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Abstract: This paper aims to elucidate the state-of-the-art, prevailing priorities, and the focus of the
industry, and identify both limitations and potential gaps regarding industrial robots and collabora-
tive robots (cobots). Additionally, it outlines the advantages and disadvantages of cobots compared
to traditional industrial robots. Furthermore, three novel factors are introduced in this survey as
metrics to evaluate the efficiency and performance of industrial robots and cobots. To achieve these
purposes, a statistical analysis and review of commercial articulated industrial robots and cobots
are conducted based on their documented specifications, such as maximum payload, weight, reach,
repeatability, average maximum angular speed, and degrees of freedom (DOF). Additionally, the
statistical distributions of the efficiency factors are investigated to develop a systematic method for
robot selection. Finally, specifications exhibiting strong correlations are compared in pairs using
regressions to find out trends and relations between them, within each company and across them all.
The investigation of the distribution of specifications demonstrates that the focus of the industry and
robot makers is mostly on articulated industrial robots and cobots with higher reach, lower payload
capacity, lower weight, better repeatability, lower angular speed, and six degrees of freedom. The re-
gressions reveal that the weight of robots increases exponentially as the reach increases, primarily due
to the added weight and torque resulting from the extended reach. They also indicate that the angular
speed of robots linearly decreases with increasing reach, as robot manufacturers intentionally reduce
the angular speed through reductive gearboxes to compensate for the additional torque required
as the reach extends. The trends obtained from the regressions explain the reasons behind these
interrelationships, the design purpose of robot makers, and the limitations of industrial robots and
cobots. Additionally, they help industries predict the dependent specifications of articulated robots
based on the specifications they require. Moreover, an accompanying program has been developed
and uploaded on to GitHub, taking the required specifications and returning a list of proper and
efficient robots sourced from different companies according to the aforementioned selection method.

Keywords: statistical analysis; industrial robots; cobots; robot efficiency; robot selection

1. Introduction
1.1. Classifications

Robotics plays a pivotal role in automating industries. Due to the mass production of
robots in recent years, there has been a significant increase in the adoption of industrial
robotic systems. Robots can be classified based on their structure. There exist six cate-
gories of industrial robotic manipulators, categorised by their structural configurations [1].
Five of these fall under the serial classification, including articulated, SCARA, Cartesian,
cylindrical, and spherical robots [1]. Additionally, robots of the delta category fall into
the parallel classification [1]. Parallel robots offer higher acceleration, speed, stiffness,
and payload/weight ratio with lower inertia; however, serial robots provide a higher
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workspace/robot size ratio, as well as ease of calibration and dynamics modelling [2]. The
position (angle) errors in serial robots add up together, whereas these errors average in
parallel robots, which results in higher position accuracy. However, it is worth noting that
the workspace of parallel robots is limited by the length of their shortest link. Articulated
robots have been employed in the industry more than robots from other categories due to
their human-arm resemblance, wider range of reach, and ease of installation. Consequently,
this review specifically focuses on articulated industrial robots.

In terms of human–robot interactions, two types of robots emerge: industrial robots,
also referred to as traditional industrial robots and cobots. Figure 1 illustrates different
levels of interaction between a robot and a human. At the isolated level, the robot is situated
in a cell—an isolated area—and usually has safety measures in place to turn off the robot
if someone enters the cell. The coexistence level is when the robot and the human do not
have a shared workspace, but the robot is not isolated. In the case of synchronised level,
the robot and the human worker share a workspace, but they do not work at the same
time. However, various sources provide slightly different definitions for cooperation and
collaboration levels. In sources such as [3], cooperation is defined as the simultaneous
sharing of workspace by the robot and human without sharing a task. On the other
hand, collaboration occurs when they not only simultaneously share the workspace but
also share a task in a way that an action of one participant immediately affects the other.
Conversely, as outlined in references such as [4], both cooperation and collaboration levels
can involve working in the same workspace at the same time and sharing a task. However,
the distinctive characteristic that sets collaboration apart from cooperation is the direct
physical interaction between the robot and the human.
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Additionally, there are other papers like [5] which describe collaboration as the opera-
tion of a robot without a fence or physical barrier next to a person. Although this definition
is followed by the market and considers broader robots as cobots, it may not be the most
accurate and scientific definition. Nonetheless, the market definition is adopted for this
statistical review on commercial articulated robots.

The market is increasingly paying more attention to cobots. According to the data
shown in Figure 2, a total of 553,000 industrial robots and cobots were installed globally
in 2022, in which cobots, as the necessary component of Industry 5.0, gained increased
favourability. As it seems from this figure, more cobots were installed in industries in 2022
compared to previous years. Nevertheless, the majority of industrial robots installed in
recent years are of the traditional type. It is noteworthy that the order in Figure 2 will
remain the same if it is rearranged based on the cobot-to-traditional-robot ratio.
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1.2. Previous Works, Innovations and Comparison

In order to find statistical and analytical papers reviewing industrial robots or cobots,
the following Boolean strings were utilised in Google Scholar, which returned 45 results for
industrial robots:

(intitle:review OR intitle:study OR intitle:survey) AND (intitle:statistical OR inti-
tle:statistic OR intitle:analytical OR intitle:analysis) AND (intitle:robot OR intitle:robots OR
intitle:robotic) AND (intitle:industry OR intitle:industrial OR intitle:industries).

The Boolean operator “intitle” was employed to just consider titles. This operator finds
the exact word which follows it, thus, “intitle:robots” and “intitle:robot” find disparate
results. Papers with review themes are expected to incorporate terms such as “review”,
“study”, or “survey” in their title. Those with statistical or analytical themes should include
the terms “statistical”, “statistic”, “analytical”, or “analysis” in their title. In addition to
the themes mentioned, the target papers should be about industrial robots. Therefore, the
titles should contain the words “robot”, “robots”, or “robotic”, in addition to the words
“industry” or “industrial”.

One result was found for cobots with the following string:
(intitle:review OR intitle:study OR intitle:survey) AND (intitle:statistical OR inti-

tle:statistic OR intitle:analytical OR intitle:analysis) AND (intitle:cobot OR intitle:cobots OR
intitle:cobotic)

Also, the following Boolean string was obtained by removing the review part and
ticking the option review articles in Google Scholar. The resulting Boolean string returned
12 papers for industrial robots:

(intitle:statistical OR intitle:statistic OR intitle:analytical OR intitle:analysis) AND
(intitle:robot OR intitle:robots OR intitle:robotic) AND (intitle:industry OR intitle:industrial
OR intitle:industries)

The following string returned one result for cobots:
(intitle:statistical OR intitle:statistic OR intitle:analytical OR intitle:analysis) AND

(intitle:cobot OR intitle:cobots OR intitle:cobotic)
After careful consideration of the titles and abstracts of all these identified papers, it

was perceived that none of them conducted a statistical or analytical review of industrial
robots or collaborative robots. Within these results, the only paper with a close theme
was [7], which conducted a statistical review of pneumatic industrial robotic grippers. This
work investigated the distribution of the specifications of these grippers (such as maximum
payload, weight, and reach), compared some of these specifications in pairs, and introduced
a factor to assess their efficiency.

This paper considers the specifications of off-the-shelf industrial robots and cobots,
including the maximum payload, weight, reach, repeatability, average maximum angular
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speed (average of all joints), and DOF. Additionally, it presents three efficiency factors to
measure the performance of industrial robots and cobots. Initially, the statistical distribu-
tions of these specifications and factors are discussed to identify the focal points of attention
for both the industry and robot makers. Some of these specifications, which show a strong
correlation, are compared in pairs to discern trends and relations to understand the design
purpose of robot manufacturers, limitations, and the underlying reasons for these relations.
Moreover, the specifications of industrial robots and cobots are comparatively analysed
to elucidate the advantages and limitations of cobots and the potential replacement of
industrial robots by cobots.

Furthermore, another aspect of this work is to help industries select a robot that suits
their need. To find relevant papers studying the selection of industrial robots, the following
Boolean string was deployed:

(intitle:industry OR intitle:industrial OR intitle:industries) AND (intitle:robot OR
intitle:robotic OR intitle:robotics) AND (intitle:selection OR intitle:select OR intitle:choose
OR intile:choosing)

This Boolean string yielded 81 results. Some of them employ multicriteria decision-
making (MCDM) methods, fuzzy, or a combination of these techniques to devise a robot
selection algorithm. For instance, ref. [8] used a VIKOR (MCDM) method, and ref. [9]
deployed a Fuzzy Analytical Hierarchy Process (fuzzy + MCDM) for robot selection algo-
rithms. Additionally, distance-based approaches have been proposed to develop a robot
selection method. As an example, a robot selection method based on Mahalanobis distance
was introduced in [10] with a database of 27 industrial robots and based on the idea of
excluding outlier robots. However, none of these results specifically addressed the distri-
bution of efficiency factors or any statistical feature of a sizable population of industrial
robots. The distribution of a substantial population of these robots is of high importance
because it reflects the state-of-the-art technology of industrial robots. In the current study,
three factors are introduced to measure the efficiency and performance of a notable num-
ber of robots. Robots with higher efficiency exhibit greater energy efficiency and lower
depreciation. Consequently, robots with lower efficiency can be excluded from the list of
appropriate options. On the other hand, because of the competitive nature of the market,
the technology, and consequently, the performance of a robot made by a leading company
cannot surpass that of other leading companies by far. Therefore, it is more likely that a
problem arises with a robot exhibiting a superior efficiency, called an outlier. These robots
may be excellent ones that can appropriately fulfil all the reported maximum specifications
concurrently in different conditions; however, the possibility of the failure to accomplish
those maximum specifications at the same time is greater compared to other robots, and
the documented data may be assessed in specific conditions. For instance, it may not be
possible to obtain the reported repeatability of a robot while it is at its maximum reach
and carrying the maximum payload, especially for outlier robots. The idea of setting aside
outlier robots, as well as inefficient ones, has been put forward in [10] and is adopted in the
current review.

The structure of this paper is as follows: Section 2 explains the sources of data and
the methodology of data gathering. Section 3 presents the distribution of the specifications
to identify the main requirements of the industry. Section 4 shows specifications with
strong correlations to uncover trends and reasons behind the design choice of robot makers.
Section 5 outlines the robot selection method based on the distribution of the proposed
efficiency factors. Section 6 puts forward additional specifications for inclusion by robot
manufacturers to be investigated in future works. Finally, the Section 7 remarks on the key
findings of this survey.

2. Scope and Data Extraction
2.1. Target Robots and Cobots

As indicated previously, articulated robots are the predominant choice in the indus-
try. Therefore, in this review, off-the-shelf (available in the market) articulated industrial
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robots and articulated industrial cobots are specifically investigated. Their catalogues on
the official website of the manufacturers are considered to extract the payload capacity,
weight, reach, repeatability, average maximum angular speed (AMAS), and DOF. These
specifications are asserted in all catalogues; however, specifications such as maximum
linear speed are not stated in all catalogues and, thus, are not taken into consideration in
this work.

2.2. Target Robot Manufacturers

In this review, the “Big 4” companies in robotics, Fanuc, ABB, Kuka, and Yaskawa,
which collectively represent more than approximately half of the global market share in
industrial robots according to [11–13], are addressed. Figure 3 demonstrates the financial
worldwide market share of each of these four leading companies in 2019 and outlines that
they together held 56% of the market. Additionally, Universal Robots, which held 55%
and 46% of the cobot market share in 2016 and 2017, respectively, [14] and reported sales
revenue of 248 million USD in 2019 [15], is also included in this analysis.
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This review investigates a total of 455 articulated industrial robots and cobots, which
comprises 416 industrial robots and 39 cobots. The cobot-to-industrial-robot ratio in this
review is 0.093, close to the 2022 sales ratio shown in Figure 2, which is 55,000 cobots over
498,000 industrial robots, or 0.110. Table 1 presents information on the quantity of industrial
robots and cobots included in this survey, categorised by their respective manufacturers. It
should be highlighted that the ratio of the number of the total robots exhibited in Table 1
for each company does not align with the percentages depicted in Figure 3. However, this
disparity does not constitute any conflict because selling a greater number of robots by one
company does not necessarily result in higher revenue compared to another company.

Table 1. The number of articulated industrial robots and cobots from the target robot manufacturers
that were studied in this analysis. (The background colour is for better reading of the items).

Manufacturer No. of IR No. of Cobots No. of Total Robots
Fanuc 90 11 101
ABB 97 8 105
Kuka 157 9 166

Yaskawa 72 6 78
Universal Robots 0 5 5

Total 416 39 455
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In the section Appendix A, in Tables A1–A5, the model of the industrial robots and
cobots of Fanuc, ABB, Kuka, Yaskawa, and Universal Robots considered in this analysis
are presented.

2.3. Data Sources

In this survey, articulated industrial robots and cobots available on the official websites
of these companies with catalogues presenting necessary specifications were considered.
The datasheets for Fanuc robots were gathered from [16], ABB robots from [17], Yaskawa
robots from [18], and Universal Robots from [19]. Regarding Kuka, robots listed in [20] were
taken into account, and if their datasheets were not available in [20], they were obtained
from [21].

It is important to indicate that each model of the robots available on the website of the
manufacturers impacts the analysis equally (following the same strategy referenced in [7])
without considering the actual sales statistics for each robot since this information is not
publicly accessible. However, this approach does not necessarily constitute a weakness in
this survey because of the fact that popular products usually feature several editions and
series and maintain a longer presence in product listings.

It must be acknowledged that the data analysis in this study relies solely on the details
presented in the datasheets of the robots; however, these data points may contain some
form of exaggerations, inaccuracies, or measurements conducted under specific conditions.
Nonetheless, the data are mostly deemed trustworthy since well-known companies are
generally inclined to safeguard their reputation. Consequently, a method is proposed in
Section 5 to assist in removing possible outlying data for robot selection.

3. Data Distribution
3.1. Statistical Values of Specifications

To analyse the obtained data, it is essential to elucidate some statistical parameters
and how their relative positions contribute to describing the data distribution. Mean and
median are the two statistical parameters utilised to measure the tendency of data. Unlike
the mean, the median is typically less affected by the outlier and extreme data points. In an
asymmetric data set, the mean is not usually at the centre of the distribution; therefore, the
median is often the preferred statistical parameter for identifying the central tendency [22].

From a statistical point of view, in a right-skewed distribution, the mean is often
greater than the median, and the data is denser on the left side. Conversely, when the
distribution is skewed to the left, the median is often greater than the mean, and the data is
denser on the right side. The maximum, minimum, mean, and median (statistical values)
of the specifications for the total of industrial robots and cobots are presented in Table 2.
The specifications mentioned in Table 2 will be discussed further in the next subsections.

Table 2. Ranges and statistical values of specifications and factors of articulated industrial robots and
cobots. (The background colour is for better reading of the items).

Data Min. Max. Mean Median Count
Weight (kg) 7.0 12,500 1026.2 665.0 455

Payload capacity (kg) 0.5 2300 176.8 80.0 455
Reach (mm) 350.0 4683.0 2211.8 2403.0 455

A factor (mm) 7.4 1131.7 346.5 291.8 455
Repeatability (mm) 0.01 0.9 0.07 0.05 453

B factor 50.0 47,237.0 7240.2 6581.4 453
AMAS (◦/s) 21.0 700.0 224.7 173.0 447
C factor (◦/s) 25.4 12,541.4 1566.9 1174.1 445

DOF 3 15 6.0 6 455

According to Table 2, all the obtained specifications exhibit a right-skewed distribution,
except for reach, which is skewed to the left. Regarding articulated robots, it can be inferred
that companies prefer higher reach and better repeatability while showing a tendency
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towards lower payload capacity, weight, and angular speed. One of the possible reasons
for the choice of lower payload capacity could be the prevalence of small-sized parts in
production lines that require manipulation. Additionally, opting for lower payload capacity
results in a reduction in the weight of the robot and subsequently leads to a decrease in
both depreciation and the cost of the robotic system.

Table 3 illustrates trends of the data for industrial robots, where all the specifications
are skewed to the right, except for reach, which is left-skewed. The specification distribu-
tions of industrial robots mirror the same pattern seen in the dataset of the whole robots
presented in Table 2.

Table 3. Ranges and statistical values of specifications and factors of articulated industrial robots.
(the background colour is for better reading of the items).

Data Min. Max. Mean Median Count
Weight (kg) 7.0 12,500.0 1116.3 995.0 416

Payload capacity (kg) 0.5 2300.0 192.2 110.0 416
Reach (mm) 350.0 4683.0 2311.4 2600.0 416

A factor (mm) 13.3 1131.7 355.0 307.2 416
Repeatability (mm) 0.01 0.9 0.07 0.05 414

B factor 50.0 47,237.0 7250.2 6576.8 414
AMAS (◦/s) 21.0 700.0 226.5 173.0 414
C factor (◦/s) 25.4 12,541.4 1593.8 1168.4 412

DOF 3 15 5.9 6.0 416

Table 4 presents the statistical values for industrial cobots, revealing trends which are
consistent with industrial robots and the whole robots, except for reach, demonstrating a
relatively symmetric distribution.

Table 4. Ranges and statistical values of specifications and factors of articulated industrial cobots.
(the background colour is for better reading of the items).

Data Min. Max. Mean Median Count
Weight (kg) 9.5 375.0 65.3 46.3 39

Payload capacity (kg) 0.5 50.0 12.2 10.0 39
Reach (mm) 500.0 1900.0 1149.4 1150.0 39

A factor (mm) 7.4 691.7 255.4 236.2 39
Repeatability (mm) 0.01 0.15 0.05 0.04 39

B factor 367.8 23,189.1 7134.5 6581.4 39
AMAS (◦/s) 99.0 408.0 201.9 180.0 33
C factor (◦/s) 100.8 2757.1 1231.1 1205.4 33

DOF 6 14 6.3 6 39

In the next subsections, the distribution of each specification is investigated in detail.

3.2. Distribution of Payload Capacity

The maximum payload a robot can carry occurs when its centre of mass is at the 0
position, which is considered the payload capacity of a robot in this work. As highlighted in
Table 2, the mean payload capacity is approximately double the median value. Consistent
with this, in Figure 4, the data exhibits a rightward skew. This information reveals that
payload values are denser at the left. Additionally, the figure demonstrates two notably
dense areas, one that centres around 10 kg (the focus of robots designed for manipulating
lighter objects) and another one around 200 kg (the centre of robots designed for handling
heavier objects).
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According to Figure 5, depicting the cumulative percentages of payload capacities,
40% and 70% of the industrial robots and cobots possess a payload capacity of less than
25 kg and 210 kg, respectively. These data collectively indicate that the prevalent emphasis
of the industry and robot makers is on robots with lower payload capacities. This inclination
could be attributed to the predominance of small-sized products made by industries.
Therefore, robots employed for the handling and manipulation of these objects tend to
provide lower payload capacities. Moreover, tools used in welding, painting, and assembly
tasks typically have smaller dimensions, consequently resulting in a lower payload capacity
in welding, painting, and assembling robots.
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It should be noted that the manipulation of heavy objects, especially when the gripping
point of the object is far from the centre of gravity, can be facilitated through the collabora-
tion of multiple robots working together. This strategy may draw attention to robots with
lower payload capacity and, consequently, lighter robots, especially in future applications.
The idea of using multiple robots (a swarm of robots) for handling nonuniform loads has
been investigated in [23]. Additionally, ref. [24] has surveyed dual arm manipulation.
Furthermore, the Robotic Operating System (ROS and ROS2) has been paving the way for
enabling the easy and efficient collaboration of robots working with each other.

Based on Table 3, illustrating the mean payload capacity of industrial robots is ap-
proximately twice the median value, and referring to Figure 6, where the data is skewed
to the right, these observations together imply a higher concentration of payload values
towards the left. Furthermore, Figure 6 exhibits two distinct denser areas—one around
10 kg (the preferred area for robots manipulating lighter objects) and another one around
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200 kg (the preferred area for robots manipulating heavier loads). This pattern is in line
with the results obtained for the mixed data of industrial robots and cobots.
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of 1 kg, up to 650 kg.

It is remarkable that, with reference to both Tables 3 and 4, the mean and median
payload capacities of cobots are less than one-tenth of the average and median payload
capacities of industrial robots. The median and mean payload capacities of cobots are
approximately 10 kg, and, as illustrated by Figure 7, the concentration of payload capacity
is centred around 10 kg, collectively suggesting a symmetric distribution of data. In light of
these data and recognising that the maximum payload capacity of cobots is just 50 kg, it
can be inferred that cobots are designed for handling lighter objects. However, through the
implementation of more advanced sensors and cameras (for human–robot interactions),
control and AI algorithms, and human awareness features, it will be possible to make
cobots with heavier payload capacities work safely with humans, consequently filling this
gap in the industry.
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of 1.

3.3. Weight Distribution

A right-skewed bar chart histogram illustrating the weight of the total of industrial
robots and cobots is provided in Figure 8. Considering this histogram and referencing
Table 2, which mentions the mean weight is 1.5 times the median value, it can be concluded
that the weight distribution is more concentrated on the left side.
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10 kg, up to 3000 kg.

Three focal points around 50, 250, and 1100 kg can be observed for the weight of
industrial robots and cobots in Figure 8. In addition, Figure 9 highlights a 20%, 40%, and
70% of industrial robots and cobots weigh relatively less than 50 kg (robots manipulating
light objects), 250 kg (robots mostly handling medium objects), and 1100 kg (robots manip-
ulating heavy objects), respectively. By taking all these data into account, it is suggested
that the prime focus of the industry and robot makers is lighter robots.
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Figure 9. A cumulative percentage bar chart of the distribution of weight of industrial robots and
cobots in bins of 10 kg, up to 3000 kg.

One of the possible reasons for this trend is that the industry and industrial robot
makers emphasise lower payload capacities, as elaborated in the previous subsection. Thus,
there is a focus on designing lighter robots. Another rationale is that lighter robots enable
easier transportation and installation. Moreover, lighter industrial robots and cobots often
come with lower prices and maintenance costs. Additionally, the reduced weight of a robot
typically results in less depreciation, higher speed, and lower cycle time. As indicated in
the preceding subsection, the promotion of using multiple cooperating smaller robots, as
opposed to a single larger one, may further increase the popularity of lighter robots in
the future.

Some studies, including [25], have deployed different optimisation methods to design
industrial robots with decreased weight to enhance their efficiency. Additionally, [25]
reveals how adding some holes in the arms of robots can improve their strength through
decreasing their weight and enhancing their stress distribution. Therefore, it can be inferred
that a higher weight may not necessarily result in better strength, and vice versa.
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Given the information in Table 3, although the median weight of industrial robots is
closer to the mean value compared to the combined total of industrial robots and cobots,
the median is still 10% less than the mean. The data is also skewed to the right, based on
Figure 10. Therefore, the data is denser on the left, which shows that lighter industrial
robots are typically preferred in the industry. It is also notable that, according to Figure 10,
three areas are denser: one centres around 50 kg (industrial robots manipulating delicate
objects), the second around 250 kg (industrial robots typically handling medium objects),
and the last around 1100 kg (industrial robots manipulating heavy objects), mirroring what
was observed in the total of industrial robots and cobots.
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Interestingly, according to Tables 3 and 4, the mean and median weights of cobots are
roughly one-twentieth of the mean and median weight of industrial robots, respectively.
The median is 30% less than the mean weight of cobots, and Figure 11 exhibits a right-
skewed distribution. Consequently, the data is more concentrated on the left. Furthermore,
as depicted in Figure 11, the dense area of the weight distribution is around the median,
which is 46 kg. By considering these data, it can be assumed that cobots are lighter in
comparison to industrial robots because they handle lighter payloads, and they should be
safe to work with people. As indicated in the previous subsection, the implementation of
more precise sensors and advanced control and AI algorithms makes cobots handle heavier
payloads more safely and cautiously alongside humans. This development may contribute
to the creation of industrial cobots with higher payload capacity, and consequently, heavier
weight will be available in the future.
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3.4. Distribution of Reach

Reach (stroke) for industrial robots and cobots is defined as the maximum distance
between the centre of the wrist of the robot and the axis of the first joint, perpendicular to
this axis.

Referencing Table 2, the median reach is approximately 9% greater than the mean (un-
like other specifications) and, as illustrated in Figure 12, the data is relatively right-skewed.
Consequently, the data is roughly denser on the right, in contrast to other specifications.
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In accordance with Figure 13, 70% of the robots exhibit a reach of higher than 1600 mm,
and 30% surpass 3000 mm. Considering these observations collectively, it can be inferred
that the industry and robot makers prefer higher reach over higher payload capacity.

J. Manuf. Mater. Process. 2024, 8, x FOR PEER REVIEW 13 of 40 
 

 

 
Figure 13. A cumulative percentage bar chart of the distribution of reach of industrial robots and 
cobots in bins of 20 mm. 

Given the information in Table 3, the median reach of industrial robots exceeds the 
mean value by relatively 13%, and, based on Figure 14, the data is skewed to the left. Ac-
cordingly, the data is denser on the right, and it shows that the predominant focus of in-
dustrial robots is on achieving longer reach. 

 
Figure 14. A bar chart histogram of the distribution of reach of industrial robots in bins of 20 mm. 

According to Figure 15, the reach of cobots centres around 900 mm and 1400 mm, 
and the mean reach falls in the middle of them. It is notable that, according to Tables 3 and 
4, the mean and median reach of cobots are roughly half of their counterparts in industrial 
robots. The maximum reach of industrial cobots is 1900 mm, which is even less than half 
of the maximum reach of industrial robots and reveals a noticeable gap. These data sug-
gest that cobots have shorter reach in comparison to industrial robots, possibly to mitigate 
risks linked to heavier weight and longer reach during their collaboration with human 
workers. As mentioned in earlier subsections, by implementing more accurate sensors an-
denhanced control and AI algorithms, cobots can handle payloads to farther distances 
more safely and cautiously beside humans. This advancement can result in cobots with 
extended reach in the future. 

Figure 13. A cumulative percentage bar chart of the distribution of reach of industrial robots and
cobots in bins of 20 mm.

This reveals that the applications of robots in the industry predominantly include
manipulating smaller objects over extended distances, such as picking and placing, machine
tending, arc welding, and painting.

Given the information in Table 3, the median reach of industrial robots exceeds the
mean value by relatively 13%, and, based on Figure 14, the data is skewed to the left.
Accordingly, the data is denser on the right, and it shows that the predominant focus of
industrial robots is on achieving longer reach.
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According to Figure 15, the reach of cobots centres around 900 mm and 1400 mm, and
the mean reach falls in the middle of them. It is notable that, according to Tables 3 and 4,
the mean and median reach of cobots are roughly half of their counterparts in industrial
robots. The maximum reach of industrial cobots is 1900 mm, which is even less than half of
the maximum reach of industrial robots and reveals a noticeable gap. These data suggest
that cobots have shorter reach in comparison to industrial robots, possibly to mitigate risks
linked to heavier weight and longer reach during their collaboration with human workers.
As mentioned in earlier subsections, by implementing more accurate sensors andenhanced
control and AI algorithms, cobots can handle payloads to farther distances more safely and
cautiously beside humans. This advancement can result in cobots with extended reach in
the future.
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3.5. Distribution of the A Factor

In order to establish a metric for evaluating the efficiency of a wide range of industrial
robots and cobots, the A factor is presented in this work. Its formula is indicated in
Equation (1).

A f actor =
(Payload) (Reach)

Weight
(1)

A similar factor has been proposed by [7] to assess the efficiency and performance
of robotic grippers based on their force, stroke, and weight. This factor is deemed appli-
cable to robots as well, consisting of two beneficial components: payload/weight ratio,
where a higher value results in less depreciation and energy consumption (as the robot
carries less weight to manipulate a payload), and reach. Furthermore, as reach increases,
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maintaining a high payload/weight ratio becomes more challenging; hence, robots with
lower payload/weight can compensate for this by achieving a better reach, and vice versa.
So, incorporating these three specifications into a single factor can be an appropriate mea-
surement of the efficiency and performance of an industrial robot or cobot. However, the
inclusion of more specifications, such as repeatability and maximum angular speed, can
make the factor more comprehensive.

Table 2 indicates that the median of the A factor is 16% less than the mean, and as
illustrated in Figure 16, the data is skewed to the right. Consequently, the distribution of
this factor is denser on the left.
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Figure 16. A bar chart histogram of the distribution of the A factor of industrial robots and cobots in
bins of 20 mm.

According to Figure 17, characterised by a higher slope at the beginning and the data
previously mentioned, the A factor for the majority of the robots is in the lower range.
This can be attributed to the fact that maintaining the ratio of payload/weight, in addition
to having high reach, is more challenging for heavier robots. Conversely, lighter robots
struggle to have a high reach capacity. Furthermore, according to Figure 17, 40% of robots
have an A factor of less than 200, although the maximum value of the A factor is 1131
(Kuka KR 800 R2800-2).
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Figure 17. A cumulative percentage bar chart of the distribution of the A factor of industrial robots
and cobots in bins of 20 mm.

The standard deviation of the A factor for the total of industrial robots and cobots (σA)
is 240.8, and the mean (µA) is 346.5. In light of the characteristics of the A factor distribution
discussed in this subsection, it can be assumed that robots with an A factor of less than
µA − σA = 105.7 can be categorised as inefficient robots based on this factor, while robots
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with an A factor exceeding µA + 2 σA = 828.1 can be classified as outlier robots. In addition,
robots with an A factor falling within the range of µA − σA = 105.7 and µA + 2 σA = 828.1
can be labelled as efficient and appropriate industrial robots and cobots, according to this
factor.

Generally, in normal distributions, the range between µ − σ and µ + σ is of high
importance due to including more significant data and excluding extreme data. However,
because of the right-skewed distribution of the A factor, the range is defined between
µ− σ and µ+ 2 σ. It is noteworthy that other robot selection methods mentioned in the
Introduction section have some settings to be adjusted manually, which makes it reasonable
to establish this range based on the observed distribution of the factor. Outlier robots
are more likely to struggle to maintain all the maximum specifications at the same time.
Since the technology level of the robots from these market-leading companies is the same,
presenting a robot that outstandingly outperforms the other robots may be less probable.
They could be well-designed robots capable of satisfying the maximum specifications
simultaneously, but the likelihood is lower. Therefore, outlier robots can be set aside in
robot selections, as well as less efficient robots. The idea of detecting and excluding outlier
robots in robot selection has been presented in [10] for 27 robots.

Based on this factor, from the total of 455 industrial robots and cobots (416 industrial
robots and 39 industrial cobots), 366 (332 industrial robots and 34 industrial cobots) are
categorised as efficient, 73 (68 industrial robots and 5 industrial cobots) as inefficient, and
16 (16 industrial robots and 0 industrial cobots) as outliers.

Given the information presented in Table 3, the median of the A factor is 16% below
the mean value in industrial robots, and as shown in Figure 18, the A factor of industrial
robots is also right-skewed. Thus, the data is more concentrated on the left. As discussed
previously, in accordance with the A factor, among the total of 416 industrial robots,
332 (80%) are classified as efficient, 68 (16%) as inefficient, and 16 (4%) as outliers.
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Figure 18. A bar chart histogram of the distribution of the A factor of industrial robots in bins of
20 mm.

Referring to Table 4, the mean of the A factor for industrial cobots is 8% less than the
median. Figure 19 also illustrates a right-skewed data distribution; hence, both sources
suggest the data is denser on the left, similar to industrial robots. Based on A factor
investigated previously, among the total of 39 industrial robots, 34 (87%) are considered
efficient, 5 (13%) are inefficient, and there were no outliers. These data underscore the close
efficiency alignment between industrial cobots and robots, indicating that the A factor does
not significantly differentiate between the two types.
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3.6. Distribution of Repeatability

There are three key concepts regarding robotic precision and calibration: resolution,
accuracy, and repeatability. Position resolution refers to the minimum movement a robot
can perform [26]. ISO 9283 [27] defines position accuracy for manipulating robots as “the
deviation between a command pose and the mean of the attained poses when approaching
the command pose from the same direction”. Additionally, it explains position repeatability
as “the closeness of agreement between the attained poses after n repeat visits to the same
command pose in the same direction”. Repeatability is mostly emphasised and measured
for industrial robots and cobots since they are typically required to do a task repeatedly.
Generally, repeatability is affected by accuracy, and accuracy is influenced by resolution. It
should be noted that orientation repeatability has not been mentioned on the datasheet of
the target robots.

Given that Table 2 mentions the median repeatability is 28% below the mean value,
and according to Figure 20, which demonstrates that the data is skewed to the right for
industrial robots and cobots, it can be indicated that the data is more concentrated on the
left. Moreover, Figure 20 reveals a notable focus on the repeatability of 0.05 mm.
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Figure 20. A bar chart histogram of the distribution of repeatability of industrial robots and cobots in
bins of 0.01 mm, up to 0.2 mm.

Based on Figure 21, 70% of industrial robots and cobots have repeatability equal to
or better than 0.05 mm. All these data collectively indicate that the industry prioritises
robots exhibiting better repeatability. This may be attributed to the prevalent applications
of industrial robots and cobots that are manipulating lighter and more delicate objects,
requiring higher repeatability.



J. Manuf. Mater. Process. 2024, 8, 216 17 of 40

J. Manuf. Mater. Process. 2024, 8, x FOR PEER REVIEW 17 of 40 
 

 

 
Figure 20. A bar chart histogram of the distribution of repeatability of industrial robots and cobots 
in bins of 0.01 mm, up to 0.2 mm. 

Based on Figure 21, 70% of industrial robots and cobots have repeatability equal to 
or better than 0.05 mm. All these data collectively indicate that the industry prioritises 
robots exhibiting better repeatability. This may be attributed to the prevalent applications 
of industrial robots and cobots that are manipulating lighter and more delicate objects, 
requiring higher repeatability. 

 
Figure 21. A cumulated percentage bar chart of the distribution of repeatability of industrial robots 
and cobots in bins of 0.01 mm, up to 0.2 mm. 

As per Table 3, the median repeatability of industrial robots is 28% below the mean 
(like the mixed total of industrial robots and cobots). Additionally, as presented in Figure 
22, the data is right-skewed; therefore, both sources indicate that the data is denser on the 
left. Furthermore, Figure 22 shows that the data is focused at 0.05 mm for industrial robots. 
Since, high repeatability is of high importance for industrial robots, especially the ones 
engaged in welding and machining tasks, which mostly include drilling, cutting, and mill-
ing. 

 

Figure 21. A cumulated percentage bar chart of the distribution of repeatability of industrial robots
and cobots in bins of 0.01 mm, up to 0.2 mm.

As per Table 3, the median repeatability of industrial robots is 28% below the mean
(like the mixed total of industrial robots and cobots). Additionally, as presented in Figure 22,
the data is right-skewed; therefore, both sources indicate that the data is denser on the
left. Furthermore, Figure 22 shows that the data is focused at 0.05 mm for industrial
robots. Since, high repeatability is of high importance for industrial robots, especially the
ones engaged in welding and machining tasks, which mostly include drilling, cutting,
and milling.
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Figure 22. A bar chart histogram of the distribution of repeatability of industrial robots in bins of
0.01 mm, up to 0.2 mm.

Based on Table 4, the median repeatability for industrial cobots is 17% below their
mean, and as shown in Figure 23, the data is skewed to the right. Consequently, it can be
concluded that the data is more clustered on the left. The predominant value for repeatabil-
ity of industrial cobots is 0.05 mm, mirroring industrial robots. The mean repeatability of
cobots excels that of industrial robots. This can be ascribed to shorter reach, lighter weight,
and lower payload capacity of industrial cobots compared to industrial robots, as discussed
in the previous subsections. Therefore, it is easier for cobots to achieve better repeatability.
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3.7. Distribution of B Factor

To devise a more comprehensive factor to assess the efficiency of a wide range of
industrial robots and cobots, the B factor is introduced in this work. This factor not only
incorporates repeatability but also payload capacity, weight and reach, considered in A
factor. The formula for the B factor is exhibited in Equation (2).

B f actor =
(Payload) (Reach)

(Weight)(Repeatability)
(2)

This factor includes three beneficial components, including payload/weight ratio,
where a higher value leads to less depreciation and energy consumption, reach, as men-
tioned for the A factor, and repeatability. Furthermore, as reach increases, maintaining
a high payload/weight ratio and repeatability typically becomes more difficult. Hence,
robots with a lower payload/weight ratio or repeatability can compensate for this by
achieving a better reach and vice versa. A good example of this is welding robots, whose
payload/weight ratio is mostly lower than those of general industrial robots. These robots
can offset this ratio by exhibiting better reach and repeatability. If a welding robot has a low
B factor, a general robot satisfying the needed specifications and having a better B factor
can replace it. Thus, including these four specifications into a single factor can be a suitable
assessment of the efficiency and performance of an industrial robot or cobot. However, to
create a more inclusive factor, more specifications, such as the average maximum angular
speed, can be taken into account.

Referring to Table 2, the median of the B factor is 9% less than the mean, and as
presented in Figure 24, the data distribution is skewed to the right. Therefore, both
references propose that the data is more concentrated on the left. However, the B factor
displays a more symmetric and less skewed distribution than the A factor (the median of
the A factor is 16% more than its mean).

Based on Figure 25, which demonstrates initially a relatively continuous higher slope,
40% of robots have a B factor of less than 5200 even though the maximum value of the B
factor is 47,237 (Fanuc LR Mate 200 iD 14L). According to all these indications, the B factor
of most of the robots in the industry tends to be in the lower extreme. This may be ascribed
to the challenge of maintaining repeatability as reach increases. The possible reason is that
the reach multiplies by the angle error of motors and amplifies position errors. On the other
hand, the focus of the industry is on robots with higher reach; hence, making robots more
accurate is more challenging. Additionally, keeping all the elements of repeatability, reach,
and payload/weight ratio is demanding.
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The standard deviation of the B factor for the total of industrial robots and cobots (σB)
is 4895.2, and the mean (µB) is 7250.2. By considering the characteristics of the B factor
distribution investigated in this subsection, it is proposed that robots with a B factor of
less than µB − σB = 2355.0 can be labelled as inefficient robots considering this factor,
while robots with a B factor exceeding µB + 2 σB = 17, 040.6 can be classified as outlier
robots. In addition, robots with a B factor falling within the range of µB − σB = 2355.0
and µB + 2 σB = 17, 040.6 can be labelled as efficient and appropriate industrial robots and
cobots according to this factor.

Generally, in normal distributions, the interval between µ− σ and µ+ σ is deemed an
important span due to encompassing more significant data and excluding extraordinary
values. However, since the distribution of the B factor is skewed to the right, the range is
defined between µ− σ and µ+ 2 σ. It is noteworthy that other robot selection approaches
indicated in the Introduction section require some manual adjustments, which makes it
reasonable to establish this range based on the observed distribution of the factor.

Through considering this factor, from the total of 453 industrial robots and cobots, 368
(338 industrial robots and 30 industrial cobots) are labelled as efficient, 71 (65 industrial
robots and 6 industrial cobots) as inefficient and 14 (11 industrial robots and 3 industrial
cobots) as outliers. These numbers are relatively close to what A factor reports.

Table 3 shows that the median of the B factor of industrial robots is lower than the mean
by 9%, and Figure 26 displays a right-skewed distribution for this factor. Consequently, the
data is denser on the left, mirroring the combined total of industrial robots and cobots. As
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investigated previously, based on the B factor, among the total of 414 industrial robots, 338
(82%) are classified as efficient, 65 (16%) are inefficient, and 11 (3%) are outliers.
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As per Table 4, which shows that the median of the B factor for industrial cobots is
approximately 8% below the median, and based on Figure 27, the data is skewed to the
right. Therefore, based on both sources, the data is denser on the left, similar to industrial
robots. As discussed earlier, by considering the B factor, out of the total of 39 industrial
cobots, 30 (77%) are considered efficient, 6 (15%) are inefficient, and 3 (8%) are outliers.
These percentages imply that the efficiency and performance of industrial cobots and robots
are close to each other, and this factor is neutral in distinguishing between an industrial
robot and a cobot.
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3.8. Distribution of Average Maximum Angular Speed (AMAS)

The angular speed of a robot is a key factor in its cycle time, which holds greater
significance than the linear speed at its end. This is because the angular positions of joints
(motors) at the beginning of each cycle (loop) are the same as those of the previous cycle;
hence, a specific angular trajectory should be completed for each cycle. Consequently, an-
gular speed directly results in a shorter cycle time. To determine the priority of the industry
regarding the cycle time of articulated robots, some statistical analyses are conducted on
the average maximum angular speed (AMAS) of robots, as well as other specifications.

Figure 28 demonstrates a right-skewed bar chart histogram of the AMAS for the mixed
total of industrial robots and cobots. Observing this histogram and referencing Table 2,
which highlights the median AMAS is less than the mean value by 23%, it can be concluded
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that the AMAS distribution is more concentrated on the left side. Moreover, from Figure 28,
the focal point of the industry and the centre of the dense area is around 150◦/s.
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industrial robots and cobots in bins of 5◦/s.

According to Figure 29, showing the cumulative percentages of average maximum
angular velocity, 40% of industrial robots and cobots exhibit an AMAS value less than
150◦/s. All these data collectively indicate that the prominent focus of the industry and
robot makers is on articulated robots with lower average maximum angular speed values.
The reason lies in the use of gearboxes in articulated robots, which lower the speed to
increase the torque and stability. Gearbox types in robotics applications are mostly plane-
tary, cycloid, and harmonic, which offer gearbox ratios in the range of 1/4 to 1/200 [28].
Implementing more advanced motor technologies in the future holds the potential for
motors with simultaneous high speed and torque. This advancement is expected to result
in an increase in the maximum angular speed and a corresponding reduction in the cycle
time of industrial robots and cobots. Another reason is that in applications where speed
is pivotal, delta and SCARA industrial robots are usually preferred over articulated ones.
Thus, high angular speed is not regarded as a priority for articulated industrial robots
and cobots.
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Table 3 shows that the mean AMAS of industrial robots is roughly 24% less than
the mean value, and Figure 30 exhibits that the distribution of the data is skewed to the
right. Both sources indicate that the AMAS of industrial robots, along with the entire
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robot dataset, are denser on the left. Furthermore, as depicted in Figure 30, the AMAS of
industrial robots centres around 150◦/s, like the whole robots.
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It is noteworthy that based on information from Tables 3 and 4, the mean and median
AMAS values of industrial robots are close to those of cobots. Additionally, information
from Figures 30 and 31 indicate that thedata concentration around 150◦/s is a common
characteristic for both industrial cobots and robots. These results suggest that cobots may
be capable of substituting industrial robots in tasks requiring average or low angular speed.
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3.9. Distribution of C Factor

To obtain a more inclusive factor to assess the efficiency and operation of a broad
range of industrial robots and cobots, the C factor, as the improved version of the B factor,
is proposed in this paper. This factor considers AMAS alongside the specifications of
payload capacity, weight, reach, and repeatability investigated by the B factor. Equation (3)
delineates the formulation of the C factor.

C f actor =
(Payload) (Reach) (AMAS)

1000 (Weight) (Repeatability)
(3)

In Equation (3), AMAS stands for the average of maximum angular speed. This factor
consists of three useful elements: payload/weight ratio (where a higher value results
in reduced depreciation and enhanced energy efficiency), repeatability, and AMAS. Fur-
thermore, as reach increases, achieving a high payload/weight ratio, repeatability, and
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angular speed generally becomes more demanding. Consequently, robots with lower pay-
load/weight ratios, repeatability, or angular speed can compensate for this disadvantage
by demonstrating a better reach and vice versa.

Moreover, robots with lower reach, lower payload/weight ratio, or lower repeatability
can make up for them by demonstrating higher angular speed (lower cycle time). An
illustrative instance of this is fast pick-and-place articulated robots, which typically have
a lower payload/weight ratio and reach compared to general industrial robots. These
robots can offset these shortcomings by having better repeatability and angular speed.
The application of robots is not considered in factors A, B, and C because a more efficient
general robot can replace a lower-efficiency robot designed for specific tasks, such as
painting, welding, or palletising. For example, if a palletising robot has a low C factor, a
general-purpose robot that meets the required specifications and has a higher C factor can
serve as an effective replacement. Hence, the inclusion of these five specifications into a
factor can stand as a comprehensive evaluation of the efficiency and capability of industrial
robots and cobots.

However, by investigating more specifications, such as cost, lifetime, and warranty,
more comprehensive factors can be derived. However, these specifications are out of
the scope of this paper and are usually not available in datasheets. Even determining
the average maximum angular speed of robots poses challenges, as not all robots have
datasheets specifying the maximum angular speed of their joints (in the datasheet of 8 out
of 455 industrial robots and cobots of this project, the maximum angular speed of the joints
has not been mentioned).

Given the data in Table 2, the median of the C factor is 25% below the mean value
(more than what was calculated for the factors A and B), and according to the right-skewed
distribution illustrated in Figure 32, the data points are denser at the left.
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According to Figure 33, 40% of robots have a C factor of less than 900, even though
the maximum value of the C factor is 12,541.4 (Fanuc LR Mate 200 iD 7L). Given the
information in Figure 33, which initially shows an approximately continuous steeper slope,
and the previously mentioned data distributions, the C factor for most of the robots in the
industry falls on the lower side. This is attributed to the increased difficulty in obtaining
high angular speed as reach or payload capacity increases, primarily due to the added
weight of links. Moreover, to have better repeatability, the control system of a robot must
finely adjust its movements, particularly at critical points in its operation, such as when
approaching the desired position. Therefore, having better repeatability may negatively
affect maximum angular speed. Therefore, while the focus of the industry is on robots with
higher reach and better repeatability, making articulated robots faster remains challenging.
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The standard deviation of the C factor of the combined total of industrial robots
and cobots (σC) is 1759.2, and the mean (µC) is 1566.9. Based on the distribution features
of the C factor surveyed in this subsection, it is suggested that robots possessing a C
factor of less than µC − 0.75 σC = 247.5 can be classified as inefficient robots, while robots
surpassing µC + 2.25 σC = 5525.1 can be categorised as outlier robots, considering this
factor. Furthermore, robots with a C factor within the range of µC − 0.75 σC = 247.5 and
µC + 2.25 σC = 5525.1 are labelled as efficient and appropriate industrial robots and cobots
in accordance with this factor.

Typically, in normal distributions, the range between µ − σ and µ + σ is highlighted
as an important interval because ofincluding more data of high importance and precluding
extraordinary values. Nevertheless, due to the right-skewed distribution of the C factor, the
range is specified between µ − 0.75σ and µ + 2.25σ. Unlike the A and B factors, considering
µ − σ as the lower bound is not suitable because it is negative; therefore, µ − 0.75σ is
specified instead. To keep the range length at 3σ, similar to the A and B factors, the upper
bound of the C factor is selected as µ + 2.25σ.

According to this factor, out of the total of 445 industrial robots and cobots, 394
(362 industrial robots and 32 industrial cobots) are classified as efficient, 32 (31 industrial
robots and 1 industrial cobot) as inefficient, and 19 (19 industrial robots and no industrial
cobot) as outliers. The count of inefficient robots classified by this factor is fewer than those
identified by the A and B factors; conversely, the number of outliers is higher than the A
and B factors.

Referring to Table 3, the median of the C factor is 27% less than the mean value, and
based on Figure 34, the C factor for industrial robots is skewed to the right. Consequently,
the data for industrial robots is more concentrated on the left, as well, because of the
existence of some outliers at the very right end. Based on what was previously discussed
for the C factor, from the total of 412 industrial robots, 362 (88%) are categorised as efficient,
31 as inefficient (7%), and 19 (5%) as outliers.

Table 4 illustrates the median of the C factor for industrial cobots is roughly close to
the mean value, and based on Figure 35, the data is not significantly skewed. According
to the previous discussion, from the total of 33 industrial robots, 32 (97%) are considered
efficient, 1 (3%) is inefficient, and none are identified as outliers. These percentages imply
that, according to the C factor, the efficiency and performance of industrial cobots surpass
industrial robots. Having no outliers improved the percentage of efficient industrial robots
in comparison to industrial robots. One of the reasons is the maximum angular speed of
industrial cobots is 400, and the one for industrial robots is 700, which is 75% higher and
leads to an increased number of extreme data points.
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3.10. Distribution of Degrees of Freedom (DOF)

In light of Tables 2–4, the median and mean DOF of the whole of industrial robots and
cobots are 6. As exhibited in Figure 36, the focal point of the DOF for industrial robots and
cobots is 6.

J. Manuf. Mater. Process. 2024, 8, x FOR PEER REVIEW 26 of 40 
 

 

 
Figure 36. A bar chart histogram of the distribution of DOF of industrial robots and cobots in bins 
of 1. 

According to Figure 37, around 88% of industrial robots and cobots feature six DOF. 
These data together show that the industry emphasises robots with six DOF. This is be-
cause robots predominantly manipulate objects possessing six degrees of freedom (three 
for position and three for orientation) in the 3D space. Robots with fewer than six DOF 
may face challenges to achieve desired positions and orientations. On the other hand, hav-
ing a DOF of more than six results in extra costs and more complicated computations due 
to the existence of infinite configurations for the robot to get the object to a specific desired 
position and orientation. Moreover, there are instances of industrial robots and cobots 
with 14 and 15 degrees of freedom, which are robots with two arms. 

 
Figure 37. A cumulative percentage bar chart of the distribution of DOF of industrial robots and 
cobots in bins of 1 unit. 

Given the information in Figure 38, 364 out of 455 (80%) industrial robots feature 6 
degrees of freedom, which is the centre point of the DOF for the combined total of indus-
trial robots and cobots, as well. There are some robots with a DOF of less than six that can 
be used in applications in which the orientation of the manipulated object around an axis 
is limited or constrained as these robots are under-actuated. 

Figure 36. A bar chart histogram of the distribution of DOF of industrial robots and cobots in bins
of 1.



J. Manuf. Mater. Process. 2024, 8, 216 26 of 40

According to Figure 37, around 88% of industrial robots and cobots feature six DOF.
These data together show that the industry emphasises robots with six DOF. This is because
robots predominantly manipulate objects possessing six degrees of freedom (three for
position and three for orientation) in the 3D space. Robots with fewer than six DOF may
face challenges to achieve desired positions and orientations. On the other hand, having
a DOF of more than six results in extra costs and more complicated computations due to
the existence of infinite configurations for the robot to get the object to a specific desired
position and orientation. Moreover, there are instances of industrial robots and cobots with
14 and 15 degrees of freedom, which are robots with two arms.

J. Manuf. Mater. Process. 2024, 8, x FOR PEER REVIEW 26 of 40 
 

 

 
Figure 36. A bar chart histogram of the distribution of DOF of industrial robots and cobots in bins 
of 1. 

According to Figure 37, around 88% of industrial robots and cobots feature six DOF. 
These data together show that the industry emphasises robots with six DOF. This is be-
cause robots predominantly manipulate objects possessing six degrees of freedom (three 
for position and three for orientation) in the 3D space. Robots with fewer than six DOF 
may face challenges to achieve desired positions and orientations. On the other hand, hav-
ing a DOF of more than six results in extra costs and more complicated computations due 
to the existence of infinite configurations for the robot to get the object to a specific desired 
position and orientation. Moreover, there are instances of industrial robots and cobots 
with 14 and 15 degrees of freedom, which are robots with two arms. 

 
Figure 37. A cumulative percentage bar chart of the distribution of DOF of industrial robots and 
cobots in bins of 1 unit. 

Given the information in Figure 38, 364 out of 455 (80%) industrial robots feature 6 
degrees of freedom, which is the centre point of the DOF for the combined total of indus-
trial robots and cobots, as well. There are some robots with a DOF of less than six that can 
be used in applications in which the orientation of the manipulated object around an axis 
is limited or constrained as these robots are under-actuated. 

Figure 37. A cumulative percentage bar chart of the distribution of DOF of industrial robots and
cobots in bins of 1 unit.

Given the information in Figure 38, 364 out of 455 (80%) industrial robots feature
6 degrees of freedom, which is the centre point of the DOF for the combined total of
industrial robots and cobots, as well. There are some robots with a DOF of less than six
that can be used in applications in which the orientation of the manipulated object around
an axis is limited or constrained as these robots are under-actuated.
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Figure 38. A bar chart histogram of the distribution of DOF of industrial robots in bins of 1.

According to Figure 39, 32 out of 38 (8%) industrial cobots have a DOF of six, which
is the centrepiece of the DOF of industrial robots as well. Notably, there is no cobot
with a DOF less than six among the data. This can be attributed to the design of cobots,
intended for general applications where complete manipulation of objects is generally
necessary. However, some industrial robots are specifically designed for niche applications,
where having a DOF below six enables them to fulfil their duties and also makes them
more affordable.
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3.11. Data Resampling and Validation

For the statistical analysis of the A, B, and C factors, two distinct attributions stand
out: (i) the sample data does not follow the normal distribution of traditional statistics, and
(ii) data captured from companies ABB, Kuka, Fanuc, Yaskawa, and Universal Robots are
representative of approximately 58% of the market share. Taking into account the sampling
method, variability, and non-sampling errors, it is assumed that the large sample of this
work accurately represents the population as a whole. Based on these two attributions,
a bootstrapped method was performed to estimate the sampling distribution. With the
software package Statistics101 [29], the original dataset was resampled 500,000 times
with 455 (A factor), 453 (B factor), and 445 (C factor) observations in each run. A 95%
bootstrapped confidence interval was applied to the sampling distribution of means for
the A, B, and C factors, with the results being [324, 368], [6798, 7700], and [1409, 1736],
respectively. Thus, there is a 95% confidence that each factor’s population mean falls within
the respective ranges. These ranges indicate that, with a 95% probability, the difference
between the mean of the factors for this study and factors for the whole population is 11%
or less, which is deemed an acceptable margin.

4. Data Comparison and Trends

To find trends and relations among the specifications to understand the limitations
of articulated robots and the design purposes of the robot makers, as well as to predict
robot specifications based on required ones, the linear regression method is utilised. The
equations of this method have been obtained using the least square method to predict
Y—as the dependent parameter—based on X for a given set of data plotted on an X-Y plane.
According to this method, the regression line should pass through X and Y, representing
the mean of data along the X and Y axes. The equation of the correlation coefficient for
this line, which measures the strength of the linear relationship between two variables, is
expressed in Equation (4) [30].

r =
1
N

∑N
i=1

(
Xi − X

)(
Yi − Y

)
SX SY

(4)

In which N is the number of data points, SX is the standard deviation of data along the
X axis, and SY is the standard deviation along the Y axis. A correlation coefficient with a
magnitude surpassing 0.7 shows a strong relation between the two variables [31] and may
convey a meaningful message. Additionally, the slope of this line (mreg) can be calculated
according to Equation (5) [30].

mreg = r
SY
SX

(5)
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As mentioned previously, since the fittest regression line goes through X and Y, the
value of intercept can consequently be calculated as Equation (6).

breg = Y − mregX (6)

Now that the regression equations are prepared, they will be used to identify relations
between specifications to find possible trends. In some cases, a mathematical function such
as ln(x), ex,

√
x can be applied to one or both axes to even discern a nonlinear relation in

the data.

4.1. Reach vs. Weight

The equation of the regression line for all the robots, as depicted in Figure 40, to
estimate weight based on reach is provided in Equation (7).

ln(weight) = 0.00151 reach + 2.7454 (7)

It should be noted that in this equation, reach is in millimetres. The correlation coefficient
for all the robots is 0.92, for Kuka is 0.93, for UR is 0.94, for ABB is 0.92, for Fanuc is 0.92,
and for Yaskawa is 0.92. These correlations reveal a strong exponential relation between
the reach and weight of articulated robots. It is noteworthy that weight (not its logarithm)
and reach do not exhibit a stronger linear correlation, which is 0.68. However, a regression
between reach and the

√
weight exhibits a strong correlation coefficient of 0.87, indicating a

linear relation between reach2 and weight. This further indicates a relation between weight
and higher levels of reach.

The rationale behind this is that to increase the reach by x times, the length of each link
should increase by x times, thereby increasing the weight by x times. Therefore, the torque
on the robot increases by x2 times. Furthermore, the two cross-sectional dimensions of
the links should increase to endure under the added torque and weight, which leads to an
increase in weight much more than x times. Moreover, the motors and power transmission
systems should now apply a torque of more than x2 times stronger. Consequently, the
combination of motors and transmission systems should get much stronger and heavier.
By considering these facts, if the reach increases, the weight increases at a higher rate. The
same pattern has been observed in some natural phenomena. For example, ref. [32] has
revealed a linear relation between weight and length3 in quadrupedal terrestrial tetrapods.
Hence, industries should be aware that opting for a greater reach requires a much heavier
robot, which leads to elevated energy consumption, costs, and transportation charges.
It is notable that the companies demonstrate a close performance in terms of reach-to-
ln(weight) ratio.
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4.2. Reach vs. AMAS

In the preceding subsection, it was noted that when reach increases by x times, motors
and power transmission systems should apply at least x2 times higher torque and links
should endure this torque. In addition to reinforcing the motors, robot makers can also
decrease the gearbox ratio to supply the extra torque which results in lower angular speed.
Hence, a regression analysis between reach and average maximum angular speed (AMAS) is
conducted to find a relation. The equation of the regression line for all the robots, presented
in Figure 41, to estimate the average maximum angular speed based on reach is indicated in
Equation (8).

AMAS = −0.106 Reach + 462.57 (8)

The correlation coefficient for all the robots is −0.75, for Kuka is −0.79, for UR is −0.64, for
ABB is −0.85, for Fanuc is −0.79, and for Yaskawa is −0.68. The correlation coefficients
exhibit a strong negative linear relation between the average maximum angular speed and
the reach of the robots.

The obtained results mention that robot makers partially compensate for the increased
required torque caused by extended reach and subsequently increased weight by reducing
the AMAS. They may compensate for the remaining torque by making motors stronger
and heavier.

Given Equations (7) and (8), as reach affects weight exponentially and AMAS linearly,
there exists an exponential relation between AMAS (as the X-axis due to be a desirable
parameter) and ln(weight) as Y axis with a correlation coefficient of −0.78. However, this
does not necessarily show a direct causation relation between them, as reach serves as a
confounding factor here. For example, it cannot be inferred that to achieve a higher angular
speed, robot makers necessarily decrease the weight exponentially. Because as discussed
in the previous section, having high angular speed is not a top priority for articulated
robots in the industry, and a dramatic decrease in weight results in a significant reduction
in payload capacity due to the linear relation between payload capacity and weight, which
will be presented in Equation (9).
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4.3. Payload vs. Weight

The equation of the regression line for all the robots, illustrated in Figures 42 and 43,
to predict weight based on payload capacity is illustrated in Equation (9).

weight = 4.749 payload + 186.66 (9)

The correlation coefficient for all the robots is 0.91, for Kuka is 0.94, for UR is 0.92, for
ABB is 0.89, for Fanuc is 0.95, and for Yaskawa is 0.88. The correlations indicate a strong
positive linear relation between the weight and payload capacity of the robots. The reason
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for this could be that when the payload increases by x times, the torque only increases by x
times, causing the links to get heavier linearly (not exponentially, as observed in the case of
an increase in reach). Thereby, industries should be mindful that selecting a higher payload
capacity requires a heavier robot, which leads to increased energy consumption, costs, and
transportation charges. Additionally, it seems that increasing payload capacity is relatively
easier for robot makers compared to increasing the reach. However, because of the needs
of the industry, there is a prevalent preference for higher reach over higher payload capacity.
It is noteworthy that Kuka exhibits the highest rate of payload/weight, which is 1/3.86 (the
slope of its regression line), and Fanuc presents the lowest, which is 1/5.88. It is plausible
that Fanuc was more cautious and prudent about reporting its payload capacity, or Kuka
may really exhibit a remarkable payload-to-weight ratio.

Other pairs of specifications can be investigated. However, in this work, relations
exhibiting correlation coefficients less than 0.7, even after applying mathematical transfor-
mations such as ln(x), ex and

√
x, were disregarded. Some of these relations were between

reach and repeatability (reach and repeatability: 0.27, reach and ln(repeatability): 0.57, reach and√
repeatability: 0.42, reach and erepeataility: 0.23,

√
reach and repeatability: 0.25), repeatability

and weight (repeatability and weight: 0.32, repeatability and ln(weight): 0.29, repeatability and√
weight: 0.33, and erepeatability and weight: 0.27).
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4.4. A, B and C Factors for Companies

In the previous section, the distribution of each factor was investigated. Now, the
distribution of each factor for each company with respect to upper and lower selection
bounds is considered.
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Based on Figure 44, all the robots of Universal Robots fall within the efficient area
based on the A factor. ABB does not have any outliers but exhibits the most inefficient
ones (27), followed by Kuka (18), Yaskawa (17), and Fanuc (11), based on the number of
inefficient ones identified by the A factor. Kuka has the most outliers (15), Yaskawa has
just one outlier, and Fanuc, similar to ABB, has none. Kuka has the most efficient ones
(133), and thereafter, Fanuc (90), ABB (78), and Yaskawa (60). Based on Figure 44 and these
numbers, although the range of this factor for each company is different, a sensible number
of their robots, 80%, lie within the efficient range considering this factor.
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Given Figure 45, like the A factor, all the robots of Universal Robots are within the
efficient range based on the B factor. Fanuc has the most outliers (6), followed by Yaskawa
(4), Kuka (2), and then ABB (2). Kuka has the most efficient ones (154) based on this factor,
succeeded by Fanuc (80), ABB (73), and Yaskawa (56). ABB has the most inefficient ones (28),
and then there are Yaskawa (18), Fanuc (15), and Kuka (10) based on the B factor. According
to these numbers and Figure 45, although the range of this factor for each company varies,
a significant number of their robots, 81%, fall within the efficient range according to
this factor.
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Referring to Figures 46 and 47, akin to the A and B factors, all the robots of Universal
Robots are in the efficient range considering the C factor. Kuka has the most efficient ones
(166) with no outliers and no inefficient robots. Subsequently, there are ABB (92), Fanuc (70),
and Yaskawa (61) based on this factor. Fanuc has the most inefficient ones (13), followed by
ABB (10) and Yaskawa (9). Fanuc also has the most outliers (12), succeeded by Yaskawa
(7) and ABB (none). According to these numbers and Figure 47, although the range of
this factor for each company differs, a notable number of their robots, 88%, are labelled as
efficient based on this factor.
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5. Robot Selection

In the earlier section, three factors were introduced, each categorising around 80–88%
of robots as efficient. A proper method to select robots is to gather a list of robots labelled
as efficient by all these three factors. This ensures that the opted robot is not identified as
inefficient or an outlier by any of these factors. Moreover, individuals seeking to choose an
industrial robot or cobot from other companies can calculate the score of the robot based
on the A, B, and C factors to determine if it is classified as efficient or not. The range
of efficient robots based on the A factor, as obtained in Section 3.5, is between 105.7 and
828.1. Based on the B factor, as calculated in Section 3.7, the range is between 2355.0 and
17,040.6. Finally, based on the C factor, as derived in Section 3.9, the range is between 247.5
and 5525.1.

From the total of 455 industrial robots and cobots, two of them were set aside due
to unspecified repeatability in the datasheet, and eight were excluded due to a lack of
angular speed information. Consequently, 445 (412 industrial robots and 33 industrial
cobots) were examined for the final list of efficient robots. Within this group, 304 units
(279 industrial robots and 25 industrial cobots), which account for 68%, were labelled as
efficient based on these three factors. According to these numbers, 67% of industrial robots
and 75% of industrial cobots were categorised as efficient. The slightly higher percentage
for industrial cobots can be ascribed to their versatile design, tailored to cover a wider range
of applications, which makes them more adaptable. These efficient robots were those that
were not considered inefficient or outliers by any of these factors. The payload range of the
efficient robots ranges between 3.0 and 1000.0 kg, weight spans from 11.2 to 5300 kg, reach
falls between 500 and 4200 mm, repeatability is between 0.01 and 0.2, average maximum
angular speed ranges between 58 and 577, and DOF is between four and seven inclusive.
The obtained ranges mention that efficient robots can cover a wide spectrum of applications
in the industry. They also note that the selection method is not focused on a specific robot
size or type.

As the final step of the robot selection approach, the efficient robots with specifications
falling within the desired specification ranges provided by an individual are demonstrated.
If the number of output robots is more than one, they are ranked according to their C factor,
which is the most comprehensive factor. The flow chart of the entire process of the robot
selection method is depicted in Figure 48.
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It is worth noting that the correlation between the factors does not result in identical
outputs from each factor. Specifically, 62 robots are recognised as efficient by factor A but
not by factors B or C; 64 robots are identified as efficient by factor B but not by factors A or
C; and 90 robots are classified as efficient by factor C but not by factors A or B.

Following this robot selection method, a Python program has been developed and
uploaded on GitHub (https://github.com/PeymanAmirii/Robot_Selection, accessed on 18
September 2024). This program takes a range of required specifications and robot types (in-
dustrial robot or cobot) and returns a list of efficient robots from the target companies (ABB,
Kuka, Fanuc, Yaskawa, and Universal Robots), satisfying the inputs. This program provides
users and industries with a tool to select an efficient robot with a proper performance which
meets the needed input specifications.

6. Discussion

In this work, physical specifications were taken into account. However, there are other
specifications that might significantly impact the selection of a robot and can contribute
to devising more comprehensive selection factors. The most crucial one is the price of
industrial robots and cobots. The consideration of the price of robots is out of the scope
of this paper due to regional variations in price and cost of ownership. Additionally,
price was not investigated in the selection algorithm because companies around the world
operate with different ranges of budget. The algorithm provides a list of physically efficient
robots for users, and then they can choose a robot that fits their budget from the sorted list.
Additionally, if a robot is not physically efficient, it should be removed from the final list,
regardless of its low price. However, it should be noted that cost may elucidate why some
robots possess lower physical efficiency and can be investigated in future works.

Moreover, a useful physical specification to be considered is the footprint or the
volume of a robot, especially when space constraints are a concern. While the footprint is
commonly mentioned in the datasheets of robots, the volume of robots is rarely provided.

As stated earlier, in this analysis, the payload capacity of a robot is considered as the
maximum payload a robot can carry when its centre of mass is at position 0. However, the
payload capacity diminishes as the robot’s centre of mass moves farther from the 0-position
due to the additional torque, as shown in Figure 49 for a robot. To make the calculations
more comprehensive, the mean of payload, when the centre of mass is at position 0 and the
farthest position, can be taken into consideration as the overall payload capacity of a robot.

https://github.com/PeymanAmirii/Robot_Selection
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reach all the points within a distance of 1.55 metres from its base; hence, considering the 
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Figure 49. The payload capacity of the industrial robot Kuka KR 16 R1610-2 based on different
positions of the centre of mass [33].

According to what was discussed before, repeatability, accuracy, and resolution are
different but interconnected concepts. If robot manufacturers specify these three parameters,
their mean can provide a more comprehensive measurement of the precision of robots for
future studies. Additionally, orientation repeatability is another specification which is not
available on the datasheets of robots. This metric is crucial in applications requiring precise
angular positioning, such as painting, welding, and assembly.

For most of the robots, each joint has a limited angle range. This limits the reach
volume of robots. To enhance the assessment of the reach of a robot, calculating the mean
of the maximum reach length and the reach volume (if reported by manufacturers in their
datasheets) can facilitate a more inclusive measure. The workspace of an industrial robot
with a reported reach of 1.55 m is illustrated in Figure 50. It implies that the robot cannot
reach all the points within a distance of 1.55 metres from its base; hence, considering the
workspace volume in the measurements can be advantageous.
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Figure 50. Workspace of the industrial robot ABB IRB 2400 with a reported reach of 1.55 m [34].

In this work, AMAS was employed to approximately reflect the cycle time of industrial
robots and cobots. However, simulation software, such as RoboDK v5.8.0, can be utilised
to compare the cycle times of different robots more accurately. This simulation software
covers a wide range of industrial robots and cobots and provides software-in-the-loop
simulation (SITL).

To enhance the robot selection method, other distance-based algorithms, such as K-
Nearest Neighbours (KNN), can be deployed to choose a group of efficient robots based
on their specifications or efficiency factors. For example, an average robot can be selected
based on its specifications, then 60–70% of the closest robots to it can be recognised as
efficient robots, and the rest as inefficient and outlier ones. Furthermore, as [35] highlights,
any MCDM method is about how to combine several factors or criteria to create a single
index for assessing suitability. Therefore, an MCDM method can be employed to obtain a
final index from the proposed efficiency factors.
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Establishing standard definitions for cobots and outlining safety guidelines for col-
laborative work with them are of high importance. Although ISO 10218 [36] indicates
requirements and guidelines for safe design and provides protective measures and infor-
mation regarding the use of industrial robots, there is a need for more accurate definitions
and standards which are specifically tailored to cobots.

7. Conclusions

The investigation of the distribution of physical specifications revealed that the focus
of the industry and robot makers is on articulated industrial robots and cobots characterised
by higher reach, lower payload capacity, lower weight, better repeatability, lower angular
speed, and six DOF. The possible reason is that prevalent applications in the industry
involve manipulating and handling light objects over extended distances, which requires
high precision (good repeatability). The decision to keep a lower angular speed aims to
ensure higher torque and, consequently, higher sturdiness of articulated robots as their
serial structure makes robustness challenging. Additionally, another rationale is that for
high-speed applications, SCARA and Delta robots can be employed instead. Industrial
robots and cobots with six DOF were preferred because of being fully actuated systems,
which results in easier control algorithms and kinematic solutions.

Moreover, the specifications of industrial robots and cobots were also compared to
highlight the advantages and disadvantages of industrial cobots over industrial robots. On
average, industrial cobots are lighter and possess a lower payload capacity and reach (on
average, one-tenth and half those of industrial robots, respectively) than industrial robots.
However, their average angular speed (cycle time) is close to the average of industrial
robots, and their repeatability is better than that of industrial robots.

Three factors were introduced to assess the efficiency and performance of industrial
robots and cobots, intended to be used as standard measures in future works. The range of
each efficiency factor varied for each company, but a considerable number of their robots
fell into the efficient range based on each factor. A robot selection method based on these
three factors was developed, which recognised 68% of the whole studied industrial robots
and cobots as efficient and appropriate for industrial purposes and put aside inefficient and
outlier robots. Outlier robots are those more likely to fail to properly satisfy all the reported
specifications at the same time, as their specifications might have been measured under
special conditions. The selected robots cover the range of payload capacity between 3.0 and
1000 kg and a reach range between 0.50 m and 4.20 m, suggesting that the selection method
does not focus on a specific robot size. A Python code has been developed and uploaded
on GitHub to provide a sorted list of efficient industrial robots and cobots, selected by the
selection method, considering the input required specifications. This tool aims to assist
industries in choosing articulated robots, meeting their specific needs. Although some
robot makers provide some proprietary internal software to assist customers in finding their
appropriate robots, the software just considers their own products and does not include
those made by other manufacturers.

Pairs of specifications exhibiting a strong correlation coefficient were compared to
understand the rationale behind the design choices of robot makers and to estimate their
limitations. These comparisons express that the weight of robots increases exponentially
as the reach increases, mostly due to the added weight and torque which result from
the extended reach. The comparisons indicate that the angular speed of robots linearly
decreases with respect to reach. This is ascribed to robot manufacturers intentionally
reducing the angular speed through reductive gearboxes to partially make up for the
additional torque required as the reach extends.

The weight of robots increases linearly with their payload capacity due to the linear
increase in the required torque. Therefore, this implies that industries seeking a higher
payload capacity should expect a proportional linear increase in the weight of their potential
robot. Additionally, aiming for higher reach results in exponentially heavier robots. On



J. Manuf. Mater. Process. 2024, 8, 216 36 of 40

the other hand, no strong correlation was found between reach and repeatability or weight
and repeatability.

Some useful information such as accuracy, resolution, and reach volume were sug-
gested to be included in official datasheets of industrial robots and cobots to have a better
understanding and more accurate criterion of their performance. Additionally, the need for
establishing standard definitions and guidelines for cobots was outlined.
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Appendix A

Table A1. A list of industrial robots and cobots from Fanuc that were investigated in this work
(starred models are cobots).

LR Mate 200 iD 4SH LR Mate 200 iD 4S LR Mate 200 iD 4SC LR Mate 200 iD 7H LR Mate 200 iD 7C

LR Mate 200 iD 7WP LR Mate 200 iD LR Mate 200 iD 7L LR Mate 200 iD 7LC LR Mate 200 iD 14L

LR-10 iA 10 M-10 iD 8L M-10 iD 10L M-10 iD 12 M-10 iD 12 Dustproof

M-10 iD 12 Foodgrade M-10 iD 16S M-20 iD 12L M-20 iB 25 M-20 iD 25

M-20 iD 25 Foodgrade M-20 iB 25C M-20 iB 35S M-20 iD 35 M-410 iB 140H

M-410 iC 110 M-410 iC 185 M-410 iC 315 M-410 iC 500 M-410 iB 700

M-710 iC 12L M-710 iC 20L M-710 iC 20M M-710 iC 45M M-710 iC 50S

M-710 iC 50T M-710 iC 50H M-710 iC 50 M-710 iC 50E M-710 iC 70T

M-710 iC 70 M-800 iA 60 M-900 iB 280 M-900 iB 280L M-900 iB 330L

M-900 iB 360E M-900 iB 400L M-900 iB 700E M-1000 iA M-2000 iA 900L

M-2000 iA 1200 M-2000 iA 1700L M-2000 iA 2300 R-1000 iA 80H R-1000 iA 80F

R-1000 iA 100F R-1000 iA 120F-7B R-1000 iA 130F R-2000 iC 100P R-2000 iD 100FH

R-2000 iC 125L R-2000 iC 165F R-2000 iD 165FH R-2000 iC 165R R-2000 iC 190S

R-2000 iC 210F R-2000 iD 210FH R-2000 iC 210L R-2000 iC 210WE R-2000 iC 210R

R-2000 iC 220U R-2000 iC 240F R-2000 iC 270F R-2000 iC 270R ARC Mate 50 iD

ARC Mate 50 iD 7L ARC Mate 100 iD 8L ARC Mate 100 iD 10L ARC Mate 100 iD 16S ARC Mate 100 iD

ARC Mate 120 iD 12L ARC Mate 120 iD 35 ARC Mate 120 iD Paint Mate 200 iA 5L P-40 iA

P-50 iB 10L P-250 iB 15 P-350 iB 45 P-35 iA Opener P-1000 iA

CR-4 iA * CRX-5 iA * CR-7 iA * CR-7 iA L * CRX-10 iA *

CRX-10 iA L * CR-14 iA L * CR-15 iA * CRX-20 iA L * CRX-25 iA *

CR-35 iB *
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Table A2. A list of industrial robots and cobots from ABB considered in this work (starred models
are cobots).

IRB 1010-1.5/0.37 IRB 1090-3.5/0.58 IRB 1100-4/0.475 RB 1100-4/0.58 IRB 1200-7/0.7

IRB 1200-5/0.9 IRB 1200-7/0.7 Hygienic IRB 1200-5/0.9 Hygienic IRB 1300-11/0.9 IRB 1300-10/1.15

IRB 1300-7/1.4 IRB 1300-12/1.4 IRB 1410 IRB 1520ID RB 1600-6/1.2

IRB 1600-6/1.45 IRB 1600-10/1.2 IRB 1600-10/1.45 IRB 1660ID-6/1.55 IRB 1660ID-4/1.55

IRB 2400/10 IRB 2400/16 IRB 2600-20/1.65 IRB 2600-12/1.65 IRB 2600-12/1.85

IRB 2600ID-15/1.85 IRB 2600ID-8/2.00 IRB 4400/60 IRB 4400/L10 IRB 460-110/2.4

IRB 4600-60/2.05 IRB 4600-45/2.05 IRB 4600-40/2.55 IRB 4600-20/2.50 IRB 5710-110/2.3

IRB 5710-90/2.7 IRB5710-90/2.3 LID IRB 5710-70/2.7 LID IRB 5720-180/2.6 IRB 5720-125/3.0

IRB 5720-155/2.6 LID IRB 5720-90/3.0 LID IRB 660-180/3.15 IRB 660-250/3.15 IRB 6620

IRB 6650S-90/3.9 IRB 6650S-125/3.5 IRB 6650S-200/3.0 IRB 6660-100/3.3 IRB 6660-130/3.1

IRB 6660-205/1.9 IRB 6700-200/2.60 IRB 6700-155/2.85 IRB 6700-235/2.65 IRB 6700-205/2.80

IRB 6700-175/3.05 IRB 6700-150/3.20 RB 6700-300/2.70 IRB 6700-245/3.00 IRB 6700Inv-300/2.60

IRB 6700Inv-245/2.90 IRB 6710-210/2.65 IRB 6710-200/2.95 IRB 6710-175/2.65 LID IRB 6710-175/2.95 LID

IRB 6720-240/2.65 IRB 6720-210/2.8 IRB 6720-170/3.1 IRB 6720-215/2.5 LID IRB 6720-215/2.65 LID

IRB 6720-200/2.8 LID IRB 6720-150/3.1 LID IRB 6730-270/2.7 IRB 6730-240/2.9 IRB 6730-210/3.1

IRB 6730-220/2.9 LID IRB 6730-190/3.1 LID IRB 6740-310/2.8 IRB 6740-260/3.0 IRB 6740-240/3.2

IRB 6740-270/2.8 LID IRB 6740-230/3.0 LID IRB 6740-220/3.2 LID IRB 6790-235/2.65 IRB 6790-205/2.80

IRB 760 IRB 760PT IRB 7600-500/2.55 IRB 7600-400/2.55 IRB 7600-340/2.80

IRB 7600-325/3.10 IRB 7600-150/3.50 IRB 8700-800/3.50 IRB 8700-550/4.20 IRB 52/1.2

IRB 52/1.45 IRB 5500-25 CRB 1300- 11/0.9 * CRB 1300-10/1.15 * CRB 1300-7/1.4 *

GoFa 5 * GoFa 12 * GoFa 10 * IRB 14000-0.5/0.5 * IRB 14050 *

Table A3. A list of industrial robots and cobots from Kuka considered in this work (starred models
are cobots).

AGILUS KR 4 R600 AGILUS KR 6 R700 CR AGILUS KR 6 R700
HM SC AGILUS KR 6 R700 WP AGILUS KR 6 R700-2

AGILUS KR 6 R900 CR AGILUS KR 6 R900 EX AGILUS KR 6 R900
HM SC AGILUS KR 6 R900 WP AGILUS KR 6 R900-2

AGILUS KR 10 R1100
CR

AGILUS KR 10 R1100
EX

AGILUS KR 10 R1100
HM SC

AGILUS KR 10 R1100
WP

AGILUS KR 10 R900
CR

AGILUS KR 10 R900
HM SC

AGILUS KR 10 R900
WP AGILUS KR 10 R1100-2 AGILUS KR 10 R900-2 CYBERTECH nano KR

6 R1840 2

CYBERTECH nano KR
8 R1620

CYBERTECH nano KR
8 R1640-2

CYBERTECH nano KR
10 R1420

CYBERTECH nano KR
10 R1440-2

CYBERTECH nano KR
6 R1840-2 arc HW

CYBERTECH nano KR
8 R1420 arc HW

CYBERTECH nano KR
8 R1440-2 arc HW

CYBERTECH nano KR
8 R1620 arc HW

CYBERTECH nano KR
8 R1640-2 arc HW

CYBERTECH KR 8
R2010-2

CYBERTECH KR 12
R1810-2

CYBERTECH KR 16
R1610-2

CYBERTECH KR 16
R2010-2

CYBERTECH KR 20
R1810 CR

CYBERTECH KR 20
R1810 F

CYBERTECH KR 20
R1810-HO

CYBERTECH KR 20
R1810-2

CYBERTECH KR 20
R1820-2 E

CYBERTECH KR 20
R2010 KS F

CYBERTECH KR 22
R1610-2

CYBERTECH KR 8
R2100-2 arc HW IONTEC KR 20 R3100 IONTEC KR 30 R2100 IONTEC KR 50 R2100 IONTEC KR 50 R2100

HO
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Table A3. Cont.

IONTEC KR 50 R2500 F IONTEC KR 50 R2500
HO IONTEC KR 50 R2500 IONTEC KR 70 R2100 F IONTEC KR 70 R2100

KR 40 PA QUANTEC KR 120
R2700-2 F

QUANTEC KR 120
R3100-2

QUANTEC KR 120
R3100-2 F

UANTEC KR 120
R3900-2 K

QUANTEC KR 150
R2700-2

QUANTEC KR 150
R2700-2 F

QUANTEC KR 150
R3100-2

QUANTEC KR 150
R3100-2 F

QUANTECKR 180
R2900-2

QUANTEC KR 180
R2900-2 F

QUANTEC KR 180
R3500-2 K

QUANTEC KR 210
R2700-2

QUANTEC KR 210
R2700-2 F

QUANTEC KR 210
R3100-2 C

QUANTEC KR 210
R3100-2 F

QUANTEC KR 210
R3300-2 K

QUANTEC KR 240
R2900-2

QUANTEC KR 240
R2900-2 C

QUANTEC KR 240
R2900-2 F

QUANTEC KR 250
R2700-2 C

QUANTEC KR 250
R2700-2 F

QUANTEC KR 270
R3100-2 K

QUANTEC KR 300
R2700-2 F

QUANTEC nano KR
120 R1800

QUANTEC nano KR
120 R1800 C

QUANTEC nano KR
120 R2100 F exclusive

QUANTEC nano KR
160 R1570

QUANTEC nano KR
160 R1570 C

QUANTEC nano KR
180 R2100 F exclusive

QUANTEC PA KR 120
R3200

QUANTEC PA KR 120
R3200 arctic

QUANTEC PA KR 120
R3200 HO

QUANTEC PA KR 140
R3200-2

QUANTEC PA KR 180
R3200

QUANTEC PA KR 180
R3200 arctic

QUANTEC PA KR 180
R3200 HO

QUANTEC PA KR 180
R3200-2

QUANTEC PA KR 240
R3200

QUANTEC PA KR 240
R3200 arctic

QUANTEC PA KR 240
R3200 HO

QUANTEC PA KR 240
R3200-2

360 FORTEC KR 240
R3330

360 FORTEC KR 240
R3330 C

360 FORTEC KR 240
R3330 F

360 FORTEC KR 280
R3080

360 FORTEC KR 280
R3080 F 360 FORTEC KR R2830 360 FORTEC KR R2830

C
360 FORTEC KR R2830

C-F

360 FORTEC KR R2830
F KR 470-2 PA 500 FORTEC KR 340

R3330
500 FORTEC KR 340

R3330 F
500 FORTEC KR 420

R3080

500 FORTEC KR 420
R3080 F

500 FORTEC KR 480
R3330 MT

500 FORTEC KR 480
R3330 MT-F

500 FORTEC KR 500
R2830

500 FORTEC KR R2830
C

500 FORTEC KR R2830
C-F

500 FORTEC KR R2830
F

500 FORTEC KR R2830
MT

500 FORTEC KR R2830
MT-F

600 FORTEC KR 420
R3330

600 FORTEC KR 420
R3330 F

600 FORTEC KR 510
R3080

600 FORTEC KR 510
R3080 F

600 FORTEC KR 600
R2830

600 FORTEC KR 600
R2830 F

KR 700 PA KR 640 R2800-2 KR 800 R2800-2 KR 1000 L750 titan KR 1000 L750 titan F

KR 1000 titan KR 1000 titan F KR 1000 1300 titan PA KR 1000 1300 titan PA-F AGILUS KR 6 R900-2
HO

AGILUS KR 10 R1100-2
HO

CYBERTECH nano KR
10 R1440-2 HO

IONTEC KR 30 R2100
CR lite

IONTEC KR 50 R2100
CR lite

IONTEC KR 50 R2500
CR lite

IONTEC KR 70 R2100
CR lite

IONTEC KR 70 R2100
HO KR 1000 L950 titan PA FORTEC ultra KR 480

R3400-2
FORTEC ultra KR 480

R3700-2

FORTEC ultra KR 560
R3100-2

FORTEC ultra KR 560
R3100-2 HI

FORTEC ultra KR 640
R2800-2 HI KR 300-2 PA QUANTEC PA KR 140

R3200-2 PA-HO

QUANTEC PA KR 180
R3200-2 PA-HO

QUANTEC PA KR 240
R3200-2 PA-HO

QUANTEC KR 120
R2700-2 HO

QUANTEC KR 120
R3500-2 P

QUANTEC KR 120
R3500-2 P-C

QUANTEC KR 150
R3100-2 HO

QUANTEC KR 180
R3500-2 K-F

QUANTEC KR 210
R3300-2 K-F

QUANTEC KR 240
R2900-2 HO

QUANTEC KR 270
R3100-2 K-F

QUANTEC KR 300
R2700-2 C

QUANTEC KR 300
R2700-2 HC LBR iisy 3 R760 * LBR iisy 8 R930 * LBR iisy 11 R1300 *

LBR iisy 15 R930 * LBR iiwa 7 R800 * LBR iiwa 7 R800 CR * LBR iiwa 14 R820 * LBR iiwa 14 R820 CR *

LBR iisy 6 R1300 *
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Table A4. A list of industrial robots and cobots from Yaskawa considered in this work (starred models
are cobots).

GP4 GP7 GP8 GP8L GP12 GP20 GP20HL GP25

GP25-12 GP35L GP50 GP70L GP88 GP110 GP180-120 GP180

GP215 GP215-200T GP225 GP250 GP280 GP400 GP600 GP4 FGG

GP7 FGG GP8 FGG GP8 FGG HS GP12 FGG GP25 FGG GP50 FGG GP180 FGG SIA5F

SIA10F SIA20F SDA5F SDA10F SDA20F MotoMINI MPK2F MPK2F-5

MPX1150 MPX1950 MPO10 MPX3500 MPX2600 AR900 AR700 AR2010

AR3120 AR1730 PL80 PL190-100 PL190 PL320 PL500 PL800

SP235 SP80 SP100 SP165-105 SP150R SP165 SP185R SP210

CSDA10F AR1440 GA50 GP120RL GP165R GP200R GP300R GP400R

HC10DTP
Classic * HC10DTP * HC10DTFP * HC20DTP * HC20SDTP * HC30PL *

Table A5. A list of industrial robots and cobots from Universal Robots considered in this work
(starred models are cobots).

UR3e * UR5e * UR10e * UR16e * UR20 *
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