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Human tactile sensing and sensorimotor
mechanism: from afferent tactile signals to
efferent motor control

Yuyang Wei 1,2, Andrew G. Marshall 3, Francis P. McGlone4,
Adarsh Makdani 5, Yiming Zhu 2, Lingyun Yan2, Lei Ren 2,6 &
Guowu Wei 7

In tactile sensing, decoding the journey from afferent tactile signals to efferent
motor commands is a significant challenge primarily due to the difficulty in
capturing population-level afferent nerve signals during active touch. This
study integrates a finite element hand model with a neural dynamic model
by usingmicroneurography data to predict neural responses based on contact
biomechanics and membrane transduction dynamics. This research focuses
specifically on tactile sensation and its direct translation into motor actions.
Evaluations of muscle synergy during in -vivo experiments revealed trans-
duction functions linking tactile signals andmuscle activation. These functions
suggest similar sensorimotor strategies for grasping influenced by object size
and weight. The decoded transduction mechanism was validated by restoring
human-like sensorimotor performance on a tendon-driven biomimetic hand.
This research advances our understanding of translating tactile sensation into
motor actions, offering valuable insights into prosthetic design, robotics, and
the development of next-generation prosthetics with neuromorphic tactile
feedback.

Cutaneous neural dynamics are integrated by the cuneate nucleus
located at the brainstem to elicit primary perceptual and sensorimotor
reactions before further processing in the thalamus and somatosen-
sory cortex1. Understanding human tactile sensing and sensorimotor
mechanisms is a long-term scientific challenge. To achieve this,
population-level afferent tactile signals evoked during active touch
shouldbe studiedunder the resultingperception andefferent actions2.
Additionally, understanding the transduction mechanism between
afferent tactile signals and efferent motor control is crucial for a dee-
per insight into the human sensorimotor system, and has potential
applications in prosthetics to enhanceneural compatibility3–8. Previous
studies have been conducted to observe the morphology and

connectivity of cuneate neurons9. These neurons process and encode
tactile information from hand mechanoreceptors, subsequently
transmitting these signals to the somatosensory cortex for inter-
pretation. Furthermore, techniques such as in-vivo microneurography
and microsimulation have been developed to record afferent tactile
signals and study the perceptual consequences of activating single
sensory neurons, thus advancing our understanding of tactile coding
mechanisms10–14. Post-synaptic neural signals15–20 have been recorded
to determine the flow and interaction of these sensorimotor signals
within the peripheral and central nervous system. However, micro-
neurography and macrostimulation are unsuitable for conducting
repetitive21 and invasive experiments on living subjects12–14. Moreover,
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the understanding of human tactile sensing and sensorimotor control
mechanisms remain preliminary owing to the technically demanding
measurements of the population-level afferent tactile signals during
active touch. An effectivemethod is required to gain access to afferent
tactile signals during active exploration22–26 and relate them with the
resulting perception or efferent response. An integrated numerical
method, based on the contact mechanics and neural dynamic model,
was used to predict the group response of the cutaneous receptors;
moreover, post-synaptic afferent signals were used to overcome the
difficulties in this study.

In the meantime, researchers are attempting to restore these
biological afferent tactile neural dynamics and the sensorimotor
function on robotics toward the application of neuroprosthetic. Tac-
tile sensors have been integrated with spiking neural models to con-
vert analogue signals into digital spike trains mimicking the neural
spiking features of human cutaneous receptors2,24,25,27–29. The dis-
crimination accuracy resulting from these spike-trained signals has
been quantified through the artificial neural network. However, whe-
ther these neuromorphic afferent tactile signals andmachine learning-
based decoding algorithms could represent the biological sensing
mechanism is unclear. The spike-trained tactile sensors were also
mounted onto the prosthetic or robotic hand to provide haptic feed-
back for restoring human hand performance5,7,30. Pioneering research
has been conducted to control themoving speed of the robotic arm31,32

through the brain-computer interface based on the efferent motor
signals of the human subjects. Simple pain-reflex or slipping reactive
controls alongside object recognition were also implemented6,8,31,33–35.
Specific work on tactile feedback system has also been developed,
including practical sensory feedback applications in bidirectional hand
prostheses by Raspopovic et al.36, exploration of long-term bionic
hand adaptation by Ortiz-Catalan et al.37, and investigation of multi-
sensory perception by Preatoni et al.38. Unlike these studies, the
research focuses onmodel-based sensorimotor control strategies and
neural codingmechanisms. These strategies are specifically applied to
develop closed-loop systems for enhancing neuroprosthetic
functionality.

Toward these two main goals in this study, a method of using a
finite element (FE) hand-based multi-level numerical model to effec-
tively compute the afferent tactile signals under active touch was
applied. Human afferent tactile signals were captured through
microneurography to validate and optimize the numerical model. The
dynamic relationship between afferent tactile signals and motor neu-
ron signals was encapsulated in ‘transduction functions’, that offer the
potential to restore sensorimotor performance in robotics or pros-
thetics. These ‘concise transduction functions’ represent a significant
methodological advancement in this research, distilling complex sen-
sorimotor interactions into simplified mathematical models. They
capture the essential dynamics between afferent tactile signals and
efferent motor responses, facilitating a deeper understanding of the
underlyingmechanisms crucial for neuroprosthetic development. The
accuracy and applicability of the decoded sensorimotor transduction
functionswere demonstrated through a self-developed artificial tactile
sensory system (ATSS) featuring neuromorphic tactile feedback, as
shown in Fig. 1. The ATSS developed in this study exhibited sensing
performance comparable to human subjects at the 2nd order cuneate
neural signals stage, with differences in discrimination accuracy
between the human subjects and the ATSS below 15%.

Results
Development of the neural dynamic model
A two-layered neural dynamic model (see Fig. 2) was adopted in this
study to compute the biological and neuromorphic afferent tactile
signals: the 1st order tactile neuron model predicting the cutaneous
spike trains and the 2nd order cuneate neuron model for post-
processing the cutaneous neural dynamics39.

The Izhikevich neural dynamic model was used as the core com-
ponent to model the 1st order tactile neuron owing to its computing
efficiency and ability to reproduce the spiking, bursting response, and
adaption properties of mechanoreceptors40,41. A general porting
function was applied to tune the current signals of the tactile sensor
and fed into the Izhikevich neural dynamic model to compute neuro-
morphic afferent tactile signals42. The porting function and Izhikevich
neural dynamic model were integrated to imitate the spiking features
of the slowly adapting type I (SAI) and fast adapting type I (FAI)
mechanoreceptor as presented in Eq. (1) to (4).

SAI :
dvðtÞ
dt

=0:04vðtÞ2 + 5v tð Þ+ 140� u tð Þ+ K1
Cm

IðtÞ ð1Þ

FAI :
dvðtÞ
dt

=0:04vðtÞ2 + 5v tð Þ+ 140� u tð Þ+ K2
Cm

dIðtÞ
dt

ð2Þ

duðtÞ
dt

= aðbv tð Þ � u tð ÞÞ ð3Þ

If v≥ 30mv
v c

u u+d

�
and I tð Þ=K× ISensorðtÞ ð4Þ

Where a, b, c, d are neuron parameters, u is the membrane
recovery variable. K is the gain factor modulating the current signal of
the sensor. The five parameters including the gain factor K and the
neuron parameters a, b, c, d of the Izhikevich model were optimized
using the response surface method (RSM) against the human afferent
tactile signal captured through microneurography. The experimental
process of microneurography and the raw afferent tactile signals
captured are presented in Fig. S1 in the supplementary material, the
measurement was performed by inserting a tungsten electrode into
the median nerve at the wrist. The RSM method aims to find the spe-
cific magnitudes of parameters that produce the best goodness of fit
(See Eq. 5) between the microneurography results and the neuro-
morphic signals. The initial values are a = 0.02Ohm, b = 0.2,
c = −65mv, d = 6mv obtained from the literature24, the initial value of
gain K was set as 25.

FSS = 1�
Pn

i = 1 ðexp�fÞi � ðpre� fÞi
� �2Pn

i = 1ðexp�fÞi2
ð5Þ

Where the exp stands for the measured spiking rate, pre is the pre-
dicted spiking rate computed through the optimised 1st order neuron
model, n is the number of the data points. The optimized results were
a = 0.02Ohm, b =0.205, c = −65mv, d = 6.20mv, K = 55 for SAI tactile
unit and a = 0.02 Ohm, b =0.210, c = −65.5mv, d = 6.15mv, K = 56 for
FAI tactile unit.

The prediction process of the biological population-level 1st order
afferent tactile signals is similar to that of computing the neuro-
morphic ones. The only difference is that the mechanoelectrical
transduction model was used for deriving the membrane current
rather than directly modulating the current output from the sensor
through the gain function. A subject-specific FE human hand model
was applied to simulate active touch. The strain energy density (SED)
was extracted at the site of the mechanoreceptors and fed into the
mechanoelectrical transduction model to derive the membrane cur-
rent. The tactile signals elicited from the first-order neurons were then
computed through the Izhikevich neural dynamicmodel based on the
membrane current flow over the cutaneous receptor. The detailed
process of predicting the human afferent tactile signals was illustrated
in our previous research43.

The 2nd order tactile neuron model was developed based on 1st
order neuron model (see Fig. 2). The afferent tactile signals were
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convolved with the postsynaptic potential (PSP) waveform before
being integrated. Equation 5, which describes the PSP waveform, is
relevant to the neuralmodel and can be explained in the context of the
study. It represents the dynamics of the PSP that is crucial in the
information processing of afferent tactile signals in the neural model,
where the mathematical models and algorithms used in the research
are described. The PSP waveform described by Eq. 5 plays a role in the
neural processing of afferent tactile signals and contributes to the
generation of neural dynamics in the cuneate neurons.

PSPi = exp
t

τdecay

 !
� exp

t
τrise

� �
ð6Þ

PSPtotal =
X
i236

PSPi ð7Þ

The time decay τdecay = 4ms and rise time τrise = 12.5ms7 deter-
mine the shape of the PSPi kernel44. The mapping from the
afferent fibers to the cuneate neurons was defined based on
neuroanatomical data.

The average divergence/convergence ratio of 1700/300 corre-
sponding to the fast feed-forward encoding/decoding process of the
2nd neuron level45 was adopted. Therefore, if 100 SAI units are acti-
vated, there would be at least 567 cuneate neurons recruited to post-
process these afferent tactile signals. The convolved 1st order afferent
tactile signals were selected randomly and integrated as post-synaptic
potentials according to the divergence/convergence ratio39. The
maximum post-synaptic potential PSPtotal was picked and fed into the
Izhikevich model to compute the neural dynamics of the cuneate
neurons according to the winner-take-all algorithm44.

This cuneatemodel incorporates two primary types of neurons to
emulate the neural dynamics within the cuneate nucleus. These

( )
= 0.04 ( )2 + + 140 − + ( )

( )
= ( − )
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Validation of the sensorimotor functions Extraction of the sensorimotor function

Fig. 1 | The two-layered neural dynamic model for computing the biological
andneuromorphic afferent tactile signals.Avalidated FE humanhandmodelwas
employed to simulate the active touch, the strain energy density (SED) was
extracted at the site of mechanoreceptors and fed into the mechanoelectrical
transduction model for deriving the membrane current. The biological 1st order
afferent tactile signal was then computed through the Izhikevich neural dynamic
model. The post-synaptic neural action potentials were integrated based on the

cutaneous neural dynamics. Detailed process for predicting biological afferent
tactile signals were presented in our previous work. The neuromorphic afferent
signals were calculated based on a similar procedure. The gain function was
adopted to modulate the current output of the tactile sensor array rather than the
mechanoelectrical transduction model for predicting the biological membrane
current.
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neuron types include excitatory neurons and inhibitory interneurons.
Excitatory neurons serve as the principal conveyors of sensory infor-
mation, transmitting tactile signals from the peripheral mechan-
oreceptors to subsequent neural stages. In contrast, inhibitory
interneurons play a pivotal role in modulating and fine-tuning neural
activity by exerting inhibitory control over excitatory neurons. This
dual-neuron representation aligns with the known neurobiology of the
cuneate nucleus, contributing to a more biologically faithful simula-
tion. The architecture of our cuneate model closely mirrors the ana-
tomical organization of the cuneate nucleus observed in the human
brainstem. The cuneate nucleus exhibits somatotopic organization,
wherein different regions within the nucleus correspond to specific
anatomical regions of the upper limb, particularly the hand and fin-
gers. In our model, we faithfully replicate this somatotopic arrange-
ment, allowing for the spatial mapping of tactile information. This

organization ensures that tactile signals from distinct regions of the
upper limbareprocessed separatelywithin the cuneate nucleus before
onward transmission.

Extract the sensorimotor control strategy
After acquiring the population-level afferent tactile signals as the input
for the sensorimotor control algorithm, the output neural activation
level of the muscle synergy was extracted based on in-vivo grasping
experiments. The detailed experimental setup and process are
explained in the ‘Methods’ section. The neural activation level of the
muscle synergy during active touch was extracted from the EMG sig-
nals using the non-negative matrix factorization algorithm (NMF)46,47.
The optimal number of muscle synergy was regarded as its minimum
value that achieved amean variance account for (VAF) value above 85%
with less than a 6% increment after adding another synergy48. Only a
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Fig. 2 | The neuromorphic tactile signals elicited based on the 6 by 6 tactile
sensor array. The neuromorphic cutaneous (1st order tactile signals) and cuneate
(2nd order tactile signals) signals (SAI units) elicited during active touch with
cylinders and spheres ranging in diameter from 50 to 100mmare presented. These

tactile signals from two distinct levels are displayed alongside their corresponding
positions within the human sensorimotor system and the artificial tactile sensory
system.
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single muscle synergy dominating the motor control of the forearm
muscles was recognized during active and reactive grasping in this
study. The muscle synergy neural activation level was regarded as the
output of the sensorimotor controlling strategy,whereas the inputwas
the 2nd order afferent tactile signals49,50. The use of synergy in our
study is basedon the idea that the humanmotor systemoften operates
by combining the motions of individual fingers into coordinated pat-
terns or synergies when performing various grasping tasks. These
synergies represent coordinated patterns of muscle activations that
simplify the control of multi-fingered hands, allowing for efficient and
robustmanipulation of objects. Our goal was to capture the essence of
this humanmotor control strategy. The use of synergy in ourmodeling
approach allows us to create a simplified yet effective representation
of the sensorimotor control strategy employed by humans during
grasping.

In this study, five additional human subjects also participated in
the same in-vivo grasping experiments, and the results are presented
in Fig. S2. The consistent patterns observed across all six subjects
ensure the broad applicability and generalizability of our conclusions.
However, our study was designed around subject-specific modeling,
tailoring various components, including the multi-level neural model
for calculating human afferent tactile signals, biomechanical model,
and soft robotic hand, to the characteristics of the initial participant.
This approach ensured a high level of consistency across all study
aspects. Furthermore, subject-specific data and models allowed us to
maintain a uniform experimental setup, facilitating meaningful com-
parisons and insights into sensorimotor control strategy. It mitigated
potential confounding variables associated with inter-individual
variability. The dynamic transduction mechanism between the input
tactile signals and output neural activation level was determined using
the system identification algorithm51. Researchers have deduced that
the selective responses of the SAI and FAI unit are critical for sensor-
imotor control52,53. To achieve a more accurate representation of the
sensorimotormechanism, the neuromorphic tactile signals of both the
SAI and FAI tactile units were computed and integrated as the afferent
tactile input. In terms of all the three gasping postures, the transduc-
tion function in terms of a

S2 +bS+ c
achieved the largest goodness of fit

between the predicted and biological neural activation levels among
the functions adopting the different numbers of pole/zeros below the
10thorder. Therefore, the transduction functionof a

S2 +bS+ c
was applied

to represent the dynamic relationship between the afferent tactile
input and the output activation level of muscle synergy during active
grasping. A reactive grasping experiment was also conducted; a
cylinder or sphere was grasped firmly by the human subject and a
20 gm weight was lifted to a specified altitude and dropped onto the
grasped object (see Fig. S3). The subject was blindfolded and could
only maintain stable grasping based on tactile feedback. The trans-
duction mechanism between the input afferent neural dynamics
evoked by the slippage and the reactive neural activation level muscle
synergy were extracted through the system identification algorithm.
The transduction function of a

S3 +bS
2
+ cS +d

was summarized to represent
the sensorimotor strategy of reactive grasping. The values of the poles
of these transduction functions are presented in Table. S1–10, and the
comparison between the biological and computed neural activation
level based on these transduction functions are shown in Fig. S4.

The population-level afferent tactile signals under active touch
were computed through the validatedmulti-level numericalmodel and
studied under the resulting perception in this study. The sensorimotor
control mechanism between the input afferent post-synaptic cuneate
neuron dynamics and the output activation neural activation level of
muscle synergy was summarized and implemented on the ATSS to
demonstrate its applicability and accuracy. Similar grasping and sen-
sorimotor control performancewith the human subject were achieved
by the ATSS, based on the neuromorphic afferent tactile signals,

providing the possibility and a reliable process for developing the next
generation neuroprosthetic restoration of human sensing and grasp-
ing capability.

The sensing performance of the artificial tactile sensing system
with the optimised tactile neural model
The signal of the 6 × 6 tactile sensor arraywas collected and processed
by the optimized neural dynamicmodel to produce the neuromorphic
tactile signals during active grasping. The discrimination accuracy of
the human subject and ATSS were evaluated. The cylinders and
spheres were required to be differentiated from a baseline cylinder or
sphere with a diameter of 100mm. it has been found by researchers
that the response from SAI tactile units are critical to recognizing
edges, corners, and curvature54. Therefore, the discrimination accu-
racy was estimated based on the neuromorphic tactile signals of SAI
units. Passive stimuli (the same group of objects were used to com-
press the tactile sensor on the index fingertip with the same pressure
experienced by the fingertip during active touch) were also placed on
the tactile sensor to examine the effect of active touch on the sensing
performance of theATSS. Figure 2 shows the neuromorphic cutaneous
afferent tactile signals of the 36 sensing units and the postsynaptic
neural firing dynamics within the time duration of 1000ms under
active touch. The firing rates of these neuromorphic tactile signals for
both SAI and FAI tactile units are shown in Fig. 3. The tactile signals
during contactwith cylinders and spheres ranging in diameter from80
to 100mm are depicted here. Tactile signals during contact with all
objects are presented in Figures S5 to S8 in the supplementary mate-
rial. The spiking rate of the artificial tactile units ranged from 29 to
52 spike/s and 32 to 57 spike/s in terms of cylindrical and spherical
grasping, respectively. The largestfiring rates of 52 and 57 spike/s were
presented on the central sensing elements contacting cylinder and
sphere with a diameter of 50mm. Although firing rates of fewer than
45 spikes/swere obtainedwhen in contactwith objectswith a diameter
of 100mm,more intense neural action potentials were observedwhen
touching objects with a larger curvature, this relationship between
firing rate and object curvature was observed in the post-synaptic
cuneate neuron signals. A similar trend can also be observed in terms
of the first spike latency, with smaller diameters resulting in shorter
first spike latencies.

The signal detection theory was applied to quantify the dis-
crimination accuracy of the ATSS according to the neural signal fea-
tures of the rate coding and Victor–Purpura distance extracted from
the 2nd order neuromorphic tactile signals. As is shown in Fig. 4, The
hit rates based on neuromorphic tactile signals under active grasping
agreed well with that of the human participant and the relative dif-
ferenceswerebelow 10%. Thediscrimination accuracies increasedwith
the curvature of the objects. The ATSS could differentiate the cylinder/
spherewith a diameter of 90mm from those of 100mmwith a hit rate
above 68%, which was higher than that of the human subject. The
disclination accuracy based on the neuromorphic signal tended to be
lower than that of the human subject when discriminating objects with
diameters smaller than 80mm. A discrimination accuracy of above
94% was achieved by the ATSS when differentiating objects with dia-
meters of 50 and 60mm; conversely, the human subject could reach
an accuracy of 100%. Most of the hit rates based on passive stimuli
were lower than those under active touch. The MATLAB code for cal-
culating the Victor–Purpura distance is provided in Data S1 of the
supplementary material.

To evaluate the effectiveness of our approach compared to
human tactile sensing, we conducted a comprehensive statistical
analysis on neurodynamic features, focusing on firing rates and
Victor–Purpura distances. Using the Mann-Whitney U test, suitable for
non-normally distributed data, we tested the null hypothesis that there
is no significant difference between these features and human
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performance. The results showed significant differences, with p-values
of <0.03 for firing rates and <0.01 for Victor–Purpura distances, indi-
cating that Victor–Purpura distances outperform firing rates in dis-
tinguishing objects of different sizes. This superior discriminatory
power of Victor–Purpura distances, highlighted by their lower p-value,
demonstrates their effectiveness in mimicking human tactile sensing
and suggests their potential to enhance artificial tactile systems. These
findings validate our methods and underscore the potential of
Victor–Purpura distances as a critical neurodynamic feature for
advancing neuromorphic tactile feedback technologies in prosthetics,
robotics, and neuroprosthetic development.

Decoded sensorimotor transduction functions and their impact
on artificial tactile sensing performance
The ATSS performed active and reactive grasping under the control of
the summarized transduction functions. Transduction functions are
mathematical models that convert complex sensory inputs intomotor
responses, encapsulating the dynamic relationship between afferent
tactile signals and motor neuron signals. These models enable accu-
rate representation and prediction of sensorimotor system behavior,
as presented in Fig. 5. More transduction functions extracted based on
more grasping trials are presented in the supplementarymaterial. The
biological and predicted neural activation level together with the

Cylinder 100mm Cylinder 90mm Cylinder 80mm

Sphere 100mm Sphere 90mm Sphere 80mm

a

b

Fig. 3 | The firing rates of the neuromorphic tactile signals. The distribution of
the spiking rate of the neuromorphic tactile signals computed over the 6 by 6
tactile sensing elements. The horizontal axis stands for the locations of tactile
sensing elements within the contact area, the vertical axis is the spiking rate. a The

spiking rate of the neuromorphic tactile signal elicited under cylindrical and
spherical grasping for SAI. b The spiking rate of the neuromorphic tactile signal
elicited under spherical grasping for FAI.
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contact pressure under spherical grasping as shown in Fig. 6. Stable
grasping with appropriate contact pressure was achieved by ATSS
based on the sensorimotor control algorithm. Active and reactive
grasping under 100% and 10% of the maximum voluntary contraction
(MVC) forces were performed by ATSS to demonstrate the superiority
of the sensorimotor function. Stable grasping was achieved under the
MVC force, whereas a high contact pressure with intense neural spikes
(see Fig. S9a) was initiated, which is unsuitable for the robust grasping
of delicate objects. An unstable grasp was observed under 10% of the
MVC force (see Fig. S9b), the biomimetic hand lost contact with the
object after external impact. The contact pressure dropped to zero
andnoneuromorphic signal wasobserved. Therefore, the summarized
sensorimotor control algorithm is critical for the restorationofhuman-
like grasping performance on the biomimetic hand. The measured
neural activation levels and those predicted based on the summarized
transduction function for the other five subjects are presented in
Fig. S10. Additionally, Fig. S11 displays the contact pressures exerted
on the index fingers of both human and biomimetic hands during
active and reactive grasping, as observed in the other five subjects. The
active and reactive grasping performed on the ATSS is presented in

Movie S1. A dynamic force applied to the grasped ball demonstrates
stable grasping modulated by the sensorimotor control strategy. An
unstable grasping without sensorimotor control is also shown for
comparison.

The pressure of the tactile sensor and spiking rate of the ATSS
during active and reactive grasping were recorded and compared with
those of the human subject to determine whether human-like contact
mechanism could be achieved (see Fig. 7). The spiking rate of the 2nd
order biological and neuromorphic afferent tactile signals are pre-
sented in Fig. 7a, and the relative difference between the spiking rates
of the biological andneuromorphic tactile signals werebelow 10%. The
firing rates of both the neuromorphic and human afferent signals were
increased with the increased contact pressure, whereas the neuro-
morphic signals were more intense than the biological afferent neural
dynamics. The response time between the unset of the slipping and
intense neural signal feedback of the ATSS was higher than that of the
human subject. The biological neural signal responded approximately
80msearlier than the ATSS after the impact of external stimuli. Similar
magnitudes of pressure were observed on the biomimetic and human
hand with a relative difference below 25% (see Fig. 7b). The ATSS
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Fig. 4 | Comparative discrimination accuracy (hit rate) of the artificial tactile
sensory system (ATSS) againstmulti-subjecthumanperformancebenchmarks.
aHit rate basedon cylinder grasping via rate coding displays the ATSS’s capabilities
for diameter identification through active touch, passive stimuli, and direct in-vivo
experiments, incorporating the standard deviation across six subjects to empha-
size consistency of performance. b Hit rate based on cylinder grasping using the
Victor-Purpura distance demonstrates the ATSS’s precision in timing-based dis-
crimination tasks, compared to human subjects over a variety of cylinder dia-
meters. c Hit rate for spherical grasping by rate coding highlights the ATSS’s

proficiency in distinguishing spherical diameters, detailing active and passive
interaction modes, supplemented by in-vivo test data. d Hit rate for spherical
grasping as determined by Victor-Purpura distance underscores the system’s
temporal resolution in identifying spheres, showcasing the system’s effectiveness
against the backdrop of human sensory and motor responses. The enhanced
standard deviation representation for all panels underscores the robustness of the
ATSS across diverse human experiences, illustrating a comprehensive view of the
system’s performance in alignment or deviation from the human subjects’ tactile
discrimination.

Article https://doi.org/10.1038/s41467-024-50616-2

Nature Communications |         (2024) 15:6857 7



displayed similar sensorimotor performance, neural dynamics, and
contact mechanics with the human subject.

Discussion
In-vivo afferent tactile and efferent motor signals have been studied
over the past half-century10–14. Owing to the difficulties of measuring a
large amount of afferent neural signals under the active touch condi-
tion, the dynamic relationship between the population-level afferent
tactile signals and the motor neuron output under the sensorimotor
control strategy remains unexplored. An effective method is required
to overcome these obstacles. Recent research has focused on
developing neuroprosthetic and robotics with simple sensing and
reactive functions5,7,22–25,30. However, the hand dexterity and sensor-
imotor performance of human subjects are yet to be summarized
and restored properly in robotics. The closed-loop control from
cutaneous signals to efferent motor neurons should be explicitly stu-
died to make a step further toward the application of next-generation
prosthetics2.

In this work, a multi-level numerical model developed in previous
research was used to calculate the afferent tactile signals. This model
offers comprehensive integration of active touch mechanics and
detailed 3D geometry of the human hand, providing a more accurate
and realistic simulation of tactile interactions compared to other
numerical models in the literature55. Its multi-level simulation cap-
abilities, from skin mechanics to neural firing and response dynamics,
allow for in-depth analysis of tactile sensingmechanisms. Additionally,
the enhanced predictive accuracy, especially in active touch scenarios,
makes it a better choice for advanced applications in neuro-
engineering and prosthetic development. The population-level
human afferent cutaneous and post-synaptic cuneate neuron signals
during active touch were computed and related under the resulting
perception and motor neural signals in this study. The summarized
sensorimotor strategy was then implemented and validated on a
tendon-driven biomimetic hand. It was found that the transduction
functions of a

S2 +bS+ c
and a

bS3 + cS
2
+dS+ e

could fairly represent the dynamic

relationship between the afferent post-synaptic signals and the

efferent neural activation level of muscle synergy under active and
reactive grasping, respectively. The transduction functions extracted
from the neural activation levels of the other five human subjects are
presented in Tables S11–20, the gender and age of all the subjects are
presented in Table S21. Analysis revealed that the sensorimotor
transduction functions are similar among the five subjects studied,
with variations in the magnitudes of the poles in control strategy
magnitudes below 15%. This similarity underscores the robustness and
applicability of our sensorimotor control strategies across diverse
individuals, enhancing the model’s relevance for real-world prosthetic
applications.

The tendon-driven biomimetic hand and tactile sensory array
mounted on the distal index finger were implemented using the
optimized neural dynamic model as the ATSS. This study presented a
reliable method to restore human-like sensing and sensorimotor per-
formance on robotics/prosthetics. The neuromorphic cutaneous sig-
nals under active touch were obtained and applied to differentiate
cylinders and sphereswith different sizes based on the rate coding and
Victor–Purpura distance. The hit rates based on the neuromorphic
tactile signals varied between 69% and 98% which were comparable
with those of the human subject. The participant could differentiate
cylinders or spheres with diameters of 60mm and 50mm from the
baseline object with an accuracy of 100%. However, slightly lower
discriminating accuracy was observed in the ATSS. This may be due to
the adoption of the signal detection theory56, which assumes that the
‘signal’ and ‘noise’ are normally distributed. The hit rate of the ATSS
increased with the curvature of the object because the firing rate and
Victor–Purpura distance are larger than those initiated by being in
contact with the baseline object. Our previous research demonstrated
that a more intense variation of hand contact strain/stress could be
imitated when touching the object with a larger surface curvature43.
This leads to a larger membrane current through cutaneous receptors
and more intense neural spiking. The hit rates of the ATSS under
passive stimuli were less than those under active touch based on rate
coding and Victor–Purpura distance. Other researchers found that the
hand contact biomechanics under active muscle modulation is dif-
ferent from that under passive external stimuli57. Different contact

Active grasping

Reactive grasping

Afferent tactile input Efferent motor output

2 + +

3 + 2 + +

Measured neural activation level

Fitted results using sensorimotor function

Sensorimotor function

Fig. 5 | Dynamic modelling of sensory input and motor output relationships.
This figure displays the mathematical functions derived from system identification
techniques, quantifying the dynamic relationship between sensory inputs and
motor outputs. Each curve represents a model fit, demonstrating how the system
adapts to varying inputs and predicts motor responses, closely mimicking the
adaptive responses observed in human neurophysiological processes. The trans-
duction functions in this figure represent the dynamic relationship between
afferent tactile signals and efferent motor responses, quantifying how sensory
input (S) influences motor output over time and modelling the adaptive responses

observed in human neurophysiological processes. The functions were derived
using the ‘System Identification’ toolbox in MATLAB®, based on input-output data
from our experiments. For active grasping, the function is a

S2 + bS +c
, and for reactive

grasping, the function is a

bS3 + cS
2
+dS+ e

, where a, b, c, d, and e are parameters opti-

mized to fit the observed data. These functions capture the nonlinear and complex
dynamics between sensory inputs and motor outputs. The detailed development
process is presented in the ‘Methods’ section, and theMATLAB codeused to derive
these functions is provided as Data S2 in the supplementary material.
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biomechanics could affect the strain/stress distribution and the neural
electro transduction mechanism of the mechanoreceptors41,58, result-
ing in different neural dynamic features.

The summarized sensorimotor algorithm was implemented on
the ATSS and the performance was compared with that of the human
subject. The dynamic relationship between the input afferent post-
synaptic tactile signals and output activation level of muscle synergy
wasapplied to control thebiomimetic hand. Similar contactmechanics
and afferent tactile signals with the participant were obtained. The
spiking rates of the neuromorphic tactile signals were more intense
than those of the biological ones under most circumstances owing to
the larger contact pressure experienced by the biomimetic fingertip
during firm grasping compared with the human hand. The longer
response time of the ATSS between the onset of external stimuli and
feedback of the intense neuromorphic neural signals could be attrib-
uted to the time delay of the electric motors and tactile sensor array.
Therefore, similar sensing and sensorimotor performance with the
human subject were achieved by the ATSS based on the neuromorphic
afferent tactile signals. The accuracy of these transduction functions
representing the dynamic relationship between the afferent tactile
input and efferent motor output was then validated. In this study, the
multi-level numerical model predicting the population-level afferent
tactile signals combined with the microneurography and validating
experiment on robotics provided a reliable research method to study
human tactile sensing and sensorimotor functions. The implication of

the validated neuromorphic tactile signals and sensorimotor algo-
rithm on neuroprosthetic/robotics were also presented. Population-
level afferent tactile signals were computed and studied under the
resulting perception in this study. The sensorimotor control mechan-
ism was explicitly summarized and implemented on the ATSS to vali-
date its applicability and accuracy. Similar sensing capability and
contact biomechanics to those of humansubjectswere achievedbased
on the efferent and afferent signals measured from all six human
subjects. The grasping performance of the biomimetic hand was
improved by integrating the sensorimotor algorithm. The response
time of this control loop was affected by the size and weight of the
objects. The dynamic relationship between the afferent tactile signals
and the neural activation level of the forearm muscles can be effec-
tively simplified as transduction functions and applied to the controlof
robotics in this research. The comparable sensing and sensorimotor
performance basedon the neuromorphic afferent tactile signals of this
ATSS ensured the accuracy of the summarizedbiological sensorimotor
function. Therefore, using a multi-level numerical model to compute
afferent tactile signals for studying human tactile sensing and motor
feedback was demonstrated to be effective and with the potential to
provide a step towards the application of next generation
neuroprosthetic.

This research primarily focuses on the intricate neural firing and
response dynamics of tactile sensing and the integration of these
sensory inputs into effective motor control, which is vital for
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Fig. 6 | Validation and performance comparison of the ATSS sensorimotor
algorithm. a Active Grasping Phase: The left column illustrates the synchronous
evolution of neural activation level of muscle synergy and contact pressure cap-
tured by the ATSS during an active grasping task. Computed biological and ATSS-
generated 2nd order tactile afferent signals are juxtaposed, revealing the system’s
ability to emulate human tactile feedback patterns. Here the 2nd order biological
afferent tactile signals were computed through our numerical 1st and 2nd neuron
model presented before. b Reactive Grasping Phase: The right columnpresents the
reactive phase where the ATSS adjusts to sudden contact, indicated by the dashed
lines, with delayed neural activation and pressure adaptation. This response is

compared with the biological benchmarks, with the lower charts displaying the
corresponding afferent tactile signals. These graphs collectively demonstrate the
temporal accuracy and the neuromorphic efficacy of the ATSS, simulating human
like sensorimotor functions as per the summarized transduction function. Statis-
tical evaluations using Mann-Whitney U tests reveal significant differences in firing
rates and Victor-Purpura distances (p <0.03 and p <0.01, respectively), demon-
strating the enhanced capability of Victor-Purpura distances in discriminating
tactile stimuli. This supports their potential utility in developing advanced tactile
feedback mechanisms for prosthetic and robotic applications.
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understanding how tactile sensations are processed and utilized in the
complex domain of sensorimotor control—an essential aspect in the
development of advanced prosthetics and rehabilitation techniques.
Compared to other similar published works on closed-loop biomi-
metic hands or prosthetics, our study complements the ground-
breaking research on real-time bidirectional hand prostheses by
providing a deeper understanding of the neural mechanisms under-
lying sensory feedback loops. Compared to other published works on
closed-loop biomimetic hands or prosthetics, this study enhances our
previously developedmulti-level neural dynamicmodel by integrating
it with newexperimental data onneural activation signals and applying
updated sensorimotor controlling algorithms in a bio-robotic system,
restoring the human-like hand performance. This approach improves
the understanding of neural processing in prosthetic functionalities.
Additionally, unlike other research developing tactile feedback sys-
tems, such as Raspopovic’s practical sensory feedback applications in
bidirectional hand prostheses36, Ortiz-Catalan’s exploration of long-
term bionic hand adaptation37, and Preatoni’s investigation into mul-
tisensory perception38, this research focuses specifically on tactile
sensation and its direct translation into motor actions. This emphasis
provides a detailed understanding of tactile-based sensorimotor inte-
gration, instrumental for tactile-based rehabilitation and therapeutic

interventions. While each of these prior works has made significant
contributions36,38,59, this study advances the field by providing com-
prehensive insights into the neural processing of tactile information
and sensorimotor control mechanisms. It contributes to more effec-
tive tactile-based interventions, essential for enhancing prosthetic
devices and rehabilitation techniques. Our work complements and
extends other researchers’ previous work, significantly contributing to
this evolving field and paving the way for advanced prosthetic and
rehabilitative solutions.

In summary, this study advances understanding of human tactile
sensing and sensorimotor control, crucial for neuroprosthetic
and robotics. A simplified transduction function has been developed
that effectively translates afferent tactile signals into forearm
muscle activation, enabling human-like sensorimotor performance on
a biomimetic hand. This work complements and extends the prior
research. The subject-specific sensorimotor system demonstrates
significant adaptability for amputees by supporting the development
of customized prosthetic limbs. By adjusting the geometry based on
individual anatomical data and employing advanced imaging and 3D
printing techniques, each prosthetic is tailored to meet specific user
needs. This enhances prosthetic functionality and contributes to
broader applications in robotic and biomedical engineering, paving a
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Fig. 7 | The comparisons between the human subject and the ATSS in terms of
the contact pressure and the neuromorphic/biological spiking rate. a The
spiking rates of the neuromorphic and biological afferent tactile signals under

active and reactive grasping, the spiking times was counted every 200ms. b The
contact pressure on human fingertip was compared with that measured by the
tactile sensor on biomimetic hand under the active and reactive grasping.
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way for more natural and effective prosthetic and rehabilitative
solutions.

Methods
Development of tactile sensory system
To validate the summarized sensorimotor control strategy andmake a
step further towards the applications of neuroprosthetic, ATSS was
developed for implementing the sensorimotor control and object
recognition based on neuromorphic tactile signal feedback. The core
component was a tactile sensor array fully 3D printed onto the distal
index phalange of a tendon-driven biomimetics hand. The 6 × 6 sen-
sing elements were connected with the customized electric circuit
consisting of an Arduino board, shift registers, and multiplexers to
collect the pressure signal for further processing (see Fig. S12 and
Movie S1). A tendon-driven biomimetic hand containing the intact
hand bone skeleton, interphalangeal ligaments, tendon and skin was
employed as the main component of the ATSS. The skeleton of the
hand was 3D printed using polylactic and the soft tissues were mod-
elled using silicone rubber. Five electric motors (Dynamixel MX-12W,
Robotics Inc.) were used to drive the biomimetic hand. The anthro-
pomorphic size of the biomimetic hand was reconstructed based on
the same subject recruited for the in-vivo grasping and micro-
neurography experiment. This anatomical accuracywas crucial for our
study. For the object recognition and actively grasping experiments,
we employed cylindrical and spherical objects with varying diameters
(ranging from 50mm to 100mm) as stimuli/grasping objects. The
comprehensive details regarding the development of the tactile sen-
sor, the design of the biomimetic hand, and the intricate multi-level
numerical model employed for the computation of afferent tactile
neural signals are provided below.

Tactile sensor array
A tactile sensor with enhanced sensing capabilities, fabricated through
a custom3Dprinting processwas integratedwith the soft robotic hand
as our artificial tactile sensory system. This tactile sensor was devel-
oped in our previous work60, andmore detailed information regarding
its fabrication process and sensor performance is presented in. The
sensor’s fabrication commenced with the preparation of a graphene/
carbon nanotube (CNT)/silicone rubber composite, selected for its
piezoresistive and thermosensitive properties. To create the electrode
material, we mixed silver-coated copper powder with silicone rubber,
achieving optimal conductivity and printability. Employing a custo-
mized 3D printing platform, the tactile sensor was printed directly
onto various surfaces, including an anthropomorphic robotic hand
and human bone models. This direct printing process utilized the
optimized graphene/CNT/silicone composite, ensuring a conformal fit
and efficient fabrication. The sensor design features a dual-layered
structure with upper and lower papilla-auxetic sensing layers, sand-
wiched between flexible electrode layers. When external pressure is
applied, the change in the sensor’s electrical conductivity is detected
by these electrodes, allowing for precise pressure signaling. The inte-
grated biomimetic interlock structure enhances the sensor’s ability to
discriminate between different directions of external stimuli,making it
highly effective in applications requiring nuanced tactile feedback.

Biomimetic Robotic hand
A bioinspired soft robotic hand, integrating several human-hand-like
features to replicate the biomechanical advantages found in human
fingers, served as the platform for the artificial tactile sensory system.
This biomimetic robotic hand was developed in our previous work,
and more detailed information about its development is provided in
ref. 61. The robotic hand was constructed using amultilayer approach,
emulating the structural components of a humanfinger. The base layer
consists of 3D-printed phalanges and metacarpal bones, using UV
white photopolymer resin, based on CT scanning data of a human

hand. This provides the necessary rigidity and serves as the foundation
for further layers. The second layer comprises the capsuloligamentous
structure, including artificial joint ligaments and capsules. Poly-
ethylene terephthalate (PET) fiber ribbons, mimicking the crimp pat-
tern of human ligaments, were sintered onto the bones, ensuring
anatomic joint position and stiffness. Silicone rubber capsules, with
triangular-shaped folds, were used to mimic human joint capsules,
contributing to joint stability. The third layer involves the tendons and
tendon sheaths. Tendon networks were fabricated using polyester
Dacron fibers and fishing lines, while silicone rubber membranes
represented the tendon sheaths. This layer replicates the complex
tendon routing and functionality found in human hands. The design
and materials employed in each layer contribute to the overall dex-
terity and adaptability of the robotic hand, making it suitable for the
artificial tactile sensory system in this research that require human-like
manipulation capabilities.

Multilevel numerical model for computing the population-level
afferent tactile signals
A comprehensive multi-level numerical model to simulate the tactile
sensing mechanisms of the human hand during active touch was
employed in this study to calculate the afferent tactile signals43. This
model uniquely integrates finite element (FE) hand modeling with
Izhikevich neural dynamic modeling to predict the behavior of first-
order cutaneous neurons and their role in tactile perception. The
Izhikevich model was selected due to its ability to capture the rich
dynamics of neuronal behavior using a minimalistic set of equations
and parameters. This model effectively balances biological plausibility
and computational simplicity, making it an ideal choice for simulating
complex neural dynamics without the computational burden asso-
ciated with more detailed models. This multi-level numerical model
was developed and validated in our previous research. Its performance
was compared with other published models, such as ‘TouchSim’.
Detailed information on the development of the model and the
advantages of predicting afferent tactile signals under active touch are
explained in ref. 43.

The foundation of our model is the subject-specific FE human
hand model62. This model accurately replicates the geometric and
material properties of the humanhand. The FEmodel incorporates the
intricate mechanics of epidermis, dermis, subcutaneous tissue, and
bones, facilitating a detailed analysis of stress and strain distribution
during tactile interactions. On top of the mechanical model, the Izhi-
kevich neural dynamic model was applied to simulate the neural
response of the hand’s cutaneous receptors. By integrating data from
in-vivo microneurography, the model effectively predicts neural
dynamics, including the action potentials of slowly adapting type I
(SAI) and fast adapting type I (FAI) mechanoreceptors. These predic-
tions are validated against experimental microneurography data,
ensuring the model’s accuracy and relevance. The model’s capacity to
predict tactile sensation is further enhanced by incorporating active
touch scenarios. It accounts for the complex interaction ofmechanical
stimuli, skin mechanics, and neural response, providing insights into
the tactileperceptionprocessunder various conditions. This approach
enables a better understanding on how the human hand perceives and
interprets tactile information during active manipulation, making it a
valuable tool for studying sensorimotor control and tactile perception
in this study.

Derivation of the sensorimotor transduction function
In the data collection phaseof experiments, extensive datasets of tactile
sensory input (S) and corresponding neural activation levels (output)
were recorded using a tendon-driven biomimetic hand equipped with
neuromorphic tactile sensors during reactive grasping tasks. Subse-
quently, employing system identification techniques, the intricate
relationship between tactile sensory input (S) and neural activation
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levels (output) was uncovered through meticulous analysis of the col-
lected data and mathematical modeling. The mathematical model,
taking the forms of a

S2 +bS+ c
(active grasping) and a

bS3 + cS
2
+dS+ e

(reactive

grasping) to represent the dynamics of sensorimotor strategy. The
Laplace coefficients in these transduction functions were primarily
determined through a data-driven approach. The 2nd order neuro-
morphic tactile signalswere computedas the inputs ofour transduction
functions while the neural activation level extracted based on those
EMG signals collected during in-vivo experiment from the human sub-
ject were employed as the output. These experiments provided us with
a rich dataset of neural responses, tactile signals, and motor outputs
during active and reactive grasping tasks. The system identification
technique was then employed to extract the Laplace coefficients that
best represented the relationship between afferent tactile signals and
efferentmotor neuron activations. Theparameters related to active and
reactive grasping were optimized against the neural activation level
extracted based on the EMG signals collected during the in-vivo
experimental results. Tuning these parameters involved an iterative
optimization process to ensure that themodel accuratelymimicked the
sensorimotor control strategy observed in human subjects during
grasping tasks. The model parameters are unique to each subject but
are derived using a consistent methodology. The parameters for the
transduction functions related to active and reactive grasping for all six
human subjects are specified in Table S1–20of supplementarymaterial.
The MATLAB code for generating and optimizing those transduction
functions for both active and reactive grasping were contained in
Supplementary information, Data S2.

Object reorganization and sensorimotor performance of ATSS
Object recognition was performed by the ATSS to demonstrate the
accuracy of the neuromorphic tactile signals and relate it with the
resulting perception. (see Movie S2). The capability of object recog-
nition of the participant was also quantified and comparedwith that of
the ATSS by calculating the discrimination accuracy of both sides to
show its implications on the neuroprosthetic. Spheres and cylinders
with diameters of 50, 60, 70, 80, 90, and 100mmwere used for object
recognition. (see Fig. 8). The tactile sensing capacity of the human
subject and ATSS were evaluated. The cylinders and spheres were
required to be differentiated from a baseline cylinder or sphere with a
diameter of 100mm. The SAI tactile unit densely innervates the skin
( ~ 100 unit/cm2) which is sensitive to edges, corners, and curvature;
their responses are critical for feature recognition. Therefore, the
discrimination accuracy was estimated based on the neuromorphic
tactile signals of SAI units. The neural dynamic features including the
spiking rate and Victor–Purpura distance63,64 were extracted as the
input of the signal detection theory to quantify success recognition.
Therefore, the neuromorphic signals of the SAI tactile unit elicited
when touching the cylinders and spheres were collected and used for
discriminating these objects. For instance, the spiking rate of the
neuromorphic tactile signals evoked when touching the baseline
object was regarded as ‘noise’, whereas the neural spikes elicited when
touching the target object for discrimination was regarded as the
‘signal’. To quantify the discrimination accuracy based on the
Victor–Purpura distance, the ‘noise’ of the signal detection theory was
defined as the Victor–Purpura distance among the tactile signals eli-
cited when touching the baseline objects (cylinder or sphere with a

100mm Sphere

60mm Sphere 70mm Sphere

80mm Sphere 90mm Sphere

50mm Sphere

100mm Cylinder

60mm Cylinder 70mm Cylinder

80mm Cylinder 90mm Cylinder

50mm Cylinder

a c

b

Fig. 8 | The artificial tactile system with tactile sensor printed onto the
biomimetic hand. a The tactile sensor was 3D printed directly onto the index
fingertip of the biomimetic hand. bThe flexible tactile sensor (highlighted in circle)

on the index finger of the biomimetic hand. cThe active touch through the artificial
tactile system for recognizing the sphere and cylinder with different diameters.
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diameter of 100mm). The Victor–Purpura distances between the
neural dynamics evoked by touching the target and baseline objects
were regarded as the ‘signal’. Each cylinder/sphere was touched 10
times. A total of 50 Victor–Purpura distances were computed to
quantify the discriminating accuracy. The same method was adopted
to compute the discrimination accuracy of recognizing the spheres
with different diameters.

As is shown in Fig. S13, the neural dynamics evokedduring contact
with the baseline object were recorded. The mean and standard
deviation of the spiking rates during 10 touches of the baseline object
were summarized as the ‘noise’ signal in signal detection theory (SDT).
Meanwhile, the mean and standard deviation of the spiking rates
during contact with other objects, used to differentiate them from the
baseline object, were regarded as the ‘signal’ in SDT. Discrimination

0 KPa30 KPa

a

b

Fig. 9 | The active and reactive grasping performed by this ATSS under sen-
sorimotor control. a Active grasping performed by this ATSS. Cylindrical, sphe-
rical grasping and precision gripping are presented.bReactive grasping performed
by this ATSS. A customized graphical user interface (GUI) was developed to
visualize the pressure distribution across the 36 tactile sensing elements mounted
on the index of the biomimetic hand. the magnitude of the contact pressure was

visualized using the greyscale. The reactive grasping was presented in three stages:
before impact,firmgrasping after impact andnormal stablegrasping. A 20gweight
was lifted to a specified altitude and dropped onto the object, the shear force
initiated by the slippage was detected. The grasping force of the biomimetic hand
was increased under the modulation of sensorimotor control strategy.
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accuracy computed based on Victor-Purpura distance. The ‘noise’
signal in signal detection theory was defined as the Victor-Purpura
distance among tactile signals during 10 touches of the baseline object
(diameter 100mm). Victor-Purpura distances between neural dynam-
ics evoked when touching the baseline and other objects with dia-
meters less than 100mm were regarded as the ‘signal’ in SDT to
evaluate discrimination accuracy. A total of 100 Victor-Purpura dis-
tanceswere computed. All cylinderswere perceptually tested 10 times.
The Victor-Purpura distances were calculated for differentiating the
neuromorphic tactile signals evoked by contacting cylinders with
diameters of 100mm and 90mm, 100mm and 80mm, 100mm and
70mm, 100mm and 60mm, 100mm and 50mm. The same method
was used to compute discrimination accuracy for recognizing spheres
with different diameters. Therefore, there were a total of 50 Victor-
Purpura distances for differentiating cylinders and another 50 for
spheres from the baseline objects. The detailed evaluation process of
the discrimination accuracy is presented in Fig. S13 and these Victor-
Purpura distances are given in Table S22 of the supplementary mate-
rial. An in-vivo discrimination test was also conducted to quantify the
tactile sensing capability of the human subject for comparison
with ATSS.

Active and reactive grasping were performed by the ATSS to
validate the accuracy of the sensorimotor algorithm and present its
necessity on robotics/prosthetics control (see Fig. 9). The active
grasping performed by the ATSS is shown in Fig. S14. In this study,
active grasping is characterized by intentional object manipulation
using precise, sensory-guided motor commands, showcasing the sys-
tem’s dexterity. Reactive grasping occurs in response to unexpected
disturbances, requiring reflexive adjustments based on immediate
feedback, which assesses the system’s adaptability. Three grasping
postures were selected and performed on the ATSS, handling round/
cylindrical objects and pickup tasks, based on their prevalence in
robotics and prosthetics research65. These tasks are crucial for evalu-
ating prosthetic hand functionality, as they reflect common daily
activities. They offer a measurable means to assess the sensory input
and feedback mechanisms essential for advanced prosthetic design.
This alignment with established benchmarks ensures that our study
facilitates meaningful comparisons and advancements in the field. A
python program (Data. S3) was developed for processing the pressure
signal and controlling the motors to produce similar contraction for-
ces with the human forearm muscles. The transduction functions of

a
S2 +bS+ c

(active grasping) and a

bS3 + cS
2
+dS+ e

(reactive grasping) were

applied to modulate the torque of the motors, imitating human hand
sensorimotor performance based on the neuromorphic tactile
feedback.

In-vivo object reorganization and sensorimotor experiments
Three postures, including cylindrical and spherical grasping, as well as
precision gripping, were involved. Objects used for grasping included
spheres and cylinders with diameters of 50, 80, and 100mm, and a
triangular prism with uniform triangle base lengths of 10, 20, and
30mm for precision gripping. Six human subjects were recruited to
actively grasp the objects and hold them for 5 s. Among the subjects
was a 24-year-oldmale, who was employed to provide DICOM images,
microneurography data, and develop the numerical model for calcu-
lating afferent neural signals for the biomimetic robotic hand. Elec-
tromyography (EMG) signals of three muscles including the flexor
digitorum profundus (FDP), flexor digitorum superficialis (FDS), and
flexor pollicis longus (FPL) were recorded (see Fig. S3) using theDelsys
Trigno (Delsys Inc., Boston, US). The kinematics of the hand were
captured through Vicon Systems (Vicon Motion Systems Ltd, Oxford,
UK). During the in-vivo object recognition and grasping experiments,
the participant executed each grasping task (active and reactive) on

the objects a total of 10 times, consistent with the procedures per-
formed by ATSS.

Regarding the general applicability of our simulation and experi-
mental data, as well as the sensorimotor strategies and the entire
robotic system, our subject-specific FE human hand model—initially
developed from detailed CT scans andmicroneurography of a specific
subject—is designed for adaptability across different individuals,
including amputees. The model’s geometric and material properties
can be adjusted to match the unique anatomical data of new users,
which is particularly crucial for amputees. For bilateral amputees,
where no direct comparativemodel exists, linear scaling of existing 3D
models can be employed to fabricate custom prosthetic components
using techniques such as 3D printing. Additionally, for unilateral
amputees, CT or MRI scans of the remaining limb provide a template
for creating a mirror-image prosthetic. This standardized yet custo-
mizable approach allows our model to efficiently accommodate
diverse anatomical variations, supporting its application in both clin-
ical settings and biomedical research.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The Supplementary Figs. S1-S12, Tables S1-S22, and Supplementary
Movies S1 and S2 are provided in the supplementary information. The
sensorimotorperformancesof thebiomimetic hand,modulatedby the
sensorimotor functions, are presented in Movie S1, while the active
grasping performances are shown in Movie S2.

Code availability
Data S1 and S2, which are theMATLAB codes for computing the Victor-
Purpura distance and transduction functions, respectively, along with
Data S3, the Python code for implementing sensorimotor control on
the artificial tactile sensory system, are also included as supplementary
information.
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