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Abstract—The zeroing neural network (ZNN) has been uilized
in various control applications such as tracking and motion
control. While ZNN has been widely employed, its utilization in
consensus control schemes is rarely reported. In this study, we
propose a novel distributed fixed-time zeroing neural network
(DFTZNN) scheme designed to achieve fixed-time and robust
consensus in multi-agent systems operating under a switching
topology. Theoretical analysis is provided to establish the fixed-
time stability and robustness of the proposed scheme in the
presence of bounded noises. To highlight the superiority of the
proposed method, we introduce an example demonstrating the
estimation of the upper bound of a settling-time function. Theo-
retical analysis and a novel upper bound estimation method are
subsequently validated through numerical experiments, including
a practical application in formation control. The comprehensive
theoretical and simulation results demonstrate the superior per-
formance of the DFTZNN scheme under both fixed and switching
topologies, establishing it as a novel and systematic framework
for designing consensus control schemes.

Index Terms—Zeroing neural network, fixed-time consensus,
switching topology, multi-agent systems.

I. INTRODUCTION

Inspired by the observed phenomenon of biological swarm-
ing in nature, multi-agent system is a complex system first
proposed by Minsky [1]. This system is comprised of a
multitude of agents engaging in interactions, cooperation, and
mutual influence. A multi-agent system has three characteris-
tics: local communication, autonomy, and distributed control.
In recent years, advancements in robotics, sensing technology,
and communication technology have spurred rapid develop-
ments in the theory of complex dynamic networks. This area
has emerged as a prominent research focus within the field
of artificial intelligence. Researchers use complex dynamic
networks to describe multi-agent systems, and it gradually
plays a crucial role in a variety of applications, including drone
formations [2], transportation systems [3], building automation
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[4], underwater exploration [5], and surveillance systems [6],
etc.

Consensus is a fundamental challenge in coordinating multi-
agent systems [7]-[9] encompassing diverse applications such
as flocking [10], attitude alignment [11], and formation control
[2], [10]. Consensus refers to the collaborative sharing of
information among all agents within the system through a
network, leading to the attainment of an agreement on key
information over a period of time. The key in addressing
the consensus problem is to design an appropriate consensus
control protocol, ensuring that the states of all agents converge
towards a consensus. Olfati-Saber and Murray [12] introduced
a linear consensus protocol as a solution to the problem. Non-
linear protocols become relevant when there is observability
of a nonlinear function in the agent state of interest or when
achieving finite-time consensus is a specific requirement. In
such cases, nonlinear approaches are considered for a more
tailored and effective solution [13].

The convergence rate is important in the field of consensus.
Based on distinct convergence rates, research in consensus
can be categorized into asymptotically consensus control [14],
finite-time consensus [13] and fixed-time consensus [15].
While a finite-time consensus system exhibits a definite con-
vergence time, its effectiveness depends closely on the initial
state of the multi-agent system. This characteristic introduces
limitations in practical applications [16]. In contrast, the fixed-
time consensus proves to be a more practical approach. This
is because the initial design parameters rather than the initial
states of multi-agent systems to determine the bound of
settling-time function [17]. Researchers also develop various
methods to estimate the upper bound of the settling time for
a fixed-time convergent system, with Polyakov’s theorem [18]
being one of these established methods.

Many algorithms have been proposed in the field of con-
sensus. However, most of them lack systematic and general
applicability. It would be advantageous to employ a general
framework for addressing the consensus problem. The zeroing
neural network (ZNN), as a systematic tool, stands out as
an ideal candidate for designing appropriate protocols in nu-
merous control applications such as tracking [19] and motion
control [20], etc. Based on existing systematic studies on ZNN,
engineers can customize the desired control protocol easily.
They have many choices to choose from since there are a
variety of ZNNs with advanced features including finite-time
convergence [21], complex-valued process [22], noise-tolerant
model [23], etc.



The multi-agent systems often operate in complex environ-
ments [10], [24], [25]. The communication networks among
agents may not be stable [26], [27]. Various noises may also
be present in the operational environment. For instance, the
communication topology may be dynamic, involving switching
scenarios [28], [29], and truncation errors can arise during
the analog circuit implementation. In this study, we present a
novel approach called the distributed fixed-time zeroing neural
network (DFTZNN) scheme, designed to achieve both fixed-
time and robust consensus in multi-agent systems. We conduct
a thorough theoretical analysis to investigate the fixed-time
and robust consensus under a switching topology using the
DFTZNN. Additionally, we illustrate the superiority of the
DFTZNN by estimating the upper bound of the settling-time
function. This estimation is performed using a novel integral-
based method [30]. Furthermore, we compare the results with
the upper bound estimated using the traditional method based
on Polyakov’s theorem [18].

The rest of this paper is organized as follows. In Section
II, we provide an overview of the basic concepts and related
theories. In Section III, we introduce the design process of
the practical consensus scheme and the concept of fixed-time
convergence. In Section IV describes a detailed theoretical
analysis of the proposed scheme, including the estimation of
the upper bound using both the traditional method based on
Polyakov’s theorem and a novel integral-based method. In
Section V presents numerical experiments conducted under
both fixed and switching topologies to validate the fixed-
time and robust consensus. Additionally, we demonstrate the
application of fixed-time and robust consensus in formation
control. Moreover, as the most popular application in multi-
agent systems, the fixed-time and robust consensus in for-
mation control is shown. Finally, Section VI discusses the
conclusions drawn from this study. The main contributions
of this study are listed below:

1) We introduce a new perspective for designing suitable
control schemes in multi-gent system. Based on the ZNN
approach, the DFTZNN scheme is proposed for achieving
both fixed-time and robust consensus.

2) We provide a comprehensive theoretical analysis to es-
tablish the fixed-time stability and robustness of the pro-
posed scheme. The analysis also includes the presentation
of the upper bound of the error in the presence of bounded
noise.

3) Building upon the theoretical foundation of a novel
integral-based method, we estimate the upper bound
of the settling-time function. For comparison, we also
present the traditional upper bound estimation method
and highlight the superior performance of the proposed
integral-based approach.

4) We analyze and validate the fixed-time consensus of the
DFTZNN scheme under a switching topology, a more
realistic scenario in real-life applications compared to a
fixed topology. Furthermore, we successfully apply the
DFTZNN scheme to achieve formation control.

II. PRELIMINARIES
A. The Graph Theory

In this paper, a communication topology consisting of n
vertices can be represented as a graph:

G=(V,E), (1)

where V' = {v1, va,v3...v, } denotes a finite set of vertices (or
nodes), and £ C V x V represents the relationship between
two nodes, called edges. Such a graph is called a strongly
connected graph if and only if there exists a communication
path between any two nodes.

The adjacency matrix A of graph G with n vertices is
a square matrix that indicates whether pairs of vertices are

adjacent or not in the graph. It can be denoted as A = [a;j]
with a;; being:
1, if je N,
aij = . 2)
0, otherwise,

where [V; represents a set of the adjacent nodes of v;.
The in-degree and out-degree of node v; are defined as
follows:

degm UZ

Z a]za degout U’L Z az] (3)

The degree matrix D is a diagonal matrix in the form
diag {d1,d2,ds...d,} where d; is represented as follows:

Zaw €

Using the adjacency matrix and degree matrix, a Laplacian
matrix can be represented as

L=D-A. (5)

d - degout Uz

Lemma 1 ( [12] ) Suppose that graph G denotes a strongly
connected graph, L denotes the Laplacian matrix of graph
G, and x denotes the state vector of the multi-agent system
with a communication topology G, then L:c = 0 if and only
fecl"={yeR'ly=c-(1,1,1..1)7}.

B. Switching Topology

Let’s consider a dynamic system consisting of n mo-
bile agents, all with the common objective of reaching an
agreement on a specific interest. Indeed, the communication
topology within a system may switch over time. Neglecting
this dynamic aspect in the consensus protocol could result
in control failures. Therefore, it is imperative to discuss and
account for the possibility of switching topology to ensure the
robustness and effectiveness of the consensus protocol.

For the subsequent discussion, let Q be the set denoted by
Q = {G1,G2,Gs...G, } representing all possible topologies.
Additionally, let M = {1,2,3...,m} denote the set of indices
corresponding to these topologies. The switching communi-
cation topology is characterized by a switching graph Gy
where §(t) : [0,4+00) — M denotes the constant switching
signal.



Accordingly, Ay and Dy, represent, respectively, the
switching adjacency matrix and degree matrix of G ;) at time
t. We can also get the switching Laplacian matrix

L5y = Ds(ry — As(t)- (6)

C. Consensus Algorithm

Suppose a homogeneous multi-agent system comprising N
agents, each of which can be described by the following
dynamic equation:

ai(t) = pa(t) ©)

Here, x;(t) is a state vector and p;(¢) is the control input of
the node 7. V(G) denotes the set of all nodes on Graph G.

i€ V(@) =1{1,2,3..n}

Definition 1 ( [12]) The nodes of a multi-agent system have
reached a consensus if and only if the states of agents satisfy

®)

Sor all i,j € V(G). Obviously, when the system has reached
a consensus, x € " ={ y e R"|ly=c-(1,1,1...1)}.

Jn |z(t) = 2; ()] = 0

Remark 1 Unlike traditional consensus control scheme which
is shown in (7), we indirectly control the system state vector
x(t) by controlling the error function e(t) in our novel
DFTZNN scheme, which can be summarized as follows:

é(t) = u(t) )]

Here, the corresponding control input u(t) is —®(e(t)), which
is shown in (12). In the next section, we will describe the
elegant DFTZNN scheme in detail.

III. THE PRACTICAL APPROACH
A. The Distributed Fixed-time Zeroing Neural Network

ZNN encompasses a class of Hopfield-like networks. We
can follow three steps to design a specific ZNN model for
a given problem. To begin with, we need to define a vector-
valued error function, and when the error function converges to
zero, the problem is considered solved. Next, we need to select
a suitable ZNN design formula from a range of ZNN design
formulas, each offering various advanced features. Finally, we
can obtain a customized ZNN dynamic equation tailored to
address the specific problem at hand.

Supposing a multi-agent system composed of n agents with
a switching topology Gs4), let’s consider the error between
node ¢ and its neighboring nodes. This is defined as follows:

ei(t) = D ai () (wilt) — z;(1)), (10)

where a;;(t) denotes the element of the switching adjacency
matrix Asqy = [ai;(t)].

For the convenience of subsequent discussion, the error can
be expressed in vector form:

e(t) = Lz (1),

where Ls) is the switching matrix.

Y

A distributed ZNN scheme [30] is usually in the following
form

&(t) = —(e(t)),

where e(t) is the error function, and ®(z) is some certain
activation functions.

In order to reach consensus, we construct the following
distributed ZNN scheme in the form of the implicit dynamic
system:

(12)

Lsy@(t) = —@(Lsyz(t)),

where ®(x) is the Sinh-power activation function (SHAF),
and the element-form of ®(x) is:

13)

¢(x) = hsinh(|z|")sign(z), (14)

where h > 0 and 0 < p < 1 are real parameters. For the
convenience of subsequent discussion, we call the novel con-
sensus control scheme (13) the distributed fixed-time zeroing
neural network (DFTZNN) scheme.

For the purpose of comparison, let us consider a multi-agent
system consisting of n agents with a fixed topology G. To
facilitate subsequent discussions, we construct the following
implicit dynamic system based on the distributed Zeroing
Neural Network (ZNN) method [30]:

Li(t) = —®(La(t)), (15)

which is a simplified case of (13).

B. Fixed-time Convergence

Generally, a dynamics system can be represented as follows:
(16)

where x(t) € R™ represents the state of the system with ¢t €
[0, +00] as a real time variable, and f(-) is a suitable mapping.
Assuming the equilibrium point of the system is at the origin,
denoted a x(t) = 0, we establish the following definitions:

Definition 2 ( [30]) We represent the initial state by x
, where xq denotes the initial condition of the system. In
addition, we denote by T (xg) R* — Ry U0 the
settling-time function (STF) where ||€(t)||;>7 (e, = 0. and
le@)l;<7(eq) # 0 For dynamics system (16), if T(eo) < M
where M > 0 is a positive real number, then we call it a
fixed-time consensus system.

Definition 3 ( [30]) Considering the dynamics system (15), if
the activation function ®(x) satisfies the following conditions:

1) The vector-valued function ®(x) can be decoupled as a
group of functions

(e(t)) = [d(er (1)), blea(t))-dlen(®))]" .

2) ¢(x) is a monotone increasing odd function.
3) ¢(x) is almost continuous.

a7

Then we call it a valid activation function (VAF). It is obvious
that SHAF (14) is a VAF.



Lemma 2 (Polyakov’s theorem [18]) For a ZNN model, if
a continuous and positive definite function V(t) = f(e(t))
exists, and satisfy the following condition:

V() < —(mVP(t) + nV(t)), (18)
then the ZNN model is fixed-time stable, and the STF is
bounded by:

1 n 1
m(l—p)  n(g—1)
Here, m > 0, n > 0,0 < p < 1, and q > 1 are real
parameters.

T (o) <

19)

IV. THEORETICAL ANALYSIS
A. Stability Analysis

In this section, we presented detailed theoretical analysis to
prove that the DFTZNN scheme is asymptotically stable, and
the consensus is achievable.

Theorem 1 Considering the DFTZNN model with a switch-
ing topology Gy formed by strongly connected graphs,
the dynamic system is asymptotically stable and tend to be
consensus.

Proof We first transform the DFTZNN design formula into

é(t) = —®(e(t)). Consider each subsystem é;(t) =

—¢(ei(t)),i =1,2,3...,n and then construct Lyapunov func-
2

tion candidates v;(t) = %w for every component of e(t). By

taking the derivative of Lyapunov function candidates v;(t),

we have:
0;(t) = é;(t)e;(t)
= —¢(ei(t))ei(t).
Since SHAF (14) is a VAF, it is obvious that x - $(x) > 0 and
¢(x) =0 if and only if x = 0, we have

if Bq(t) = 0,

(20)

>0,

~0, 2n

p(ei(t))eilt) = {
Obviously v;(t) <0, so the dynamic system is asymptotically
stable. The consensus is obtained from lim;_, o €;(t) = 0,1 =
1,2,3...,n and Lemma 1.

B. Fixed-time Convergence

As a general framework, we are able to use many estab-
lished results of ZNN in existing literature [21]-[23]. In this
section, to illustrate the superiority of ZNN, we will prove
that the proposed DFTZNN scheme is fixed-time stable, and
then estimate the upper bound of the STF through both the
traditional Polyakov’s theorem and the novel integral-based
method from previous studies on ZNN [30].

Remark 2 Considering the DFTZNN scheme (13) established
under a switching topology, it reduces to (15) if the multi-agent
system only has one topology structure. In the subsequent
discussion, we will see that DFTZNN scheme (13) is fixed-time
stable, and the upper bounds of the settling-time functions are
independent of initial states and topology structures. Hence,
the following theory is analyzed based on (15) under a fixed
topology for convenience.

Theorem 2 Considering the DFTZNN scheme, according to
Lemma 2, we can prove that it is fixed-time stable and the
settling-time function is bounded by:

1/ 1 (2k — 1)!
Tlwo) <3 (1p * [<2k1>p11)’

where x( is the initial state, h > 0 and 0 < p < 1 are
parameters defined in (14), k > 0 is a real constant satisfying

(2k—1)p>1and (2k—3)p < 1.

Proof We first transform the DFTZNN design formula into
é(t) = —P(e(t)) for the convenience of subsequent discus-
sion, and then construct positive definite auxiliary functions
v;(t) = |e;(t)| for every component of e(t). By taking the
derivative of auxiliary functions v;(t), we have:

bi(t) = [éi (D))

(22)

= —¢(ei(t))sign(e;(t))
= —hsinh(|e;(¢)|") (23)
o 3p 00 e (2m—1)p
= h(le() + | Z(éﬂ +> | ((Qtzl_ o)
m=3 '

where h > 0 and 0 < p < 1 are parameters defined in (14).
We can always find k € N satisfying (2k — 1)p > 1 and
(2k —3)p < 1, then:

O = o

0i(t) = —h(lei(t)]” + +y

)

6 = (2m —1)! 24)
< —h(les (1) R0 —
(et + =g =)

According to Lemma 2, we can estimate the upper bound
of the settling-time function for every component of e(t):

1/ 1 (2k —1)!
fim) <y (1 —p T k-1 - 11) @
Further, we can conclude that:
1 1 (2k —1)!
T(@o) = maxTilmo) < 7 <1 —p  [@k—Dp- 1]>2’6
(26)

where xq is the initial state, h > 0 and 0 < p < 1 are
parameters defined in (14), T'(s) = fooo ts~Lexp(—t)dt is the
Euler T function, and ((s) = > po, k™* is the Riemann
function.

Theorem 3 Considering the DFTZNN scheme, by the novel
integral-based method proposed in previous studies on ZNN
[30], we can prove that it is fixed-time stable and the settling-
time function is bounded by:

2 —2l-1/p
T (xo) = TF (I+1/p)C((/p), @7
where xq is the initial state, h > 0 and 0 < p < 1 are
parameters defined in (14), T'(s) = fooo t*~Lexp(—t)dt is the

Euler T function, {(s) = Y7, k™* is the Riemann ( function.

Proof Firstly, we introduce the novel integral-based method
[30] briefly. We denote ef**® = max{|e}|,|e|, ..., |eR|} the
absolute least upper bound of the initial error. Then, we



can estimate the upper bound of the settling-time function as
follows: ‘
T (o) = sup {T(e))}
1€ENL

max

For the convenience of subsequent discussion, we transform
the DFTZNN design formula into é(t) = —®(e(t)). According
to Definition 2, we consider the extreme situation, i.e. ej*** —
0o, we have:

Tley) = / h %de

/ hsinh(eP) smh ep

(28)

oo l/p 1 (29)
= | sy
2 —21-1/p
==———T(1+1/p)¢((1/p)),

hp

where h > 0 and 0 < p < 1 are parameters defined in
(14), T(s) = [~ t*"' exp(—t)dt is the Euler T" function, and
¢(s) = Zk:l k™2 is the Riemann ( function.

C. Robust Analysis

In this section, we provide a thorough theoretical analysis
to demonstrate that the DFTZNN scheme is robust in the
presence of the bounded noise. Based on (15), we denote w(t)
as the bounded noise which satisfying ||w(¢)|l, < m, and then
the following perturbed DFTZNN scheme can be derived:

Li(t) = —®(La(t)) + w(t), (30)

Theorem 4 Considering the DFTZNN scheme, it is robust
under the bounded noise w(t). If |lw(t)||, < m, then the
error |le(t)||y over time is bounded by

le(®)ll, < SVl + V).

Here, v is a constant satisfying v > 1.

€29

Proof: Firstly, take the derivative of F(t) = 1 |e(t)|5 to
obtain .
F(t) = et (t)e(t)

- —eT(t)(@(e(t)) —w(t))
< — Z|eZ o(lei(t)]) —m).

Here, F(t) is a Lyapunov function candidate which is used to
determine whether the multi-agent system is stable or not in
this study.

To further discuss the stability, we will need a auxiliary

(32)

function g(ex(t)) = ¢(ex(t))—m, and the following inequities
can be derived:
F(t) <0 if Vk,gler(t)) > 0, 33
F(t) <m if 3k, g(er(t)) <0,

where m > 0 is a constant.

Fig. 1: The communication topology G; of a multi-agent
system composed of n = 6 agents.

In the case where F (t) <0, the stability of the multi-agent
system can be obtained easily through the Lypuyanov stability
theorem and no further discussion is needed. Therefore, we
should put more emphasis on the case 0 < F(t) < m which
is analyzed thoroughly in the subsequent discussion.

In the case where 0 < .7-"(t) < m, make v =
#(les(t)])/]es(t)] = 1 and w = Tt to obtain:

UZ le; (8)](Jes (¢

It is obvious that |le(t )||2 and F(t) are 1glcreasing as 0 <
F(t) < m. When F(t) = 0, we have 31 |e;(t)|(|es(t)] —
w) =0 and ||e(t)||, achieves the maximum.

Let h(z) = z(x — w), and |e;(¢)| denotes as the maximum
term of |e;(t)]. We know hnin(x) = h(%y) = —%2. Then we
have:

(34)

)| = w).

n

le®)l(jer(t)] —w) == > le(®)l(lei(t)] — w)

i=1,il
(n—1)

(35)

AN

I.
From (35), |e;(t)| < % can be derived to obtain

n

> (a®))?

i=1

[

le@®ll; <

(36)

N

SVl + V)
SVl + V).

V. NUMERICAL VERIFICATION

In the subsequent discussion, the DFTZNN scheme will be
used in our experiments, and the common parameters are set
to h=1and p =0.5.

According to Theorem 2, we can conclude that £ = 2, and
then the settling time function is bounded by:

1/ 1 (2k — 1)!
T“@§h<1—p M%—lm—u)
I N 3! (37)
1-05  [3x05—1]

=14
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Fig. 2: The state of the multi-agent system in Example 1 under
a fixed topology
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Fig. 3: Error of the DFTZNN scheme for Example 2 using
five activation functions.

According to Theorem 3, the settling time function is
bounded by:

2 —2t-1/p
T(eo) = —— ——1(1+1/p)¢((1/p))
P (38)
=5 ~ 4.93

A. Fixed-Time Consensus Under Fixed Topology

Example 1 In this example, the multi-agent system is com-
posed of n = 6 agents, and we present its communication
topology Gy in Fig. 1. Gy is represented as a strongly con-
nected graph, and the cardinality of its edge set is |E(G1)| = 6.
The DFTZNN scheme is used in our experiment.

In this experiment, we set the initial condition xy =
[9.7414, —9.1450,22.5111, —23.2776, —3.0627, —5.9220).
Under the control of DFTZNN scheme, the state of six

— - LAF
8f PPAF
218 BPAF

" — EPAF,|
- - SHAF)

- - LAF
PPAF|
BPAF|

() m =20 (d) m =40

Fig. 4: The trajectories of error over time under the control of
DFTZNN scheme with different m.

18

(a) G1 (b) G2
() G3 (d) G4

Fig. 5: The set of switching topologies in Examples 4, 5 and
6.

(a) The trajectories of error

(b) The trajectories of state

Fig. 6: The multi-agent system with two switching topologies
reaches consensus under the control of DFTZNN scheme.
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(a) The trajectories of error (b) The trajectories of state

Fig. 7: The multi-agent system with three switching topologies
reaches consensus under the control of DFTZNN scheme.
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0 2 4 6 8 10

(a) The trajectories of error

(b) The trajectories of state

Fig. 8: The multi-agent system with four switching topologies
reaches consensus under the control of DFTZNN scheme.

agents is shown in Fig. 2, and the system converged within
approximately 5 seconds, which verified our theoretical
analysis further. In comparison with the traditional Polyakov’s
theorem [18], our novel method for estimating the upper
bound proves to be more accurate.

Example 2 Considering the same multi-agent system shown
in Example 1, in addition to the DFTZNN scheme activated by
SHAF (14), we will present other four widely used activation
functions for comparison purpose, i.e.,

1) Linear activation function (LAF): v (e) = e;

2) P-power activation function (PAF): 1(e) = |e|*-sign(e);

3) Bi-power activation function (BPAF): (e) = 1(|e|*® +
le|'-*)sign(e);

4) Exp-power activation function (EPAF):
3(exp(le”?) — 1) - sign(e);

In this experiment, we initialize the system with the initial
condition xog = [3.7842,4.9630, —0.9891, —8.3235, —5.4204,
8.2667]. Since the original error function is a vector function,
which may not be convenient for demonstration, we utilize the
2-norm of the error as the performance measure. Subsequently,
under the control of the Distributed Fixed-Time Zeroing Neural
Network (DFTZNN) scheme employing five activation func-
tions, the error is depicted in Fig. 3.

Looking at Fig. 3, the DFTZNN scheme activated by the
novel SHAF (14) proposed in our study has better convergence
than the classic linear scheme and the scheme activated by
other activation functions.

wle) =

Example 3 In the context of the same multi-agent system
as presented in Example 1, we extend our investigation. In
addition to the DFTZNN scheme activated by SHAF (14),
we incorporate four other widely used activation functions,

L 4
/N /N

/ O\ \/
o 0o é P o

Fig. 9: The communication topology G- of the UAV formation.
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(a) The X-axis component (b) The Y-axis component

Fig. 10: The velocity component of the formation under
th31.2e control of the SBP-DFTZNN scheme.

840
830
820
a1

R —

%0 670 680 690 700 710 720 730 740 750

(b) The final state

(a) The initial state

Fig. 11: The initial state and the final state of the formation
after 10 seconds, where the arrow represents the velocity
vector.

namely, LAF, PAF, BPAF, and EPAF, as outlined in Example
2, for the purpose of comparison. Common parameters are set
consistently with those in Example 2.

In this experiment, we initialize the system with the initial
condition o = [1.7873,2.5774,2.4313, —1.0777,1.5547,

— 3.2881]. Since the original error function is a vector
function, which may not be convenient for demonstration, we
utilize the 2-norm of the error as the performance measure.
The following bounded noise are added to the experiment to
verify the robustness of the proposed DFTZNN scheme:

w;(t) =msin(10t) i€ {1,2,3,...,n}, (39)
where w;(t) is the ith element of the bounded noise satisfying
lw; ()] < m.

Four different sets of parallel experiments are designed to
verify the robustness of the DFTZNN scheme, and in each set
of experiments, the upper bounds are respectively 5,10, 20, 40.
Then, under the control of the DFTZNN scheme using five
activation functions, the error is shown in Fig. 4. Looking
at Fig. 4, the DFTZNN scheme activated by five different
activation functions is robust under bounded noise.



TABLE I: Initial position and velocity of the formation.

Position

Velocity

O 0 N AN R WD~ O FH*

(75.5341,55.8527)
(62.9923,85.7919)
(51.5482,84.0502)
(82.7542,69.0142)
(62.6993,75.0884)
(76.8715,72.0846)
(56.1667,80.2293)
(63.7977,84.8645)
(86.0756,60.3102)
(54.7464,80.7368)

(8.6603,5.0000)
(12.3205,18.6603)
(25.9808,15.0000)
(29.6410,28.6603)
(43.3013,25.0000)
(46.9615,38.6603)
(60.6218,35.0000)
(64.2820,48.6603)
(77.9423,45.0000)
(81.6025,58.6603)

B. Fixed-Time Consensus Under Switching Topology

Example 4 Taking into account a multi-agent system with
a switching topology comprising n = 6 agents, where all
possible topologies are represented by a set of strongly
connected graphs Q = {G1,G2} shown in Fig. 5. The
DFTZNN scheme activated by five aforementioned activation
functions (i.e., SHAF, LAF, PAF, BPAF and EPAF) will be
used in our experiment. We set the initial condition xy =
[—1.6546, —9.0069, 8.0543, 8.8957, —0.1827, —0.2149].

Then, under the control of the DFTZNN scheme, the
trajectories of error over time are shown in Fig. 6(a).
Specifically, the state of the agents under the control of the
DFTZNN scheme activated by SHAF (14) is shown in Fig.
6(b).

As shown in Fig. 6, the multi-agent system with two switch-
ing topologies reached consensus under the control of the
DFTZNN scheme activated by five aforementioned functions.
Specifically, when controlled by the DFTZNN scheme activated
by SHAF egqrefshaf, the multi-agent system reached consensus
after approximately 5 seconds, which is consistent with our
theoretical analysis that it converges in approximately 4.93
seconds.

Example 5 Considering a similar multi-agent in Example 4,
the set of all possible topologies is represented by Q =
{G1,G2,Gs}, and is shown in Fig. 5. The DFTZNN scheme ac-
tivated by five aforementioned activation functions (i.e., SHAF,
LAF, PAE, BPAF and EPAF) will be used in our experiment.
We set the same initial condition as Example 4. Then, under
the control of the DFTZNN scheme, the trajectories of error
over time are shown in Fig. 7(a). Specifically, the state of the
agents under the control of the DFTZNN scheme activated by
SHAF (14) is shown in Fig. 7(b).

As shown in Fig. 7, the multi-agent system with two switch-
ing topologies reached consensus under the control of the
DFTZNN scheme activated by five aforementioned functions.
Specifically, when controlled by the DFTZNN scheme activated
by SHAF (14), the multi-agent system reached consensus
after approximately 5 seconds, which is consistent with our
theoretical analysis that it converges in approximately 4.93
seconds.

Example 6 Considering a similar multi-agent in Example 4,
the set of all possible topologies is represented by Q =

{G1,G2,Gs,G4} which is shown in Fig. 5. The DFTZNN
scheme activated by five aforementioned activation functions
(i.e., SHAF, LAF, PAF, BPAF and EPAF) will be used in our
experiment. Set the same initial condition as Example 4. Then,
under the control of the DFTZNN scheme, the trajectories of
error over time are shown in Fig. 8(a). Specifically, the state of
the agents under the control of the DFTZNN scheme activated
by SHAF (14) is shown in Fig. 8(b).

As shown in Fig. 8, the multi-agent system with two switch-
ing topologies reached consensus under the control of the
DFTZNN scheme activated by five aforementioned functions.
Specifically, when controlled by the DFTZNN scheme activated
by SHAF (14), the multi-agent system reached consensus
after approximately 5 seconds, which is consistent with our
theoretical analysis that it converges in approximately 4.93
seconds.

C. A Practical Application

Formation control represents a typical consensus problem
in multi-agent systems, where several robots collaborate to
form a specific arrangement. Each robot adjusts its behavior
to align with neighboring robots, ensuring consistent speed and
heading. In this section, we leverage the distributed fixed-time
zeroing neural network (DFTZNN) scheme to synchronize all
robots in the system, maintaining uniform speed and direction.

For the sake of visualization convenience, this paper focuses
on the two-dimensional plane. However, it’s worth noting that
the proposed protocol can be readily extended to a three-
dimensional case.

Example 7 Considering a formation composed of 10 robots
which communication topology is shown in Fig. 9, the initial
velocity and position are shown in Table I and Fig. 11(a). In
this experiment, the velocity is regarded as a two-dimensional
vector (Vg, Vy), and the velocity consensus obviously includes
the direction consensus. Therefore, we only need to control
the state of velocity. The velocity of the formation under the
control of the DFTZNN scheme activated by SHAF (14) is
shown in Fig. 10. It should converge in 4.93 seconds according
to Theorem 2, and numerical experiment results verify our
theoretical results. The final state of the formation after 10
seconds is shown in Fig. 11(b).

VI. CONCLUSION

ZNN, recognized as a systematic approach, proves to be a
potent tool for designing effective control schemes. Despite
its potential, there has been limited exploration of ZNN’s
application in multi-agent systems. In this study, leveraging
ZNN, we introduce the DFTZNN control scheme to achieve
fixed-time and robust consensus among multi-agents. This
novel approach offers researchers a novel perspective for
investigating consensus problems. We highlight the superiority
of this ZNN-based methods by exemplifying the upper bound
estimation of the settling-time function. Comprehensive theo-
retical analysis and numerical experiments further validate the
effectiveness of the proposed method.

However, it is essential to acknowledge certain limitations of
ZNN-based methods. These approaches are not as intuitive as



traditional consensus control schemes, requiring the definition
of an error function as a preliminary step. Additionally, ZNN-
based methods may not be suitable for achieving average con-
sensus, which is another import topic in consensus research.
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