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SUMMARY

With the development of transcriptomic technologies, we are able to quantify
precise changes in gene expression profiles from astronauts and other organisms
exposed to spaceflight. Members of NASA GeneLab and GeneLab-associated
analysis working groups (AWGs) have developed a consensus pipeline for
analyzing short-read RNA-sequencing data from spaceflight-associated experi-
ments. The pipeline includes quality control, read trimming, mapping, and gene
quantification steps, culminating in the detection of differentially expressed
genes. This data analysis pipeline and the results of its execution using data sub-
mitted to GeneLab are now all publicly available through the GeneLab database.
We present here the full details and rationale for the construction of this pipeline
in order to promote transparency, reproducibility, and reusability of pipeline
data; to provide a template for data processing of future spaceflight-relevant da-
tasets; and to encourage cross-analysis of data from other databases with the
data available in GeneLab.
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INTRODUCTION

Opportunities to perform biological studies in space are rare due to high costs and a limited number of

funding sources, rocket launches, and spaceflight crew hours for experimental procedures. In addition,

spaceflight research is decentralized and distributed across numerous laboratories in the United States

and abroad. As a result, studies performed in different laboratories often utilize different organisms,

strains, cell lines, and experimental procedures. Adding to this complexity are variance in spaceflight fac-

tors and/or confounders within each study, such as degree of radiation exposure, experiment duration,

CO2 concentration, light cycle, and water availability, all of which can have effects on an organism’s health

and gene expression profiles during spaceflight (Rutter et al., 2020). In order to optimize the integration of

data from this diverse array of spaceflight experiments, it is paramount that variations in data processing

are minimized.

There is presently no consensus on how best to analyze RNA-seq data, and the impact of analysis tool se-

lection on results is an active field of research. Indeed, selections of trimming parameters (Williams et al.,

2016), read aligner (Yang et al., 2015), quantification tool (Teng et al., 2016), and differential expression

detection algorithm (Costa-Silva et al. 2017) all affect results. Because of such challenges, groups such

as ENCODE and MINSEQE have developed standardized analysis pipelines for better comparison of

RNA-seq datasets (ENCODE Project Consortium et al., 2020; Functional Genomics Data Society, 2012).
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The NASA GeneLab database (https://genelab-data.ndc.nasa.gov/genelab/projects) was created as a

central repository for spaceflight-related omics-data. The repository includes data from experiments

that profile transcription (RNA-seq, microarray), DNA/RNA methylation, protein expression, metabolite

pools, and metagenomes. The most prevalent data type in this repository is RNA-seq from organisms

exposed to spaceflight conditions. As of August 2020, the NASA GeneLab database has over eighty data-

sets with RNA-sequencing data (Table S1). These datasets include Homo sapiens (human), Mus musculus

(mouse), Drosophila melanogaster (fruit fly), Arabidopsis thaliana (model higher plant), Oryzias latipes

(Japanese rice fish), Helix lucorum (land snail), Brassica rapa (Fast Plant), Eruca vesicaria (arugula/edible

plant), Euprymna scolopes (Hawaiian bobtail squid), Ceratopteris richardii (aquatic fern), and the bacte-

rium, Bacillus subtilis from experiments performed during true spaceflight on various orbital platforms

such as the Space Shuttle and International Space Station (ISS), as well as spaceflight-analog studies,

such as hindlimb unloading and bed rest studies (Berrios et al., 2020).

NASA’s GeneLab and Ames Life Sciences Data Archive (ALSDA) projects have put forward an ambitious

strategy focused on integrating data, metadata, and biospecimens to fully utilize the 40+ years of archived

NASA Life Sciences data (Scott et al., 2020). One of the first steps in this effort is the ability to analyze how

experimental factors common to multiple datasets impact molecular signaling. Such meta-analysis can

only occur if metadata, data, and processed data are harmonized. As part of this strategy, GeneLab

engaged with the scientific community and held its first Analysis Working Group (AWG) workshop in

2018. Spaceflight researchers from universities and organizations across the United States and abroad

met to begin the creation of a standardized, consensus data-processing pipeline for one of the most com-

mon types of spaceflight datasets: transcription profiling via RNA-sequencing. Scientists at this workshop

met to discuss the merits of various bioinformatic software tools for processing RNA-sequencing data and

ultimately agreed on a single pipeline of these tools.

The main driver for developing the consensus pipeline was to present consistently processed data to the

public, therefore making space-relevant multi-omics data more accessible and reusable. The overall goals

were (1) to get more consistently processed data to the public; (2) to provide output data from every step of

the consensus pipeline so users can download and use these ‘‘intermediate’’ data; (3) to support easier and

more consistent analysis of space-relevant data by users including those in the NASA AWGs; and (4) to

allow easier cross-analysis of experiments to identify effects that result from the spaceflight environment,

independent of confounding factors. In addition, many of these data in the GeneLab database have not

been previously analyzed, as their generation was relatively recent. Therefore, providing new and pro-

cessed datasets to the public allows biologists and others to more easily interpret these data and contrib-

utes significantly to our collective knowledge of the effects of spaceflight on terrestrial organisms.

Here we present the RNA-seq consensus pipeline (RCP) developed by the GeneLab AWG along with the

rationale behind the tool settings and options selected. The RCP includes three distinct steps: data pre-

processing, data processing, and differential gene expression computation/annotation (Figure 1A). These

steps use tools for quality control (FastQC, MultiQC) (Andrews, 2010; Ewels et al., 2016), read trimming

(TrimGalore) (Krueger 2019), mapping (STAR) (Dobin et al., 2013), quantification (RSEM) (Li and Dewey

2011), and differential gene expression calculation/annotation (DESeq2) (Love et al. 2014) (Figure 1B).

The RCP has been integrated into the GeneLab database, and files produced by the RCP for each RNA-

seq dataset hosted in GeneLab are and will continue to be publicly available for download.
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Data pre-processing: quality control and trimming

There are three distinct steps to the RCP, the first of which is data preprocessing (Figure 2A). The pipeline

begins with quality control (QC) of raw FASTQ files from a short-read Illumina sequencer using the FastQC

software (Andrews, 2010) (Figure 2B). FastQC is one of the most widely used QC programs for short-read

sequencing data. It provides information that can be used to assess sample and sequencing quality,

including base statistics, per base sequencing quality, per sequence quality scores, per base sequence

content, per base GC content, per sequence GC content, per base N content, sequence length distribu-

tions, sequence duplication levels, overrepresented sequences, and k-mer content.

The FastQC program is run on each individual sample file. However, reviewing the FastQC results for each

sample file can be tedious and time consuming. Experiments typically have many sample files (biological
2 iScience 24, 102361, April 23, 2021
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Figure 1. GeneLab RNA-seq Consensus Pipeline (RCP)

(A) The three broad steps of the RCP. The RCP handles (1) data preprocessing to trim sequencing adapters and to provide

quality control metrics; (2) data processing tomap reads to the reference genome and quantify the number of read counts

per gene; and (3) differential gene expression calculation, which will provide a list of differentially expressed genes that

can be sorted by adjusted p value and log fold-change.

(B) The full RCP annotated with tools, input files, and output files.
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and/or technical replicates) for multiple experimental conditions (spaceflight, ground control, etc.). For this

reason, we also use the MultiQC package (Ewels et al., 2016) (Figure 2C) to create a summary statistics

report that includes the same quality control result categories from FastQC across all experiment samples.

After performing quality control on the raw FASTQ data, reads are trimmed using TrimGalore (Krueger

2019) to remove sequencing adapters and low-quality bases that would disrupt read mapping during

the data processing pipeline step (Figure 2D). TrimGalore is a wrapper program that uses the cutadapt pro-

gram (Martin 2011) for read trimming. TrimGalore was selected for the RCP due to its simplified command

line interface, thorough output of trimming metrics, and ability to automatically detect adapters. In this
iScience 24, 102361, April 23, 2021 3
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B FastQC
Parameters fastqc -o /path/to/output/directory \

-t number_of_threads \
/path/to/input/files

Input data files fastq.gz
Output data files fastqc.html (FastQC report) 

fastqc.zip (FastQC raw data)

C MultiQC
Parameters multiqc -o /path/to/output/directory \

/path/to/fastqc/output/files
Input data files fastqc.html (FastQC report) 

fastqc.zip (FastQC raw data)
Output data files multiqc_report.html (multiqc report)

multiqc_data (directory containing multiqc raw data)

D TrimGalore
Parameters trim_galore --gzip \

--path_to_cutadapt /path/to/cutadapt \
--phred33 \
--illumina \ # if adapters are not illumina, replace with adapters used
--output_dir /path/to/TrimGalore/output/directory \
--paired \ # only for PE studies
/path/to/forward/reads /path/to/reverse/reads
# if SE, replace the last line with only /path/to/forward/reads

Input data files *fastq.gz (raw reads)

Output data files *fastq.gz (trimmed reads) 
*trimming_report.txt (trimming report) 

FastQC

Raw FastQ Files

MultiQC

TrimGalore Trimmed FastQ Files

FastQC

MultiQC

Quality Report Quality Report

pipeline step 2

Step 1: Data Preprocessing

Figure 2. Data preprocessing (pipeline step 1): quality control and trimming

(A) Data preprocessing pipeline. FastQ files from Illumina base-calling software are quality checked using FastQC and

MultiQC. Data are then trimmed using TrimGalore and are re-checked for quality; (B) flags used for FastQC program; (C)

flags used for MultiQC program; (D) flags used for TrimGalore program; trimmed reads (*fastq.gz) are then used as input

data for FastQC (B) followed byMultiQC (C) to generate trimmed read quality metrics. Tool versions used to process each

dataset are included in the RNA-seq processing protocol in the GLDS Repository.
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step, bases that are part of a sequencing adapter or of low quality are removed from each read, and reads

that become too short are subsequently removed. After trimming, the quality control programs, FastQC

and MultiQC, are again run on the trimmed FASTQ files for viewing the quality control metrics of the reads

that will be used for data processing. Once the data have been preprocessed, the sequenced reads are

ready for mapping and quantification.

Data processing: read mapping and sample quantification

In the data processing step (Figure 1; Step 2A), the trimmed reads are first aligned to the reference genome

(Figure 3A) with STAR, a splice-aware aligner (Dobin et al., 2013). STAR must be run in two steps. The first
4 iScience 24, 102361, April 23, 2021



A B

C

Figure 3. Data processing (pipeline step 2A): read mapping

(A) Data processing pipeline. Trimmed reads are mapped to their reference genome and transcriptome with STAR. Gene

counts are then quantified with RSEM; (B) flags used for generating the indexed STAR reference files; (C) flags used for

mapping reads with STAR. Tool versions used to process each dataset are included in the RNA-seq processing protocol in

the GLDS Repository.
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step is to create indexed genome files (Figure 3B). These files are used to assist read mapping and only

need to be generated once for each reference genome file. This step requires reference FASTA and

GTF files (Table S2). Some datasets include the External RNA Control Consortium (ERCC) spike-in con-

trol—a pool of 96 synthetic RNAs with various lengths and GC content covering a 220 concentration range

(Jiang et al., 2011). If ERCC spike-ins were included, the spike-in FASTA and GTF files are appended to the

reference FASTA and GTF files, respectively. The second step of STARmapping is to use the indexed refer-

ence genome and the trimmed reads from the preprocessing step in order tomap the reads to the genome

and the transcriptome (Figure 3C). STAR will also produce genome mapped data, which can optionally be
iScience 24, 102361, April 23, 2021 5
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used to find reads that map outside of annotated reference transcripts. STAR mapping output data are in

Binary Alignment Map (BAM) format, which has a separate entry for each mapped read and states which

transcript each read is mapped to. In order to improve the detection and quantification of splice sites,

STAR is run in ‘‘two-pass mode.’’ Here, splice sites are detected in the initial mapping to the reference

and used to build a new reference that includes these splice sites. Reads are then re-mapped to this dynam-

ically generated reference to improve the quantification of splice isoforms (Dobin et al., 2013). Users are

provided with these results (as per sample SJ.out files) for further analysis of differential splicing.

The second part of processing is quantifying the number of reads mapped to each annotated transcript

and gene (Figure 1A; Step 2B, Figure 4A). For this task, the RCP uses RSEM (Li and Dewey 2011). The

main reasons for using RSEM are its ability to account for reads that map to multiple transcripts and distin-

guish gene isoforms. In short-read sequencing experiments it is likely that some number of reads will map

to multiple regions in the genome. RSEM computes maximum likelihood abundance estimates to split the

read count across multiple genes. Similar to STAR, RSEM is run in two distinct phases (Figure 4A). The first

phase uses the reference genome andGTF files (with or without ERCC as appropriate) (Table S2) to prepare

indexed genome files (Figure 4B). The second phase uses the indexed files and the mapped reads from

STAR to assign counts to each gene (Figure 4C). There are two output files generated for each sample:

counts assigned to genes and counts assigned to isoforms. Gene counts are used to calculate differential

gene expression. Isoform counts are also generated as an option to look at differential isoform expression

but are not used during differential gene expression calculation in the RCP. Once the RSEM count files are

generated, the data are used to compute differentially expressed genes. A list of the reference genomes

used in the GeneLab pipeline is available in Table S2 . These reference genomes were the most recent re-

leases at the time each STAR and RSEM indexed references were created. Although it is possible to run

STAR mapping through the RSEM toolkit, we elected not to do this because the alignment parameters

used in this case are from ENCODE’s STAR-RSEM pipeline and are not customizable. Thus, we would

have been precluded from using the precise mapping parameters agreed to by the GeneLab AWG.

We elected to adopt a mapping-based approach rather than rapidly quantifying the reads via a k-mer-

based counting algorithm, pseudo-aligners, or a quasi-mapping method that utilizes RNA-seq inference

procedures such as Kallisto (Bray et al., 2016) or Salmon (Patro et al., 2017) despite their speed advantages.

This is because alignment-free quantification tools do not accurately quantify low-abundant and small

RNAs especially when biological variation is present (Wu et al., 2018). Furthermore, alignment of reads al-

lows for additional analyses beyond transcript and gene quantification such as measurement of gene body

coverage and detection of novel transcripts.

There are several alignment-based mapping tools available and each has advantages and disadvantages.

An alignment tool that is sensitive to splice-isoforms is critical to accurately identify how expression of

splice-isoforms is affected by the spaceflight environment. DNA-specific aligners such as BWA (Li and Dur-

bin 2009) and Bowtie (Langmead et al., 2009) cannot handle intron-sized gaps and thus an RNA-seq-spe-

cific aligner is needed (Baruzzo et al., 2017). In addition to splice-awareness, when selecting an aligner the

following criteria were also considered: ability to input both single- and paired-end reads, handle strand-

specific data, applicability to a variety of different model organisms with both low- and high-complexity

genomic regions, efficient runtime and memory usage, ability to identify chimeric reads, high sensitivity,

low rate of false discovery, and ability to output both genome and transcriptome alignments. Several

studies have been conducted to compare the wide variety of available RNA-seq specific alignment tools,

and of these, the STAR aligner consistently performs better than or on par with the tools tested for the indi-

cated criteria (Baruzzo et al., 2017; Schaarschmidt et al., 2020; Raplee et al. 2019).
Differential gene expression calculations and addition of gene annotations

Once reads have been mapped and quantified, differential expression analysis is performed using the

DESeq2 R package (Figure 1; Step 3, Figure 5A). Unlike the previous steps, a custom R script (GeneLab_DG-

E_wERCC.R or GeneLab_DGE_noERCC.R) (Data S1and S2) is used to run DESeq2; to create both unnor-

malized and normalized counts tables; and to generate a differential gene expression (DGE) output table

containing normalized counts for each sample, DGE results, and gene annotations (Figure 5B). The Gen-

eLab DGE R script also creates computer-readable tables that are used by the GeneLab visualization portal

to generate various plots so users can easily view and begin interpreting the processed data. These scripts
6 iScience 24, 102361, April 23, 2021



RSEM Prepare Reference
Parameters rsem-prepare-reference --gtf /path/to/annotation/gtf/file \

/path/to/genome/fasta/file \
/path/to/RSEM/genome/directory/RSEM_ref_prefix

Input data files .fasta (genome sequence) 
.gtf (genome annotation) 
Note that for analyzing samples with ERCC spike-in, the genome FASTA and 
GTF files should have the ERCC FASTA and GTF files appended to them.

Output data files The following will be generated in the /RSEM/genome/directory
RSEM_ref_prefix.chrlist
RSEM_ref_prefix.grp
RSEM_ref_prefix.idx.fa
RSEM_ref_prefix.n2g.idx.fa
RSEM_ref_prefix.seq
RSEM_ref_prefix.ti
RSEM_ref_prefix.transcripts.fa

RSEM Calculate Expression
Parameters rsem-calculate-expression --num-threads NumberOfThreads \

--alignments \
--bam \
--paired-end \ # only for PE studies
--seed 12345 \
--estimate-rspd \
--no-bam-output \
--strandedness reverse \ # For Illumina TruSeq stranded protocols, reads are derived 

from the reverse strand
/path/to/*Aligned.toTranscriptome.out.bam \
/path/to/RSEM/genome/directory/RSEM_ref_prefix \
/path/to/RSEM/output/directory

Input data files *Aligned.toTranscriptome.out.bam
RSEM indexed reference

Output data files *genes.results (counts per gene)
*isoforms.results (counts per isoform)
*stat (directory containing the following stats files)

*cnt
*model
*theta

RSEM: 
Calculate Expression

Gene Count Files Isoform Count Files

RSEM: Prepare Reference

Step 2B: Read Quantification

B

A

C

pipeline step 3

Figure 4. Data processing (pipeline step 2B): gene quantification

(A) Data processing pipeline. Mapping results from STAR are quantified by RSEM; (B) parameters for RSEM indexed

reference files generation; (C) parameters for quantifying gene and isoform counts with RSEM. Tool versions used to

process each dataset are included in the RNA-seq processing protocol in the GLDS repository.
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are provided in the NASA GeneLab_Data_Processing Github repository (https://github.com/nasa/

GeneLab_Data_Processing). In the following sections we describe each step of these scripts in order.

The GeneLab DGE R script requires three inputs: the quantified count data from the previous (RSEM) step;

sample metadata from the Investigation, Study, and Assay (ISA) tables in the ISA.zip file (provided in the

GeneLab repository with each dataset) (Sansone et al., 2012; Rocca-Serra et al., 2010); and the organ-

isms.csv file (Table S3), which is used to specify the organism used in the study and relevant gene
iScience 24, 102361, April 23, 2021 7
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A
Metadata File

Organisms File

DESeq2

Normalized Count Matrix Table with differentially expressed 
genes (w/o ERCC data)

Table with differentially expressed 
genes (w/ ERCC data)

Step 3: Calculate Differential Gene Expression

B Output Type Output File Name
(GeneLab_DGE_noERCC.R

and 
GeneLab_DGE_wERCC.R)

Output File Name 
(GeneLab_DGE_wERCC.R only)

Available with RNA-seq 
processed data in the 

GLDS Repository
(*)

Unnormalized_Counts.csv

Normalized_Counts.csv

contrasts.csv

differential_expression.csv

ERCCnorm_contrasts.csv

ERCC_Normalized_Counts.csv

ERCCnorm_differential_expression.csv

Used to generate 
interactive plots from 

RNA-seq processed data 
in the GLDS 

visualization portal
(**)

visualization_output_table.csv

visualization_PCA_table.csv

visualization_output_table_ERCCnorm.csv

visualization_PCA_table_ERCCnorm.csv
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ERCC_rawCounts_unfiltered.csv
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Figure 5. Differential gene expression calculation (pipeline step 3)

(A) Data processing pipeline. The R programDESeq2 is run in order to determine which genes are differentially expressed

between experimental conditions using gene count files from RSEM.

(B) Output files generated. The table columns distinguish which script produces each output. The columns distinguish

how those output files are used.
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annotations to load. Because samples from some GeneLab RNA-seq datasets contain ERCC spike-in and

others do not, there are two versions of the GeneLab DGE R script, one for datasets with ERCC spike-in

(GeneLab_DGE_wERCC.R, Data S1) and one for those without (GeneLab_DGE_noERCC.R, Data S2). Prior

to running either script, paths to directories containing the input data and the output data location must be

defined. Each script starts by defining the organism used in the study, which should be consistent with the

name in the organisms.csv file so that it matches the abbreviations used in the PANTHER database (Mi et al.

2013; Thomas 2003) for that organism. Next, the metadata from the ISA.zip file are imported and formatted

for use with the DESeq2 package. During metadata formatting, groups for comparison are defined based

on experimental factors, and a sample table is created to specify the group to which each sample belongs.

Next, a contrasts matrix is generated, which specifies the groups that will be compared during DGE anal-

ysis; each group is compared with every other group in a pairwise manner in both directions (i.e. spaceflight

versus ground and ground versus spaceflight). This approach provides the user with the results for all

possible group comparisons, allowing each user to select themost relevant comparisons for their particular

scientific questions. After metadata formatting, the RSEM gene count data files from each sample are listed

and re-ordered (to match the order the samples appear in the metadata), then imported with the R pack-

age, tximport (Soneson et al., 2015), and sample names are assigned. Prior to running DESeq2, a value of 1
8 iScience 24, 102361, April 23, 2021
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is added to genes with lengths of zero, which is necessary to make a DESeqDataSet object. A DESeqDa-

taSet object is then created using the formatted metadata and the count data that was imported with

tximport.

For datasets that contain samples with ERCC spike-in, we use the GeneLab_DGE_wERCC.R script (Data

S1). To reduce the possibility of skewing the data during DESeq2 normalization (McIntyre et al., 2011; Risso

et al., 2011; Conesa et al., 2016; Law et al., 2016), all genes that have a sum of less than 10 counts across all

samples are removed. The cutoff value of 10 is a best practice recommended by the DESeq2 tutorial on

Bioconductor. These filtered data are then prepared for normalization and DGE analysis with DESeq2.

Because there is no consensus for whether or not ERCC-normalization improves the accuracy of the results

(Risso et al., 2014), the GeneLab project and its AWG members decided to perform the DGE analysis both

with and without ERCC-normalization (for datasets with samples containing ERCC spike-in).

To enable DESeq2 analysis with and without considering ERCC reads, the DESeqDataSet object is used to

create a DESeqDataSet object containing only ERCC reads. Because all samples must contain ERCC spike-

in for ERCC-normalization, the DESeqDataSet object containing only ERCC reads is used to identify and

remove any samples that do not contain ERCC reads. Next, a DESeqDataSet object containing only

non-ERCC reads is created by removing rows containing ERCC reads. These data are then used for DESeq2

analysis.

For DESeq2 analysis with ERCC-normalization (Data S2), the size factor object of the non-ERCC data is re-

placed with group B ERCC size factors for re-scaling in the first DESeq2 step. Group B ERCC genes contain

the same concentration in both mix1 and mix 2. Therefore, only group B ERCC genes are used for gener-

ating the size factors for re-scaling duirng ERCC-normalization. For DESeq2 analysis without ERCC-normal-

ization, the DESeq2 default algorithm is applied to the DESeqDataSet object containing only non-ERCC

reads. The unnormalized and DESeq2-normalized count data as well as the sample table are then

outputted as CSV files. The ‘‘Unnormalized_Counts.csv,’’ ‘‘Normalized_Counts.csv,’’ and ‘‘ERCC_Normali-

zed_Counts.csv’’ files for each RNA-seq dataset are available in the GeneLab Data Repository; the ‘‘Sam-

pleTable.csv’’ file is used internally for verifying and validating the processed data prior to publication.

There are two types of hypothesis tests that can be run with DESeq2, the likelihood ratio test (LRT), which is

similar to an analysis of variance (ANOVA) calculation in linear regression and allows for comparison across

all groups, and the Wald test, in which the estimated standard error of a log2 fold change is used to

compare differences between two groups. The DGE step of the RCP performs both of these analyses. After

normalization, the DESeq2 likelihood ratio test design is applied to the normalized data (both ERCC- and

nonERCC-normalized data) to generate the F statistic p value, which is similar to an ANOVA p value and

reveals genes that are changed in any number of combinations of all factors defined in the experiment.

To prepare for building a gene/pathway annotation database, the STRINGdb (Szklarczyk et al., 2019) and

PANTHER.db (Thomas 2003) libraries are loaded, and the organisms.csv file is read and used to indicate the

Bioconductor AnnotationData Package needed (Huber et al., 2015; Gentleman et al., 2004). The current

gene annotation database for the organism specified at the beginning of the R script is then loaded.

Next, DGE tables containing normalized counts for each sample, pairwise DGE results, and current gene

annotations as well as computer-readable DGE tables (that will be used for visualization) are created first

with nonERCC-normalized data and then with ERCC-normalized data. For pairwise DGE analysis, first

normalized count data are used to create two output tables: one that is used to create the human-readable

DGE output table provided to users with processed data for each dataset and the other respective com-

puter-readable DGE output table that contains additional columns and is used to visualize the data.

Next, normalized count data are iterated through Wald Tests to generate pairwise comparisons of all

groups based on the contrasts matrix that was generated during metadata formatting. The pairwise

DGE analysis results are then added as columns to both DGE output tables.

Then an annotation database is built by first defining the ‘‘keytype,’’ which indicates the primary type of

annotation used (for most GeneLab datasets this is ENSEMBL). The keytype is then used to map to anno-

tations in the organism-specific Bioconductor AnnotationData Package, and the following annotation col-

umns are added to the annotation database: SYMBOL, GENENAME, ENSEMBL (if not the primary),
iScience 24, 102361, April 23, 2021 9



Table 1. Differential gene expression output table—annotations

TAIR SYMBOL GENENAME REFSEQ ENTREZID STRING_id GOSLIM_IDS

AT1G01010 ANAC001 NA NM_099983 839580 3702.AT1G01010.1 NA

AT1G01020 ARV1 NA NM_001035846 839569 3702.AT1G01020.1 GO:0005622, GO:0005737, .

AT1G01030 NGA3 NA NM_001331244 839321 3702.AT1G01030.1 NA

AT1G01040 ASU1 Encodes a Dicer homolog . NM_001197952 839574 3702.AT1G01040.2 NA

Truncated version of the differential_expression.csv file provided as GeneLab processed data for GLDS-251. The first 7 columns of the differential gene expres-

sion output table contain gene IDs and annotations (for remainder of columns, refer to Table 2).
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REFSEQ, and ENTREZID. STRING and GOSLIM annotation columns are also added to the annotation data-

base using the STRINGdb and PANTHER.db R packages, respectively. All of the aforementioned annota-

tion columns are added to the annotation database to enable users to perform downstream analyses

without having to map gene IDs themselves. Once the annotation database is complete, additional calcu-

lations are performed on the normalized count data before assembling the final DGE output tables.

Means and standard deviations of normalized count data for each gene across all samples, and for sam-

ples within each respective group, are calculated and added as columns to the DGE output tables.

A column containing the F statistic p value, calculated previously, is also added to the DGE output

tables. The following columns are added only to the computer-readable DGE output table (used for

visualization): a column to indicate whether each gene (or pathway) is up- or downregulated for each

pairwise comparison, a column to indicate genes that are differentially expressed using a p value cutoff

of %0.1 and another column using a p value cutoff of %0.05, a column indicating the log2 of the p value

for each pairwise comparison and another column indicating the log2 of the adjusted p value, both of

which are used to create Volcano plots. After all columns are added to the DGE tables, both the human-

and computer-readable DGE tables are combined with the current annotation database to create the

complete human- and computer-readable DGE tables. An example of the complete human readable

DGE tables provided with processed RNAseq datasets in the GeneLab Data Repository is shown in

Tables 1 and 2. Principal component analysis (PCA) is also performed on the normalized count data

and used to create PCA plots for the GeneLab data visualization portal. DGE analysis of datasets without

ERCC spike-in is performed exactly the same way as the nonERCC-normalized approach described

above, except that no ERCC reads have to be removed from the DESeqDataSet object prior to DESeq

analysis.

Both the GeneLab_DGE_wERCC.R and the GeneLab_DGE_noERCC.R scripts produce the following

output files: Unnormalized_Counts.csv (*), Normalized_Counts.csv (*), SampleTable.csv (#), contrasts.csv

(*), differential_expression.csv (*), visualization_output_table.csv (**), visualization_PCA_table.csv (**) (Fig-

ure 5B). The GeneLab_DGE_wERCC.R script will also produce the following additional output files:

ERCC_rawCounts_unfiltered.csv (#), ERCC_rawCounts_filtered.csv (#), ERCCnorm_contrasts.csv (*),

ERCC_Normalized_Counts.csv (*), ERCCnorm_differential_expression.csv (*), visualization_output_

table_ERCCnorm.csv (**), visualization_PCA_table_ERCCnorm.csv (**) (Tables 1 and 2).

To showcase the value of using a consensus pipeline and publishing the processed data from each step of the

pipeline,downstreamanalyseswereperformedusingprocesseddata fromselect samples fromRNAseqdatasets

hostedonGeneLab.Oneof the advantages of providing expressiondataof all samples in eachdataset aswell as

all possiblepairwiseDGEcomparisons is toallowusers the flexibility topickandchoosewhich samples andwhich

comparisons theywould like to focuson.Thus,whenselectingsamples fordownstreamanalysis,weexercisedthis

flexibility and searched the GeneLab Data Repository for datasets/samples that met a specific set of criteria.

These criteria were as follows: (1) datasets that evaluated the same tissue (liver) from the same mouse strain

(C57BL/6) and sex (female), (2) only samples derived from animals flown in space and respective ground control

samples, (3) studies that used the samepreservationprotocol (liver samples extracted from frozencarcassespost-

mission) and library preparation method (ribo-depletion), and (4) samples that contained ERCC spike-in to eval-

uate outputs with and without ERCC normalization. Select samples from two GeneLab datasets, GLDS-168 and

GLDS-245, met these criteria, and processed data including the Normalized_Counts.csv, differential_expres-

sion.csv, ERCC_Normalized_Counts.csv, and the ERCCnorm_differential_expression.csv files from these twoda-

tasets were used for downstream analyses.
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Table 2. Differential gene expression output table—statistics

Norm. expr.

(sample A)

Log2fc

(comparison A)

P value

(comparison A)

Adj p value

(comparison A)

Mean (all

samples)

Stdev (all

samples)

LRT

p value

Mean

(group A)

Stdev

(group A)

263.864 �0.078 0.648 0.848 198.735 31.756 0.484 225.550 36.759

200.493 0.341 0.033 0.198 147.061 19.197 0.740 174.839 24.073

19.040 0.691 0.137 NA 11.035 3.121 NA 15.706 2.889

644.811 0.126 0.366 0.655 669.586 68.327 1.000 688.123 76.969

Truncated version of the differential_expression.csv file provided as GeneLab processed data for GLDS-251. Following the seven columns of gene IDs and an-

notations (Table 1) are normalized gene expression data for each sample (Norm. expr. (sample A)) then results from all possible pairwise comparisons, including

log2 fold change (Log2fc (comparison A)), p values (P.value (comparison A)), and adjusted p values (Adj.p.value (comparison A)) calculated from theWald Tests.

Next are the average gene expression (Mean (all samples)) and standard deviation (Stdev (all samples)) of all samples followed by the F-statistic p value gener-

ated from the likelihood ratio test (LRT.p.value), and the last set of columns are the average gene expressions (Group.Mean) and standard deviations (Group.-

Stdev) of samples within each group.
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Prior to downstream analysis, the processed data files were filtered so that only samples that met the

criteria listed above were included. Because GLDS-168 contains samples from both the Rodent Research

1 (RR-1) and RR-3missions and only the RR-1missionmet our first criteria of using the C57BL/6mouse strain,

RR-3 samples were removed from the process data files. GLDS-168 processed data files were subsequently

filtered to remove all samples, except spaceflight (FLT) and respective ground control (GC) samples, to

meet the second criteria listed above. Lastly, because GLDS-168 contains a set of FLT and GC samples

that were spiked with ERCC and another set in which ERCC was not added, the later set of samples

were removed to meet the fourth criteria. GLDS-245 contains liver samples from the RR-6 mission, which

included a set of animals that were returned to earth alive after �30 days of spaceflight and another set

of animals that remained in space (aboard the ISS) for a total of �60 days before being sacrificed aboard

the ISS (note that there were respective control samples for each set of spaceflight animals described). The

former set of animals had their livers dissected immediately after euthanasia, whereas livers from the latter

set of animals were frozen in situ and dissected from frozen carcasses after return to earth. Thus, only the

later (ISS-terminal) set of FLT and respective GC samples met criteria 2 and 3, so the GLDS-245 processed

data files were filtered to remove all other samples. In addition, because the downstream analyses focused

on the differences between FLT and GC samples in these two datasets, all other comparisons were

removed from the differential_expression.csv and ERCCnorm_differential_expression.csv files prior to

analysis.

The filtered processed data files (available in Mendeley Data, Mendeley Data: https://doi.org/10.17632/

fv3kd6h7k4.1) were then used to create Principal Component Analysis (PCA) plots (Figures 6A, 6B, S1A,

and S1B), heatmaps containing the top 30 most significant FLT versus GC differentially expressed (and an-

notated) genes (adj. p value <0.05 and |log2FC| > 1) (Figures 6C, 6D, S1C, and S1D), and to evaluate FLT

versus GC gene ontology (GO) differences using Gene Set Enrichment (GSEA) analysis (Tables 3 and S5).

These results can then be further evaluated to identify similarities and differences in gene expression be-

tween these two studies and draw novel conclusions about the effects of spaceflight that are consistent

across spaceflight experiments.
DISCUSSION

The differentially expressed genes calculated by the RCP can be further explored with a variety of tools de-

signed for higher-order analysis. For example, there are tools that can look for enriched pathways, gene

ontology terms, or protein and/or metabolite networks. Popular software tools among the GeneLab work-

ing group members include WebGestalt (Liao et al., 2019), STRING (Szklarczyk et al., 2019), GSEA (Subra-

manian et al., 2005), PIANO (Väremo et al. 2013), Reactome (Szklarczyk et al., 2019), and ToppFun (Chen

et al., 2009). There is no universal consensus on which tools are the most useful for higher-order analysis

(Nguyen et al., 2019). RCP users are encouraged to try multiple tools in order to analyze their data from

a variety of perspectives.

The RCP has been designed to handle sequencing experiments that either lack or include the ERCC RNA

spike-in mix—a set of 96 polyadenylated RNAs that can be used during differential gene expression calcu-

lation to normalize read counts across samples (Munro et al., 2014). However, the use of normalization
iScience 24, 102361, April 23, 2021 11
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Figure 6. Global and differential gene expression in spaceflight versus ground control liver samples from

GeneLab datasets

(A and B) Principal component analysis of global gene expression in spaceflight (FLT) and respective ground control (GC)

liver samples from the (A) Rodent Research 1 (RR-1) NASA Validation mission (GLDS-168) and (B) RR-6 ISS-terminal mission

(GLDS-245). Plots were generated using data in the normalized counts tables for each respective dataset on the NASA

GeneLab Data Repository.

(C and D) Heatmaps showing the top 30 differentially expressed genes in spaceflight (FLT) versus ground control (GC)

liver samples from the (C) Rodent Research 1 (RR-1) NASA Validation mission (GLDS-168) and (D) RR-6 ISS-terminal

mission (GLDS-245). Heatmaps were generated using data in the differential expression tables for each respective

dataset on the NASA GeneLab Data Repository and are colored by relative expression. Adj. p value < 0.05 and |log2FC| >

1. All samples included were derived from frozen carcasses post-mission and utilized the ribo-depletion library

preparation method.
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according to ERCC spike-ins remains controversial among AWG members, and Munro et al. suggested its

usage only for determining limit of detection of ratio (LODR), expression ratio variability, andmeasurement

bias (Munro et al., 2014). For this reason, ERCC normalization remains optional in the GeneLab pipeline,

and both kinds of DGE outputs are provided in the GeneLab database. In addition, ERCC spike-in could

have two other usages. First, it allows us to evaluate whether normalization succeeded in removing
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Table 3. Comparison of gene ontology in spaceflight versus ground control liver samples from GeneLab datasets

GeneLab

dataset

# Enriched GO terms

(NOM p < 0.01)

# Enriched GO terms

(NOM p < 0.01 & FDR<0.5)

# Enriched GO terms

(NOM p < 0.01 & FDR<0.25)

GLDS-168 71, 135 0, 132 0, 0

GLDS-245 21, 24 2, 6 1, 0

The number of enriched gene ontology (GO) terms identified by Gene Set Enrichment Analysis (GSEA, phenotype permu-

tation) was evaluated in spaceflight (FLT) versus ground control (GC) liver samples from the Rodent Research 1 (RR-1) NASA

Validation mission (GLDS-168), and RR-6 ISS-terminal mission (GLDS-245). For GO terms, the number on the left corresponds

to GO terms enriched in FLT samples and the number on the right corresponds to GO terms enriched in GC samples. These

data were generated using the normalized counts for each respective dataset on the NASA GeneLab Data Repository. All

samples included were derived from frozen carcasses post-mission and utilized the ribo-depletion library preparation

method. GLDS-168, FLT n = 5 and GC n = 5; GLDS-245, FLT n = 10 and GC n = 10. p values and FDR values are indicated.
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systemic bias between libraries by using methods such as Rlog and VST when normalizing the spike-in

RNAs along with all other genes. Second, most normalization methods of RNA-seq data assume that

most genes are not differentially expressed toward one direction. Comparing spike-in measurements be-

tween libraries will help us to estimate the validity of this assumption.

A high number of biological replicates can increase certainty in the differentially expressed genes deter-

mined by the RCP. However, conducting experiments in spaceflight often limits the number of biological

replicates that a researcher can include. Therefore, it is important to note that at least three biological

replicates are required for the pipeline, specifically for DESeq2, to perform its statistical methods. How-

ever, at least six replicates are suggested in order to minimize the false discovery rate (FDR) (Schurch et

al., 2016). Finally, RNA-seq datasets hosted on GeneLab that do not contain biological replicates are only

processed up until unnormalized (raw) counts are obtained, the step right before DESeq2 is used for

DGE calculation.

More advanced RCP users might have additional data inquiries that fall beyond the scope of this pipeline.

For this reason, there are two parts of the pipeline that include additional output that are not used in our

differential gene expression computation. The first is in the output from STAR, mapping output is also pro-

vided in genomic coordinates. This is useful for obtaining reads that are mapped outside of the reference

transcriptome. For example, this may be used to find novel genes, transcripts, or exons that have not yet

been annotated by consortiums. The second part of the pipeline with alternative output files is RSEM. This

also provides transcript-level counts that can be used to investigate differential isoform expression. More-

over, intermediate files are provided as outputs to allow users to use components of the pipeline that they

find useful.

The GeneLab database also includes other types of transcriptomic data. As discussed in this article, the

RCP is not used for microarray data that are fundamentally different, and the AWG is still debating the

best approach for cross-dataset comparisons between microarrays. GeneLab also accepts data from

long read experiments, such as those produced by Pacific Biosciences’ (PacBio) single-molecule real-

time (SMRT) sequencing (Roberts et al. 2013) and Oxford Nanopore Technologies’ (ONT) nanopore

sequencing (Jain et al., 2016). Long-read data would be processed with similar steps to the RCP but will

require tools specifically designed for the intricacies of long-read data, such as reads that contain multiple

splice junctions and reads that currently have a higher base-calling error rate. Currently, long-reads are

typically used for DNA sequencing and were recently highlighted on board of the ISS using ONT for de

novo assembly of the Escherichia coli genome from raw reads (Castro-Wallace et al., 2017). However,

even though throughput and accuracy remain far inferior to short-reads, long-reads offer some advantages

for RNA-seq as well, with less ambiguity for genes and isoforms detection, much faster mapping, potential

identification of genes not yet known from reference genomes, and eventually less bias in DGE.

To conclude, the RCP is specifically designed for RNA-seq data from short-read sequencers and has

been developed in order to encourage and facilitate analysis of spaceflight multi-omic data. The creation

of the RCP by a large community of scientists (GeneLab AWG: https://genelab.nasa.gov/awg) and the

sharing of pipeline details in a peer-reviewed article provide analysis transparency and enable data

reproducibility.
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Limitations of the study

The results of this study are limited to short-read RNA-seq and are not applicable to other transcriptomic

profiling methods (e.g. microarray, long-read RNA-seq). In addition, the pipeline cannot compensate for

poor library preparation technique or inadequate sample size. Sample preservation protocols between da-

tasets need to also be evaluated, because variations in sample preservation protocol could lead to poor

correlation between studies that are otherwise identical (Lai Polo et al., 2020). The number of sequenced

reads may also be a limiting factor in the usefulness and accuracy of the differentially expressed genes

calculated by DESeq2 and, similarly, during splice isoform analysis.

Note that this article does not discuss strategies and pipelines regarding older transcriptomics data in

GeneLab (i.e. more than 100 microarray datasets), as it is much more challenging to provide meta-analysis

with microarrays, which are prone to strong batch effects and gene lists that are platform dependent.

Future efforts of GeneLab and the AWG will address microarray pipelines.

In the future, we will add functionality to process unique molecular identifiers (UMIs) that can identify PCR

duplicates using tools such as UMI tools (Smith et al. 2017). This will allow PCR duplicates to be removed

after mapping and before quantification.

In addition, transcriptomic data will be integrated with proteomic and metabolomics data; this will help

further understand the significance of gene expression changes to metabolic ‘‘fitness’’ in the spaceflight

environment.
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Materials availability
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Data and code availability

Spaceflight-relevant RNA-seq data are located in the GeneLab database (https://genelab-data.ndc.nasa.

gov/genelab/projects). All software packages are open source and are linked in the methods section. In-

structions for installing packages using Conda are provided on Github (https://github.com/nasa/

GeneLab_Data_Processing/tree/master/RNAseq/RNAseq_Tool_Instal). Custom R scripts for DESeq2 are

included as supplemental information and are available in the Github repository GeneLab_Data_Process-

ing (https://github.com/nasa/GeneLab_Data_Processing). Original data have been deposited to Mende-

ley Data: https://doi.org/10.17632/fv3kd6h7k4.1).
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All methods can be found in the accompanying transparent methods supplemental file.
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Supplemental Information

Transparent Methods

The tools used in the consensus pipeline are documented in Supplemental Table 4: Pipeline

Tools and Links [Table S4: “Pipeline Tools and Links, Related to Transparent Methods”]. Due to NASA

security requirements, all software is updated monthly with security patching. Therefore, tool versions

used to process each RNA-seq dataset hosted on the GeneLab Data Repository are provided in the

RNA-seq protocol section and are also available along with exact processing scripts in the GeneLab

Data Processing GitHub Repository

(https://github.com/nasa/GeneLab_Data_Processing/tree/master/RNAseq/GLDS_Processing_Scripts).

Specific commands, options, and flags for each tool used in the RCP are reported in the figures of the

main text. Note that some packages listed here are dependencies of the packages used in the RCP. More

information about such dependencies can be found in the tool documentation.

This pipeline has been run on short-read RNA-seq data in the GeneLab database

(https://genelab-data.ndc.nasa.gov/genelab/projects) and is applied to new submissions to the database.

Any updates to the software used in the pipeline will be noted in the Github repository

GeneLab_Data_Processing (https://github.com/nasa/GeneLab_Data_Processing). There are currently

over 80 RNA-seq datasets available [Table S1: “GeneLab RNA-Seq Datasets, Related to Transparent

Methods”].

Processed RNAseq data from GLDS-168 and GLDS-245 select samples were used to provide an

example of the downstream analyses that can be done using data processed with the consensus pipeline

presented here. Normalized counts and ERCC-normalized counts from the following GLDS-168 and

GLDS-245 samples were used to generate the PCA plots shown in Figure 6A & 6B and Supplemental

Figure 1A & 1B, respectively. Samples from GLDS-168 and GLDS-245 that were used in this study are

listed in Supplemental Table 5 [Table S5: “Sample Names, Related to Figure 6”]. Differential gene

expression (DGE) data from FLT versus GC samples using (non-ERCC) normalized counts and

ERCC-normalized counts data for each respective dataset were used to generate the heatmaps shown in

Figure 6C & 6D and Supplemental Figure 1C & 1D, respectively. DGE data were filtered using an adjusted

p value cutoff of < 0.05 and |log2FC| cutoff of > 1. The gene expression data were then sorted based on

adjusted p values and the top 30 most differentially expressed and annotated genes were used to

generate heatmaps with ggplot2 version 3.3.2 (Wickham, Navarro, and Pedersen 2016). Note that for

visualization purposes, sample names were shortened.

Pairwise gene set enrichment analysis (GSEA) was performed on the (non-ERCC) normalized

counts (Table 3) and ERCC-normalized counts [Table S6] from select samples in GLDS-168 and



GLDS-245 using the C5: Gene Ontology (GO) gene set (MSigDB v7.2) as described (Subramanian et al.

2005). All comparisons were performed using the phenotype permutation. The ranked lists of genes were

defined by the signal-to-noise metric and the statistical significance were determined by 1000

permutations of the gene set. FDR <= 0.25 were considered significant for comparisons according to the

authors’ recommendation.

The data used to generate all PCA plots, heatmaps, and GSEA shown are provided on Mendeley

(http://dx.doi.org/10.17632/fv3kd6h7k4.1).

Supplemental Figures





Figure S1 (Related to Figure 6). Global and differential gene expression in ERCC-normalized
spaceflight versus ground control liver samples from GeneLab datasets. A-B) Principal component
analysis of global gene expression in spaceflight (FLT) and respective ground control (GC) liver samples
from the A) Rodent Research 1 (RR-1) NASA Validation mission (GLDS-168) and B) RR-6 ISS-terminal
mission (GLDS-245). Plots were generated using data in the ERCC-normalized counts tables for each
respective dataset on the NASA GeneLab Data Repository. C-D) Heatmaps showing the top 30
differentially expressed genes in spaceflight (FLT) versus ground control (GC) liver samples from the C)
Rodent Research 1 (RR-1) NASA Validation mission (GLDS-168) and D) RR-6 ISS-terminal mission
(GLDS-245). Heatmaps were generated using data in the ERCC-normalized differential expression tables
for each respective dataset on the NASA GeneLab Data Repository. Adj. p-value < 0.05 and |log2FC| > 1.
All samples included were derived from frozen carcasses post-mission and utilized the ribo-depletion
library preparation method.

Supplemental Tables

GeneLab Dataset # Enriched GO
terms

(NOM p<0.01)

# Enriched GO
terms (NOM

p<0.01 &
FDR<0.5)

# Enriched GO
terms (NOM

p<0.01 &
FDR<0.25)

GLDS-168 109, 13 0, 11 0, 0

GLDS-245 166, 0 81, 0 1, 0

Table S6 (Related to Table 3). Comparison of gene ontology in ERCC-normalized spaceflight
versus ground control liver samples from GeneLab datasets. The number of enriched gene ontology
(GO) terms identified by Gene Set Enrichment Analysis (GSEA, phenotype permutation) was evaluated in
spaceflight (FLT) versus ground control (GC) liver samples from the Rodent Research 1 (RR-1) NASA
Validation mission (GLDS-168), and RR-6 ISS-terminal mission (GLDS-245). For GO terms, the number
on the left corresponds to GO terms enriched in FLT samples and the number on the right corresponds to
GO terms enriched in GC samples. These data were generated using the ERCC-normalized counts for
each respective dataset on the NASA GeneLab Data Repository. All samples included were derived from
frozen carcasses post-mission and utilized the ribo-depletion library preparation method. GLDS-168, FLT
n=5 and GC n=5; GLDS-245, FLT n=10 and GC n=10. p values and FDR values are indicated.
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