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Abstract 

The staggering complexity of urban environment and long timescales in the causal mechanisms prevent designers 
to fully understand the implications of their design interventions. In order to investigate these causal mechanisms 
and provide measurable trends, a model that partially replicates urban complexity has been developed. Using a 
cellular automata approach to model land use types and markets for products, services, labour and property, the 
model has enabled numerical experiments to be carried out. The results revealed causal mechanisms and 
performance metrics obtained in a much shorter timescale than the real-life processes, pointing to a number of 
design implications for urban environments. 

Keywords: Urban modelling, cellular automata, market mechanisms, urban performance metrics, urban design 
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1.0 Introduction 

The urban environment consists of a number of parts 
such as different land use types, with buildings and 
people in them. These different parts interact in many 
different ways with each other through exchange of 
materials, resources, economic activity and data, 
giving rise to immense complexity of the system. 
Whilst it is not easy to model such complexity, the 
challenges of climate change, increasing population 
and diminishing resources make it imperative to 
create models that can depict urban complexity and 
provide designers with tools for informed decision 
making. This article introduces a model that goes 
some way towards replicating urban complexity, 
through developing a cellular approach to modelling 
land use types, providing the cells with own individual 
‘metabolism’, and linking such metabolism into 

models of market economics. The model is governed 
by the principles of emergence, where the interaction 
between the constituent parts based on simple rules 
gives rise to complex behaviour of the model. 

The cellular approach to modelling is not new. In 
1940s, John von Neumann worked on models of self-
reproducing machines (von Neumann, 1951) but was 
unable to formulate a fully self-reproduceable 
machine until a colleague mathematician Stanislav 
Ulam suggested him to use a cell-based concept. 
Thus, cellular automata machines were formulated 
and developed as result of biological inspiration (von 
Neumann, 1967). Wolfram (2002) worked extensively 
on cellular automata machines and developed simple 
rules that resemble various complex structures in 
nature, such as shell shapes and animal pigmentation 
patterns. A significant outcome of Wolfram’s seminal 
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work published in a book entitled ‘A new kind of 
science’ (Wolfram, 2002) is the Principle of 
Computational Equivalence. According to this 
principle, “all processes, whether they are produced 
by human effort or occur spontaneously in nature, can 
be viewed as computations” (Wolfram 2002, p. 715). 
According to Wolfram, the essence of the Principle of 
Computational Equivalence is that “no system can 
ever carry out explicit computations that are more 
sophisticated than those carried out by systems like 
cellular automata and Turing machines”. As cellular 
automata machines and Turing machines are based 
on simple rules on a component level that give rise to 
complex behaviour of the systems they are modelling, 
it follows that urban development can also be 
expressed with simple rules on a component level 
that give rise to complex behaviour. Batty (2007) 
investigated various ways of applying cellular 
automata to urban modelling. He investigated how 
cellular models give rise to self-organised criticality, 
where the models are consistently poised at the 
phase transition between order and chaos. His work 
led to the investigation of fractal properties of urban 
grain, and of similarities with other non-urban 
phenomena, including forest fire models (Koutitas, 
Pavlidou, and Jankovic 2010). Complexity of urban 
models, which is defined as transition phase between 
order and chaos (Langton, 1992), can be measured, 
using either Shannon Entropy (Shannon, 1948) or 

Langton’s  (Langton, 1989). Whilst these measures 
are useful for researchers, they are of little use for 
design practitioners.  

This article is written in an attempt to bridge the gap 
between theoretical research in urban modelling and 
the practice of urban planning, and will focus on 
design implications of model-generated urban data, 
guided by the following research questions: 

What kind of urban data can be generated by 
a functional model? 

What could be the design implications of 
such data? 

As urban modelling is now over 50-years old since the 
publication of Statistical Theory of Spatial Distribution 
Models (Wilson A. G., 1967), Wilson A. (2018) argues 
that in addition to a significant scope for a continuing 
theoretical research, the interdisciplinary 
characteristics of urban models give scope for 
practical applications in planning, and this article aims 
to facilitate that objective. 

Like many urban models available today, the model 
introduced in this article is based on cellular 
automata. However, unlike the urban models 
available today, it combines cell ‘metabolism’ with 
market economics, whilst combining its inputs with 
population, energy and planning data obtained from 
several local authorities in Europe as part of a funded 
project. Combining all inputs and algorithms into a 
unified urban process, it provides a range of metrices 
that enable evaluation of the model performance 
throughout the simulation time. 

Although the experiments presented in this article are 
based on randomly generated urban structures, the 
practical value of the method is not diminished. The 
underlying tool in which the model resides enables 
geographic data to be imported and mapped to the 
model structures, so that model calibration can be 
carried out, thus giving urban designers tools that can 
be used for investigating future effects of urban 
design interventions. 

2.0 Method 

In preparation for the development of the method, it 
became apparent that fully programmable control of 
the modelling development was required. 
Collaboration between different organisations 
running different computer platforms required a 
cross-platform application program interface and a 
cross-platform graphical user interface. This, together 
with the relevant programming expertise of the 
project investigators, was the reason for choosing 
Java programming language for the implementation 
of the method. The platform for the resultant City 
Analysis Simulation Tool is therefore entirely 
bespoke, developed in Java programming language 
for the purpose of implementing this method. 

Another decision that had to be made was the choice 
between vector and raster data types used in 
mapping the urban environment. Whilst vector data 
are based on formulae and therefore infinitely 
scalable, this type of data could not be easily 
represented as a part of a complex system interacting 
with the neighbouring entities. Adopting raster data 
approach, comprised of individual blocks, provided 
the opportunity for neighbour to neighbour 
interaction that is fundamental for the behaviour of 
complex systems. That dictated the choice of cellular 
automata as a suitable representation of the raster 
data type, where each cell will be assigned a land use 
type and a type of interaction with the neighbouring 
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cells. As a land use cell interacts with the surrounding 
neighbourhood of eight cells (also called Moore 
neighbourhood in cellular automata terminology), it 
changes its state while going from time t to time t+1 
on the basis of its metabolism, as illustrated in Figure 
1, where each step corresponds to a year of the real 
time. Connections outside of the immediate 
neighbourhood were subsequently achieved using 
the market modules, where supply and demand 
actions effectively created connections between 
distant cells on the grid. 

 
Time t Time t+1 

Figure 1: Land use cell (centre) changing from time t to 
t+1 through interaction with surrounding cells 

Development and implementation of every new step 
of the method was a separate challenge that had to 
be resolved, including: definition and specification 
and the total number of the land use cell types; 
metabolism in each cell type; connectivity between 
different cell types; development of self-regulated 

market models where supply and demand regulate 
the price; importing GIS data into the model; and 
dealing with increasing data input types into the 
model without making the model deterministic, thus 
keeping its emergent properties.  

Thus, the urban model introduced in this article is 
based on different land use types represented as 
rectangular cells using a cellular automata 
framework. There are 23 cell types in the model, as 
detailed out in Table 1. Each of these cell types have 
individual processes in them, as well as the cells link 
to four different markets: products, services, labour 
and property markets. All cell types are categorised 
according to their economic activity as follows:  

• Production 
• Service 
• Transport 
• Home 
• Neutral 

A taxation system is introduced in the model, 
consisting of the following resource accumulators 
called ‘boxes’ as follows: 

• Tax Box 
• Building maintenance box 

 

Figure 2: Processes between cells and markets 
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• Energy box 
• Rent box 
• Quality of public space box 
• Transport box 

Depending on the type and economic activity, each 
cell interacts with the four different markets, as 
shown in Figure 2 and pays tax into appropriate 
expenditure ‘boxes’, as shown in Table 1.  

Why should brownfield and water be considered to 
be economically neutral? In this model brownfield 
and water do not have "metabolism" that interacts 
with other land use types. Whilst in real life that may 
not be so, in this model this was chosen as a 
simplification. 

The processes between the cells and the markets are 
described as follows, with reference to Figure 2: 

Cell type 
number 

Cell type Income Expenditure 

Production 

2 Industry From employees’ work Into all boxes 

10 Agriculture From employees’ work Into all boxes 

6 Office From employees’ work Into all boxes 

Service 

3 Retail                    From residential cells expenditure                Into producers plus into all six 
boxes 

7 Warehouse                 From industry  Into residential plus into all six 
boxes                       

8 Urban Green Space         From QualityOfPublicSpaceBox                             Into EnergyBox      

12 Built heritage           From TaxBox Into EnergyBox and 
BuildingMaintenance box                       

13 Health              From producers, or tax, or both Into retailers plus into all six boxes      

14 Education                From residential cells  Into producers plus into all six 
boxes                

15 Public Access Buildings  From TaxBox 
                        

Into EneryBox and 
BuildingMaintenance box 

16 Military & Prison        From TaxBox             Into EneryBox and 
BuildingMaintenance box            

17 Public Square            From QualityOfPublicSpaceBox                                Into EnergyBox   

22 Leisure                  From residential cells Into producers plus into all six 
boxes          

Transport 

1 Roads                  From TravelBox Into EnergyBox and 
BuildingMaintenance box 

11 Rail & Metro          From TravelBox Into EnergyBox and 
BuildingMaintenance box 

18 Transport Interchange From TravelBox Into EnergyBox and 
BuildingMaintenance box 

21 Car park              From TravelBox Into EnergyBox and 
BuildingMaintenance box 

Home 

4 Residential From salaries at producers or from tax Into retailers plus into all six boxes 

Economically Neutral 

0 Brownfield N/A N/A 

5 Water     N/A N/A 

9 Non-agricultural vegetation N/A N/A 

19 Other N/A N/A 

20 Boundary N/A N/A 

Table 1: Model land use cell types grouped into economic categories 
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1. Producers make products and send them to 
the product market 

2. Producers draw income from the product 
market price regulated by supply and 
demand in the product market 

3. Producers obtain labour from the labour 
market 

4. Producers pay for the labour based on the 
labour market price regulated by supply and 
demand in the labour market 

5. Retailers purchase products from the 
product market 

6. Retailers pay the market price for the 
products regulated by supply and demand in 
the product market 

7. Retailers send products to the retail market 
8. Retailers draw income from the retail 

market price regulated by supply and 
demand in the retail market 

9. Retailers obtain labour from the labour 
market 

10. Retailers pay for the labour based on the 
labour market price regulated by supply and 
demand in the labour market 

11. Consumers supply labour to the labour 
market 

12. Consumers draw income from the labour 
market price regulated by supply and 
demand in the labour market 

13. Consumers purchase goods from the retail 
market 

14. Consumers pay for the goods based on the 
retail market price regulated by supply and 
demand in the retail market 

15. Producers obtain property from the 
property market 

16. Producers pay for the property based on the 
property market price regulated by supply 
and demand in the property market 

17. Consumers obtain property from the 
property market 

18. Consumers pay for the property based on 
the property market price regulated by 
supply and demand in the property market 

19. Retailers obtain property from the property 
market 

20. Retailers pay for the property based on the 
property market price regulated by supply 
and demand in the property market. 

The market price in all four markets is regulated on 
the basis of supply and demand as follows: 

• If supply is greater than demand, then new 
price = 0.95 x old price 

• If supply is less than demand, then new price 
= 1.05 x old price 

• If supply is equal to demand, then new price 
= old price 

Recursive use of the above rules in each timestep 
cause price fluctuations over time that are much 
greater than the fluctuations in individual timesteps. 

The balance between income and expenditure in 
each cell is accumulated in each step into cell ‘fitness’. 
Thus, each cell has its own ‘fitness’ balance denoted 
as follows: 

fitness = income – expenditure – running costs (1) 

Economic output is converted into jobs in production 
and service cells or into inward migration in 
residential cells. In addition to inward migration, the 
population of residential cells is influenced by the 
birth rate and death rate set in the model (Table 2). If 
the number of jobs in a production or service cell or 
the number of people in a residential cell increases 
above a certain density threshold set in the model, 
the cell will seek to expand and will look out radially 
for an unoccupied cell. Alternatively, if the number of 
jobs or the number of people in the respective cells 
falls to zero, the cell becomes unoccupied and can be 
taken over by other expanding cells. 

Each cell is assigned energy consumption and carbon 
emissions according to its type. These were obtained 
in consultation with energy professionals and built 
into the model on the basis of data in Table 3. 

In searching for a suitable location to expand into, the 
cells conduct ‘radar’ type of radial search in a circle 
around them within a specified horizon. Each cell type 
is assigned a certain ‘attractiveness’ value between 0 
and 1. Thus roads have attractiveness of 1, and 
brownfield sites attractiveness of 0 and other cells 
have their attractiveness proportional to their fitness 
and proximity to the centre of urban activity. While 
looking for a location to expand into, the cells will 
take a preference of higher attractiveness of the 
vacant location. If no vacant location is found, then 
the expanding cell will take over an occupied cell with 
a lower fitness. 

The cell types are initialised either manually by using 
the model’s drawing function, or are randomly 
generated, or are imported from a GIS file. In addition 
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to expansion of cells into the cells of the same type 
depending on jobs or people, the cell types can 
change through random ‘mutation’ into another cell 
type, based on the built-in planning rules shown in 
Table 4. First, a cell for mutation is selected randomly 
from the rectangular grid of cells (for instance 100 x 
100) and subsequently the cell is converted into 
another cell type based on a relevant planning rule. 
The planning rules have been obtained from 
discussions with local authorities across Europe and 
include the population basis for a certain type of cell 
to be created. For instance, a primary care health 
centre is created for population of N1 inhabitants, a 
primary school is created for a population of N2 
inhabitants and so on, based on an extensive table 
coded in the model. Cells can also be protected, such 
as roads, so that they are not subjected to expansion 
takeover or mutation from other cell types. 

Description Value 

Income per capita 20000 

Population per 10000 m2 100 

Births and deaths   

Birth rate[%] 1.123 

Death rate[%] 1.018 

Age profile  

Total[%] 100 

Preschool[%] 15 

School[%] 15 

University[%] 15 

Working[%] 45 

Retired[%] 10 

Household profile  

Total[%] 100 

One Person[%] 13 

Couple no children[%] 25 

Couple with Children[%] 46 

Lone Parent with Children[%] 10 

Other[%] 5 

Description Value 

Household Expenditure  

Total Expenditure[%] 100 

Food and non-alcoholic beverages[%] 18.7 

Alcoholic beverages and tobacco[%] 2.8 

Clothing and footwear[%] 19.8 

Housing + water + electricity+ gas and other 
fuels[%] 6.6 

Furnishings + household equipment and 
routine maintenance[%] 7.2 

Health[%] 5.2 

Transport[%] 15 

Communication[%] 3.3 

Recreation and culture[%] 4.8 

Education[%] 1.3 

Restaurants and hotels[%] 9.5 

Miscellaneous goods and services[%] 6.1 

Household Income  

Total net income[%] 100 

Income from employment[%] 49.6 

Income from self employment[%] 9.8 

Pensions and social security[%] 19.4 

Table 2: Population data 

The figures shown in Table 2 arise from a 
collaboration with local authorities and an energy 
agency in Portugal and correspond to their statistics. 
This explains the lower energy consumption figures 
than those expected in northern countries, however 
this type of data is fully editable and can be amended 
for different local conditions. In the first iteration of 
this work the population was not modelled to account 
for behavioural differences between social groups, 
but this is something that can be added in the future.  

The overall result is that model is entirely based on 
principles of emergence, where local rules on a 
component level, through component to component 
interaction give rise to complex behaviour (Jankovic, 
2012).  
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Cell type Energy 
consumption 
TJ/(m2.year) 

CO2 emissions 
(tonnes/ 
(m2.year)) 

0=Brownfield 0.000000 0.000000 

1=Roads 0.002895 0.400000 

2=Industry 0.003619 0.500000 

3=Retail 0.002109 0.291330 

4=Residential 0.000317 0.041164 

5=Water 0.000000 0.000000 

6=Office 0.000840 0.115669 

7=Warehouse 0.000671 0.091836 

8=Urban Green 
Space 0.000000 0.000000 

9=Non-Agriculture 
Vegetation 0.000000 0.000000 

10=Agriculture 0.002895 0.400000 

11=Rail & Metro 0.002895 0.400000 

12=Built heritage 0.000145 0.015088 

13=Health 0.000839 0.090436 

14=Education 0.000317 0.041164 

15=Public Access 
Buildings 0.000346 0.032961 

16=Military & Prison 0.000419 0.039744 

17=Public Square 0.000145 0.015088 

18=Transport 
Interchange 0.002895 0.400000 

19=Other 0.000000 0.000000 

20=Boundary 0.000000 0.000000 

21=Car park 0.000724 0.100000 

22=Leisure 0.001566 0.192785 

Table 3: Energy consumption and carbon emissions data 

 

 

 

Facilities Population 
basis 

Education 

Nursery 5000 

Pre-primary 900 

Primary 2000 

Lower secondary 3800 

Upper secondary 13000 

University 200000 

Professional education 50000 

Health  

Specialist - national 3000000 

Specialist - regional 200000 

Local - primary care 4000 

Emergency services   

Police 10000 

Fire 40000 

Ambulance 10000 

Publicly funded facilities  

Public access buildings 10000 

Public square 20000 

Military & prison 200000 

Urban green space 200000 

Leisure  

Basic sports centre 800 

Leisure centre 10000 

Open space (100 x 100 metres) 10000 

Water (100 x 100 metres)  20000 

Retail & distribution  

Local shop 10000 

Shopping centre 100000 

Warehouse 100000 

Primary production & commercial services  

Industry 0 

Agriculture 0 

Office space 0 

Table 4: Planning data 
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3.0 Experiments and results 

A number of experimental runs carried out with the 
model are introduced in this section. Figure 3 shows 
a simulation of urban expansion over a period of 25 
timesteps, corresponding to 25 years. In Figure 3, row 
a), position a1, an initial set of land cells was initialised 
randomly, and two roads shown in black were drawn 
manually. As the simulation progresses, the land use 
cells follow the roads while expanding (positions a2-
a4). The road following is an emergent property of the 
model that was not explicitly programmed. It is a 
consequence of the roads having attractiveness of A 
= 1, and diffusing that attractiveness outwards, as 
shown in Figure 3, row b). As the expanding land use 
cells have a preference towards expanding into 
vacant cells with higher attractiveness, that has an 
unintended consequence of road following. In step 
23, Figure 3, position a4, a large retail area was 

entered manually shown above the region where the 
roads cross. This resulted in a disruption of the fine 
grain urban environment, which will be discussed 
later in this article. Figure 3, row b) therefore shows 
the changing and outwardly diffusing attractiveness 
from the road cells, whilst small white areas around 
the crossroads show the established cells with 
repellent quality, so that they cannot be taken over 
by other cells. Finally, Figure 3, row c) shows carbon 
emissions from the land use cells, resulting from the 
application of energy and CO2 emissions factors from 
Table 3. 

The final step of the simulation of urban expansion is 
shown in Figure 4. 

Throughout the simulation, occasional mutation of 
cell types was occurring according to the planning 
rules data from Table 4. 
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Figure 3: Simulation of urban expansion 
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At every step of the process the clusters of land use 
types can be analysed. A cluster is defined as a 
collection of the cells of the same type that are placed 
next to each other. A frequency of occurrence of 
cluster sizes is analysed for the final step of the 
simulation and shown in Figure 5, at the time when 
the number of occupied cells reached 9040 and the 
number clusters reached 3635. It is possible to 
observe from the normal plot of the frequency of 
occurrence of clusters in Figure 5a that small clusters 
occur frequently, and large clusters occur 
infrequently. This is a signature of the power law 
distribution in the form of  

y = c x-a (2) 

where ‘c’ and ‘a’ are constants. The normal plot in this 
particular case is not easy to interpret, as a number of 
features are lost in the scaling of the plot between 
cluster sizes of 0 and 50. This is where a log-log plot 
of the cluster size frequency, shown in Figure 5b, 
becomes useful. As it can be seen from the log-log 
plot, there is some irregularity between cluster size 
logarithms of 3 to 3.5. This is likely to be the result of 
the ‘artificial’ introduction of the large retail cluster in 
Figure 3, position a4, and it could possibly have a 
knock on effect on the future urban development in 
that area, as more intensive processes in and out of 
such a large cluster may result in the changes of the 
urban fabric around it, and the cells changing their 
type as result. 

Figure 5: Cluster size frequency distribution: 9040 cells, 
3635 clusters 

Other types of output that can be obtained from the 
cellular model are population changes over a period 
of time (Figure 6a), and market price indices for the 
product market (Figure 6b), service/retail market 
(Figure 6c), and labour market (Figure 6d). The 
population graph shows linear growth with time from 
year 1 to 2, exponential growth from year 2 to around 
year 14, a linear decline from years 14 to 15, and then 
even more rapid exponential growth until the end of 
the simulation. As it can be seen from Figure 6b and 
c, the product and service market indices decline 
rapidly, then go through a steady rise and start 
fluctuation towards the end of the simulation, as 
result of the urban expansion and changes of the 
proportion of the urban cell types and consequent 
balances of supply and demand. The labour market 
price index graph, Figure 6d, shows initially slow 
growth, followed by a rapid exponential growth 
towards the end of the simulation.  

 

 
Figure 4: The final step of the simulation of urban 
expansion  

 

a) Normal plot 

 

b) Log-log plot 
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Energy consumption and carbon emissions graphs 
were obtained at step 25 of the simulation (Figure 7). 
Both have a similar increasing trend, but at different 
respective scales resulting from the energy 
consumption and carbon emissions figures based on 
data from Table 3. 

The model enables the cell types to be summarised at 
different stages of the simulation, as shown in Figure 
8. That gives an additional context to the other 

metrics obtained from the model, for instance the 
changes and fluctuation of market indices. 

Another useful feature of the cellular automata 
model is the ability to spontaneously grow secondary 
roads on the basis of simple local rules in each cell. If 
a cell has lower attractiveness than the neighbouring 
cells and higher density, a secondary road will be 
grown through the cell in the direction of increasing 
attractiveness gradient. As main roads have 
attractiveness of A = 1 and as attractiveness diffuses 

  
a) Population graph b) Product price index graph 

  
c) Service price index graph d) Labour price index graph 

Figure 6: Population metrics and market indices 

 

  
a) Energy consumption b) Carbon emissions 

Figure 7: Energy consumption carbon emissions 
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outwards, the locally grown small roads will create an 
interconnected network towards the main roads, as 
shown in Figure 9. 

4.0 Discussion 

It is recognised that housing dynamics will 
significantly influence the development of urban 
environment, and that such dynamics may be lacking 
in some of the results presented in this article. Whilst 
there may be low intensity of housing-related 
processes in some of the outputs, this is only chance 
driven as result of random initialisation of the 
simulations shown in Figure 3 through to Figure 8 
where residential cells were present but not 
dominant. However, in Figure 9, which also started as 

randomly initialised, it is the residential cells shown in 
green that have spread to become the most dominant 
and therefore engaging the full functionality of the 
housing processes in the model. The housing 
dynamics is built-in through residential cells being the 
source of labour and consumer processes and one of 
the key influencers on the demand in the property 
market, as shown in the diagram in Figure 2. The low 
intensity of housing related issues in some of the 
outputs of the model is therefore not a fundamental 
shortcoming of the model. In reality, some parts of 
city centres in the UK, such as Birmingham, do not 
have any residential use and, therefore, a model with 
no or low intensity of residential aspects should not 
be considered as unusual. 

  
a) Step 14 b) Step 25 

Figure 8: Proportion of cell types 

 

 

Figure 9: Spontaneous growth of small roads 
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We now focus on answering the research questions 
set in the introduction section of this article. 

Q1: What kind of urban data can be 
generated by a functional model? 

As it can be seen from the previous section, a cellular 
automata model can visualise a simulation of urban 
expansion over a number of years into the future. It 
can also visualise the propagation of attractiveness of 
certain urban features, such as roads or water and 
can result in the new development following the 
attractiveness gradient, as demonstrated by the road 
following shown in the previous section. A simple rule 
on an individual cell level that compares its 
attractiveness and density with the attractiveness 
and density of the neighbouring cells generates a 
secondary road in that cell and, as this is done in each 
cell, a network of secondary roads that lead towards 
a main road emerges. 

Cells of the same type form clusters and the cellular 
automata model can provide information for cluster 
size frequency distribution analysis. The analysis after 
Equation (2) in the ‘Results’ section shows that cluster 
size frequency follows power law distribution in fine 
urban grain where there are gradual increases 
between cluster sizes. Urban developments that 
diverge from the gradual increases between cluster 
sizes are likely to change the character of the urban 
environment and gradually have a knock-on effect on 
the surrounding clusters. Inserting a very large 
development of a certain type into an existing fine 
grain distribution of land use types perturbs the 
balance and can lead to unintended consequences of 
certain urban actors disappearing. 

As each land use type is characterised with energy 
consumption and carbon emissions, both can be 
tracked in the model through time. The same applies 
to the population metrics which changes dynamically 
as the urban area expands and different land use 
types become more dominant than others. 

As the analysed model uses four different markets for 
exchange of products, retail goods, labour and 
property, market indices can be tracked and observed 
in response to the urban expansion. And, as the urban 
environment expands, the overall balance between 
different land use types will change and these 
changes can be easily summarised by the model.  

Q2: What could be the design implications 
of such data? 

Randomly generated urban data is unlikely to match 
an existing urban environment. However, when 
urban data is imported from a geographic 
information system (GIS), rasterised and 
subsequently mapped to match the model land use 
types, such a type of urban model can become of real 
value. Inserting investments into certain cells or 
groups of cells in the model can enable the running of 
what-if scenarios, so that urban designers could ‘push 
and poke the model’ and see what the consequences 
could be. As each time step of the model corresponds 
to a year, forward projections of the model will reveal 
different aspects of urban development and confirm 
whether any intended consequences will be achieved 
or whether there will be any unintended 
consequences. This application of the model would 
be similar in principle with making a business plan as 
it will enable the designer to try design interventions 
on ‘paper’ where actions can be undone before 

  
a) Normal plot b) Log-log plot 

Figure 10: Theoretical power law distribution 
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committing significant resources to real development 
where decisions cannot be undone without 
considerable costs. 

In Figure 3, we saw a timed simulation of urban 
expansion with ‘x-ray’ looking views of the 
attractiveness of cells and their carbon emissions, 
roads following as an emergent and unintended 
consequence of the model operation, and reaching 
the final pattern in Figure 4. Urban designers can use 
this approach to investigate the response to 
alternative urban interventions which can be inserted 
manually into the model at every time step. 

In Figure 5, cluster size frequency was analysed and 
irregularities in the urban grain were observed in 
Figure 5b. In addition to a clear indication of a power 
law properties of the urban model, in which large 
clusters are rare and small clusters are frequent, the 
disruption of the continuity of the urban grain is what 
designers need to look for. Such disruptions will have 
a knock-on effect on the future development, 
potentially resulting in changing land use from one 
type to another and a large development gradually 
overtaking the land use types around it. Whilst 
observing the cluster size frequency analysis in Figure 
5, it is useful to compare it with its theoretical 
equivalent, shown in Figure 10. Although it is not 
possible to expect as smooth distribution in the urban 
grain of cluster sizes in Figure 5 as in its theoretical 
equivalent in Figure 10, the comparison between the 
two gives us an idea of the kind of regularity that can 
be expected, and that we need to look deeper into 
the reasons for irregularities if they occur. 

In Figure 6a, we saw an acceleration, a decline and 
another acceleration in the population growth. What 
causes the population growth to accelerate and slow 
down? This is not easy to answer, but the method 
introduced here gives urban designers tools to play 
with and investigate. Similarly, in Figure 6b and c, the 
product and service market indices decline rapidly, 
then go through a steady rise and start fluctuating 
towards the end of the simulation. Running what-if 
scenarios introduced by this method creates 
opportunities for urban designers to investigate 
different outcomes of urban interventions. 

Energy consumption and carbon emissions levels can 
be tracked, as shown in Figure 7 and different 
interventions can be tried by designers. This is 
especially important as a number of cities in the UK, 
for instance, have declared climate emergency and 

the aspiration to become carbon-neutral by year 
2030. 

Summaries of land use types, such as shown in Figure 
8, can be used to quickly observe the changes of land 
use types over time. The cellular automata model can 
also assist designers with spontaneously growing 
secondary roads in new developments, as shown in 
Figure 9. With reference to Figure 9, it is worth noting 
that the model behaviour works consistently with 
Schelling’s model of segregation (Schelling, 1971). 
Dynamic segregation principles driven by 
“discriminatory individual choices” (Schelling 1971) 
or, in other words, preferences towards the same 
cultural background, create the result of clustering 
and the emergence of neighbourhood patterns. It is 
possible to observe the Schelling principle in two 
respects with reference to Figure 9: first, cluster 
formation of the same cell types as the cells expand 
into their own types; and second, the preferences 
towards higher attractiveness give rise to the road 
following by the expanding cells. 

Steps towards practical implementation of this 
method were made by developing GIS import/export 
functionality. This in itself created challenges, 
including the mapping of GIS land use types to the 
model land use types. Whilst it was intended to carry 
out the validation of the model on real GIS data, the 
funded period of the project lasting three years was 
too short for this to be achieved. However, all pre-
requisites for validation are built into the model, 
including placeholders for calibration factors, and 
therefore calibration will be carried out when suitable 
opportunities arise. 

5.0 Conclusions 

Urban environment is characterised with immense 
complexity yet it is essential to model it in order to 
test design interventions before significant financial 
investments are made for urban development. As we 
increasingly become aware of the implications of 
climate change, so that the UK, for instance, has 
legislated for cutting carbon emissions to zero by the 
year 2050 and some cities, such as Birmingham, have 
declared climate emergency and the aspiration to 
become carbon neutral by the year 2030, it is 
essential to have the tools capable of replicating and 
modelling the complexity of urban environment, in 
order to empower urban designers to make informed 
decisions. Whilst there are numerous tools that 
model certain aspects of urban growth, the method 



   
 

 
 ENQUIRY: The ARCC Journal |Special Edition: Urban Data Assemblage | VOLUME 16 ISSUE 2 | 2019 63 
 http://www.arcc-journal.org/ 

 

introduced in this article provides a comprehensive 
approach to modelling a range of urban environment 
processes, combining land use, movement of 
population, products and services, integrating with 
market economics. Although the article introduces 
simulations of randomly generated urban 
environment, importing GIS data mapping it to the 
land use types of the model, followed by calibration 
of the model using historic data, will empower 
designers with urban models of real value. 

As already stated in the introduction, urban modelling 
is now over 50-years old. In addition to a significant 
scope for a continuing theoretical research, the 
interdisciplinary characteristics of urban models give 
scope for practical applications in planning, and it is 
hoped that this article makes a contribution towards 
facilitating that objective. 
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