the dataset is sparse. The learning process involves training the
classifier with a labeled dataset, where the classifier learns the prior
probabilities and conditional probabilities from the training data (Kelly
& Johnson, 2021). Meanwhile, Bayes theorem can be represented as:

𝑃 (𝑌 ∣ 𝑥1, 𝑥2,… , 𝑥𝑛) =
𝑃 (𝑌 )𝑃 (𝑥1, 𝑥2,… , 𝑥𝑛 ∣ 𝑌 )

𝑃 (𝑥1, 𝑥2,… , 𝑥𝑛)
(1)

where 𝑌 represents the class variable, 𝑥1, 𝑥2,… , 𝑥𝑛 are the independent
variables, 𝑃 (𝑌 ), 𝑃 (𝑥𝑖 ∣ 𝑌 ), 𝑃 (𝑥1, 𝑥2,… , 𝑥𝑛 ∣ 𝑌 ), and 𝑃 (𝑥1, 𝑥2,… , 𝑥𝑛)
represents the prior probability of class 𝑌 , the conditional probability of
feature 𝑥𝑖, the joint probability of all the features, and the probability of
all the features occurring together, respectively. The following formula
is employed for predicting the class:

̂ = argmax
𝑌𝑘

𝑃 (𝑌𝑘)
𝑛
∏

𝑖=1
𝑃 (𝑥𝑖 ∣ 𝑌𝑘) (2)

Algorithm 1 summarizes the NB algorithm’s learning process, sum-
marizing how the algorithm employs a probabilistic approach to clas-
sify a given instance. It starts by calculating the prior probabilities
of each class and the conditional probabilities of each feature given
a class. For each instance, the algorithm calculates the product of
these probabilities for every class, selecting the class with the highest
resulting probability as the prediction.

4.1.2. Bayesian network
The Bayesian network, also called the Bayes network, is a proba-

bilistic graphical classifier that is utilized for probabilistic reasoning
and decision-making (Seixas, Zadrozny, Laks, Conci, & Saade, 2014).
The Bayesian network represents a collection of random variables and
their conditional dependencies using the directed acyclic graph (DAG).
Bayesian networks are especially robust when modeling complex sys-
tems with numerous variables and intricate interactions between them.
The ability of Bayesian networks to provide accurate predictions when
4 
Algorithm 1 Naïve Bayes Algorithm
1: procedure NaiveBayesClassifier(𝑋, 𝑌 )
2: Input: 𝑋, 𝑌
3: Output: Predicted class labels for a given sample
4: Compute prior probabilities 𝑃 (𝑌𝑘) for each class 𝑌𝑘
5: for each feature 𝑥𝑖 in 𝑋 do
6: Compute conditional probabilities 𝑃 (𝑥𝑖|𝑌𝑘)
7: end for
8: for each input sample 𝑥 = {𝑥1, 𝑥2, ..., 𝑥𝑛} in 𝑋 do
9: Initialize 𝑚𝑎𝑥𝑃 𝑟𝑜𝑏 ← 0

10: Initialize 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝐶𝑙𝑎𝑠𝑠 ← 𝑛𝑢𝑙𝑙
11: for each class 𝑌𝑘 do
12: 𝑝𝑟𝑜𝑏 ← 𝑃 (𝑌𝑘)
13: for each feature 𝑥𝑖 in 𝑥 do
14: 𝑝𝑟𝑜𝑏 ← 𝑝𝑟𝑜𝑏 × 𝑃 (𝑥𝑖|𝑌𝑘)
15: end for
16: if 𝑝𝑟𝑜𝑏 > 𝑚𝑎𝑥𝑃 𝑟𝑜𝑏 then
17: 𝑚𝑎𝑥𝑃 𝑟𝑜𝑏 ← 𝑝𝑟𝑜𝑏
18: 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝐶𝑙𝑎𝑠𝑠 ← 𝑌𝑘
19: end if
20: end for
21: Output 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝐶𝑙𝑎𝑠𝑠 for 𝑥
22: end for
23: end procedure

given incomplete data is one of its main advantages. Additionally,
Bayes networks are simple to update when new data becomes available,
which enables them to adjust to evolving conditions.

Bayes networks are valuable classifiers in diverse fields since they
can handle incomplete data and still make useful predictions (Kyrimi
et al., 2021; Seixas et al., 2014). To perform probabilistic inference in
a Bayesian network, we can use Bayes’ rule, which in this case can be
written as follows:

𝑃 (𝑋𝑖 ∣ evidence) =
𝑃 (evidence ∣ 𝑋𝑖)𝑃 (𝑋𝑖)

∑ . (3)

𝑋𝑖

𝑃 (evidence ∣ 𝑋𝑖)𝑃 (𝑋𝑖 ∣ parents(𝑋𝑖))
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where 𝑃 (evidence ∣ 𝑋𝑖) is the likelihood of the evidence given 𝑋𝑖, 𝑃 (𝑋𝑖)
s the prior probability of 𝑋𝑖, and the denominator is the normalization
onstant.

.2. Linear classifiers

Linear classifiers are a type of SL algorithm that creates a lin-
ar boundary between classes to classify the input data. The most
ommon type of linear classifier is the perceptron algorithm. Other
xamples include logistic regression and SVM. This category of SL
lgorithms is known for their simplicity and efficiency and is often used
n applications where interpretability and speed are important factors.

.2.1. Logistic regression
LR is a statistical method used for predicting binary outcomes (Har-

is, 2021). It is a type of regression analysis where the outcome variable
s categorical and takes only two values: 0 or 1. Given a set of input
ariables, it is used to model the probability that a particular event
ccurs (Austin & van Buuren, 2023; van Smeden, Moons, de Groot,
ollins, Altman, Eijkemans, & Reitsma, 2019). Algorithm 2 describes
nd summarizes the learning process of LR, including parameter initial-
zation and iterative optimization of the cost function, which is based
n the logistic (i.e. sigmoid) function.

Algorithm 2 Logistic Regression
procedure LogisticRegressionTraining(𝑋, 𝑌 , 𝛼, iterations)

2: Input:
𝑋 - feature set (input variables)

4: 𝑌 - target class labels (output variable)
𝛼 - learning rate

6: iterations - number of training iterations
Output: Model parameters 𝛩

8: Initialize model parameters 𝛩 with zeros
for 𝑖 ← 1 to iterations do

0: Compute the hypothesis ℎ𝛩(𝑥) =
1

1+𝑒−𝛩𝑇 𝑋

Compute the cost 𝐽 (𝛩) = − 1
𝑚
∑𝑚

𝑖=1[𝑦
(𝑖) log(ℎ𝛩(𝑥(𝑖))) + (1 −

𝑦(𝑖)) log(1 − ℎ𝛩(𝑥(𝑖)))]
12: Compute the gradient ∇𝐽 (𝛩) = 1

𝑚𝑋
𝑇 (ℎ𝛩(𝑋) − 𝑌 )

Update parameters 𝛩 ← 𝛩 − 𝛼∇𝐽 (𝛩)
14: end for

return 𝛩
16: end procedure

The algorithm employs the gradient descent optimization technique
o minimize the cost function of the model. As shown in Algorithm
, the model parameters are adjusted iteratively based on the differ-
nce between the predicted outcome and the actual class labels. Fur-
hermore, it involves determining the cost function’s gradient, which
uantifies the prediction error over the input data, and updating the
arameters in the direction that reduces this error. The learning rate
controls the size of the parameter updates, and the procedure is

epeated for a predefined number of iterations.

.2.2. Linear discriminant analysis
Linear Discriminant Analysis (LDA) is commonly used for dimen-

ionality reduction and classification tasks, especially when the classes
re well-separated, and the assumptions of LDA are met. The goal of
DA is to project the data onto a lower-dimensional subspace while pre-
erving the class-discriminatory information as much as possible (Chen
t al., 2019; Seng & Ang, 2017). If 𝑋 is the 𝑁 ×𝐷 matrix representing

samples with 𝐷 features, and 𝑦 be the corresponding class labels.
The class means 𝜇𝑘 and within-class scatter matrices 𝑆𝑤 are calculated
as follows:

𝑚𝑢𝑘 = 1
𝑁
∑

𝑥𝑖, 𝑆𝑤 =
𝐾
∑

𝑁𝑘
∑

(𝑥𝑖 − 𝜇𝑘)(𝑥𝑖 − 𝜇𝑘)𝑇 (4)

𝑁𝑘 𝑖=1 𝑘=1 𝑖=1

d

5 
where 𝑁𝑘 is the number of samples in class 𝑘. The between-class scatter
matrix 𝑆𝑏 is given by:

𝑆𝑏 =
𝐾
∑

𝑘=1
𝑁𝑘(𝜇𝑘 − 𝜇)(𝜇𝑘 − 𝜇)𝑇 (5)

where 𝜇 is the overall mean of all classes. Furthermore, the LDA aims to
find the projection matrix 𝑊 that maximizes the ratio of between-class
scatter to within-class scatter, given by:

𝑚𝑎𝑥𝑊
tr(𝑊 𝑇𝑆𝑏𝑊 )
tr(𝑊 𝑇𝑆𝑤𝑊 )

(6)

where tr(⋅) denotes the trace of a matrix. The optimal projection matrix
𝑊 is the one corresponding to the largest eigenvalues of 𝑆−1

𝑤 𝑆𝑏. LDA
assumes that the classes have a Gaussian distribution with the same
covariance matrix and that the classes are linearly separable (Thomaz,
Kitani, & Gillies, 2006). When these assumptions hold, LDA provides a
simple and effective classification method.

4.3. Nonlinear classifiers

4.3.1. Support vector machines
SVMs can be used for linear and non-linear classification tasks, mak-

ing them highly adaptable to various real-world applications (Gholami
& Fakhari, 2017). The algorithm uses the concept of a hyperplane,
which is a decision boundary that separates data points into different
classes. The goal of SVMs is to find the hyperplane that maximizes the
margin. This margin maximization approach allows SVMs to achieve
good generalization performance and handle data that may not be
linearly separable (Suthaharan & Suthaharan, 2016). The optimization
task can be formulated as:

min
𝑤,𝑏

1
2
‖𝑤‖

2 s.t. 𝑦𝑖(𝑤𝑁𝑥𝑖 + 𝑏) ≥ 1 ∀𝑖 = 1,… , 𝑛 (7)

where 𝑤 represents the weight vector, 𝑏 is the bias term, and ‖𝑤‖ is
the Euclidean norm of 𝑤. Meanwhile, 𝑤 and 𝑏 can be computed using:

𝑤 =
𝑛
∑

𝑖=1
𝛼𝑖𝑦𝑖𝑥𝑖 and 𝑏 = 𝑦𝑘 −

𝑛
∑

𝑖=1
𝛼𝑖𝑦𝑖𝑥

𝑇
𝑖 𝑥𝑘 (8)

where 𝑘 is any support vector with 𝛼𝑘 > 0.

4.3.2. K-Nearest Neighbors
k-NN is a simple and intuitive non-parametric classification algo-

rithm. The main idea behind k-NN is to classify a new data point
based on the majority class of its nearest neighbors in the feature
space (Anava & Levy, 2016). The distance metric plays a crucial role in
determining the neighbors. While the Euclidean distance is commonly
used, k-NN can also utilize non-Euclidean distance metrics to capture
the underlying structure of the data better.

Assuming 𝑥𝑖 represents a data point in the feature space, and 𝑥𝑗 de-
notes its nearest neighbor. The non-Euclidean distance 𝑑(𝑥𝑖, 𝑥𝑗 ) between
𝑥𝑖 and 𝑥𝑗 can be calculated using various metrics such as Manhattan
distance, Minkowski distance, or Mahalanobis distance, depending on
the characteristics of the data. For example, the Manhattan distance
between two data points 𝑥𝑖 and 𝑥𝑗 in 𝑛-dimensional space is defined
as:

𝑑(𝑥𝑖, 𝑥𝑗 ) =
𝑛
∑

𝑘=1
|𝑥𝑖𝑘 − 𝑥𝑗𝑘| (9)

here 𝑥𝑖𝑘 and 𝑥𝑗𝑘 are the 𝑘-th features of 𝑥𝑖 and 𝑥𝑗 , respectively.
his distance metric is particularly useful when dealing with high-
imensional data.
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4.4. Decision trees

DT is a well-known ML algorithm that creates a tree-like structure
of decisions and their possible outcomes. At every node of the tree, a
decision is reached based on specific criteria determined by analyzing
the data. The tree comprises nodes, branches, and leaves that represent
decisions, possible outcomes of those decisions, and the final outcome
of the decision process (Gavankar & Sawarkar, 2017). DT are known for
their interpretability; the tree-like structure allows researchers to easily
understand and visualize the decision-making process, which is critical
when validating models for regulatory approval (Mienye & Jere, 2024).
DT are also versatile and can handle both numerical and categorical
data, making them suitable for tasks such as predicting drug-target
interactions, classifying compounds based on their biological activity,
and identifying key molecular features that contribute to drug efficacy.
Meanwhile, there are different types of DTs, including:

4.4.1. Classification and regression trees
The classification and regression tree (CART) algorithm is used for

classification and regression. The algorithm selects the input variable
that provides the best split. The best split is defined as the one that
maximizes the difference between the parent node’s impurity and
the weighted impurity of the child nodes. The impurity of a node
is a measure of how mixed the class or target variable values are
within that node. The impurity measure used for classification tasks
is typically Gini impurity (Breiman, 2017). Algorithm 3 describes the
CART Algorithm. At each node, CART selects the split that produces
the purest child nodes, continuing this process until it meets stopping
criteria, such as a maximum tree depth or a minimum node size. The
algorithm then prunes the tree to mitigate overfitting, enhancing its
generalization capabilities.

Algorithm 3 CART Algorithm
1: Input: 𝑋, 𝑌 , maximum depth of the tree (max_depth), minimum

size of a node (min_size)
2: Output: CART-based DT model
3: Procedure
4: Initialize tree
5: Split the root node based on the best-split point
6: Recursively split child nodes
7: Stop if maximum depth or minimum node size is reached
8: Prune the tree
9: return DT model

10: End Procedure

4.4.2. Iterative Dichotomiser 3
The Iterative Dichotomiser 3 (ID3) algorithm is described in Algo-

rithm 4. It selects features to split the data based on the Information
Gain (IG) criterion, with the goal of maximizing the reduction in
entropy (Mienye et al., 2019).

Algorithm 4 begins with the entire dataset and evaluates the ability
of each attribute to classify the data effectively, selecting the attribute
that results in the highest IG for each split. The process continues
recursively until all data is perfectly classified.

4.4.3. C4.5
The C4.5 DT (Algorithm 5) is an extension and improvement of

the ID3 algorithm. Some of the improvements include its ability to
hand both continuous and categorical data in classification tasks. C4.5
employs the information gain ratio to select the most informative
feature at each node and also incorporates mechanisms to handle miss-
ing values, tree pruning to avoid overfitting (Mienye et al., 2019). It
handles continuous attributes by dynamically defining threshold values
for splits. The C4.5 iteratively partitions the given data until each subset
is pure or predefined stopping criteria are met, leading to DT models
that can effectively classify new instances.
6 
Algorithm 4 ID3 Algorithm
1: Input: 𝑋, 𝑌
2: Output: ID3-based DT model
3: Procedure
4: if All samples are in the same class then
5: return leaf node with class label
6: end if
7: if No features left to split then
8: return leaf node with the most common class label
9: end if
0: Select feature with highest IG as node
1: Split dataset based on feature values
2: Recursively apply ID3 to each subset
3: return DT model
4: End Procedure

Algorithm 5 C4.5 Algorithm
1: Input: 𝑋, 𝑌 , stopping criteria (thresholds)
2: Output: DT model
3: Procedure
4: if All examples are in the same class or other stopping criteria met
then

5: return leaf node with class label
6: end if
7: Select feature with highest information gain ratio
8: Split dataset based on feature values or threshold for continuous

data
9: Handle missing values
0: Recursively apply the splitting and selection steps (steps 5-9) to

each subset
1: Apply pruning to reduce tree size and complexity
2: return C4.5 model
3: End Procedure

4.4.4. Random forest
RF is an ensemble algorithm that combines multiple DT models to

create a more powerful model. This algorithm is known for its ability
to model complex data and provide reliable predictions. The algorithm
works by creating many DT and aggregating their predictions (Obaido
et al., 2024; Zou & Schonlau, 2018). The different DT are trained
using a random subset of the input data and a random subset of the
given features. This random approach ensures overfitting is reduced
and improves the final model’s generalization performance (Mienye &
Sun, 2022). The algorithm takes the average prediction of the base
models to predict new unseen instances. The RF algorithm can deal
with categorical and continuous variables, and unlike single DT models,
it is less prone to overfitting. Given an instance 𝑥 with 𝐹 classes, the
final ensemble prediction from 𝑁 trees can be calculated as follows:

𝐻(𝑁(𝑥)) = argmax
𝑗

𝐾
∑

𝑘=1
𝟏(ℎ𝑘(𝑥) = 𝑗), for 𝑗 = 1,… , 𝐶 (10)

4.5. Boosting

Boosting is an ensemble technique that iteratively improves the per-
formance of individual models by giving more weight to misclassified
instances in subsequent iterations, ensuring the models learn from their
mistakes and make better predictions.

4.5.1. XGBoost
The XGBoost is an implementation of gradient boosting that has

been optimized for speed and performance (He, Hao, & Wang, 2021).

The XGBoost algorithm iteratively builds multiple base models, where
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new models attempt to correct the errors of the preceding models. The
final prediction is then computed through the summation of all the base
model’s predictions (Cheong et al., 2021; Dhaliwal, Nahid, & Abbas,
2018). The XGBoost’s objective function is represented as:

(𝜃) =
𝑛
∑

𝑖=1
𝑙(𝑦𝑖, �̂�𝑖) +

𝐾
∑

𝑘=1
𝛺(𝑓𝑘) (11)

where 𝜃 denotes the model parameters, 𝑛 is the number of instances, 𝑦𝑖
nd �̂�𝑖 represents the actual label and predicted label of the 𝑖th instance,

𝑙(𝑦𝑖, �̂�𝑖) is the loss function, 𝐾 is the number of trees, and 𝛺(𝑓𝑘) is
the regularization term (Li & Chen, 2020). At every iteration, XGBoost
fits a new model to correct the errors of the previous model, which
is achieved by minimizing the objective function using the gradient
descent algorithm.

4.5.2. AdaBoost
The adaptive boosting (AdaBoost), similar to other boosting algo-

rithms, combines multiple weak classifiers to form a strong classi-
fier (Cui, Chen, Wang, Li, & Ling, 2021; Mienye, Obaido, Aruleba, &
Dada, 2021). It focuses on the misclassified data points and iteratively
trains the model to improve its performance. The algorithm starts by
assigning equal weights to every training example. Let 𝐷1 be the weight
vector for the first round of training, where 𝐷1,𝑖 =

1
𝑛 , at every iteration,

weak classifier ℎ𝑗 (𝑥) is trained using the weighted training data. The
eak classifier is trained to minimize the weighted error rate 𝐸𝑗 :

𝑗 =
𝑛
∑

𝑖=1
𝐷𝑗,𝑖𝐼(𝑦𝑖 ≠ ℎ𝑗 (𝑥𝑖)) (12)

here 𝑦𝑖 and 𝑥𝑖 are the true label and feature vector of the instance 𝑖,
nd 𝐼 is the indicator function. The weight 𝛼𝑗 of the weak classifier is
hen computed as

𝑗 =
1
2
ln

1 − 𝐸𝑗

𝐸𝑗
(13)

The weights of the training samples are updated based on the
erformance of the weak classifier (Zheng, Xiao, Sun, & Qin, 2022).
he weight of data point 𝑖 in the (𝑗 +1)𝑡ℎ round, 𝐷𝑗+1,𝑖, is computed as

𝐷𝑗+1,𝑖 =
𝐷𝑗,𝑖 exp(−𝛼𝑗𝑦𝑖ℎ𝑗 (𝑥𝑖))

𝑍𝑗
(14)

here 𝑍𝑗 is the normalization factor and 𝑍𝑗 =
∑𝑛

𝑖=1 𝐷𝑗,𝑖 exp(−𝛼𝑗𝑦𝑖
𝑗 (𝑥𝑖)). The purpose of the weight update is to give more weight
o the misclassified instances (Sevinç, 2022). Assuming we have 𝑁
otal number of weak classifiers, the final classification model is the
eighted combination of the base models:

(𝑥) = 𝑠𝑖𝑔𝑛

( 𝑁
∑

𝑗=1
𝛼𝑗ℎ𝑗 (𝑥)

)

(15)

AdaBoost has significant advantages in drug discovery by combining
ultiple weak classifiers to form a strong classifier, which improves

he predictive performance. Furthermore, AdaBoost excels in scenarios
here the primary challenge is class imbalance, a common issue in
rug discovery datasets where the number of active compounds is
ften much smaller than inactive ones. By focusing on misclassified
nstances, AdaBoost enhances the model’s ability to detect minority
lass instances, such as rare but potentially highly effective compounds.
his characteristic makes AdaBoost particularly valuable in early-stage
rug discovery, where identifying novel active compounds is crucial.

.5.3. CatBoost
Categorical boosting (CatBoost) is a popular ensemble learning

ethod developed by Prokhorenkova, Gusev, Vorobev, Dorogush, and
ulin (2018) to combine multiple weak learners to obtain a strong
nsemble classifier. CatBoost is known for handling categorical features
7 
ithout needing one-hot encoding. It is also able to handle missing
ata and has built-in text data support, making it suitable for natural
anguage processing. It employs a symmetric tree structure for its DTs,
hich helps to reduce overfitting. Furthermore, CatBoost can handle

mbalanced data using a specialized objective function that considers
he class distribution in the data. The objective function is defined as
ollows:

=
𝑛
∑

𝑖=1
𝐿(𝑦𝑖, 𝑦𝑖) +

𝑁
∑

𝑖=1
𝛺(𝑓𝑖) (16)

𝐿(𝑦𝑖, 𝑦𝑖) is the loss function, 𝑓𝑖 is the 𝑖th tree, and 𝛺(𝑓𝑖) denotes the
egularization term that penalizes complex trees. This algorithm uses
he logarithmic loss function, and its regularization term is the L2
egularization, which is represented as follows:

(𝑦𝑖, 𝑦𝑖) = −(𝑦𝑖 log(𝑦𝑖) + (1 − 𝑦𝑖) log(1 − 𝑦𝑖)) (17)

(𝑓𝑖) =
1
2
𝜆‖𝑤‖

2 (18)

where 𝑤 represents the vector of weights and 𝜆 is the regularization pa-
rameter. The CatBoost algorithm uses the gradient boosting technique
to optimize its cost function. The CatBoost algorithm also uses a method
known as ordered boosting to deal with categorical variables. Ordered
boosting is a variant of gradient boosting that orders categorical fea-
tures based on their contribution to the objective function. The ordered
features are then used to split the data, resulting in better performance
and faster convergence.

4.5.4. LightGBM
The Light Gradient Boosting Machine (LightGBM), developed by

Microsoft in 2017, is popular for its efficiency and speed, especially
when working with large datasets (Ke et al., 2017). LightGBM is
suitable for different machine-learning tasks, including regression and
classification. Like other boosting algorithms, the LightGBM training
process involves iteratively adding DTs to an ensemble, where the
trees aim to correct the classification errors from the preceding trees.
The process starts with a single DT, which is trained on the entire
dataset. The subsequent trees are then trained on the misclassification
of these preceding trees, thereby enhancing the overall model’s classifi-
cation performance. LightGBM builds a DT by minimizing the objective
function 𝐸:

𝐸(𝑦, 𝐹 (𝑥)) =
𝑛
∑

𝑖=1
𝑙(𝑦𝑖, 𝐹𝑖(𝑥𝑖)) +𝛺(𝐹 ) (19)

where 𝐹𝑖(𝑥𝑖) is the predicted value of 𝑥𝑖, 𝑙(𝑦𝑖, 𝐹𝑖(𝑥𝑖)) and 𝛺(𝐹 ) de-
otes the loss function and the regularization term, respectively. Light-
BM uses a histogram-based algorithm to split the data into bins,

educing memory usage and ensuring a fast training process. The
istogram-based algorithm works as follows:

1. For each feature, sort the feature values in ascending order.
2. Divide the sorted feature values into discrete bins.
3. Calculate the histogram of the labels for each bin.
4. Find the best-split point based on the histogram information

gain, which is calculated as:

𝐺 = 1
2

(

𝐺𝐿2

𝐻𝐿 + 𝜆
+ 𝐺𝑅2

𝐻𝑅 + 𝜆
− 𝐺2

𝐻 + 𝜆

)

(20)

where 𝐺𝐿 and 𝐻𝐿 are the sum of labels and weights in the left child
node, 𝐺𝑅 and 𝐻𝑅 are the sum of labels and weights in the right child
node, 𝐺 and 𝐻 are the sums of labels and weights in the current node,
and 𝜆 is the regularization parameter.
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Fig. 3. McCulloch–Pitts neuron model.
4.6. Deep learning

Deep learning-based approaches use multiple layers of intercon-
nected nodes to analyze complex non-linear relationships between the
predictor and response variables. Supervised deep learning has shown
remarkable success and is widely used in numerous real-world applica-
tions (Deng & Li, 2013; Hirschberg & Manning, 2015; Liu et al., 2017;
Rothman, 2018; Scarselli, Gori, Tsoi, Hagenbuchner, & Monfardini,
2008; Shinde & Shah, 2018; Wu, Sun, Zhang, Xie, & Cui, 2022). This
section describes some SL approaches. However, before going into
the deep learning architectures, it is necessary to introduce the main
building block and core foundation of deep learning, i.e., the ANN.
The ANN is influenced by how biological nervous systems, like the
brain, process data (Dongare, Kharde, Kachare, et al., 2012; Kukreja,
Bharath, Siddesh, & Kuldeep, 2016; Mienye & Sun, 2023). It consists of
numerous intricately linked processing units or neurons that collabora-
tively address a particular challenge. It can be visualized as a weighted
directed graph comprising neurons and directed edges, each with its
associated weight (Jain, Mao, & Mohiuddin, 1996).

𝑦 = 𝑓

( 𝑛
∑

𝑖=1
𝑤𝑖𝑥𝑖 + 𝑏

)

(21)

where 𝑦 represents the output matrix and 𝑓 denotes the activation
function applied to each element. Furthermore, 𝑤, 𝑥, and 𝑏 represent
the weight matrix, input matrix, and bias vector. One of the earli-
est and foundational models of a neuron in ANN literature is the
McCulloch–Pitts neuron (Dybowski & Gant, 2001; Rothman, 2018). It
takes multiple binary inputs, multiplies each with a weight, and then
produces a binary output based on a threshold activation function, as
described in Fig. 3. ANNs can be categorized into feed-forward networks,
which are characterized by graphs without loops, and feedback or recur-
rent networks, distinguished by the loops resulting from their feedback
connections. A typical ANN is mathematically represented as follows:

4.6.1. Convolutional neural networks
A convolutional neural network (CNN) is a specialized class of neu-

ral networks designed to process data using three fundamental building
blocks or layers (Bentes, Velotto, & Tings, 2017; Kattenborn, Leitloff,
Schiefer, & Hinz, 2021). These networks are particularly renowned for
their proficiency in image and video recognition tasks. In a typical CNN,
as shown in Fig. 4, the first two layers, the convolution and pooling
layers, excel at extracting relevant features from the given data. Given
the training data, the CNN model undergoes forward propagation,
8 
where the specific kernels and weights contribute to a loss function
calculation. These learnable parameters are then updated through back-
propagation using the gradient descent optimization technique based
on the computed loss value. After the convolution and pooling layers,
the output is usually flattened and fed into one or more fully connected
(FC) layers. The CNN output 𝑦 can be computed as:

𝑦 = 𝜎(𝑊 ⋅𝑋 + 𝑏)

where 𝑛 represents the number of neurons in the FC layer, 𝜎 is the
activation function, 𝑋 indicates the input to the FC layer, 𝑊 is the
weight matrix, and 𝑏 is the bias vector.

CNNs are particularly effective in processing spatial data, making
them ideal for analyzing high-content screening images and predicting
molecular properties from chemical structures. Their ability to auto-
matically extract hierarchical features from input data makes CNNs a
robust algorithm for identifying biologically relevant patterns without
extensive manual feature engineering.

4.6.2. Recurrent neural networks
A recurrent neural network (RNN) is a type of ANN that is built for

processing sequential data. It is characterized by its ability to retain
information from previous inputs and use it to make predictions. The
RNN architecture consists of a series of interconnected nodes that
are organized in a directed cycle, allowing information to flow in a
loop (Dernoncourt, Lee, Uzuner, & Szolovits, 2017; Schuster & Paliwal,
1997). Unlike feedforward neural networks, which process each input
independently, recurrent neural networks have a memory component
that allows them to retain information from previous inputs. Also, in
the RNN, shown in Fig. 5, each neuron receives input not only from
the current time step but also from the output of the previous time
step, creating a recurrent connection. This loop-like structure enables
RNNs to retain the memory of previous inputs and learn dependencies
within the sequential data.

The Long short-term memory (LSTM) and gated recurrent unit
(GRU) are advanced variants of the RNN, which were developed to
solve the vanishing gradient problem associated with the simple RNN.

Furthermore, Simple RNN and advanced variants like LSTM and
GRU perform well at handling sequential data, which is common in
pharmacokinetics and pharmacodynamics modeling. These models can
capture temporal dependencies and predict future outcomes based on
historical data, making them valuable for modeling drug response over
time and optimizing dosage regimens. The memory retention capabili-
ties of RNNs are crucial for understanding and predicting the dynamic
interactions of drugs within biological systems.
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Fig. 4. Basic CNN architecture.
Fig. 5. A RNN architecture.
4.6.3. Graph neural networks
A graph neural network (GNN) is designed to perform operations on

data described by graphs (Scarselli et al., 2008; Wu et al., 2022). GNNS
are specifically tailored to process data with complex dependencies
and relationships represented as graphs, where nodes are connected by
edges. GNNs aim to learn representations for each node in the graph,
incorporating information from neighboring nodes and their relation-
ships. The pipeline of a GNN model, as described in Fig. 6, involves
iteratively aggregating information from neighboring nodes, updating
node embeddings, and repeating the process for multiple layers to
capture complex dependencies and information diffusion across the
graph.

𝑚𝑣 =
∑

𝑓 (ℎ𝑢, 𝑒𝑣𝑢) (22)

𝑢∈𝑁(𝑣)

9 
where 𝑚𝑣 is the aggregated message for node 𝑣, obtained by combining
information from its neighboring nodes 𝑁(𝑣) using the aggregation
function 𝑓 . The aggregation function can take into account both the
hidden representations of the neighboring nodes ℎ𝑢 and the edge
features 𝑒𝑣𝑢.

GNNs are uniquely suited to modeling data that can be represented
as graphs, such as molecular structures and protein–protein interaction
networks. By aggregating information from connected nodes, GNNs can
capture the intricate dependencies and relationships within the data.
This capability is particularly beneficial for predicting molecular activ-
ity, identifying potential drug targets, and exploring the interactions
within biological pathways. The ability of GNNs to handle complex
relational data makes them indispensable in the computational analysis
of molecular and genetic data in drug discovery.
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Fig. 6. The pipeline of a GNN model (Zhou et al., 2020).
Lastly, deep learning techniques, such as CNNs, RNNs, and GNNs,
offer significant advantages in drug discovery due to their ability to
learn complex patterns from vast and diverse datasets. By integrating
these DL techniques, researchers can leverage the strengths of each
algorithm to address specific challenges in drug discovery. For example,
combining CNNs with GNNs can enhance the prediction of molecular
properties by incorporating both spatial and relational information,
leading to more accurate and robust models. Similarly, integrating
RNNs with GNNs can improve the modeling of temporal dynamics
in biological networks, facilitating the discovery of time-dependent
drug interactions and effects. The synergistic use of these deep learn-
ing approaches provides a comprehensive toolkit for advancing drug
discovery and development.

5. Common performance metrics

In supervised ML, performance metrics play a vital role in as-
sessing the effectiveness of models and guiding improvements. These
metrics can be broadly categorized into those used for classifica-
tion tasks and regression tasks (Botchkarev, 2018; Cuadros-Rodríguez,
Pérez-Castaño, & Ruiz-Samblás, 2016; Koyejo, Natarajan, Ravikumar,
& Dhillon, 2014).

5.1. Classification metrics

Classification metrics provide a means to evaluate the performance
of a classification algorithm (Mienye & Jere, 2024; Zhou, Gandomi,
Chen, & Holzinger, 2021). These metrics provide an understanding
of how well a model is performing in distinguishing between classes.
These metrics include accuracy, precision, sensitivity, specificity, and
F1-Measure.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝑐𝑐) = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(23)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(24)

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑆𝑒𝑛) = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(25)

𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦 (𝑆𝑝𝑒𝑐) = 𝑇𝑁
𝑇𝑁 + 𝐹𝑃

(26)

𝐹1 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ⋅
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑟𝑒𝑐𝑎𝑙𝑙 (27)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

10 
𝑇 𝑟𝑢𝑒 𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(28)

𝐹𝑎𝑙𝑠𝑒 𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 = 𝐹𝑃
𝐹𝑃 + 𝑇𝑁

(29)

Where:

• True Positives (TP) represent the number of correctly predicted
positive instances.

• False Negatives (FN) represent the number of positive instances
incorrectly classified as negative.

• True Negatives (TN) represent the number of correctly predicted
negative instances.

• False Positives (FP) represent the number of negative instances
incorrectly classified as positive.

• True Positive Rate (TPR) measures the proportion of actual posi-
tives that are correctly identified by the model.

• False Positive Rate (FPR) measures the proportion of actual neg-
atives that are incorrectly identified as positives by the model. It
highlights the rate at which false alarms occur.

AUC (Area Under the Curve) is a performance metric used to eval-
uate the ability of a binary classification model to distinguish between
positive and negative classes. Specifically, it is associated with the ROC
(Receiver Operating Characteristic) curve, which plots the TPR against
the FPR at various threshold settings. An AUC of 0.5 indicates no
discrimination capability, equivalent to random guessing. An AUC of 1
signifies perfect discrimination capability. An AUC below 0.5 suggests
the model is worse than random guessing, consistently misclassifying
classes. Values between 0.9 and 1 indicate excellent performance, 0.8
to 0.9 good performance, 0.7 to 0.8 fair performance, 0.6 to 0.7
poor performance, and 0.5 to 0.6 indicate the model fails to perform
adequately.

5.2. Regression metrics

Regression metrics provide a way to evaluate the performance of a
regression model, which predicts a continuous outcome (Naidu, Zuva,
& Sibanda, 2023; Yildiz, Bilbao, & Sproul, 2017). In this section, we
provide some metrics used for regression analysis.

Mean Absolute Error (MAE): MAE is the average of the abso-
lute differences between predicted and actual values. It provides a
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straightforward measure of prediction accuracy.

𝑀𝐴𝐸 = 1
𝑁

𝑁
∑

𝑖=1
|𝑦𝑖 − �̂�𝑖| (30)

Mean Squared Error (MSE): MSE is the average of the squares of the
differences between predicted and actual values. Squaring the errors
places more weight on larger errors, making MSE sensitive to outliers.

𝑀𝑆𝐸 = 1
𝑁

𝑁
∑

𝑖=1
(𝑦𝑖 − �̂�𝑖)2 (31)

Root Mean Squared Error (RMSE): RMSE is the square root of MSE,
translating the error into the same units as the original values. It also
emphasizes larger errors more than MAE.

𝑅𝑀𝑆𝐸 =
√

𝑀𝑆𝐸 (32)

R-squared (R2): R2 measures the proportion of variance in the
ependent variable that is predictable from the independent variables.
t indicates the goodness of fit of the model. However, it does not
ccount for overfitting.

2 = 1 −
∑𝑁

𝑖=1(𝑦𝑖 − �̂�𝑖)2
∑

𝑖 = 1𝑁 (𝑦𝑖 − �̄�)2
(33)

Adjusted R-squared: This metric adjusts R2 for the number of predic-
ors in the model, providing a more accurate measure in the presence
f multiple predictors.

𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 = 1 −
(

1 − 𝑅2

𝑁 − 𝑘 − 1

)

× (𝑁 − 1) (34)

Correlation (Corr R) is a statistical measure that describes the degree
o which two variables move in relation to each other. It is commonly
sed in regression analysis to measure the strength and direction of the
inear relationship between two variables.

𝑜𝑟𝑟 𝑅 =
∑

(𝑥𝑖 − �̄�)(𝑦𝑖 − �̄�)
√

∑

(𝑥𝑖 − �̄�)2
∑

(𝑦𝑖 − �̄�)2
(35)

Where 𝑥𝑖 are individual values of the independent variable 𝑥. 𝑦𝑖
re the Individual values of the dependent variable 𝑦. �̄� is the mean
f 𝑥 values, and �̄� is the mean of 𝑦 values. This equation calculates
he Pearson correlation coefficient 𝑟, which measures the linear rela-
ionship between two variables 𝑥 and 𝑦. It quantifies the strength and
irection of their linear association, ranging from −1 (perfect negative
orrelation) to +1 (perfect positive correlation).

. Applications of supervised learning to drug discovery and de-
elopment

Several studies have applied SL methods to advance the field of drug
iscovery and development. These applications span a broad spectrum
f processes, ranging from predicting molecular properties to exploring
enomics.

Meanwhile, in evaluating the performance of the models, this study
ocuses on two widely used metrics: Acc and AUC. Accuracy is one of
he most straightforward metrics for evaluating the performance of a
lassification model. It is defined as the ratio of correctly predicted
nstances to the total instances in the dataset. The AUC is derived
rom the receiver operating characteristic (ROC) curve, which plots
he TPR against the FPR at various threshold settings. The TPR, also
nown as sensitivity or recall, is the proportion of actual positives
orrectly identified by the model, while the FPR is the proportion of
ctual negatives incorrectly identified as positives. The AUC represents
he probability that a randomly chosen positive instance is ranked
igher by the classifier than a randomly chosen negative instance.
n AUC value ranges from 0 to 1, with 0.5 equivalent to random
uessing, 1 indicating that the model perfectly separates positive and
egative instances, and 0 indicating a perfectly incorrect model, i.e., all
redictions are wrong.
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6.1. Molecular property and activity prediction

Supervised ML models have been used to predict various molec-
ular properties critical for assessing chemical compound viability as
therapeutic agents. Fig. 7 presents a supervised ML technique for
molecular property prediction. Tayyebi et al. (2023) applied RF for the
prediction of chemical solubility in water using molecular descriptors
and Morgan fingerprint methods. The study demonstrated the effi-
cacy of ML techniques in predicting the solubility of various chemical
species. Marchetti et al. (2021) used LR, SVM, and RF algorithms to
develop a classification model for predicting the functional effects (ac-
tivation or inhibition) of allosteric ligands on the molecular chaperone
Hsp90. Using integrated molecular docking-based screening, protein
conformational dynamics information, and ML techniques to train the
model on data from ensemble docking results of 133 known Hsp90
ligands.

Zhang et al. (2019) explored the effectiveness of eight ML methods,
including DT, k-NN, and several other supervised ML models, in molec-
ular drug design and discovery, particularly focusing on accelerating
Acetyl-CoA Carboxylases inhibitors discovery. Feinberg et al. (2018)
designed PotentialNet, a family of GNN tailored for predicting molec-
ular properties relevant to drug discovery, particularly focusing on
protein–ligand binding affinity. Through leveraging feature learning,
the GNN aim to surpass traditional physics-based and knowledge-based
ML models in performance.

For several molecular property predictions, Wang et al. (2022)
created AdvProp, a tool based on a combination of graph-based and
sequence-based supervised ML methods for the molecular property pre-
diction, aimed to accelerate drug discovery efforts, especially for global
health pandemic situation, such as COVID-19. For several molecular
activity predictors and properties, including but not limited to bioac-
tivity, toxicity, or interactions with specific biological targets, Lane
et al. (2020) applied several supervised ML algorithms using SVM
classification, NB, AdaBoost, and others for drug discovery applications.
The study used the ChEMBL database of 5000 datasets and 570,000
unique combinations generated using the ECFP6 fingerprint. Ashraf,
Akter, Mumu, Islam, and Uddin (2023) developed several computa-
tional models using LR and several supervised ML models for the
prediction of drug potency compounds against the SARS-CoV-2 3CLpro
protein, a key therapeutic target for COVID-19 treatment. Further-
more, the study utilized SHapley Additive exPlanations (SHAP) analysis
to identify important descriptors for predicting bioactivity. Wallach
et al. (2015) developed AtomNet, a CNN model designed specifically
for predicting the bioactivity of small molecules in structure-based
drug discovery. By hierarchically composing local features, AtomNet
demonstrates superior predictive performance, outperforming previous
docking approaches on diverse benchmarks. Aly and Alotaibi (2023) ex-
plored the application of deep learning, particularly LSTM networks, in
predicting the molecular properties of modified Gedunin, a compound
of interest in drug research. According to the study, the proposed model
achieved a high accuracy in predicting molecular properties, indicating
promising potential for rational drug design and exploration. Ahmad,
Tayara, Shim, and Chong (2024) created SolPredictor based on the
residual GNN convolution (RGNN) for predicting molecular solubility.
Overall, SolPredictor demonstrated significant potential in enhancing
solubility prediction accuracy, thereby contributing to more efficient
and streamlined drug development processes.

Table 1 presents various supervised ML models applied to predict
molecular properties and activities. These models include traditional
methods such as RF, LR, and SVM, as well as advanced techniques such
as Gradient Boosting, XGBoost, and GNN. The models are employed for
various predictive tasks, including chemical solubility, molecular ligand
classification, compound property identification, protein–ligand bind-
ing affinity, and bioactivity prediction. The studies rely on various open
databases, such as Vermeire, Boobier, Delaney, the Protein Data Bank,
ChEMBL, and PubChem, providing rich datasets for model training
and validation. In addition, SHAP was used to provide interpretability,
offering insights into feature importance and model decisions.
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Fig. 7. Structure of a GNN applied for molecular property prediction (Xu, Pan, Xia, & Li, 2023).
Table 1
Summary of supervised ML algorithms used for Molecular Property and Activity Prediction.

Reference Model Scope Performance Database

Tayyebi et al. (2023) RF and Shapley Additive
exPlanations (SHAP)

Predict chemical solubility Acc = 88% Open databases: Vermeire,
Boobier and Delaney.

Marchetti et al. (2021) LR, RF, SVM Classify molecular ligands Highest Acc = 89% Open database: Protein Data Bank

Zhang et al. (2019) DT, k-NN, SVM, RF,
AdaBoost, GB, XGBoost, XT

Identify active or inactive
compound property

Highest Acc = 89.5% Open database: Crystal Protein
Database

Feinberg et al. (2018) GNN Predict protein–ligand
binding affinity

AUC = 85.7% Open databases: QM8 and GDB-8

Wang et al. (2022) GNN Predict several molecular
properties

AUC = 92.8% Unknown

Lane et al. (2020) RF, k-NN, SVM, NB,
Adaboost, DT, RNN

Predict molecular
properties

Highest Acc = 84.1% Open database: ChEMBL

Ashraf et al. (2023) XGBoost and SHAP Predict bioactivity Acc = 93% Open database: ChEMBL and
PubChem

Wallach et al. (2015) CNN Predict bioactivity of small
molecules

AUC = 90% Open databases: Directory of
Useful Decoys Enhanced (DUDE)
benchmark, ChEMBL-20 PMD, etc

Aly and Alotaibi (2023) RNN Predict modified gedunin Acc = 98.68% Open databases: CHEMBL and
Drug Bank

Ahmad et al. (2024) GNN Predicting silico solubility Acc = 0.79% Open databases: AqSolDB, Lovric
and etc
6.2. Pharmacogenomics

Pharmacogenomics studies how genes affect an individual’s re-
sponse to drugs. Recently, supervised ML has emerged as a powerful
tool in advancing pharmacogenomics, as depicted in Fig. 8. Ikon-
nikova et al. (2022) utilized various SL models to explore aspirin
resistance (AR) in patients with ischemic stroke. Their research focused
on assessing the impact of both clinical and genetic factors on AR.

Athreya et al. (2019) used the RF model in predicting the ef-
ficacy of selective serotonin reuptake inhibitors (SSRIs) for treating
major depressive disorder (MDD) by incorporating pharmacogenomic
biomarkers alongside clinical measures. Through the combination of
genetic information with clinical indicators of depression severity, the
study showcases a successful application of SL ML in predicting patient
responses to SSRI treatment, potentially guiding more tailored and
effective therapeutic strategies for individuals suffering from MDD. Lin
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et al. (2018) extended the feed-forward neural network as the pre-
dictive model for determining antidepressant treatment response in
MDD. Their study aimed to differentiate between responders and non-
responders to antidepressant treatment and to forecast treatment out-
comes by analyzing a complex array of genetic and clinical data.
This array included single nucleotide polymorphisms (SNPs), alongside
demographic and clinical indicators such as age, sex, baseline Hamil-
ton Rating Scale for Depression (HRSD) scores, history of depressive
episodes, marital status, and history of suicide attempts. The work
of Pandi et al. (2021) proposed several supervised ML methods for
the classification of pharmacogenomic variants, especially focusing on
novel and rare variants, by assigning them to specific protein activity
predictions, thereby facilitating the prioritization of these variants for
potential clinical impact in pharmacogenomics. Tang et al. (2017)
compared various SL algorithm-based techniques, including ANN and
eight ML methods, in predicting the stable dose of tacrolimus in re-
nal transplant patients, thereby enhancing personalized medicine in



G. Obaido et al. Machine Learning with Applications 17 (2024) 100576 
Fig. 8. Machine learning prediction for pharmacogenomics prediction (Zhou, Tremmel, Schaeffeler, Schwab, & Lauschke, 2022).
tacrolimus administration. Thishya, Vattam, Naushad, Raju, and Kutala
(2018) applied ANN to predict the bioavailability of tacrolimus and
LR to assess the risk for post-transplant diabetes, based on ABCB1 and
CYP3A5 genetic polymorphisms. These models aim to explore both
individual and synergistic effects of genetic and demographic factors
on these outcomes, thereby enhancing personalized treatment plans for
transplant recipients. Verhaeghe et al. (2022) developed the Catboost
and Gaussian method to predict piperacillin plasma concentrations
in critically ill patients with higher accuracy and to provide uncer-
tainty quantification for clinical practice, addressing the limitations
of current Population Pharmacokinetic models. The models showed
potential improvements in therapeutic drug monitoring and dosing
regimen adaptations for piperacillin/tazobactam. In a similar study, Fu
et al. (2024) developed several SL models for an individualized dosing
model of sertraline for adolescents with depression to account for the
variability in pharmacokinetic parameters. The CatBoost model was
selected for its superior performance in predicting the optimal sertra-
line dose based on key variables, thereby offering clinicians a guide
to tailor medication regimens more effectively. Lin et al. (2020) used
an ensemble approach to predict antidepressant treatment response
and remission in patients with major depressive disorder (MDD) by
analyzing genetic variants and clinical variables. This ensemble model
was designed to differentiate between responders and non-responders
to antidepressant treatments, offering a potential bioinformatics tool
for personalized treatment planning. For an antidepressant selection
study, Sheu et al. (2023) predicted patient responses to several classes
of antidepressants including SSRI, SNRI, bupropion, and mirtazapine,
using electronic health records and supervised ML techniques, aiming
to mitigate the trial-and-error approach traditionally associated with
antidepressant selection. By integrating EHR data into their models,
the study provides insights into personalized treatment predictions and
patient-specific factors affecting antidepressant responses, potentially
steering the development of clinical decision support systems for more
efficient treatment selection. Table 2 presents a summary of supervised
ML algorithms applied in pharmacogenomics.

As indicated in Table 2, common models used for Pharmacoge-
nomics include CatBoost, RF, ANN, AdaBoost, and XGBoost, used in
pharmacogenomic studies to predict drug response and efficacy. These
models are designed to tailor medical treatments to individual genetic
profiles, improving patient outcomes. For example, Ikonnikova et al.
used CatBoost and SHAP to develop a predictive model for aspirin
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resistance, achieving an AUC of 88%, while Athreya et al. (2019)
employed RF to predict antidepressant outcomes with AUCs ranging
from 70% to 90%.

Key performance indicators include AUC, accuracy, precision, sen-
sitivity, specificity, and correlation. Also, notable performances in-
clude Pandi et al. (2021) achieving an accuracy of 85% with AdaBoost,
XGBoost, LR, and RF for assessing pharmacogenomic variants, and Fu
et al. reporting the highest AUC of 93% with AdaBoost and XGBoost
for predicting sertraline response in adolescents. The studies utilize
both open and private databases, reflecting the proprietary nature of
some pharmacogenomic data and the importance of comprehensive
datasets for developing robust predictive models. Methods, such as
SHAP enhance the interpretability of predictions, particularly in clinical
applications where decisions impact patient health.

6.3. Biomarker identification

Biomarkers encompass a broad range of covariates, such as phe-
notypical, clinical, gene, and protein expression markers, central to
understanding and predicting how different individuals will respond
to a given treatment. Many studies have utilized supervised ML tech-
niques to classify patients based on the presence or absence of specific
biomarkers, effectively predicting their response to treatment. For in-
stance, Xie et al. (2021) applied various SL algorithms to identify
diagnostic biomarkers for lung cancer among Chinese patients, pio-
neering an interdisciplinary approach that merges metabolomics with
ML techniques in lung cancer research. The study demonstrated that
ML algorithms support the feasibility of blood-based screening for
early lung cancer diagnosis, with the potential to extend this method
to other types of cancer. Tabl, Alkhateeb, ElMaraghy, Rueda, and
Ngom (2019) used several supervised ML algorithms including RF,
SVM, and Naive Bayes, RF for identifying gene biomarkers, guid-
ing the treatment of breast cancer. Through classification and feature
selection techniques, the goal was to train a model that could effec-
tively predict sample labels based on gene expression profiles. Ghosh
et al. (2022) applied the RF model, together with other models to
identify the most significant metabolomic biomarkers in blood for
lung cancer prediction, utilizing Plasma and Serum samples through
a two-phase process involving initial tests for potential biomarker
determination and Recursive Feature Elimination with RF for final
biomarker identification. Hajjo et al. (2021) used several SL mod-
els to identify disease-specific MRI biomarkers for cancer diagnosis,
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Table 2
Summary of supervised machine learning algorithms used for Pharmacogenomics.

Reference Model Scope Performance Database

Ikonnikova et al. (2022) CatBoost and SHAP Develop a predictive model
for aspirin resistance

AUC = 88% Unknown

Athreya et al. (2019) RF Predict antidepressant
outcomes.

AUC = 70%–90%,
75%–90%

Open database: PGRN-AMPS,
STAR*D and ISPC

Lin et al. (2018) ANN Predict antidepressant
response in major depression.

AUC = 82%, Sen = 75%,
Spec = 69%

Private

Pandi et al. (2021) AdaBoost, XGBoost,
LR, RF

Assess pharmacogenomic
variant.

Acc = 85%, Precision =
85%, Sen = 84%, Spec =
94%

Open database: PharmGKB

Tang et al. (2017) ANN, RF, etc Predict tacrolimus dose in
renal transplant recipients.

Highest Corr (𝑅) = 73% Private

Thishya et al. (2018) ANN and LR Predict bioavailability of
tacrolimus in patients

Corr (𝑅) = 93%–96% Private

Verhaeghe et al. (2022) CatBoost and
Gaussian method

Predict piperacillin plasma
concentrations.

Corr (𝑅) = 31.94–0.64 and
33.53–0.60

Private

Fu et al. (2024) AdaBoost, XGBoost,
DT, etc

Predict sertraline in
adolescents.

Highest AUC = 93% Private

Lin et al. (2020) LR, SVM, DT, etc Predict antidepressant
treatment response.

Highest AUC = 81% Private

Sheu et al. (2023) RF, GBM, etc with
SHAP

Predict differential response to
antidepressant classes.

Highest AUC = 70% Private
prognosis prediction, and treatment efficacy assessment, addressing
the need for reliable and non-invasive oncology biomarkers with high
specificity. Another study by Abeel et al. (2010) used the ensemble
feature selection techniques within SVMs, aimed at increasing the
stability of selected biomarkers while enhancing classification perfor-
mance, which is crucial for reliable diagnosis and prognosis models
in biomedical applications. A similar study by Gutiérrez-Gómez et al.
(2020) utilized the recursive feature elimination method, in conjunc-
tion with SVM, to identify stable biomarkers for schizophrenia across
structural, functional, and multi-modal connectomes of both healthy
controls and patients, ensuring accuracy and stability across various
dataset subsamplings. Zhang and Liu (2019) utilized recursive feature
reduction and RF classification to identify biomarker genes across 12
types of cancers. The study analyzed classification effects in control and
disease samples using high-throughput ‘-omic’ datasets, such as RNA-
sequencing data from the Cancer Genome Atlas (TCGA). The models
were used to select a parsimonious set of genes with the highest classifi-
cation accuracy, ultimately evaluated through tenfold cross-validation.
This process revealed insights into the dysfunctional and pathogenic
mechanisms associated with the identified biomarkers. Salvatore et al.
(2015) applied SVM and feature selection methods to identify mag-
netic resonance (MR)-related biomarkers for the in vivo differential
diagnosis of Alzheimer’s Disease (AD). The study specifically focused
on distinguishing between patients with AD, those with mild cognitive
impairment (MCI) who will or will not convert to AD, and healthy con-
trols. The optimized ML algorithm utilized morphological T1-weighted
MRI data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
cohort, achieving classification accuracies by identifying critical brain
regions involved in AD’s pathophysiological mechanisms. This supports
the application of computer-based diagnosis in the early management
of AD patients. Rehman et al. (2019) used the SVM and RF models
together with feature selection methods for validating and ranking
the importance of certain small noncoding microRNAs (miRNAs) as
biomarkers for breast cancer. The study concluded that ML plays a
pivotal role in detecting and diagnosing cancer through the analysis of
miRNAs. Chen et al. (2014) applied several supervised ML algorithms
including SVM, DT and other models for the identification Gene se-
lection for cancer identification. Their approach focused on selecting
a small, informative subset of genes from thousands of candidates
using computational intelligence methods to analyze microarray data,
significantly contributing to the understanding of gene involvement in
cancer occurrence.
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Table 3 presents a summary of supervised ML algorithms applied
in biomarker identification. Overall, Table 3 highlights the success-
ful application of various supervised ML algorithms for identifying
biomarkers across multiple diseases. The high performance demon-
strates the models’ potential to make reliable predictions. The reliance
on diverse data sources ensures comprehensive and robust model train-
ing, while the integration of feature selection methods enhances model
interpretability and the identification of key biomarkers, which is
essential for advancing personalized medicine and improving patient
outcomes.

6.4. Pharmacokinetics and pharmacodynamics (PK/pd) modeling

The application of supervised ML in Pharmacokinetics and Pharma-
codynamics (PK/PD) Modeling has shown promising results in recent
studies (Ahmadi, Alizadeh, Ayyoubzadeh, & Abiyarghamsari, 2024;
Al-Bahou, Bruner, Moore, & Zarrinpar, 2024; Degraeve et al., 2024;
Ponthier et al., 2023; Sánchez-Herrero, Calvet, & Juan, 2023). Yang,
Smith, Patel, and Lee (2019) applied ML methods, such as RF and
SVM, to predict the pharmacokinetics of tacrolimus in kidney trans-
plant patients. Their models exhibited strong predictive performance,
indicating the potential of ML in improving drug dosing strategies. Liu,
Wang, Zhang, and Chen (2020) provided a comprehensive review of
ML in drug discovery and development, including PK/PD modeling.
The study highlighted the significant impact of ML across various
stages of drug development, emphasizing its role in accelerating the
drug discovery process. Nguyen, Tran, Le, and Phan (2021) introduced
a deep reinforcement learning approach for personalized dosing of
tacrolimus in kidney transplant patients. Their model learned optimal
dosing strategies based on patient-specific characteristics, demonstrat-
ing the potential of deep learning in personalized medicine. Gupta,
Sharma, Kumar, and Singh (2019) the integration of ML techniques
with mechanistic modeling approaches in PK/PD modeling was dis-
cussed. They emphasized the synergistic effects of combining these
methods, leading to improved model predictions and decision-making
in drug development. Similarly, Napolitano, Rossi, Bianchi, and Espos-
ito (2018) reviewed computational tools and approaches for predictive
modeling of drug response, including ML. They highlighted the appli-
cation of these methods in PK/PD modeling and personalized medicine,
underscoring their importance in advancing pharmacological research.

Overall, these works underscore the growing importance and potential
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Table 3
Summary of supervised machine learning algorithms used for Biomarker Identification.

Reference Model Scope Performance Database

Xie et al. (2021) NB Diagnostic biomarkers for lung
cancer among Chinese patients

AUC = 98%, Sen = 98.1%,
Spec = 100%

Metabolomics in lung
cancer research

Zhang et al. (2021) RF, SVM, and NB, etc Identifying genes markers for
breast cancer treatment

Highest Acc = 100% Combined databases

Ghosh et al. (2022) RF, XGBoost, other
models

Metabolomic biomarkers for
lung cancer

Acc = 100% and 91% Public database

Bhat (2017) SVM Bioinformatic gene expression
analysis

Acc = 97% Unknown

Abeel et al. (2010) SVM, ensemble feature
selection techniques

Biomarkers for biomedical
applications

Acc = 100% Unknown

Gutiérrez-Gómez et al. (2020) SVM, recursive feature
elimination

Biomarkers for schizophrenia Acc = 79% Structural, functional,
multi-modal
connectomes

Zhang and Liu (2019) RF, recursive feature
reduction

Biomarker genes across 12
types of cancers

Highest AUC = 99.6% High-throughput omic
data, TCGA

Salvatore et al. (2015) SVM, feature selection
methods

MR-related biomarkers for
Alzheimer’s Disease

Highest Acc = 76% T1-weighted MRI data,
ADNI cohort

Rehman et al. (2019) SVM, RF, feature
selection methods

miRNAs as biomarkers for
breast cancer

Highest AUC = 99.9% Private

Chen et al. (2014) Naive Bayes, DT, SVM,
etc

Gene selection for cancer
identification:

Highest Acc = 97.68 Public data: Microarray
cancer datasets
of ML in advancing PK/PD modeling and personalized medicine. By
leveraging ML techniques, researchers can enhance drug dosing strate-
gies, improve model predictions, and accelerate the drug development
process, ultimately leading to better healthcare outcomes.

6.5. Chemical synthesis prediction and retrosynthesis planning

The application of supervised ML in chemical synthesis prediction
and retrosynthesis planning has gained significant attention in recent
years, offering promising advancements in drug discovery and ma-
terials science (Ali, Meng, Khan, & Jiang, 2024; Ding et al., 2024;
Zhong et al., 2024). Various works have explored the use of ML models
to predict chemical reactions, propose novel synthesis pathways, and
optimize reaction conditions (Griffin, Coley, Frank, Hawkins, & Jensen,
2023; Mikolajczyk et al., 2023; Yu et al., 2023). One notable study
by Coley, Barzilay, Jaakkola, Green, and Jensen (2019) demonstrated
the effectiveness of GNNs in predicting chemical reaction outcomes. By
encoding molecular structures as graphs, GNNs can capture the under-
lying chemical relationships and predict reactions with high accuracy.
This approach has shown great potential in accelerating the discovery
of new chemical compounds and optimizing synthetic routes. Another
recent work by Schwaller, Gaudin, Lanyi, Bekas, and Laino (2020)
introduced a deep learning model, called ReLeaSE (Retrosynthetic Li-
brary of Synthetic Exemplars), for retrosynthesis planning. ReLeaSE
utilizes a generative adversarial network (GAN) to propose synthetic
routes for target molecules based on a library of known reactions. The
model’s ability to generate diverse and synthetically feasible pathways
has demonstrated its utility in automated synthesis planning. In addi-
tion to reaction prediction and retrosynthesis planning, supervised ML
has been applied to optimize reaction conditions and predict reaction
outcomes under specific constraints. For example, a study by Wei,
Hu, Yang, and Lei (2021) utilized a Bayesian optimization approach
to optimize reaction conditions for palladium-catalyzed cross-coupling
reactions. The model successfully identified optimal conditions that
improved reaction efficiency and selectivity. These works highlight the
potential of supervised ML in advancing chemical synthesis prediction
and retrosynthesis planning. By leveraging large datasets of chemical
reactions and molecular structures, ML models can provide valuable
insights and guidance for accelerating the discovery and development
of new chemical compounds.
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7. Notable challenges in supervised learning for drug discovery
and development

Despite the success of SL in various applications, there are notable
challenges that researchers and practitioners encounter when working
with SL algorithms in drug discovery and development. This section
discusses some of these challenges and potential solutions.

7.1. Overfitting

Overfitting is a significant challenge in SL. It occurs when an ML
model achieves excellent performance on the training instances but
performs poorly on unseen instances (Mienye & Sun, 2021). Overfitting
arises due to the model’s excessive complexity, which makes it mem-
orize the training set instead of learning the hidden relationships. In
drug discovery, this can lead to models that perform well on known
compounds but fail to generalize to novel compounds. One commonly
used approach to mitigate this problem is regularization, which in-
volves adding a penalty term to the objective function of the model.
A popular regularization technique is L1 regularization, which adds
a penalty term proportional to the sum of the absolute values of the
model’s coefficients. This technique can help select the most relevant
features for predicting drug efficacy and safety, improving the model’s
generalizability (Ma, Miao, Niu, & Zhang, 2019).

7.2. Imbalanced data

Imbalanced data refers to a scenario where the class distributions
in the training data are skewed (He & Garcia, 2009). In drug dis-
covery, this is common when dealing with datasets where positive
instances (e.g., active compounds) are much less frequent than negative
instances (e.g., inactive compounds). This imbalance can bias the model
towards the majority class, leading to poor performance in identifying
potentially active compounds. Techniques such as data resampling,
cost-sensitive learning, and ensemble learning have been developed
to address this issue. Data resampling techniques, like SMOTE and
ADASYN, can balance class distributions by replicating minority class
samples (Wang, Dai, Shen, & Xuan, 2021; Zakariah, AlQahtani, &
Al-Rakhami, 2023). Cost-sensitive learning assigns different misclas-
sification costs to each class to prioritize the correct classification
of minority class instances (Mienye et al., 2021). Ensemble methods,
such as bagging and boosting, combine multiple models to improve
performance on imbalanced datasets (Obaido et al., 2024).
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7.3. Bias and fairness

SL algorithms are trained on historical data that may contain bi-
ases, reflecting societal inequalities and prejudices (Okolo, Aruleba, &
Obaido, 2023). In drug discovery, biased data can lead to models that
perform better for certain populations and worse for others, raising eth-
ical concerns. Addressing bias and ensuring fairness in drug discovery
models is crucial for equitable healthcare outcomes. Techniques such as
data augmentation and balancing can help mitigate biases by ensuring
diverse and representative input data (Connor, Khoshgoftaar, & Borko,
2021; Dao et al., 2019; Rebuffi et al., 2021; Summers & Dinneen,
2019). Algorithmic modifications, like fairness-aware learning, incor-
porate fairness constraints into the learning process to promote fair
decision-making (Caton & Haas, 2020; Mary, Calauzenes, & El Karoui,
2019; Mehrabi, Morstatter, Saxena, Lerman, & Galstyan, 2021). Post-
processing methods, such as calibration, adjust model predictions to
meet fairness criteria, providing more equitable outcomes.

7.4. Interpretability

While SL algorithms are powerful in making accurate predictions,
they often lack transparency in how predictions are made (Hong,
Hullman, & Bertini, 2020). In drug discovery, interpretability is es-
sential for gaining insights into why a model predicts certain com-
pounds as effective or safe. This understanding can build trust in the
model, help identify potential biases, and meet regulatory require-
ments. Techniques such as feature importance, permutation impor-
tance, partial dependence plots, and SHAP values can enhance inter-
pretability by identifying the most significant features in the model’s
decision-making process (Carletti, Terzi, & Susto, 2023; Kang, Koo, &
Ryu, 2022; Moreno-Sanchez, 2020; Obaido, Ogbuokiri, Mienye et al.,
2022).

8. Discussions and future research directions

Supervised learning algorithms have significantly impacted drug
discovery and development by enabling predictions and decisions based
on labeled training data.

The summarized tables in this study highlight several critical in-
sights into the application of supervised learning in drug discovery and
development. Firstly, a diverse range of supervised learning models,
including RF, SVM, and GNN, have been effectively utilized across var-
ious aspects of drug discovery, such as predicting molecular properties,
protein–ligand binding affinity, and bioactivity. This variety showcases
the versatility and adaptability of these algorithms to different types of
biomedical data and prediction tasks.

Performance metrics such as accuracy and AUC were commonly
used to evaluate these models, with several studies achieving high
accuracy (e.g., 98.68% with RNN for predicting modified gedunin) and
strong AUC scores (e.g., 92.8% with GNN for predicting molecular
properties). These metrics provide a clear indication of the models’
effectiveness in making accurate predictions, which is crucial for ad-
vancing drug discovery processes and improving therapeutic outcomes.
Additionally, the availability and quality of data play a significant
role in the performance of these models. The studies leveraged a
mix of open and private databases, including ChEMBL, PubChem, and
the Protein Data Bank, Indicating the importance of comprehensive
and high-quality datasets in training robust and generalizable models.
Meanwhile, techniques such as SHAP were employed to enhance model
interpretability, which is critical for understanding the predictions
made by complex models and ensuring their reliability in practical
applications.

Despite the advancements recorded in the literature, new chal-
lenges arise as technology advances. Therefore, future research can
explore diverse areas. Firstly, future research can focus on devel-
oping more efficient algorithms and techniques to address bias and
 p
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fairness in drug discovery (Mehrabi et al., 2021). Ensuring fairness
and preventing discrimination requires exploring methods to mitigate
bias, such as algorithmic fairness techniques and data preprocess-
ing methods. Developing transparent and interpretable models is also
crucial for understanding and mitigating bias in supervised learning
algorithms. Secondly, transfer learning techniques hold promise for
enhancing supervised learning algorithms’ performance and generaliza-
tion capabilities, especially in scenarios where obtaining labeled data
is expensive or time-consuming. Future research could focus on devel-
oping robust transfer learning techniques that can effectively transfer
knowledge across domains and adapt to different data distributions
while minimizing domain shift.

Additionally, developing more robust and scalable algorithms to
handle large-scale datasets is essential. With the increasing availability
of big data in drug discovery, traditional supervised learning algorithms
may struggle to process and learn from vast amounts of data effectively.
Future research can focus on developing algorithms that efficiently
handle large-scale datasets, such as distributed learning algorithms
or algorithms leveraging parallel computing architectures. Designing
algorithms that can adapt and learn in real time from streaming data
is also important, as streaming data, including sensor data and social
media feeds, have become prevalent in various domains.

Lastly, integrating supervised learning algorithms with other ML
approaches, such as unsupervised learning or reinforcement learning,
could be beneficial. Combining different learning paradigms can lead to
more powerful models that can deal with various tasks and data types.
For example, unsupervised learning algorithms can pre-train a model
on unlabeled data, which can then be fine-tuned using labeled data
through SL. Similarly, integrating reinforcement learning with super-
vised learning can enable the development of intelligent systems that
can make predictions based on labeled data and learn from feedback
to optimize their decision-making process.

9. Conclusion

Supervised learning has been widely adopted in the field of ML,
allowing for the development of robust models capable of making
accurate predictions and decisions. This paper presents a concise and
comprehensive overview of supervised learning in the drug design and
development field, including the widely used algorithms, challenges,
and future research directions. It covers key categories of supervised
learning algorithms such as probabilistic classifiers, linear classifiers,
deep learning, and boosting algorithms applied in this field. This paper
will be beneficial to researchers, practitioners, and students who are
interested in understanding and applying ML techniques to enhance
drug discovery and development processes. It aims to provide insights
into the practical applications of these algorithms and encourage fur-
ther research in optimizing their effectiveness in the pharmaceutical
industry.
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Table A.4
Acronyms used in the study.

Acronyms Meaning Acronyms Meaning

ML Machine Learning AI Artificial Intelligence
SL Supervised Learning RL Reinforcement Learning
LR Logistic Regression DT Decision Tree
RF Random Forest SVM Support Vector Machine
LASSO Least Absolute Shrinkage and Selection Operator NB Naive Bayes
NN Neural Network MLP Multilayer Perceptron
ANN Artificial Neural Network DAG Directed Acyclic Graph
CART Classification and Regression Tree IG Information Gain
GL Graph Learning HL Hierarchical Learning
GR Gradient Reversal HR Heart Rate
CNN Convolutional Neural Network FC Fully Connected (layer)
RNN Recurrent Neural Network LSTM Long Short-Term Memory
GRU Gated Recurrent Unit GNN Graph Neural Network
GNNs Graph Neural Networks DL Deep Learning
TP True Positive TN True Negative
FP False Positive FN False Negative
TPR True Positive Rate FPR False Positive Rate
AUC Area Under the Curve ROC Receiver Operating Characteristic
MAE Mean Absolute Error MSE Mean Squared Error
RMSE Root Mean Squared Error COVID Coronavirus Disease
SARS Severe Acute Respiratory Syndrome SHAP SHapley Additive exPlanations
RGNN Residual Graph Neural Network GB Gradient Boosting
XT Extra Trees GDB-8 Generated Database Version 8
DUDE Decomposing Unobserved Dynamics using Expectations PMD Principal Model Decomposition
CHEMBL Chemical Database AR Augmented Reality
MDD Major Depressive Disorder SSRI Selective Serotonin Reuptake Inhibitor
HRSD Hamilton Rating Scale for Depression SNRI Serotonin-Norepinephrine Reuptake Inhibitor
EHR Electronic Health Record PGRN Progranulin
AMPS Antidepressant Medication Pharmacogenomics Study STAR Sequenced Treatment Alternatives to Relieve

Depression
ISPC International SSRI Pharmacogenomics Consortium GBM Gradient Boosting Machine
MRI Magnetic Resonance Imaging RNA Ribonucleic Acid
TCGA The Cancer Genome Atlas MR Magnetic Resonance
AD Alzheimer’s Disease MCI Mild Cognitive Impairment
ADNI Alzheimer’s Disease Neuroimaging Initiative PK Pharmacokinetics
PD Pharmacodynamics GAN Generative Adversarial Network
SMOTE Synthetic Minority Over-sampling Technique ADASYN Adaptive Synthetic Sampling Approach
LDA Linear Discriminant Analysis PGRN-AMPS Pharmacogenomics Research Network Antidepressant

Medication Pharmacogenomics Study
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