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Abstract
Purpose of review This study aims to investigate anthropogenic noise impact on avian species by means of a systematic 
review of literature.
Recent findings Based on previous anthropogenic noise impact frameworks, it was possible to: clarify the impacts of noise 
on birds; optimise the existing frameworks with findings produced over 44 years; recategorise noise impacts into more 
appropriate categories, indicating which are the positive and negatives, as well as acute and chronic impacts caused by 
anthropogenic noise; provide a significant cluster model of anthropogenic noise impacts on avian species subdivided into 
impacts on ‘Behaviour’ and ‘Communication/Perception’ (Cluster 1) and ‘Physiology’ (Cluster 2); and show how avian 
hearing frequency range overlaps noise source frequency range.
Summary This research adopted the database of Peacock et al. [1, 2] regarding avian species due to its vast coverage across 
taxa. A systematic literature review of 50 peer-reviewed papers about anthropogenic noise impact on birds was undertaken. 
A Two-Step Cluster analysis was calculated, showing the data subdivided into two clusters. Cluster 1 (76.9%) showed behav-
ioural responses mainly composed of negative and auditory perception and communication impacts, presenting positive or 
negative noise impacts. Cluster 2 (23.1%) mainly showed negative impacts on physiological outcomes caused by traffic, 
anthropogenic, and background noise.

Keywords Noise impact · Birds · Physiology · Behaviour · Communication · Auditory perception

Introduction

Interest in the description of the interaction between 
anthropogenic and wildlife sounds emerged at the time of 
Aristotélēs (384 – 322 BC) through underwater acoustics 
observations [3]. Nearly 2000 years later, Leonardo da Vinci 
observed the sonic environment of ships and their effect on 
marine mammals [4]. In 1870, Thomas Edison invented 
a wax-cylinder recorder, which was used in 1889 for the 
first animal recordings in Germany [5]. Some years later, in 
1892, Richard Lynch Garner recorded primates in a North 
American zoo [6]. However, anthropogenic noise was not 

highlighted as a problem until 1960, when the availability of 
audio cassette recorders made it possible to capture record-
ings during field studies [7]. In 1978, Flecher & Busnel 
published one of the first books about the effects of anthro-
pogenic noise on wildlife as a result of the Symposium on 
the Effects of Noise on Wildlife, organised by ICA-WG4 
as part of the 9th International Congress on Acoustics in 
Madrid, Spain in 1977 [8]. Since then, interest in the topic 
has increased, especially in recent years, due to the biodi-
versity crisis and rapid globalisation [9].

Besides wildlife, noise generated, especially on roads, 
railways, or airports, significantly impacts humans. These 
effects can transcend nuisance when exposition over a long 
period becomes a public health issue. The health impacts 
include annoyance, sleep disturbance, cardiovascular and 
metabolic problems, and adverse cognitive effects on chil-
dren during learning [10].

Anthropogenic noise can impact wildlife at individual 
and population levels on all continents and habitats [11], 
affecting land and sea wildlife [10]. It can also disrupt 
ecosystems through changes within populations (e.g., 

 * Margret S. Engel 
 margret.engel@mailbox.tu-dresden.de

1 Environmental Research & Innovation Centre, University 
of Salford, Manchester, UK

2 Acoustic Research Centre, University of Salford, Manchester, 
UK

3 Institute of Acoustics and Speech Communication, 
Technische Universität Dresden, Dresden, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s40726-024-00329-3&domain=pdf


685Current Pollution Reports (2024) 10:684–709 

species that use vocalisations for courtship) [12], reducing 
the ability to reproduce [10] and interactions between spe-
cies, including prey location and predator detection [12]. 
In underwater ecosystems, it can affect large mammals' 
ability to communicate and find food when exposed to the 
noise of shipping activities [10].

In 2020, the European Environment Agency published 
Report No. 22/2019 [13], which highlights the potential 
for anthropogenic noise to impact on both terrestrial and 
aquatic species. Impacts may be related to physiological 
and behavioural responses, influencing reproductive suc-
cess, mortality, emigration and population density. Effects 
can start at low noise levels (by human definition, e.g. 
40 dB(A)) for terrestrial species, such as birds, and the 
impacts depend on the frequency and noise source [14]. 
In an area of 1,594,451  km2 across the EEA-33 (exclud-
ing Croatia and Turkey), at least 19% of the Natura 2000 
protection areas are affected by noise from roads, railways, 
and aircraft with levels over the expected sound pressure 
range for quiet areas established by the European Noise 
Directive [13]. The Natura 2000 network was established 
based on European legislation (e.g., the Birds Directive 
[15] and Habitats Directive [16]), which states how special 

areas of conservation and special protection areas should 
be managed [15–17].

In North America, the US Department of Transportation 
published a report in 2004 report, no. FHWA-HEP-06–016 
[18], which provided a “Synthesis of Noise Effects on Wild-
life Populations”. Regarding birds, it considered their hear-
ing range and sensitivity, also how propagation and attenua-
tion of sounds can affect exposure at different forest heights, 
and species avoidance of traffic-dominated areas mediated 
by the quantity of traffic and distance from roads [18]. Sub-
sequently, the US Department of Transportation provided 
reports about noise control measures, such as noise barriers 
made of glass, these highlighted the issue of bird collisions 
with this kind of noise barrier, and proposed solutions to 
avoid bird collisions [18–21]. The detailed abbreviations and 
their definitions are listed in Table 1.

Motivation for Avian Species Noise Impact 
Investigation

According to the IUCN’s Red List of Threatened Species 
[22], the avian class is the only class of animal species that 
was completely evaluated regarding the number of existing 

Table 1  List of abbreviations used in the paper

Abbreviation Definition Abbreviation Definition

Ac Accipitriformes DPS Depends on Predominant Source
An Anseriformes EEA European Environment Agency
Ap Apodiformes EEA-33 33 member countries of the European Environment Agency
Ca Caprimulgiformes H Kruskal Wallis Test
Ch Charadriiformes Hz Hertz
Cl Columbiformes HPA Hypothalamic–pituitary–adrenal
Col Coliiformes ICA-WG4 International Congress on Acoustics – Work Group 4
Co Coraciiformes IOC International Community of Ornithologists
Cu Cuculiformes IUCN International Union for Conservation of Nature
Fa Falconiformes KHz Kilohertz
Ga Galliformes N Population size
Gr Gruiformes n Sample size
Pa Passeriformes PHF Peak Hearing Frequency
Pe Pelecaniformes PSF Peak Sound Frequency
Ph Phoenicopteriformes PTS Permanent Threshold Shift
Pi Piciformes TTS Temporary Threshold Shift
Po Podicipediformes UAS Unmanned aircraft systems
Ps Psittaciformes UAV Unmanned aerial vehicle
St Strigiformes US United States
Su Struthioniformes UK United Kingdom
CF Cluster Feature UKRI UK Research and Innovation
CFR Communication frequencies UAV Unmanned aerial vehicle
dB(A) A-weighted decibel ɛ2 Epsilon squared
dB decibel fΔ Frequency variation
DNA Deoxyribonucleic acid χ2 Chi2 Goodness of Fit
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species and species under threat, as observed in Table 2. 
Therefore, the avian class is the only class allowing a correct 
anthropogenic impact estimation.

Noise Exposure Characteristics and Effects on Birds

In 2007, a report by the California Department of Transpor-
tation explored the effects of highway noise on birds [23]. 
In this report, Dooling and Popper [23] showed not only the 
effects caused by highway noise but also the characteristics 
of the noise source (e.g., their amplitude, frequency range 
and distance from the receiver, shown as zones (Table 3)). 
They did not define a distance range for their suggested 
zones of influence. Instead, they stated that “zone 1” was 
very near to the sound source and “zone 4” was very far 
from the source. Other studies regarding traffic noise have 
also shown the influence of noise amplitudes, the number of 
vehicles passing per hour and the distance over which effects 
on birds may be observed [24–26]. Based on these studies, 
it was possible to suggest some distances for the suggested 
effect zones, where zones 1–2 could be up to 30 m, zone 3 
around 100 m, and zone 4 around 1500 m from the noise 
source.

As observed in Table 3, the effects on birds depend on 
noise amplitudes and covered frequency range. Likewise, in 
humans, the corresponding dose of noise can cause perma-
nent threshold shift (PTS), which is permanent hearing dam-
age, occurring from noise levels over 110 dB(A) in small 
mammals [27]. Temporary threshold shift (TTS), which 
is temporary hearing damage, has been observed in birds 
exposed to noises between 93 and 110 dB(A) in budgerigar 
(Melopsittacus undulatus) and small mammals [23]. Vocali-
sation masking has been reported when the noise sources 
have amplitudes between 85 and 125 dB(A). Physiological 
responses have been observed with noises between 85 and 
140 dB(A), while behavioural responses with noises between 
38 and 140 dB(A). The negative impacts on birds start with 
noise levels at 38 dB(A) related to breeding behaviour [25]. 
This could indicate that the noise source is disturbing rather 
than the noise level.

Most noise impact responses are acute [11], especially 
if the frequency content overlaps with the communication 

frequencies from birds. For example, it can be mentioned 
species like the Black-billed magpie, with communication 
frequencies (CFR) ranging from 0.5 to 3 kHz [33] and Rain-
bow lorikeet, with communication frequencies between 1 
and 1.5 kHz [34], that overlap with traffic noise sources, 
which generally have a sound peak frequency between 0.5 
and 1 kHz [35, 36]. Other species, like Common murre 
(CFR = 0.1 to 10 kHz) [37], Black-crowned night heron 
(CFR = 1.5 kHz) [38] and Wood duck (CFR = 1.4 to 1.9 kHz) 
[39], overlap their communication frequencies with aircraft 
noise sources that generally have a source peak frequency 
of 1 kHz [40]. However, species differ in communication 
behaviour in response to anthropogenic noise (e.g., with traf-
fic spectral components). The differences occur due to the 
auditory thresholds’ differentiation between species, where 
some species react, and others do not react to anthropogenic 
noise [41]. Over time, noise exposure can have other chronic 
characteristics, which can also degrade mid- and low-fre-
quency hearing abilities, as has been observed in canar-
ies (Serius canarius) [42]. Behavioural responses, such as 
increased flushing distance during the breeding period [43], 
have been observed in birds exposed to anthropogenic noise 
and changes in the frequency and duration of feeding nest-
lings in playback experiments, which used highway traffic 
noise around 69.1 dB(A) [44].

Classification of Anthropogenic Noise Impacts 
on Birds

Over the last two decades, several frameworks, mechanistic 
schemes and descriptions regarding the impacts of anthro-
pogenic noise on wildlife have been presented [11, 13, 45, 
46]. Effects of acoustic stimuli on animal physiology, devel-
opment, neural function, genetic effects and behavioural 
changes have been reported in mammals, birds, fish, rep-
tiles and insects [11, 13, 45, 46]. Figure 1 summarises the 
frameworks and mechanistic schemes regarding the findings 
about anthropogenic noise impacts on birds. The presented 
framework is subdivided into four major topics, which are: 
1) ‘Acoustic perception/Communication and hearing’; 2) 
‘Physiological response’; 3) ‘Behavioural response’; and 4) 
‘Impact on fitness’, which will be detailed in the sequence.

Table 2  Number of terrestrial 
vertebrate species (adapted from 
[22])

Group of species Estimated number of 
described species in 
2023

Evaluated number 
of species in 2023

Missing number of 
species to evaluate

Number of species 
under threat in 
2023

Mammals 6631 5980 651 1339
Birds 11,197 11,197 0 1354
Reptiles 12,060 10,254 1806 1848
Amphibians 8707 8020 687 2876
Total 38,595 35,451 3144 7417
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Acoustic Perception/Communication and Hearing

Acoustic perception comprises ‘detection of sound stimuli’ 
and ‘inhibition of sound stimuli’, which are common states 
of acoustic perception [13]. Bird communication and hear-
ing aspects include: ‘vocal plasticity’, ‘repetition of calls’ 
and ‘masking of calls’. The repetition of calls is used to 
help birds that are not visually in contact with each other, 
to perceive another bird’s approach. Anthropogenic noise 
interferes with their communication by signal confusion, 
by overlapping sound signatures from bird’s vocalisations 
with the anthropogenic noise frequency components [47]. 
Vocal plasticity is an adaptation in birds’ vocalisation, such 
as using higher frequencies to avoid and mitigate masking by 
low-frequency noise [48, 49]. Masking of calls can inhibit 
birds’ ability to propagate and interpret vocal information 
since low-frequency noise from the traffic of cars and trains 
can travel long distances and through vegetation. Depending 
on the frequency range of the avian vocalisation, the mask-
ing of communication frequencies can occur through these 
noise sources. Another important fact is the observation of 
tonal components of the noise sources, which, due to the high 
amplitudes, can also realise a masking process on some bird's 
vocalisations [50].

Physiological Response

This category has wide ramifications in areas such as: 
‘community ecology’, ‘DNA integrity and genes’, ‘cell 
structure and signalling’, and ‘physiological systems’ [45].

Concerning the aspects related to community ecology 
[45, 51], it has been shown that anthropogenic noise can 
impact birth rate, mortality and survival through a ‘decrease 
of reproductive / breeding success’ ([52–62]).

Evidence of ‘decrease of reproductive / breeding success’ 
is influenced by heart rate changes, e.g. overexcitation, in 
Muscovy duck (Cairina moschata) embryos in response to 
acoustic stimulus [63] and reduction in the numbers of great 
tit (Parus major) [64] and eastern bluebirds (Sialia sialis) [65] 
fledglings in response to urban noise. ‘Decrease of nesting 
success’ due to noise includes negative alterations of nesting 
communities’ species richness and increasing nest predators' 
influence on western scrub-jay (Aphelocoma californica) 
[66]. Regarding the ‘Decrease of survival success’, a study 
of white-crowned sparrows (Zonotrichia leucophrys), shows 
that noise does not directly influence the survival success of 
these birds, but predicted a significant negative influence on 
body condition, which may have long-term consequences for 
survival [67].

Sound stimuli, when considered unwanted and harm-
ful for humans and wildlife [68], such as anthropogenic 
noise, may affect ‘DNA integrity and genes’ by provok-
ing a stress response that leads to DNA damage and gene Le
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alteration [45]. Based on observations of infertile eggs [69], 
it has been suggested that long-term exposure to loud noise 
damages DNA because females in louder environments pro-
duce a higher number of infertile eggs.

Subcategories of ‘Cell structure and signalling’ include 
the effects of ‘Decrease of immune response’ and ‘Increase 
of stress’, being a problem when there is a chronic noise 
exposure. Cell structure damage can occur due to lesions 
caused in the avian auditory epithelium by noise with pure-
tone and broadband components [70]. However, as soon 
as the damage occurs, new auditory hair cells around the 
hair cell damage are stimulated and the growth of support 
and hyaline cells induce the regeneration of avian auditory 
cells [71]. Biomarkers of stress, such as glucocorticoids, 

have been shown to elevate in response to noise exposure 
[72–75]. Noise as a stressor suppresses the immune func-
tion system of young birds, especially during learning peri-
ods, due to communication breakdown between adults and 
their young [45, 76]. House sparrows (Passer domesticus) 
showed an immune reduction in nestlings exposed to noise 
[77]. Changes in metabolism were observed with increase of 
cholesterol and protein levels due to noise stress in domes-
tic hens (G. gallus domesticus) [78]. Additionally, stress-
induced changes in glucocorticoid hormones under noisy 
conditions can interfere with the fitness of populations [79].

The effects on the ‘Physiological systems’ can be 
observed as possible hearing damage or loss. There is a 
tendency towards auditory thresholds shifts, when birds are 

Fig. 1  Framework of anthropogenic noise impact on birds. Items 
with an (a) were adapted from EEA [13]; Items with a (b) were 
adapted from Kight and Swaddle [45]; Items with a (c) are suggested 
in this study. Items with green frames indicate positive impacts and 

red frames indicate negative ones. Yellow colour indicates chronic 
impacts, and grey indicates acute impacts. Blue colours indicate the 
major impact group
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exposed to noise levels above 93 dB(A) over 72 h [23, 80]. 
This is well documented in the work of Wolfenden et al. 
[81], which investigated the behaviour of chiffchaffs near 
airports. They observed a lowering of chiffchaff song fre-
quency for individuals living near an airport compared to 
those from nearby control sites and hypothesised that noise-
induced hearing loss may prevent the airport resident birds 
hearing higher frequencies. However, laboratory experi-
ments indicate that birds are more resistant to hearing loss 
and auditory damage than humans and other mammals [80, 
82], due to their capacity to regenerate their auditory cells 
following exposure to loud noises [83].

Behavioural Response

Behavioural ecology deals with the ability of animals to 
reproduce and survive in their natural environment [84]. 
Noise can impact the behaviour of birds through ‘Decrease 
of density/ Abundance of population’ [85–93], ‘Behavioural 
changes/response’ [1, 2] and ‘Reduction of cognitive perfor-
mance’ [94, 95].

Concerning the ‘Decrease of density/Abundance of popu-
lation’, the effects of ‘Avoidance response’, ‘Foraging and 
provisioning efficiency’, can cause ‘Modified space use and 
movement’, changing the number of species in areas which 
are affected by anthropogenic noise [13]. The other ‘Behav-
ioral changes/response’ are commonly associated with 
‘Flight-fight response’ due to ‘Territory defence’, where 
during bird fights, they cannot hear their neighbour’s territo-
rial calls, mediated by physiological stress hormone changes 
(e.g. [81]). Additional behavioural changes are related to 
‘Vigilance and anti-predator’ and ‘Temporal activity pattern 
and sleep’ [13].

Animals move through space due to the use of dead 
reckoning, landmarks, and cognitive maps, which facilitate 
their navigation through a mental map-like representation 
of the environment [96]. Anthropogenic noise can cause 
a ‘Reduction of cognitive performance’ since the birds 
affected by noise can have smaller brain regions related to 
vocal learning; due to altered brain anatomy, they are also 
more distracted, affecting avoidance or vigilance behaviour 
[97, 98]. Other cognitive alterations have been observed in 
Zebra finch (Taeniopygia guttata). Following exposure to 
noise (110 dBA for > 100 d), the vocal skills learning of 
juvenile Zebra finches were altered, but these vocal skills 
subsequently recovered [99].

Impact of Fitness

Anthropogenic noise can have an ‘Impact on fitness’ (e.g., 
[100, 101]); that is, impacts on ‘Survival’ and ‘Reproductive 

success rate’ [13]. This happens due to severe hearing fre-
quencies overlapping through anthropogenic noise, called 
acoustic masking. Birds would not hear significant acous-
tic signals in the environment, such as predators, competi-
tors or mates, causing them to lose important information 
about environmental quality, safety, and competition [100]. 
Another important fact is the overproduction of glucocorti-
coids, activating the hypothalamic–pituitary–adrenal (HPA) 
axis, causing the perception of stress in the brain, directly 
affecting eggs' hatching success [100, 102].

Aim

This systematic review uses the mechanisms of impact 
framework described above to organise and evaluate the 
available evidence on noise impacts on birds. The meta-
analysis is based on avian species investigated by Peacock 
et al. [103, 104], which provided a knowledge baseline 
regarding avian hearing curves, including peak hearing fre-
quency – which is the frequency at maximum amplitude 
[105] – and dimensions of the hearing system. The informa-
tion on Peak Hearing frequencies is essential for the verifica-
tion of how the avian hearing frequencies overlap with and 
are influenced by anthropogenic noise frequencies, which 
could cause noise impact on birds, as observed by Engel 
et al. [106]. A Two Step-Cluster Analysis will provide an 
optimised noise impact structure considering parameters 
such as: the main category of impacts, sub-categories of 
impacts and noise sources. Avian order, species and peak 
hearing frequencies provide information to characterise 
impacts across taxa.

Methodology

A PRISMA diagram flow was adopted as a system-
atic review methodology [107]. Keywords “noise 
impact” + “noise effect” with species “nominal 
name” + “common name” were used to structure search of 
Google Scholar, Pub-Med, SCOPUS, Taylor and Francis, 
Springer, Wiley online library, Elsevier, ResearchGate, and 
Academia. The database of Peacock et al. [103, 104] was 
used to provide names of specific avian species to include 
within searches. Across the various search engines, a total 
amount of N = 701,575 candidate papers were identified 
up to 31st July 2023 using the keywords reported above. 
Of these, 920 documents which were identified for screen-
ing. Duplicate paper exclusion, unmatched topics and 
keywords or provision of partial information resulted in 
a pre-selection of 85 papers. After the removal of outputs 
that had not been subject to a rigorous peer review pro-
cess prior to publication, 50 papers were carried forward 
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for further analysis (Fig. 2). These papers, which were all 
published within the last 44 years, provide insights into 
anthropogenic sound sources that are negatively impacting 
birds and what the physiological, behavioural, and acous-
tic (hearing and communication) responses are (Table 4). 
The classification of noise impacts on birds follows the 
suggested framework presented in Fig. 1.

Extracted data from ‘impact’, ‘Impact category’ and 
‘noise source’ were analysed using a Two-Step Cluster 
analysis, which consists of a pre-clustering and a clus-
tering [133]. In the first step, a cluster feature (CF) tree 
checks if the cluster can be merged with other clusters 
through a distance criterion. The second step allows the 
adjustment of clusters according to the desired number of 
clusters, considering the removal of outliers and consider-
ing descriptive, cross-tabulation analysis and correlation 
results. Afterwards, Chi-squared goodness of fit was cal-
culated to confirm that the generated clusters do not have 
a random component, validating the result [134].

The Akaike Information Criterion was applied as a 
Clustering criterion on imputed variables (Table 4), using 
the Log-likelihood measure of distance. As inputs of the 
clustering, the following parameters were used: 1) ‘Impact 
category’ subdivided into ‘physiological’, ‘communication 
and perception’, and ‘behavioural’; 2) ‘Impact’ which are 
subcategories from each ‘impact category’, e.g., ‘behav-
ioural changes/responses’, ‘decrease density/abundance of 
population’, ‘repetition of calls’, ‘masking of calls’, ‘vocal 
plasticity’, ‘decrease reproductive/breeding success’, ‘reduc-
tion cognitive performance’, ‘decrease survival success’, 
and ‘decrease of nesting success’; 3) noise source, e.g., 
‘background’, ‘Drone/UAV/UAS’, ‘white noise’, ‘aircraft/
jet’, ‘mining’, ‘human’, ‘fireworks’, ‘anthropogenic’, ‘drill-
ing’, ‘traffic’, ‘wind farm’, ‘construction’, ‘snowmobile’, and 
‘military activity’. Parameters such as ‘order’, ‘species’ and 
‘peak hearing frequency’ serve as evaluation fields, helping 
to characterise the receiver (birds) but not influencing the 
cluster’s power.

Fig. 2  PRISMA flow diagram 
for anthropogenic noise impact 
on birds
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Results

The identified noise impacts were categorised using the 
framework presented in Table  4. The results highlight 
impacts within the blue coloured section of the frame-
work; that is, ‘Physiological response’ (‘Decrease of sur-
vival success’, ‘ Decrease of reproductive/breeding suc-
cess’, ‘Decrease of nesting success’); ‘Animal behaviour’ 
(‘Reduction of cognitive performance’, ‘Decrease of density/
abundance of population’, ‘Behavioural changes/response’); 
‘Acoustic perception – communication and hearing’ (‘Vocal 
plasticity, ‘Repetition of calls’, ‘Masking of calls’). A 
descriptive overview of the noise sources and impacts on 
avian species is presented in Sect. "Descriptive Analysis of 
the Anthropogenic Noise Impacts on Birds". The Two-Step 
Clustering (Sect. "Two-step Cluster Analysis of the Anthro-
pogenic Noise Impacts on Birds") groups avian orders, spe-
cies, noise sources, impacts and peak hearing frequency.

The systematic review yielded data for 20 avian orders 
and 39 species following the species sampled in Peacock 
et al. [103, 104] (Table 4). However, of the 39 species, only 
25 presented information about anthropogenic noise impact, 
gathered in 50 peer-reviewed papers and 52 noise impact 
reports on avian species. The following fourteen species did 
not present studies related to anthropogenic noise impact 
during the period of data collection for this systematic 
review: common merganser (Mergus merganser), common 
ostrich (Struthio camelus), pied-billed grebe (Podilymbus 
podiceps), common nighthawk (Chordeiles minor), white-
throated swift (Aeronautes saxatalis), yellow-billed cuckoo 
(Coccyzus americanus), kildeer (Charandrius vociferus), 

ring-billed gull (Larus delawarensis), great horned owl 
(Bubo virginianus), blue-naped mousebird (Urocolius 
macrourus), belted kingfisher (Megaceryle alcyon), laugh-
ing kookaburra (Dacelo novaegineae), northern flicker 
(Colaptes auritus), and red-naped sapsucker (Sphyrapicus 
nuchalis). Considering the IOC World Bird List [135], the 
reference work of Peacock et al. [103, 104] does not present 
all avian orders. The following eight orders were not rep-
resented within the analysis of Peacocock et al. [103, 104] 
and consequently in this analysis: Phaethontiformes, Pter-
ocliformes, Otidiformes, Gaviiformes, Procellariiformes, 
Ciconiiformes, Trogoniformes, Bucerotiformes.

Descriptive Analysis of the Anthropogenic Noise 
Impacts on Birds

Results related to descriptive statistics are presented in 
Figs.  3 and 4. Results concerning sound sources and 
responses to anthropogenic-generated sounds were not avail-
able for two orders: Cuculiformes and Suliformes.

Figure 3 shows the sound sources that have been observed 
to change bird behaviour in different environments. These 
sources were: ‘background’, ‘drone/UAV/AUS’, ‘white 
noise’, ‘aircraft/jet’, ‘mining’, ‘human’, ‘fireworks’, ‘anthro-
pogenic’, ‘drilling’, ‘traffic’, ‘windfarm’, ‘construction’, 
‘snowmobile’, and ‘military activity’. As a matter of defini-
tion, background noise is classified as the opposite of fore-
ground noise or principal sound signal under investigation 
[106, 136]. Anthropogenic noise is equivalent to human-
produced noise, which is considered unwanted and harm-
ful [106, 137], and human noise is related to human-related 

Fig. 3  Quantification of 
reported sound sources that 
impact avian orders
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noises (voice—communication, body—movement and 
clothing) [106, 137]. The plot from Fig. 3 shows the num-
ber of studies related to each sound source, subdivided by 
avian order. The avian order which has been most studied 
in relation to different sound sources is Passeriformes (Pa), 
with 17 studies covering anthropogenic, traffic, snowmobile, 
and military activity sound sources.

Figure 4 shows the impacts of noise on avian populations 
that were identified through the Systematic Review. These 
impacts are ‘decrease of survival success’, ‘reduction of cog-
nitive responses’, ‘vocal plasticity’, ‘decrease of reproductive/
breeding success’, ‘density/abundance of population’, ‘rep-
etition of calls’, ‘decrease of nesting success’, ‘behavioural 
changes/responses’, and ‘masking of calls’. The avian order 
with the greatest number of studies reporting behavioural 
changes is Passeriformes (Pa) with 17 studies highlighting 
‘decrease of reproductive/breeding success’, ‘reduction of 
cognitive performance’, ‘density/abundance of population’, 
‘behavioural changes/responses’, and ‘masking of calls’.

Two‑step Cluster Analysis of the Anthropogenic 
Noise Impacts on Birds

The Two-Step Clustering results are presented in Fig. 5 and 
Table 5. As observed in Fig. 5, Cluster 1 had 40 observa-
tions (76.9%), and Cluster 2 had 12 observations (23.1%). 
The ratio between the largest and smallest cluster was 3.33. 
To confirm the significance of the extraction of these two 
clusters, a  Chi2 goodness of Fit of the clusters was calcu-
lated, which confirmed their significance χ2(1) = 15.077, 
p < 0.001, indicating that the clusters were not formed ran-
domly. The Silhouette measure of cohesion showed good 
cluster quality (0.6).

The Two-Step Cluster analysis also indicates the impor-
tance of each predictor, where 1.0 indicates a high impor-
tance and 0.00 is a low importance. The ‘Impact category’ 

variable presented high importance (1.0), the ‘Impact’ indi-
cated moderate importance (0.69) and the ‘sources’ pre-
sented low importance (0.07).

To verify the effect size of the clusters, a Kruskal–Wallis 
test was used because the sample was not homogeneous. 
Additionally, the effect size was estimated through epsi-
lon squared (ɛ2) [138]. The interpretation of the epsilon-
squared effect size corresponds to 0.00 < 0.01 (negligible), 
0.01 < 0.04 (weak), 0.04 < 0.16 (moderate), 0.16 < 0.36 (rel-
atively strong), 0.36 < 0.64 (strong) and 0.64 < 1.00 (very 
strong) [139].

The Kruskal-Walis test and the epsilon-squared effect 
size confirmed the findings of predictor importance of the 
Two-Step Cluster Analysis, where for ‘Impact category’ 
H(1) = 39.830, p-value < 0.001, ɛ2 = 0.781 (very strong), 
‘Impact’ H(1) = 28.986, p-value < 0.001, ɛ2 = 0.568 (strong) 
and ‘Sources’ H(1) = 0.000, p-value = 0.982, ɛ2 = 0.000 
(negligible).

Regarding the cluster composition, Fig. 5 shows a sun-
burst graph with the categories of each cluster. Cluster 1 
concentrated ‘Impact category’ observations on ‘behav-
ioural’ (n = 35, 87.5%) and ‘communication and perception 
responses’ (n = 5, 12.5%). The sub-categories from ‘behav-
ioural’ are ‘behavioural changes/response’ (n = 19, 47.5%), 
‘decrease density/abundance of population’ (n = 11, 27.5%), 
and ‘reduction cognitive performance’ (n = 5, 12.5%). ‘Com-
munication and perception’ are subdivided into ‘masking 
of calls’ (n = 2, 5%), ‘repletion of calls’ (n = 1, 2.5%) and 
‘vocal plasticity’ (n = 2, 5%). Related to the noise sources 
that are causing these impacts, the majority was associated 
with traffic (n = 11, 27.5%), followed by background (n = 8, 
20%), anthropogenic (n = 6, 15%), drone/UAV/UAS (n = 4, 
10%), aircraft/jet (n = 3, 7.5%), wind farm (n = 2, 5%), and 
white noise, mining, human, fireworks, snowmobile, mili-
tary activity (n = 1, 2.5% each). Cluster 2 observations con-
centrated on ‘physiological’ responses (n = 12, 23.1%), with 

Fig. 4  Quantification of anthro-
pogenic noise impacts on birds 
subdivided according to avian 
orders
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100% of the observations related to ‘Physiological’ aspects 
subdivided into ‘decrease of nesting success’ (n = 2, 16.7%), 
‘decrease of reproductive/breeding success’ (n = 8, 66.6%), 
and decrease of survival success’ (n = 2, 16.7%). The related 
noise sources to these impacts are anthropogenic (n = 6, 
50%), human (n = 2, 16.8%), and background, aircraft/jet, 
drilling, and traffic with n = 1 (8.3%) each.

Table 5 shows which ‘noise sources’ are associated with 
each ‘impact’ and the characteristics of the impacted spe-
cies through the indication of ‘order’, ‘species’ name and 
‘peak hearing frequency’. Cluster 1 is formed by impacts 
on ‘behavioural responses’ such as ‘behavioural changes/
responses’ occurred in association with ‘aircraft/jet’ (2 
observations), ‘anthropogenic’ (3 observations), back-
ground (3 observations), drone/UAV/UAS (4 observations), 

‘human’ (1 observation), ‘mining’ (1 observation), ‘traffic’ 
(3 observations) and ‘wind farm’ (2 observations) on birds 
with peak hearing frequency varying from 862 to 2018 Hz. 
These birds include Anseriformes (An) – wood duck, mal-
lard duck, Passeriformes (Pa) – common grackle, American 
crow, blue jay, zebra finch, European starling, black-billed 
magpie, Columbiformes (Cl)—Eurasian collared dove, 
Phoenicopteriformes (Ph) – Chilean flamingo, Galiformes 
(Ga) – Indian peafowl, Psittaciformes (Ps) – Budgerigar, and 
Accipitriformes (Ac) – Turkey Vulture.

There was evidence that ‘Decrease density/population 
abundance’ was happening due to noises generated by air-
craft/jet (1), anthropogenic (1), background (2), fireworks 
(1), military activity (1) and traffic (5). The birds which 
presented this form of impact were birds with peak hearing 

Fig. 5  Clusters of noise impact on birds and related noise sources
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Table 5  Clusters subdivision of birds impacted by noise

Order Species Noise source Impact Peak 
Hearing
Frequency—
PHF (Hz)

Cluster

An Wood duck Aircraft/Jet Behavioural changes/response 1106 Cluster 1
n = 40An Wood duck Aircraft/Jet Behavioural changes/response 1106

Pa Common grackle Anthropogenic Behavioural changes/response 1604
Pa American crow Anthropogenic Behavioural changes/response 1062
Pa Blue jay Anthropogenic Behavioural changes/response 1480
Pa Zebra finch Background Behavioural changes/response 1879
Pa European starling Background Behavioural changes/response 2018
Cl Eurasian collared dove Background Behavioural changes/response 1269
An Mallard duck Drone/UAV/UAS Behavioural changes/response 1138
Ph Chilean flamingo Drone/UAV/UAS Behavioural changes/response 973
Ac Turkey vulture Drone/UAV/UAS Behavioural changes/response 1165
Ac Turkey vulture Drone/UAV/UAS Behavioural changes/response 1165
Ph Chilean flamingo Human Behavioural changes/response 973
Ga Indian peafowl Mining Behavioural changes/response 862
Ps Budgerigar Traffic Behavioural changes/response 1672
Pa Zebra finch Traffic Behavioural changes/response 1879
Pa Black-billed magpie Traffic Behavioural changes/response 1426
Ac Turkey vulture Wind farm Behavioural changes/response 1165
Ac Turkey vulture Wind farm Behavioural changes/response 1165
Pe Black-crowned night heron Aircraft/Jet Decrease density/abundance of population 677
Fa American kestrel Anthropogenic Decrease density/abundance of population 1174
An Mallard duck Background Decrease density/abundance of population 1138
Pa Common raven Background Decrease density/abundance of population 793
Gr American coot Fireworks Decrease density/abundance of population 1301
Pa American crow Military activity Decrease density/abundance of population 1062
Ac Turkey vulture Traffic Decrease density/abundance of population 1165
Pi Hairy woodpecker Traffic Decrease density/abundance of population 1706
Ps Rainbow lorikeet Traffic Decrease density/abundance of population 1764
Pa Common raven Traffic Decrease density/abundance of population 793
Pa Steller's jay Traffic Decrease density/abundance of population 1257
Ch Common murre Anthropogenic Masking of calls 1928
Pa Common raven Snowmobile Masking of calls 793
Po Western grebe Background Repetition of calls 1906
An Mallard duck White noise Vocal plasticity 1138
Ga Indian peafowl Background Vocal plasticity 862
Ch Inca tern Background Reduction cognitive performance 1801
Pa Zebra finch Anthropogenic Reduction cognitive performance 1879
Pa Zebra finch Traffic Reduction cognitive performance 1879
Pa Zebra finch Traffic Reduction cognitive performance 1879
Pa European starling Traffic Reduction cognitive performance 2018
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frequencies from the species ranging from 677 to 1764 Hz 
from the following orders: Pelecaniformes (Pe) – black-
crowned night heron; Falconiformes (Fa) – American kes-
trel; Anseniformes (An) – mallard duck; Passeriformes (Pa) 
– common raven; American crow (reported with two obser-
vations impacts) and Steller's jay; Gruiformes (Gr) – Ameri-
can coot; Accipitiformes (Ac) – turkey vulture; Piciformes 
(Pi) – hairy woodpecker; Psittaciformes (Ps) – rainbow lori-
keet (Table 4).

‘Reduction of cognitive performance’ occurs due to back-
ground (1), anthropogenic (1), and traffic noise (3). The 
affected birds, with frequencies from the species ranging 
from 1801 to 2018 Hz, were from the orders Charadriformes 
(Ch)—inca tern and Passeriformes (Pa)—zebra finch (three 
observed impacts) and European starling (Tab4).

Other impacts on ‘Communication and hearing’, such as 
‘Masking of calls’, were associated with anthropogenic (1) 
and snowmobile (1) noise sources. The species which pre-
sented this output were from the orders Charadriformes (Ch) 
– common murre, and Passerifomes (Pa) – common raven 
with peak hearing frequencies from the species of 1928 Hz 
and 793 Hz, respectively. ‘Repetition of calls’ was observed 
with the association of background noise (1) for Podicipedi-
formes (Po) – western grebe, which has a peak hearing fre-
quency of 1906 Hz. ‘Vocal plasticity’ was observed when 
there is white noise (1) and background noise (1), for the fol-
lowing orders Anseriformes (An) – mallard duck and Gali-
formes (Ga) – Indian peafowl, with 1138 Hz and 862 Hz as 
respective peak hearing frequencies from the species (Tab4).

In Cluster 2, ‘Physiological response’, such as ‘decreased 
nesting success’, is related to human and anthropogenic noise. 
The orders for which impacts were reported are Pelecani-
formes (Pe)—great blue heron (PHF = 895 Hz) and Falconi-
formes (Fa)—American kestrel (PHF = 1174 Hz). ‘Decrease 
reproductive/breeding success’ occurred due to anthropogenic 
(4), drilling (1), human (1), traffic (1), and background (1). 
The birds for which this type of impact was reported were 
birds Gruiformes (Gr) – American Coot, Pelecaniformes (Pe) 
– great blue heron (two impact observations), white-faced ibis 
and black-crowed night heron, Falconiformes (Fa) – American 
kestrel, Piciformes (Pi) – hairy woodpecker and Passeriformes 
(Pa) – zebra finch, with a variation of peak hearing frequencies 
from the species from 677 to 1879 Hz. ‘Decrease of survival 
success’ was reported in relation to aircraft/jet noise (1) and 
anthropogenic noise (1). The following orders are Gruiformes 
(Gr) – American coot (PHF = 1301 Hz), and Charadriformes 
(Ch) – common murre (PHF = 1928 Hz) (Tab5).

Figures 6-8 show the hearing frequency range and peak 
hearing frequency of the investigated avian species [103], 
noise source frequency and peak sound frequency [125, 126, 
128, 140–142] of the observed noise sources that are caus-
ing impacts on these avian species. Figure 6 is showing the 
species, which reported ‘behavioural’ responses and Fig. 7 
shows ‘communication and perception’ impacts regarding 
to noise observed in Cluster 1. Figure 8 shows the species 
and noise sources which caused ‘physiological’ impacts 
observed in Cluster 2. As observed in all figures, part of 
the spectral content of the noise sources overlaps with the 

Table 5  (continued)

Order Species Noise source Impact Peak 
Hearing
Frequency—
PHF (Hz)

Cluster

Pe Great blue heron Human Decrease nesting success 895 Cluster 2
n = 12

Fa American kestrel Anthropogenic Decrease nesting success 1174

Gr American coot Anthropogenic Decrease reproductive/breeding success 1301

Pe Great blue heron Anthropogenic Decrease reproductive/breeding success 895

Pe Great blue heron Anthropogenic Decrease reproductive/breeding success 895

Pi Hairy woodpecker Anthropogenic Decrease reproductive/breeding success 1706

Pe White-faced ibis Drilling Decrease reproductive/breeding success 1076

Pe Black-crowed night heron Human Decrease reproductive/breeding success 677

Fa American kestrel Traffic Decrease reproductive/breeding success 1174

Pa Zebra finch Background Decrease reproductive/breeding success 1879

Gr American coot Anthropogenic Decrease survival success 1301

Ch Common murre Aircraft/Jet Decrease survival success 1928
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hearing frequencies or at least the peak hearing frequencies 
of the investigated species.

Discussion

Anthropogenic Noise Impacts on Birds

Anthropogenic noise has been shown to impact on physi-
ological responses, behavioural responses and acoustic 
perception – communication and hearing (Table 5). The 
reported noise sources' associated with the classified impacts 
on birds are discussed below.

a. Anthropogenic noise

This category of noise is human-produced noise, which 
is unwanted and maybe harmful. This kind of noise can 

cause: 1) a decrease in the survival success of birds due to 
antipredator responses, e.g., vigilance or flight on Ameri-
can coot [60]; 2) a decrease in reproductive/breeding suc-
cess through energetic costs due to disturbance by flight 
activities related to feeding, therefore there is no energy 
or motivation for reproductive activities in the American 
coot [60]. Another reason for the decrease in reproductive/
breeding success is the presence of humans near colo-
nies, as observed in great blue heron studies [55]; 3) a 
reduction of cognitive performance was observed in zebra 
finch studies through the reduced performance of learn-
ing of novel motor skills, as well as fewer copy demon-
strations [124]; 4) behavioural changes were observed in 
zebra finch, common grackle, and American crow due to 
foraging difficulties [125, 128, 129]; and 5) masking of 
calls on common murre studies, by the observation that 
sensitive hearing frequencies overlap with anthropogenic 
noise [116].

Fig. 6  Overlapping of avian frequency range and noise source spectra 
observed in the behavioural impacts of noise. Legend: ● Peak Hear-
ing Frequency (PHF); ▲ Peak Sound Frequency (PSF); Depends on 
Predominant Source (DPS); PSF1 = Anthropogenic; PSF2 = Back-
ground; PSF3 = Drone/UAV/UAS; PSF4 = Human; PSF5 = Military 
activity; PSF6 = Traffic; PSF7 = Wind farm; PSF8 = Aircraft/Jet; 
PSF9 = Fireworks; PSF10 = Mining; Black-crowned Night Heron 
– PHF = 677  Hz, PSF8 = 1000  Hz; Wood duck – PHF = 1106  Hz, 
PSF8 = 1000  Hz; American Crow—PHF = 1062  Hz, PSF1 = DPS, 
PSF5 = 500  Hz; American Kestrel—PHF = 1174  Hz, PSF1 = DPS; 
Blue Jay—PHF = 1480  Hz, PSF1 = DPS; Common Grackle—
PHF = 1604  Hz, PSF1 = DPS; Zebra Finch—PHF = 1879  Hz, 
PSF1 = DPS, PSF2 = DPS, PSF6 = 500–1000 Hz; Common Raven—

PHF = 793  Hz, PSF2 = DPS, PSF6 = 500 – 1000  Hz; Eurasian 
Collared Dove—PHF = 1269  Hz, PSF2 = DPS; European Star-
ling—PHF = 2018  Hz, PSF2 = DPS, PSF6 = 500 – 1000  Hz; Inca 
Tern—PHF = 1801  Hz, PSF2 = DPS; Mallard—PHF = 1138  Hz, 
PSF2 = DPS, PSF3 = 3000  Hz; Chilean Flamingo—PHF = 973  Hz, 
PSF3 = 3000  Hz, PSF4 = DPS; Turkey Vulture—PHF = 1165  Hz, 
PSF3 = 3000  Hz, PSF6 = 500 – 1000  Hz, PSF7 = 1–30  Hz / 
500-1000  Hz / 10–200  Hz; American Coot—PHF = 1301  Hz, 
PSF9 = 20  Hz; Indian Peafowl—PHF = 862  Hz, PSF10 = 63 to 
125  Hz; Black-billed Magpie—PHF = 1426  Hz, PSF6 = 500 to 
1000  Hz; Budgerigar—PHF = 1672  Hz, PSF6 = 500 to 1000  Hz; 
Rainbow Lorikeet—PHF = 1764 Hz, PSF6 = 500 to 1000 Hz; Steller’s 
Jay—PHF = 1257 Hz, PSF6 = 500 to 1000 Hz
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b. Human noise

This noise is generated by human communication, 
clothing and movement, which can affect birds through 
1) a decrease in reproductive/breeding success, observed 

in black-crowed night heron studies, the disturbance and 
destruction of eggs, chicks and adults [52]; 2) a decrease of 
nesting success was evident on investigations related to great 
blue heron, where there was an increase of young chicks 
exposure predation, causing abandonment of the colony 

Fig. 7  Overlapping of avian frequency range and noise source spec-
tra observed in communication and perception noise impacts. Leg-
end: ● Peak Haring Frequency (PHF); ▲ Peak Sound Frequency 
(PSF); Depends on Predominant Source (DPS); PSF1 = Anthro-
pogenic; PSF2 = Background; PSF3 = Snowmobile; PSF4 = White 

noise; Common Murre—PHF = 1928  Hz, PSF1 = DPS; Indian Pea-
fowl – PHF = 862 Hz, PSF2 = DPS; Western Grebe—PHF = 1906 Hz, 
PSF2 = DPS; Common Raven—PHF = 793  Hz, PSF3 = 200 to 
800 Hz; Mallard – PHF4 = 1138 Hz, PSF = same amplitude in all fre-
quencies

Fig. 8  Overlapping of avian frequency range and noise source spectra 
observed in the physiological noise impacts. Legend: ● Peak Haring 
Frequency (PHF); ▲ Peak Sound Frequency (PSF); Depends on Pre-
dominant Source (DPS); PSF1 = Aircraft/Jet; PSF 2 = Anthropogenic; 
PSF3 = Background; PSF4 = Drilling; PSF5 = Human; PSF6 = Traffic; 
Common Murre—PHF = 1928 Hz, PSF1 = 1000 Hz; American Coot 

– PHF = 1301 Hz, PSF2 = DPS; American Kestrel—PHF = 1174 Hz, 
PSF2 = DPS, PSF6 = 500 -1000  Hz; Great Blue Heron—
PHF = 895  Hz, PSF2 = DPS, PSF5 = DPS; Hairy Woodpecker—
PHF = 1706  Hz, PSF2 = DPS; Zebra Finch—PHF = 1879  Hz, 
PSF3 = DPS; White-faced Ibis—PHF = 1076  Hz, PSF4 = 3000  Hz; 
Black-crowned Night Heron—PHF = 677 Hz, PSF5 = DPS
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[61]. In the American kestrel, human disturbance caused 
nesting failure [62].

c. Fireworks

The use of fireworks caused alterations in animal behav-
iour in the American coot [93].

d. Military activity noise

Noises generated by military activities (e.g., firing guns, 
artillery, and explosive ordinances) caused the foraging dis-
ruption of American crows, and consequently, this species is 
observed less frequently near military areas [89].

e. Drilling/Construction noise

Drilling adversely affected white-faced ibis' breeding, 
as reported by Mueller and Glass [53]. There was also a 
‘decrease in reproductive/breeding success in hairy wood-
peckers, affecting their mating rituals dependent on song, 
especially for the "song birds" [59].

f. Urban/Background noise

Urban and background, the opposite of foreground 
sound signal, are noises which influenced the: 1) ‘decrease 
of reproductive/breeding success’ (e.g., the pair bond of 
zebra finch [57]); 2) ‘reduction of cognitive performance’ 
where chicks of inca tern altered their begging calls in 
dangerous environments, which is normal behaviour and 
a way to adapt to the environment, however in noisy envi-
ronments, they tend not to hear the alarm calls produced 
by their parents when there is a predator in the proximi-
ties [94]; 3) ‘density/abundance of population’ of mallard 
ducks [87]; 4) ‘behavioural changes’ were observed in 
Eurasian collared dove by increase of distances from urban 
noisy environments [2], increased song level on European 
starlings [127]; 5) the ‘vocal plasticity’ changed on Indian 
peafowl by the alteration of male signals [112]; 6) ‘repeti-
tion of calls’ in the western grebe [47].

g. Traffic noise

Several noise impacts on birds are associated with traffic 
noise, such as: 1) the ‘decrease of reproductive/breeding 
success’ in American kestrel due to the difficulty in incu-
bation related to the perception of greater predation risk 
[58]; 2) ‘reduction of cognitive performance’ of European 
Starlings, which are emitting more begging calls due to dif-
ficulties on communication [126]; 3) alteration on ‘density/
abundance of population’ observed in black-crowed night 
heron [92], turkey vulture [90], hairy woodpecker [85], 

American kestrel [85], rainbow lorikeet [91], common raven 
[86], Steller’s jay [85]; 4) ‘behavioural changes’ in budgeri-
gar in which the social behaviour was affected by masking 
of signals [122], and the black-billed magpie changed the 
selection of sites for nest choice [130].

h. Aircraft/Jet noise

Aircraft and jet noise affected the 1) ‘decrease of repro-
ductive/breeding success’ observed in common murre, 
which felt disturbed by low-flying aircraft noise during 
the breeding season [56]; 2) ‘behavioural changes’ in wood 
duck and observation of sensitiveness [110].

i. Drones/UAV/UAS noise

Regarding drone noise, it was observed 1) ‘behavioural 
changes’ by foraging or head and tail movement of mal-
lard duck [1]; continuous flapping due to stress caused 
by UAVs in Chilean flamingo [114], in turkey vultures 
caused disturbance [119] and increased their reaction time 
to reproductions of UAS noise [120].

j. Snowmobile noise

This kind of noise influenced the ‘masking of calls’, 
which inhibited the propagation and interpretation of ani-
mal vocalisations of common raven [50].

k. Mining noise

Mining noise affected the behavioural responses of Indian 
peafowls, as observed in Rathoure [113].

l. Wind farm noise

Regarding wind farm noise, ‘behavioural changes’ were 
observed through the avoidance behaviour [118] and distur-
bance [117] of turkey vultures.

m. White noise

This kind of noise, which shows the same amplitude over 
all frequencies, caused ‘behavioural changes’ such as forag-
ing in the blue jay [132] and ‘vocal plasticity’ by regulat-
ing call amplitude and increasing peak frequency in mallard 
ducks [109].

From Figs. 5-8 and Table 5, it was observed that the 
composition of two clusters had a clear subdivision of the 
impacts of noise on birds. Cluster 1 showed ‘behavioural’ 
and ‘communication and perception’ impacts. The ‘behav-
ioural’ outcomes affecting birds with peak hearing frequency 
ranging from 677 to 2018 Hz. The associated sound sources 
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are ‘aircraft/jet’ ( fΔ = 50 Hz − 5 kHz, SPF = 1000 Hz) [40], 
‘anthropogenic’ ( fΔ = below 2 kHz) [143], ‘background’, 
‘drone/UAV/UAS’ ( fΔ = 2 kHz − 4 kHz, SPF = 3kHz) [144, 
145], ‘human’ ( fΔ = 63 Hz − 20 kHz) [146–148], ‘mining’ 
(  fΔ = 31.5 Hz − 8 kHz, SPF = 63 Hz; − 125 Hz) [149], 
‘traff ic’ ( fΔ = 500 Hz − 3 kHz, SPF = 500 Hz − 1kHz)

[35, 36] and ‘wind farm’ ( fΔ = 20 − 200 Hz) [150]. Since 
most of the observations were related to traffic, background, 
anthropogenic and done/UAV/UAS, it is possible to real-
ise that the frequency range of the emitted noise sources 
overlaps with the peak hearing range of the affected birds, 
which presented behavioural outcomes. Regarding the ‘com-
munication and perception’ outcome, Table 5 shows that 
affected birds presented peak hearing frequency ranging 
from 793 to 1928 Hz. The related noise sources that pro-
voke this outcome are ‘anthropogenic’ ( fΔ = below 2 kHz) 
[143], ‘background’, ‘snowmobile’ ( fΔ = 1 kHz − 1.5 kHz) 
[151] and ‘white noise’. For this outcome, the most reported 
noise sources were ‘anthropogenic’ and ‘background’ 
noise, which also have emission frequencies which over-
lap with the peak hearing frequencies of the affected bird 
species. Cluster 2 showed physiological-related outcomes 
on bird species with peak hearing frequency range between 
677 and 1928 Hz. These outcomes were associated with 
‘human’ ( fΔ = 63 Hz − 20 kHz) [146–148], ‘anthropo-
genic’ ( fΔ = below 2 kHz) [143], construction – ‘drilling’ 
( fΔ = below 800 Hz) [152], ‘traffic’ ( fΔ = 500 Hz − 3 kHz)

[35, 36], ‘background’, ‘aircraft/jet’( fΔ = 50 Hz − 5 kHz) 
[40] noise sources. Again, the most reported noise sources 
in the investigated studies which inform physiological out-
comes on birds are ‘anthropogenic’, ‘traffic’, ‘background 
noise’ and ‘human’ noise, in which the emission frequency 
comprehends the peak hearing frequencies of the affected 
bird species.

Limitations

The main limitations observed in this study are finding 
works with a complete dataset of the investigated species. 
As observed in the quantity of screened works, the litera-
ture review screened 701,575 and we extracted 50 pub-
lications, which corresponded to the species investigated 
by Peacock et al. [103, 104]. Besides, there are around 
11,000 bird species, so our data are a very small sample 
with many missing orders. This means it is difficult to gen-
eralise findings.

Additionally, it was observed that several authors pre-
sented their frameworks regarding the classification of 
anthropogenic noise impact on wildlife ([11], [45], [46], 
[13]), but there is no specific work defining the framework 
for impacts on avian species. The classification of impacts 
on this work was more demanding and uncertain due to the 
possibility of new findings related to the topic since there as 

orders which were not investigated regarding the impacts of 
anthropogenic noise.

Conclusion

Based on an extensive literature review on noise's impact 
on birds, it was possible to present a framework which 
classifies the major impacts in different levels, e.g., 
‘acoustic perception—communication and hearing’, 
‘physiological response’, ‘behavioural response’ and 
‘impact on fitness’ which is the consequence of the three 
first levels of impacts. As observed in the limitations, this 
framework is the first attempt to present a classification 
method on impacts on avian species and could be adapted 
in the future, according to the progress of findings related 
to the topic.

Negative and positive noise impacts were highlighted 
through a Two-Step Cluster Analysis. Two Clusters subdi-
vided the noise impacts. Cluster 1 (76.9%), showed negative 
impacts on birds' behaviour, and negative as well as posi-
tive impacts were shown on the category ‘communication 
and sound perception’. These were caused mainly by traf-
fic, background, anthropogenic, and done/UAV/UAS noise 
sources. In Cluster 2 (23.1%), most impacts were negative, 
where physiological responses caused by ‘anthropogenic’, 
‘traffic’, ‘background noise’, and ‘human’ noise sources were 
highlighted.

The presented systematic review categorises the main 
impacts caused by anthropogenic noise on avian species 
based on datasets of species that already have information 
about their hearing capacities, such as hearing frequency 
range. It also shows how the demonstrated species' hearing 
frequency range overlaps with the noise sources' frequency 
range. This information can be used for an effective noise 
control action plan, ensuring a better sonic environment for 
humans and wildlife.
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