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A B S T R A C T

Explainable AI (XAI) has the potential to transform healthcare by making AI-driven medical decisions
more transparent, reliable, and ethically compliant. Despite its promise, the healthcare sector faces several
challenges, including the need to balance interpretability and accuracy, integrating XAI into clinical workflows,
and ensuring adherence to rigorous regulatory standards. This paper provides a comprehensive review of
XAI in healthcare, covering techniques, challenges, opportunities, and advancements, thereby enhancing the
understanding and practical application of XAI in healthcare. The study also explores responsible AI in
healthcare, discussing new perspectives and emerging trends, offering valuable insights for researchers and
practitioners. The insights and recommendations presented aim to guide future research and policy-making,
fostering the development of transparent, trustworthy, and effective AI-driven solutions.
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1. Introduction

Artificial Intelligence (AI) has significantly reshaped numerous sec-
ors, with healthcare undergoing remarkable transformations [1,2].

The integration of AI technologies into healthcare systems has enabled
advancements once considered unattainable. These advancements in-
clude enhanced diagnostic accuracy, personalized treatment plans, and
improved operational efficiencies [3,4]. Machine learning (ML) and
eep learning (DL), as subfields of AI, facilitate the processing and
nalysis of vast datasets, which are critical for predictive analytics and
ecision-making in clinical environments [5,6].

However, the adoption of AI in healthcare comes with challenges,
particularly regarding the transparency and interpretability of AI mod-
els. Explainable AI (XAI) addresses these concerns by providing mech-
anisms that make AI decision-making processes comprehensible to
humans. This is particularly important in healthcare, where under-
standing the rationale behind AI predictions is crucial for clinicians
and patients [7–9]. Furthermore, as AI systems become more sophisti-
ated, their decision-making processes become less transparent, raising
oncerns about trust, accountability, and ethical use. Addressing these
ssues through XAI can enhance the acceptance, trust, and reliability of
I technologies in medical practice.

In the past, researchers have conducted various reviews on AI in
healthcare. Some reviews have focused on the general application of
AI models in healthcare [10–13], while others have addressed the po-
ential of AI for predictive analytics in clinical settings [14,15] and drug
iscovery [2,16,17]. Additionally, some reviews include discussions on
he ethical implications and regulatory challenges associated with AI in

healthcare [3,18]. However, most reviews either focus on AI broadly
or do not provide an in-depth analysis of XAI tailored to healthcare.
Furthermore, over the years, there have been several advances in the
field of healthcare AI and XAI, making it necessary and timely to
conduct an up-to-date review that captures these developments and
provides actionable insights.

Therefore, this study aims to provide a comprehensive review of
AI in healthcare. Specifically, the study examines the foundational
 T

2 
concepts of XAI, explores its diverse applications in the healthcare
sector, identifies the key challenges it faces, and highlights possible
solutions for its effective integration into medical practice. This study
is significant due to the growing importance of transparency and inter-
pretability in the ethical deployment of AI technologies in healthcare
settings.

The remainder of this paper is structured as follows: Section 2
reviews related works, while Section 3 discusses the fundamental con-
cepts of XAI. Section 4 outlines various XAI methods and techniques,
and Section 5 presents evaluation metrics used in XAI. Section 6
examines responsible AI in healthcare, and Section 7 explores the
applications of XAI in healthcare. Section 8 identifies the challenges
and opportunities in implementing XAI within clinical settings, and
Section 9 provides a comprehensive discussion on future research di-
ections, identifying areas of potential growth and innovation. Finally,
ection 10 concludes the paper with a summary of key findings.

2. Related works

The application of AI in healthcare has seen rapid advancements
in recent years, with studies focusing on its various implementations
and impacts. For instance, Maleki and Forouzanfar [14] provided a
detailed analysis of AI’s capabilities in clinical settings, emphasizing its
contributions to diagnostic accuracy and patient care improvements.

dditionally, more recent work by Kalra et al. [19] examined the
rowing role of AI in medical diagnosis, particularly its integration with
lectronic health systems, and discussed the complexities of embedding
I into clinical workflows. Similarly, Liu et al. [20] presented an

overview of AI applications in medicine, detailing various AI models
and their effectiveness in disease prediction and management.

Meanwhile, XAI is a crucial subfield within AI that addresses the
eed for transparency and interpretability in AI models.
rrieta et al. [21] provided an extensive review of XAI techniques,

categorizing them into model-specific and model-agnostic approaches,
and highlighted the significant role XAI plays in fostering trust and
accountability in AI-driven systems. Notable studies in XAI include

osun et al. [22], which discussed computational approaches to XAI,
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offering cutting-edge techniques for explainability. Similarly, Longo
et al. [23] provided a forward-looking perspective on XAI 2.0, out-
lining new interdisciplinary research directions and addressing open
challenges in AI model explainability.

Furthermore, Adadi and Berrada [24] explored the potential of XAI
cross multiple sectors, including healthcare, identifying core chal-

lenges in rendering AI models interpretable and proposing possible
olutions. The role of Responsible AI, which encompasses ethical con-

siderations like fairness, accountability, and transparency, has gained
rominence. Dignum [25] outlined principles of Responsible AI, em-

phasizing the importance of embedding ethical standards into AI devel-
opment processes. Additionally, Mienye et al. [26] discussed fairness in
AI, including strategies for detecting and mitigating biases in healthcare
ML models.

Recent advancements have also focused on model-specific XAI tech-
niques, which provide explanations that are deeply integrated into
he specific types of models being used. One such example is the

work by Konstantinov and Utkin [27], which introduced new methods
to improve the interpretability of gradient-boosting machines by em-
ploying parallel gradient boosting models. Their approach uses linear
combinations of boosting models and includes Lasso-based techniques
to update model weights, making it highly effective for diagnostic
tools, particularly in areas like oncology and cardiology. Addition-
ally, Raghavan [28] explored the application of XAI in deep learning
models designed for medical imaging, where model-specific techniques
like Grad-CAM and attention mechanisms provided real-time visual
xplanations for MRI and CT scan diagnostics.

Another recent development in XAI is the introduction of hybrid XAI
echniques, which combine the strengths of both model-specific and
odel-agnostic approaches. This combination enhances the flexibility

and scalability of AI models across different healthcare domains. For
example, Khan et al. [29] demonstrated how hybrid XAI methods could
be applied to both structured and unstructured medical data, improving
xplainability within clinical decision support systems. These hybrid

approaches represent a new trend in XAI, addressing the limitations
of purely model-agnostic or model-specific methods by providing both
global and local explanations, thus enhancing the transparency of AI
systems used in complex medical environments.

Meanwhile, Holzinger et al. [30] discussed the importance of
uman-in-the-loop (HITL) approaches in AI, particularly in healthcare.

They argued that AI systems must not only be accurate but also provide
explanations that are comprehensible to users to be trusted and widely
adopted in clinical practice. Their work underscores the necessity of
heoretical foundations for XAI and the practical role of HITL methods
n ensuring effective AI integration.

Meanwhile, most existing reviews and surveys on AI and XAI pro-
ide a broad overview of the field, focusing on specific applications or
heoretical developments. For example, Singla [31] reviewed the appli-
ation of AI in healthcare, providing insights into the potential of AI but
ot addressing the interpretability challenges faced by healthcare pro-
essionals. Similarly, Esteva et al. [32] and Kaul et al. [33] focused on
eep learning in healthcare, offering insights into its potential but not

addressing the interpretability challenges associated with these models.
herefore, this review aims to provide a detailed and comprehensive
nalysis of XAI in healthcare, covering key areas such as foundational

concepts, diverse applications, challenges, and opportunities for future
esearch. By focusing on these aspects, this review aims to bridge

the gap in the literature and offer actionable insights for researchers,
practitioners, and policymakers in the field of healthcare AI.

3. Overview of explainable AI

XAI is a domain within AI focused on creating models whose
decisions can be understood and interpreted by humans. The primary
goal of XAI is to make the internal mechanics of AI systems transparent
and their outputs explainable [34]. This is particularly important in
ields such as healthcare, where understanding the reasoning behind

AI decisions can directly impact patient outcomes and foster trust in
the technology. The main goals of XAI include:
3 
3.1. Transparency

Transparency involves making the AI decision-making process clear
nd understandable [35]. This means that the inner workings of an

AI model, such as the data it uses, the features it considers, and the
ogic it follows to reach a decision, should be visible to and inter-
retable by humans. Transparency is crucial for identifying potential
iases, ensuring fairness, and building trust in AI-driven healthcare
ystems. Mathematically, transparency can be represented by ensuring
he model 𝑓 is such that for any input 𝑥, the decision process 𝑓 (𝑥) can
e decomposed into understandable components:

𝑓 (𝑥) =
𝑛
∑

𝑖=1
𝑤𝑖 ⋅ 𝑥𝑖 + 𝑏, (1)

where 𝑤𝑖 are the weights and 𝑥𝑖 are the input features, providing a
linear combination that is easily interpretable [36].

3.2. Trustworthiness

Trustworthiness involves building user trust through understand-
able and verifiable AI decisions [21]. Trust is essential for the
widespread adoption of AI technologies, particularly in critical fields
like healthcare [37]. Trustworthiness can be achieved by ensuring that

I systems are transparent, interpretable, and robust. This includes
roviding clear documentation of the model’s decision-making process,
sing robust validation techniques to ensure the model’s reliability, and

continuously monitoring the model’s performance to detect and address
any issues promptly.

For instance, incorporating human-in-the-loop approaches, where
human experts interact with AI systems to validate and refine their out-
uts, can enhance trustworthiness. Involving clinicians in the decision-
aking process ensures AI systems benefit from expert knowledge

nd feedback, leading to more accurate and reliable outcomes [38].
Additionally, frameworks that track and log AI decisions, providing
an audit trail, help users review and understand the rationale behind
AI-driven decisions, further enhancing trust.

3.3. Accountability

Accountability involves enabling users to hold AI systems account-
able for their decisions. This means that AI systems should provide
nough information to allow users to understand, challenge, and, if
ecessary, rectify the decisions made by the AI [37]. Accountability is

essential for ensuring ethical AI deployment. This can be supported by
frameworks that track and log AI decisions, providing an audit trail that
users can review. For example, in regression models, accountability can
be enhanced by providing confidence intervals for predictions:

�̂� = 𝛽0 + 𝛽1𝑥 + 𝜖 , (2)

where �̂� is the predicted value, 𝛽0 and 𝛽1 are coefficients, and 𝜖
represents the error term. The confidence interval gives users an idea
of the uncertainty in the prediction, helping them to hold the model
accountable for its predictions [39]. Furthermore, the key terms and
oncepts associated with explainable AI are tabulated in Table 1.

4. XAI techniques and methods

Several techniques and methods have been developed to achieve
the goals of XAI. These methods can be broadly classified into two
ategories: model-specific and model-agnostic techniques.

4.1. Model-specific techniques

Model-specific techniques are tailored to particular types of mod-
els. These model-specific techniques enhance the interpretability of AI
models by providing clear, understandable structures and visualizations
that help users comprehend how decisions are made. For instance:
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Table 1
Key terms and concepts in explainable AI.

Term Description

Interpretable ML An interpretable model is one where a user can see and understand how inputs are mathematically
mapped to outputs.

Black-box problem The challenge in AI where the internal workings of an AI model are not visible or understandable to
the user, often leading to a lack of trust and transparency.

XAI A set of processes and methods that allow human users to comprehend and trust the results and
outputs created by ML algorithms [26].

Responsible AI AI that takes into account societal values, morals, and ethical considerations, focusing on
accountability, responsibility, and transparency [40].

Fairness in AI Ensuring that AI systems make decisions impartially, without bias towards any group.

Accountability in AI The obligation of AI systems to provide explanations for their decisions, enabling users to understand,
challenge, and rectify AI-driven outcomes.

Transparency in AI Making the decision-making processes of AI systems visible and understandable to users, ensuring
clarity in how AI systems operate and make decisions [37].

Trustworthy AI AI systems that are reliable, robust, and have a high degree of integrity, gaining user trust through
transparency, fairness, and accountability.

Causability The ability to provide causal explanations for AI decisions, moving beyond mere correlations to
understand the underlying causes of outcomes [41].

Human-in-the-loop A model in AI where human judgment is integrated into the AI system’s decision-making process to
enhance accuracy, fairness, and accountability [42].

Cognitive Bias in AI The phenomenon where AI systems may inadvertently learn and perpetuate human biases present in
the training data, leading to biased outcomes [43].

Ethical AI The practice of designing and deploying AI systems in ways that are aligned with ethical principles,
such as fairness, accountability, and transparency.

Data Privacy The protection of personal data used in AI systems, ensuring that sensitive information is handled
securely and ethically.
e
M
s
a

d

T

4.1.1. Decision trees and rule-based systems
Decision trees and rule-based systems are inherently interpretable

because they follow a clear structure of decisions and rules that can be
asily understood [44]. Each decision in a decision tree represents a
hoice based on a specific feature, making it straightforward to trace
he path from the root to a leaf node (final decision) [26]. For example,

a decision tree model 𝑓 can be represented as a set of nested if-then
rules:

𝑓 (𝑥) =
𝑛
∑

𝑖=1
if (𝑥𝑖 < 𝜃𝑖) then 𝑎𝑖 else 𝑏𝑖, (3)

where 𝑥𝑖 are the input features, 𝜃𝑖 are the threshold values, and 𝑎𝑖 and
𝑏𝑖 are the decisions or outputs at each node. This structure allows users
to understand how the model arrives at a specific decision by following
the path dictated by the feature values [26]. The structure of a typical
ecision tree is shown in Fig. 1.

4.1.2. Attention mechanisms in neural networks
Attention mechanisms in neural networks provide insights into

hich parts of the input data the model is focusing on when making a
decision, thus offering some level of interpretability [46–48]. Attention
mechanisms assign different weights to different parts of the input,
highlighting their relative importance in the final decision [49]. The
ttention mechanism can be represented mathematically as:

𝛼𝑖 =
exp(𝑒𝑖)

∑𝑛
𝑗=1 exp(𝑒𝑗 )

, (4)

where 𝛼𝑖 is the attention weight for the 𝑖-th input, and 𝑒𝑖 is the
alignment score between the input 𝑥𝑖 and the model’s internal state.
The final output of the attention mechanism is a weighted sum of
the input features. This weighted sum 𝑐 allows users to visualize
and interpret which input features are most influential in the model’s
decision-making process [50]. It is represented mathematically as:

𝑐 =
𝑛
∑

𝑖=1
𝛼𝑖𝑥𝑖. (5)
4 
4.1.3. Convolutional Neural Networks
In Convolutional Neural Networks (CNNs), interpretability can be

nhanced through techniques like Gradient-weighted Class Activation
apping (Grad-CAM). Grad-CAM provides visual explanations for deci-

ions made by CNNs by highlighting the regions of an input image that
re most relevant to the prediction [51,52]. The Grad-CAM heatmap

𝐿𝑐
Grad-CAM for a class 𝑐 is calculated as:

𝐿𝑐
Grad-CAM = ReLU

(

∑

𝑘
𝛼𝑐𝑘𝐴

𝑘

)

, (6)

where 𝛼𝑐𝑘 is the importance weight for the 𝑘-th feature map 𝐴𝑘, and
ReLU is the rectified linear unit activation function. This heatmap
overlays the original image, showing which regions contributed most
to the model’s decision [51].

4.1.4. Bayesian networks
Bayesian networks are probabilistic graphical models that represent

a set of variables and their conditional dependencies via a directed
acyclic graph (DAG) [53]. They provide interpretability by visualizing
the probabilistic relationships between variables. The joint probability
istribution 𝑃 over a set of variables 𝑋 can be decomposed as:

𝑃 (𝑋) =
𝑛
∏

𝑖=1
𝑃 (𝑋𝑖|Parents(𝑋𝑖)), (7)

where Parents(𝑋𝑖) denotes the set of parent nodes for 𝑋𝑖 in the DAG.
his decomposition allows users to understand how each variable

influences others and contributes to the overall model’s predictions.
Furthermore, model-specific techniques offer significant adaptabil-

ity, especially in healthcare, where the interpretability and trans-
parency of AI systems are critical. These methods are inherently de-
signed to align with specific model architectures, which allows for
deeper insights into how these models make predictions. Such model-
specific techniques exploit the structural and functional characteristics
of individual models to provide more granular explanations. This
adaptability makes them especially suitable for healthcare applications
where understanding the model’s decision-making process is essential
for clinicians. For example, decision trees and rule-based systems are
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Fig. 1. Example of a decision tree [45].
not only inherently interpretable but also adaptable to various types of
clinical data, including both structured data (such as lab results) and
unstructured data (such as clinical notes) [54,55]. The clear, step-by-
step nature of decision trees, which follow a flow of if-then rules, is
particularly useful for diagnostic decision-making. These models can be
easily adapted to new data sources and clinical environments without
losing their interpretability.

Similarly, attention mechanisms in neural networks offer a high
level of adaptability for interpreting complex and high-dimensional
data, such as medical images or genomic data [28,56]. The ability of
attention mechanisms to highlight the most relevant parts of the input
data makes them highly effective in medical applications like MRI scans
or pathology slides, where understanding the critical areas influenc-
ing a prediction is vital. Furthermore, attention mechanisms can be
adapted to different neural network architectures, making them ver-
satile across various healthcare domains, from radiology to genomics.
CNNs, particularly when enhanced with techniques like Grad-CAM,
provide interpretable visual outputs that highlight the regions in an im-
age most responsible for the model’s prediction [28]. This adaptability
makes CNNs and their interpretability techniques suitable for a wide
range of healthcare applications, including radiology, dermatology, and
ophthalmology. The use of visual explanations is crucial for clinical
professionals, as it allows them to cross-verify AI-generated outputs
with their clinical expertise, thereby improving trust in AI systems.

Additionally, Bayesian networks are highly adaptable
model-specific techniques and are valuable for modeling uncertainty
and understanding probabilistic relationships between variables [53].
In healthcare, where uncertainty is often present in patient outcomes
or disease progression, Bayesian networks provide a clear and inter-
pretable way to model these uncertainties. Their flexibility in incor-
porating both expert knowledge and data-driven insights makes them
particularly useful for developing clinical decision support systems that
need to account for variable and uncertain clinical environments.

4.2. Model-agnostic techniques

Model-agnostic techniques can be applied to any AI model, irrespec-
tive of its underlying architecture. These techniques provide flexibility
and can be used to interpret complex models without requiring changes
to the model itself. Prominent model-agnostic techniques include:
5 
4.2.1. SHapley Additive exPlanations
SHapley Additive exPlanations (SHAP) values are a method based

on cooperative game theory that provides a unified measure of feature
importance [54]. This method assigns an importance value to each
feature by computing the Shapley value, which represents the average
contribution of a feature across all possible combinations of features.
The Shapley value 𝜙𝑖 for a feature 𝑖 is calculated as:

𝜙𝑖 =
∑

𝑆 ⊆𝑁⧵{𝑖}

|𝑆|!(|𝑁| − |𝑆| − 1)!
|𝑁|!

[𝑓 (𝑆 ∪ {𝑖}) − 𝑓 (𝑆)] , (8)

where 𝑆 is any subset of features not containing 𝑖, and 𝑓 (𝑆) is the
prediction from the model considering only the features in 𝑆 [54].
This equation ensures that the sum of the Shapley values equals the
difference between the actual prediction and the average prediction,
thus providing a fair distribution of feature importance. SHAP values
have several desirable properties that make them a powerful tool for
interpreting ML models. Firstly, they provide consistency, meaning
that if a model’s prediction for a particular instance increases due to
a change in a feature value, the Shapley value for that feature will
also increase. Secondly, SHAP values offer both global and local inter-
pretability. Global interpretability refers to understanding the overall
importance of each feature across the entire dataset, while local inter-
pretability focuses on understanding how features influence individual
predictions [57]. For example, in a healthcare setting, SHAP values can
be used to interpret a model predicting the risk of heart disease. By
examining the Shapley values, clinicians can identify which features
(e.g., age, cholesterol levels, blood pressure) are most influential in
the model’s predictions for individual patients and across the patient
population.

Meanwhile, SHAP values can be visualized using various plots to aid
in interpretability. The most common visualizations include summary
plots, dependence plots, and force plots. Summary plots provide a high-
level overview of feature importance across the dataset, highlighting
the distribution of Shapley values for each feature. Dependence plots
show the relationship between a feature’s value and its Shapley value,
indicating how changes in the feature value impact the model’s pre-
diction. Force plots offer a detailed view of individual predictions,
illustrating how each feature contributes to the final prediction [58]. An
example architecture for integrating SHAP with an ML model is shown
in Fig. 2.



I.D. Mienye et al. Informatics in Medicine Unlocked 51 (2024) 101587 
Fig. 2. SHAP-ML model architecture [59].
4.2.2. Local Interpretable Model-agnostic Explanations
Local Interpretable Model-agnostic Explanations (LIME) is a tech-

nique designed to explain individual predictions of any black-box
model by approximating it locally with an interpretable model [60].
LIME operates by perturbing the data around the instance of interest,
generating a dataset of perturbed samples, and then training an in-
terpretable model (often a linear regression or decision tree) on this
perturbed dataset. The weights in this interpretable model are used to
explain the prediction of the original model. This approach allows for
an understanding of the complex model’s behavior in the vicinity of
the specific instance being explained. Given a black-box model 𝑓 and
an instance 𝑥, LIME constructs a new dataset 𝑍 consisting of perturbed
samples of 𝑥 and their corresponding predictions from 𝑓 . A weighted
linear model 𝑔 is then trained on 𝑍, where the weights are based on the
proximity of the perturbed samples to 𝑥. The explanation is provided
by the coefficients of the linear model 𝑔:

𝑔(𝑧) = ar g min
𝑔∈𝐺

∑

𝑧𝑖∈𝑍
𝜋𝑥(𝑧𝑖)(𝑓 (𝑧𝑖) − 𝑔(𝑧𝑖))2 +𝛺(𝑔), (9)

where 𝜋𝑥(𝑧𝑖) is a proximity measure between 𝑥 and 𝑧𝑖, and 𝛺(𝑔) is a
complexity measure for 𝑔 [60,61]. Algorithm 1 summarizes the LIME
process:

Algorithm 1 LIME Process
Require: Black-box model 𝑓 , instance 𝑥, number of perturbations 𝑁
1: Generate a new dataset 𝑍 by perturbing 𝑥 𝑁 times
2: for each perturbed instance 𝑧𝑖 ∈ 𝑍 do
3: Obtain prediction 𝑓 (𝑧𝑖) from the black-box model
4: Compute the proximity measure 𝜋𝑥(𝑧𝑖) between 𝑥 and 𝑧𝑖
5: end for
6: Train a weighted linear model 𝑔 on 𝑍, using 𝜋𝑥(𝑧𝑖) as weights
7: Use the coefficients of 𝑔 to explain the prediction for 𝑥
8: return Explanation of 𝑥 based on 𝑔

By focusing on the local behavior of the model around a specific
instance, LIME provides an understandable approximation that can
highlight which features are driving a particular prediction. LIME’s
utility in healthcare is vast. For instance, in the context of predicting
patient outcomes, LIME can help clinicians understand which features
(e.g., patient age, lab results, medical history) are influencing the
model’s prediction for a specific patient. This local explanation is
crucial in making the model’s decision-making process transparent and
comprehensible to healthcare professionals who may not have a deep
understanding of ML models.

4.2.3. Partial Dependence Plots
Partial Dependence Plots (PDPs) show the relationship between a

subset of features and the predicted outcome of a machine learning
6 
model [62]. The partial dependence function for a feature 𝑥𝑗 is defined
as:

𝑓𝑥𝑗 (𝑥𝑗 ) =
1
𝑛

𝑛
∑

𝑖=1
𝑓 (𝑥𝑗 , 𝑥𝑖𝐶 ), (10)

where 𝑥𝑖𝐶 represents all features except 𝑥𝑗 , and 𝑓 is the prediction
function. PDPs provide insight into the effect of a feature on the pre-
diction while averaging out the effects of other features. This method
helps to visualize the marginal effect of a feature on the predicted
outcome, assuming that the effect of other features remains constant.
For example, in a healthcare setting, PDPs can be used to understand
how a single biomarker influences the risk prediction of a disease,
independent of other biomarkers. This visualization aids clinicians in
interpreting the importance and influence of specific features, thereby
enhancing the transparency and trust in the model’s predictions [63].

4.2.4. Individual Conditional Expectation plots
Individual Conditional Expectation (ICE) plots are similar to PDPs

but show the dependency of the prediction on a feature for each
instance separately rather than averaging [64]. For an instance 𝑖, the
ICE curve for a feature 𝑥𝑗 is given by:

𝑓 (𝑖)
𝑥𝑗
(𝑥𝑗 ) = 𝑓 (𝑥𝑗 , 𝑥𝑖𝐶 ). (11)

ICE plots provide a more granular view of feature effects, revealing
heterogeneity in the model’s behavior across different instances [65].
This granular view is particularly useful for detecting interactions and
non-linear relationships between features and the outcome. In the con-
text of healthcare, ICE plots can show how different patients respond
to varying levels of a particular treatment, thereby highlighting the
variability in treatment effectiveness across the patient population.

4.2.5. Surrogate models
Surrogate models are interpretable models that approximate the

predictions of a more complex, black-box model [66]. These models are
typically used to explain the behavior of machine learning models that
are inherently difficult to interpret, such as deep learning and ensemble
models. The primary purpose of a surrogate model is to maintain inter-
pretability while mimicking the performance of the black-box model
as closely as possible. Given a black-box model 𝑓 and a dataset 𝑋, a
surrogate model 𝑔 is trained to approximate the predictions of 𝑓 for all
instances 𝑥 ∈ 𝑋:

𝑔(𝑥) ≈ 𝑓 (𝑥) ∀𝑥 ∈ 𝑋 . (12)

To create a surrogate model, an original complex model 𝑓 is first
trained on the dataset. Then, the surrogate model is trained on the
predictions of 𝑓 , using the same input features but with a simpler,
more interpretable structure such as a decision tree or linear regression
model [67]. The surrogate model 𝑔 is interpretable because its struc-
ture, such as the rules in a decision tree, can be easily visualized and
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understood by humans. This method is widely used to explain complex
models in domains such as healthcare and finance. The fidelity of the
surrogate model is critical, as it determines how well the simplified

odel approximates the behavior of the black-box model. Mathemati-
ally, the fidelity is often measured by comparing the predictions of 𝑔
ith those of 𝑓 using metrics such as mean squared error (MSE):

Fidelity = 1
𝑛

𝑛
∑

𝑖=1
(𝑔(𝑥𝑖) − 𝑓 (𝑥𝑖))2. (13)

Higher fidelity indicates a closer approximation to the black-box model.

4.2.6. Counterfactual explanations
Counterfactual explanations provide insights into what changes to

he input data would lead to a different outcome from a machine
earning model [68]. This technique is useful for identifying actionable
hanges in real-world applications such as loan approval, healthcare,
nd legal decisions. A counterfactual explanation answers the question:

‘‘What minimal change in the input would have resulted in a different
prediction?’’ [69]. Given a black-box model 𝑓 , an instance 𝑥, and a
esired output 𝑦desired, the goal of counterfactual reasoning is to find a
odified instance 𝑥′ such that:

𝑓 (𝑥′) = 𝑦desired and distance(𝑥, 𝑥′) is minimized. (14)

The distance metric, such as the Euclidean distance or Manhat-
tan distance, ensures that 𝑥′ remains similar to 𝑥, preserving the
interpretability and practicality of the explanation. For instance, in a
healthcare setting, if a model predicts that a patient has a high risk of
developing heart disease, a counterfactual explanation might suggest
that lowering the patient’s cholesterol level by a specific amount could
reduce their risk. This actionable insight helps users understand how
they can change an outcome by modifying specific features, making
the model’s decision-making process more transparent.

4.2.7. Permutation feature importance
Permutation feature importance is a model-agnostic technique used

o evaluate the importance of individual features in a ML model [62].
This method works by permuting the values of each feature in the
dataset and measuring the resulting decrease in model performance.
Features that are important for the model’s predictions will cause
a large drop in performance when permuted, while less important
features will have little to no effect [70]. Let 𝑓 be the trained model,
nd 𝑋 be the dataset with 𝑥𝑗 as the 𝑗-th feature. The model’s baseline
erformance is denoted by Perf(𝑓 , 𝑋). The feature importance of 𝑥𝑗 is

calculated by permuting its values 𝑥perm
𝑗 and computing the decrease

in performance:

Importance(𝑥𝑗 ) = Perf(𝑓 , 𝑋) − Perf(𝑓 , 𝑋perm(𝑥𝑗 )). (15)

In healthcare, this technique can be applied to assess the importance
f clinical features such as blood pressure, cholesterol levels, and age
n predicting the risk of heart disease [71]. Clinicians can gain valuable
nsights into the underlying factors driving the model’s predictions by
dentifying the most influential features, which can be used to inform
reatment decisions.

5. Evaluation metrics for XAI

Evaluating the effectiveness of XAI techniques is crucial to ensure
hat the explanations provided are useful, accurate, and actionable
n healthcare. XAI evaluation requires metrics that assess the perfor-
ance of the AI models and the quality of the interpretability and

xplanations. In this section, key evaluation metrics for XAI are dis-
ussed, including fidelity, interpretability, stability, and completeness,
ach of which helps determine the practical utility of XAI methods in

ealthcare applications. b

7 
5.1. Fidelity

Fidelity measures how well the explanation aligns with the predic-
ions of the original black-box model [72]. A high-fidelity explanation

closely approximates the behavior of the underlying model, ensuring
that the explanation accurately reflects the true decision-making pro-
cess. Mathematically, fidelity can be expressed as the degree to which
the surrogate model 𝑔 mimics the original model 𝑓 . Fidelity 𝐹 is defined
as:

𝐹 = 1
𝑛

𝑛
∑

𝑖=1
1(𝑔(𝑥𝑖) = 𝑓 (𝑥𝑖)), (16)

where 𝑔(𝑥𝑖) is the prediction of the surrogate interpretable model for
instance 𝑥𝑖, and 𝑓 (𝑥𝑖) is the prediction of the original model. 1 is
n indicator function that equals 1 if the predictions match and 0
therwise, and 𝑛 represents the number of data instances. High fidelity
s critical for the trustworthiness of the explanations [73].

5.2. Interpretability

Interpretability measures the ease with which human users can
nderstand the model’s decision-making process. This metric is sub-
ective and often involves user studies, where clinicians or healthcare
rofessionals assess the clarity of explanations [6]. While no single

mathematical formulation exists for interpretability, proxy measures
such as the complexity of the explanation are often used. For example,
he complexity of a decision tree 𝐶 can be represented as:

𝐶 =
𝐿
∑

𝑖=1
Depth(𝑛𝑖), (17)

where 𝐿 is the number of leaf nodes in the tree and Depth(𝑛𝑖) is the
epth of node 𝑛𝑖. Lower complexity generally correlates with higher
nterpretability.

5.3. Stability

Stability refers to the consistency of explanations when there are
small perturbations in the input data. If small changes in the input
lead to drastically different explanations, the XAI method may be
unreliable [74]. It is crucial in healthcare, where clinicians need to
trust that similar patients will receive similar explanations. Stability can
be measured by the variance in the explanations across neighboring
instances. Assuming 𝜖𝑖 be the explanation for instance 𝑥𝑖 and 𝜖𝑗 the
explanation for its neighbor 𝑥𝑗 , the stability 𝑆 can be computed as:

𝑆 = 1
𝑛

𝑛
∑

𝑖=1
‖𝜖𝑖 − 𝜖𝑗‖2, (18)

where ‖⋅‖2 represents the Euclidean distance between the explanations.
Lower values of 𝑆 indicate higher stability.

5.4. Completeness

Completeness measures how much of the original model’s behavior
is captured by the explanation [75]. This metric is important when
using feature attribution methods like SHAP or LIME. Completeness can
e defined as the proportion of variance in the model’s predictions that
s explained by the XAI method [76]. Let 𝑦𝑖 be the model’s prediction

for instance 𝑥𝑖 and �̂�𝑖 be the prediction of the interpretable explanation
model. The completeness 𝐶 is calculated as:

𝐶 = 1 −
∑𝑛

𝑖=1(𝑦𝑖 − �̂�𝑖)2
∑𝑛

𝑖=1(𝑦𝑖 − �̄�)2
, (19)

where �̄� is the mean prediction of the model. A completeness score close
o 1 indicates that the XAI method captures most of the original model’s
ehavior.



I.D. Mienye et al.

1
i

s
t
s
p
a

t
d
P
t

A

m
o
t
a

f
t
p

t
p

A
a

a

w
b
b

t

w

Informatics in Medicine Unlocked 51 (2024) 101587 
5.5. Sparsity

Sparsity measures the number of features used in an explanation.
Sparse explanations are generally more interpretable because they
focus on a small set of key features rather than overwhelming the user
with many variables [77]. Sparsity 𝑆𝑝 can be quantified by counting
the number of non-zero feature attributions in a model like SHAP:

𝑆𝑝 =
1
𝑛

𝑛
∑

𝑖=1
1(𝜙(𝑖)

𝑗 ≠ 0), (20)

where 𝜙(𝑖)
𝑗 represents the Shapley value for feature 𝑗 in instance 𝑖, and

is the indicator function that counts non-zero values. Lower sparsity
ndicates a more focused, interpretable explanation.

6. Responsible AI in healthcare

The deployment of AI in healthcare necessitates a focus on re-
ponsible AI, which encompasses ethical considerations, accountability,
ransparency, and fairness. Responsible AI aims to ensure that AI
ystems are developed and used in ways that respect human rights,
romote fairness, and enhance societal well-being. There are different
spects of responsible AI:

6.1. Ethical considerations

Ethical considerations are paramount in the development and de-
ployment of AI systems in healthcare. These systems must be designed
o uphold patient privacy, data security, and the integrity of clinical
ecision-making processes. Regulations such as the Health Insurance
ortability and Accountability Act (HIPAA) in the United States and
he General Data Protection Regulation (GDPR) in Europe set strict

standards for the use of sensitive health information, ensuring its pro-
tection throughout the data processing lifecycle [40,78]. Robust data
encryption, anonymization, and stringent access controls are necessary
to comply with these regulations, preventing unauthorized access or
data breaches.

Furthermore, in 2024, the European Union (EU) published an AI
ct, the world’s first comprehensive AI regulation [79]. With the

advent of the EU AI Act, ethical AI deployment is subject to even
ore stringent oversight. This legislation categorizes AI systems based

n their risk levels and mandates that high-risk AI systems, such as
hose used in healthcare, must meet strict criteria for transparency,
ccountability, and fairness [80]. Under this act, healthcare AI systems

must provide clear documentation of their decision-making processes,
allowing clinicians to audit AI-generated predictions and ensuring that
patients can contest AI-driven decisions that affect their care. The EU
AI Act also emphasizes the need for human oversight, ensuring that
AI systems do not operate in a completely autonomous manner, thus
safeguarding against potential ethical violations.

Ethical AI practices must also include obtaining informed consent
rom patients regarding the use of their data. This involves ensuring
hat patients understand how their data will be used, stored, and
rotected and offering them the option to opt-out if necessary. With

the increased complexity of AI systems, explainability becomes critical
for informed consent. By providing interpretable explanations of AI
decisions, patients and clinicians can trust the AI’s role in treatment
pathways [23].

6.2. Accountability and transparency

Accountability in AI involves the ability to explain and justify AI-
driven decisions, enabling users to understand and challenge these
decisions if necessary. In healthcare, accountability is critical as AI sys-
tems are often involved in high-stakes decisions that can significantly
impact patient outcomes. To achieve accountability, AI models must
be designed to provide clear, understandable explanations for their
8 
predictions and decisions. This requires incorporating XAI techniques
that make the decision-making process transparent [81]. Transparency
in AI systems involves making the decision-making processes visible
and understandable to users [82]. This can be achieved through various
XAI techniques, such as LIME and SHAP, which show how AI models
arrive at their conclusions.

In addition to technical transparency, organizational accountability
is gaining prominence. Healthcare institutions must ensure they im-
plement governance frameworks that regularly audit and evaluate AI
systems, holding developers and healthcare professionals accountable
for AI-driven decisions [83]. Additionally, global frameworks such as
the EU AI Act are pushing for stricter transparency and accountability
measures for high-risk AI systems, including those in healthcare, by
requiring that all decisions be explainable and auditable by design [80].
By aligning technical transparency with legal and organizational frame-
works, AI systems can achieve a higher level of accountability, ul-
imately leading to more reliable and ethically aligned healthcare
ractices.

6.3. Fairness and bias mitigation

Fairness in AI refers to the impartiality and equity in AI decision-
making processes [84]. AI systems must be rigorously tested for biases
that could lead to discriminatory outcomes. Bias can occur at various
stages of the AI lifecycle, including data collection, model training, and
deployment [85]. Techniques such as re-sampling the training data, ad-
justing model parameters, and incorporating fairness constraints during
model training are essential to mitigate these biases [43]. Furthermore,
to ensure fairness, it is important to use diverse and representative
datasets that reflect the population the AI system will serve. This
prevents the model from learning and perpetuating existing biases.

dditionally, bias detection tools can be employed to identify and
ddress any unfair patterns in the AI system’s decisions.

Recent research has shown that intersectional fairness is essen-
tial to address biases arising from overlapping social categories, such
as race, gender, and socioeconomic status [86]. Approaches such as
counterfactual fairness are emerging as vital tools to ensure that AI
decisions remain fair under different hypothetical scenarios [87]. By
continuously monitoring models with techniques like algorithmic im-
pact assessments, healthcare institutions can ensure long-term fairness,
maintaining the balance between performance and equity in patient
outcomes. Furthermore, fairness is not just about technical accuracy but
about ensuring equity in access to healthcare resources, treatments, and
medical interventions, thus enabling inclusivity in healthcare systems.

6.4. Human-in-the-loop approaches

Human-in-the-loop (HITL) approaches integrate human judgment
into AI decision-making processes, enhancing the accuracy, fairness,
nd accountability of AI systems [42]. HITL models ensure that human

oversight is maintained, particularly in critical healthcare decisions,
thereby increasing the trustworthiness of AI systems. Incorporating
HITL approaches involves designing AI systems that allow for hu-
man intervention and feedback. This can include interactive interfaces

here clinicians can review and modify AI-generated recommendations
efore final decisions are made. Such systems leverage the strengths of
oth AI and human expertise, leading to more accurate and reliable

outcomes [88].
In recent studies, the adaptive HITL frameworks have gained trac-

tion, where the system continuously learns from human feedback,
adapting its predictions to align more closely with clinical exper-
ise [42,89,90]. Meanwhile, HITL is evolving to involve patient-in-

the-loop (PITL) approaches, especially in patient-centered care, where
patients’ preferences and values are incorporated into the decision-
making loop, improving shared decision-making processes [91]. By
adopting such inclusive and dynamic frameworks, HITL approaches

ill not only boost trustworthiness but also facilitate the personalized
care that modern healthcare systems aspire to provide.
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7. Applications of explainable AI in healthcare

XAI significantly enhances various aspects of healthcare by improv-
ing diagnostic accuracy, treatment personalization, clinical decision
support, medical imaging, and remote diagnostics. By making AI mod-
els transparent and interpretable, XAI builds trust and reliability in
AI-driven healthcare systems.

7.1. Diagnostic tools and Clinical Decision Support Systems

Integrating XAI into diagnostic tools and Clinical Decision Support
ystems (CDSS) is crucial for enhancing the interpretability and trust-
orthiness of AI models. In oncology, cardiovascular diagnostics, and
eurological disorders, XAI techniques like SHAP values, LIME, and
ttention mechanisms help explain AI model predictions, thereby im-
roving the accuracy and transparency of diagnostics [92–94]. Recent

studies, such as that by Lundberg and Lee [95], have shown how SHAP
alues can be used to interpret predictions of ML models for diagnosing
neumonia from chest X-rays. Similarly, studies have demonstrated
he effectiveness of XAI techniques in predicting diabetic retinopathy
rom retinal images, using saliency maps to highlight the critical areas
nfluencing the model’s predictions.

XAI is also instrumental in CDSS, where it elucidates the factors in-
luencing diagnostic and treatment recommendations. For example, in
epsis prediction for ICU patients, Li et al. [96] used LIME to interpret
odel predictions, enhancing the transparency and trustworthiness of

he CDSS. Similarly, Bedoya et al. [15] employed SHAP values in
DSS for predicting hospital readmissions, helping healthcare providers

tailor care plans to individual patients. Another study by Tonekaboni
et al. [97] explored the use of attention mechanisms within a CDSS for
iagnosing acute kidney injury (AKI), highlighting the most relevant
ata points and thereby improving diagnostic accuracy.

Additionally, the integration of XAI in models used for detecting
arrhythmias from ECG data has shown significant promise. A study
by Bento et al. [98] demonstrated how XAI techniques could enhance
he transparency of deep learning models, providing cardiologists with
lear visual and statistical explanations of abnormal heart rhythms,
hus supporting the integration of these advanced diagnostic tools into
linical practice.

7.2. Personalized medicine

XAI plays a crucial role in personalized medicine by making the
outputs of ML models more interpretable. These models analyze ge-
netic information, medical history, and lifestyle factors to recommend
ndividualized treatment plans. XAI techniques like SHAP values and
IME provide clear explanations for these recommendations, ensuring
hat treatments are tailored to each patient’s needs and improving
oth outcomes and adherence. For instance, in the management of
ype 2 diabetes, SHAP values have been used to interpret ML mod-

els that predict the effectiveness of different medications, allowing
linicians to understand how factors such as age, weight, and blood
ugar levels influence treatment recommendations. Another significant
pplication is in oncology, where XAI has been employed to tailor
hemotherapy treatments. Techniques like LIME have been used to
xplain the genetic markers and clinical features influencing treatment
lans, improving the interpretability and trustworthiness of AI-driven

recommendations [99].
Additionally, XAI has shown potential in managing cardiovascular

diseases. A study by Alkhamis et al. [100] demonstrated the use of XAI
to interpret ML models that predict the risk of adverse cardiac events,
such as heart attacks. By providing clear explanations for these risk
predictions, XAI helps cardiologists develop personalized prevention
trategies, thereby enhancing patient outcomes. Furthermore, XAI has
een applied in the treatment of rare genetic disorders. A study by

101] used XAI to interpret deep learning models
hiruvenkadam et al. [

9 
used for predicting brain tumors based on MRI, enabling clinicians to
nderstand and validate the AI’s recommendations.

Mienye and Jere [54] have utilized the SHAP technique in predict-
ing outcomes in personalized treatments, particularly in cases involving
hronic diseases. They demonstrated how SHAP values can assist in un-
erstanding the contribution of various factors, such as patient lifestyle
nd medical results to treatment outcomes. This transparency in treat-

ment recommendations improves both patient and clinician trust in the
I system. Similarly, Sirapangi and Gopikrishnan [102] developed a

multimodal personalized treatment model that uses feature selection
and XAI to explain why specific treatments are recommended based
on real-time patient data. This work highlights how the integration of
XAI in personalized medicine improves treatment accuracy and aids in
better patient-clinician communication, enhancing overall healthcare
quality.

Furthermore, Khater et al. [103] explored how XAI techniques can
be used to personalize lifestyle recommendations in healthcare. They
used SHAP to interpret the contribution of factors in obesity detection.
This research illustrates the potential of XAI to provide personalized
preventive healthcare advice in addition to treatment recommenda-
tions, thereby expanding its application beyond traditional medicinal
pproaches.

7.3. Medical imaging

In medical imaging, XAI enhances the interpretability of ML models
used for image analysis, crucial for detecting and diagnosing conditions
from X-rays, MRIs, and CT scans. Techniques like attention maps and
Grad-CAM highlight the image regions most influential in the model’s
decision, providing radiologists with visual explanations that increase
confidence in AI findings [104,105].

Recent studies have highlighted the effectiveness of XAI in various
medical imaging applications. For instance, Ahmed et al. [106] applied
XAI techniques to deep learning models used for breast cancer screen-
ing from mammograms. The use of attention maps allowed radiologists
to see which parts of the mammogram the model focused on, improving
diagnostic accuracy and reducing false positives and negatives. In
another study, DeGrave et al. [107] investigated the use of XAI in the
iagnosis of COVID-19 from chest X-rays, employing saliency maps to

visualize the lung regions crucial for detecting the infection.
Furthermore, a study by Baumgartner et al. [108] explored the ap-

plication of Grad-CAM in MRI-based brain tumor classification, demon-
strating how specific brain regions contributing to the AI’s predic-
tions could be visualized, thereby enhancing diagnostic confidence
and potentially leading to more accurate treatment plans. In ophthal-
mology, XAI has been used to interpret ML models for diagnosing
diabetic retinopathy from retinal images, with studies like Gargeya
and Leng [109] showing how heatmaps can help ophthalmologists
nderstand and trust AI-driven diagnoses.

Raghavan [28] demonstrated the application of Grad-CAM in di-
agnosing early-stage breast cancer from mammograms, showing how
attention-based techniques can provide visual evidence that supports
the AI’s prediction. This allows radiologists to cross-check AI predic-
tions with their expertise, reducing diagnostic errors and improving
confidence in AI-assisted medical imaging. Their study also emphasized
the importance of XAI in building trust between AI systems and medical
professionals, especially when dealing with life-critical decisions.

Additionally, Grad-CAM has been employed in MRI-based brain
tumor detection by Mahesh et al. [110], who demonstrated the use of
hese techniques to visually explain which brain regions are influencing
he model’s decision. This not only improves diagnostic accuracy but
lso allows healthcare professionals to better understand AI predictions.
imilarly, Wang et al. [111] utilized SHAP values to explain predictions

in diabetic retinopathy detection, offering an interpretable view of
which retinal features are most relevant to the diagnosis.



I.D. Mienye et al.

n

X
v
e
e
t
f

s
h
d
d
h
i
d

c

Informatics in Medicine Unlocked 51 (2024) 101587 
Table 2
Summary of XAI applications in healthcare.

Application Specific use case Description References

Diagnostic tools and
CDSS

Oncology Identifying cancerous lesions using medical imaging data [92]

Cardiovascular diseases Detecting patterns in ECGs indicative of heart diseases [93]
Pneumonia detection Using SHAP values for pneumonia diagnosis from chest X-rays [95]
Diabetic retinopathy Interpreting retinal images to predict diabetic retinopathy [117]
Neurological disorders Diagnosing Alzheimer’s using attention mechanisms on MRI scans [94]
Arrhythmia detection Enhancing transparency in deep learning models for arrhythmia diagnosis [118]
Sepsis prediction Using LIME to explain sepsis prediction in ICU patients [96]
Hospital readmission prediction Employing SHAP values to predict hospital readmissions [15]

Personalized medicine Heart disease Personalized treatment recommendations based on electronic health records [100]
Oncology Tailoring chemotherapy treatments using genetic profiles and clinical data [99]
Cardiovascular diseases Predicting risk of cardiac events and tailoring prevention strategies [101]
Gene therapies Recommending gene editing techniques based on genomic data [119]
Chronic disease management Using SHAP for personalized chronic disease treatment recommendations [54]
Multimodal treatment model Explaining treatment recommendations with real-time data using XAI [102]
Obesity detection Utilizing SHAP for lifestyle recommendation in obesity detection [103]

Medical imaging Breast cancer Applying attention maps in deep learning models for mammogram analysis [106]
COVID-19 detection Using saliency maps to diagnose COVID-19 from chest X-rays [107]
Brain tumors Visualizing brain regions in MRI scans with Grad-CAM for tumor classification [108]
Diabetic retinopathy Highlighting retinal areas in AI predictions for diabetic retinopathy diagnosis [109]
Breast cancer Using Grad-CAM for early-stage breast cancer diagnosis in mammograms [28]
Brain tumors Grad-CAM used for MRI-based brain tumor detection [110]
Diabetic retinopathy SHAP used for explaining diabetic retinopathy predictions [111]

Remote diagnostics and
telemedicine

Respiratory diseases Integrating XAI in telemedicine platforms for respiratory disease diagnosis [120]

Dermatology Employing XAI for diagnosing skin conditions via mobile devices [121]
Ophthalmology Interpreting AI models in telemedicine for eye disease diagnosis from retinal

images
[114]

Real-time diagnostics XAI tools in real-time diagnostic tools for remote regions [115]
Respiratory diseases Using SHAP for COVID-19 respiratory disease diagnosis in telemedicine [116]
p

p
X
a

m
l
i
t
m
t
t

7.4. Remote diagnostics and telemedicine

XAI also improves the accessibility and accuracy of remote diagnos-
tics and telemedicine, particularly in underserved areas. By ensuring
that AI-driven diagnostic suggestions are accompanied by clear expla-
ations, XAI helps remote healthcare providers understand and trust AI

recommendations, enhancing care quality where access to specialists
is limited [112]. For example, in dermatology, Ramoliya et al. [113]

AI has been used to interpret ML models diagnosing skin conditions
ia mobile devices, with heatmaps highlighting key regions of inter-
st. This approach supports healthcare workers in remote locations,
nsuring accurate and timely diagnoses. Similarly, XAI enhances the
rustworthiness of telemedicine platforms for diagnosing eye diseases
rom retinal images, as demonstrated by Arcadu et al. [114], improving

the quality of care in underserved regions.
In telemedicine, Patel et al. [115] demonstrated how XAI tools

uch as LIME are integrated into real-time diagnostic tools used by
ealthcare workers in remote regions. These tools provide interpretable
iagnostics, such as explaining skin conditions or respiratory issues
etected through mobile phones or wearable devices. This research
ighlighted the importance of clear, interpretable AI tools in empower-
ng remote healthcare providers who may not have access to specialized
iagnostic expertise.

Another important study by Awotunde et al. [116] emphasized the
need for real-time XAI in telemedicine platforms, particularly during
the COVID-19 pandemic. The study showed how SHAP values were
used to explain AI-driven diagnoses of respiratory diseases, providing
clarity on which lung features were most indicative of infection in
hest X-rays. The use of XAI in telemedicine is not only vital for

improving diagnostic accuracy but also for building trust between pa-
tients, providers, and AI tools in geographically isolated areas. Table 2
summarizes the different XAI applications in healthcare.
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8. Challenges and opportunities in implementing XAI in health-
care

Despite the significant advancements in XAI, several challenges
ersist in its implementation within healthcare settings, such as:

8.1. Integration into clinical workflows

Integrating XAI methods seamlessly into existing clinical workflows
is a major challenge. AI models must provide explanations that are
both accurate and understandable to healthcare professionals who may
not have technical backgrounds. Developing user-friendly interfaces
that clearly present AI-generated explanations is crucial, as interactive
visualization tools can assist clinicians in interpreting complex AI out-
uts, thereby enhancing their decision-making processes. Ensuring that
AI systems are interoperable with various healthcare IT systems, such
s electronic health records (EHRs), is also vital. Standardized data

formats and protocols can facilitate this interoperability, allowing dif-
ferent systems to communicate and share information seamlessly [122].
Furthermore, training and educating healthcare professionals is es-
sential, equipping them with the necessary skills to understand and
interpret AI-generated explanations and enabling a culture of trust and
collaboration.

8.2. Regulatory compliance

Regulatory compliance remains a significant hurdle in the imple-
entation of XAI in healthcare. AI systems must adhere to strict regu-

ations such as the Health Insurance Portability and Accountability Act
n the United States and GDPR in Europe. These regulations emphasize
he need for transparency and accountability in AI-driven decision-
aking processes. Therefore, XAI methods must be designed to meet

hese regulatory standards, providing clear documentation and audit
rails for their decisions [78]. Compliance involves robust data encryp-

tion, anonymization of patient data, and ensuring transparency and
auditability in data processing activities. Adhering to these regulations
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not only builds ethical and trustworthy systems but also gains the trust
of healthcare professionals and patients. AI systems that comply with
egal and ethical standards are more likely to be accepted and inte-
rated into clinical practice, ensuring responsible AI use in healthcare
ettings [123].

8.3. Bias and fairness

Biases can be introduced during various stages of the AI lifecy-
cle, such as data collection and model training. For instance, an AI
system trained on a dataset lacking diversity may perform poorly on
nderrepresented populations, worsening healthcare disparities. XAI
echniques, such as feature importance and counterfactual explana-
ions, can highlight biased patterns and facilitate the development of
ore equitable models [124]. However, identifying and quantifying

bias in complex models can be difficult, and existing XAI methods
ay not always provide sufficient granularity to detect subtle biases.
dditionally, mitigating bias without compromising the model’s perfor-
ance poses a significant challenge. Ensuring robust and generalizable

ias detection and mitigation techniques across different healthcare
ettings is critical [125,126].

8.4. Interpretability vs. Accuracy

Balancing interpretability and accuracy is challenging in XAI. Highly
nterpretable models, such as linear regression and decision trees,
ften have lower accuracy compared to complex models like deep
eural networks [127]. This trade-off can limit the effectiveness of

XAI in clinical settings where both accuracy and interpretability are
crucial. The challenge is to find an optimal balance where the model
remains sufficiently interpretable without significantly compromising
its accuracy. Complex models, often referred to as ‘‘black boxes’’ due
to their intricate internal structures, pose difficulties in interpretation.
Simplifying these models can lead to a loss of critical predictive power,
thus affecting clinical outcomes [128]. Opportunities to address this
hallenge include developing hybrid models that combine interpretable
omponents with complex models. Techniques such as surrogate mod-
ls, where an interpretable model approximates the behavior of a
omplex model, can provide explanations while maintaining accuracy.

Advanced XAI methods like SHAP and LIME offer detailed insights
nto model predictions without significantly reducing accuracy. Ongo-

ing research into more transparent architectures for complex models,
such as inherently interpretable neural networks, holds promise for
balancing interpretability and accuracy [37,129].

8.5. Long-term impact on patient outcomes

The long-term impact of XAI on patient outcomes and the overall
ealthcare system requires further exploration. Longitudinal studies

are needed to assess how the integration of XAI affects clinical prac-
tices over time, including its influence on patient trust, treatment
adherence, and health outcomes. Understanding these impact could
provide valuable insights into the effectiveness of XAI and guides future
mprovements in AI-driven healthcare solutions.

9. Discussion and future research directions

This study has identified that one of the main benefits of XAI in
healthcare is enhancing transparency and trust in AI-driven decisions.

linicians require clear and understandable explanations for AI predic-
ions to make informed decisions, especially in critical scenarios such

as diagnosing diseases or developing treatment plans. Techniques like
SHAP and LIME have proven effective in providing these explanations,
bridging the gap between complex AI models and clinical applicabil-
ity [59]. Despite these advancements, there is an ongoing need for
11 
more user-friendly interfaces that present AI explanations in an easily
nderstandable format for healthcare professionals.

Another major challenge is balancing interpretability and accu-
racy. Simpler, interpretable models may lack the predictive power
of more complex algorithms, limiting their utility in clinical settings.
Research into hybrid models that combine interpretable and high-
accuracy components offers a promising solution. Achieving an optimal
alance between interpretability and accuracy remains a significant
hallenge that needs further exploration [128,129]. Additionally, en-

suring regulatory compliance is another critical aspect. AI systems in
healthcare must adhere to strict regulations such as HIPAA and GDPR
to ensure data privacy and security. XAI methods must be designed
to meet these regulatory standards, including robust data encryption
and anonymization techniques. The study emphasizes the importance
of maintaining comprehensive audit trails for AI decisions to ensure
ccountability and transparency, which are essential for gaining trust
rom healthcare providers and patients alike [78].

Ethical considerations are paramount in the deployment of XAI in
healthcare. The potential for biases in AI models to lead to discrimi-
natory outcomes and even worsen existing healthcare disparities is a
significant concern. XAI can help identify and mitigate these biases,
ut ensuring that these methods are effective across diverse popula-
ions is an ongoing challenge. Developing comprehensive frameworks
or bias detection and mitigation, involving collaboration between
I researchers, healthcare professionals, and ethicists, is crucial for
romoting equity in healthcare delivery [43,125].

Therefore, future research directions in XAI should focus on the
ollowing:

• Developing inherently interpretable models: Future research
should prioritize the development of models that are transpar-
ent by design, reducing reliance on post-hoc explanation tech-
niques like SHAP and LIME. This shift towards inherently inter-
pretable models, such as generalized additive models (GAMs),
rule-based learning models, and attention-based architectures,
can provide direct insights into decision-making processes [130].
Inherently interpretable models are more trustworthy and better
suited for real-time clinical decision-making, where transparency
and interpretability are essential.

• Integrating causal inference techniques: Moving beyond
correlation-based methods like SHAP and LIME, future research
should emphasize the integration of causal inference techniques.
Causal XAI can uncover the cause-and-effect relationships be-
tween features and outcomes, providing clinicians with more re-
liable explanations [131]. This approach is valuable in healthcare
settings, where understanding the underlying causal factors can
enhance clinical decisions and lead to better patient outcomes.

• Advancing visualization tools and hybrid models: Future work
should focus on improving the visual representations of AI expla-
nations. Hybrid models that combine interpretable components
with complex, high-performance models could leverage advanced
visualization techniques such as interactive dashboards and 3D
visualizations. These tools can make AI-driven insights more com-
prehensible for healthcare professionals, facilitating their integra-
tion into clinical workflows.

• Exploring real-time interpretability and natural language
processing: Real-time interpretability in clinical settings is an
emerging area that requires further attention. Research should
explore techniques that allow AI systems to provide instant,
context-aware explanations during patient interactions. More-
over, the use of NLP for generating human-readable explanations
could improve the accessibility and usability of XAI in healthcare,
allowing clinicians to better understand AI-generated outputs in
a natural language format.
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• Enhancing model robustness and generalization ability: Ro-
bustness and generalization remain key challenges in deploying
XAI techniques across diverse clinical environments. Future re-
search should explore how XAI models can handle heterogeneous
healthcare data while maintaining consistency in explanations
across varied clinical settings. This will ensure that AI systems re-
main reliable and interpretable in real-world, dynamic healthcare
environments.

• Investigating ethical considerations and regulatory compli-
ance: Future studies should investigate the intersection of ethical
concerns, such as bias mitigation and patient privacy, with the
evolving regulatory landscape. With the introduction of frame-
works like the EU AI Act, research must explore how XAI mod-
els can meet compliance requirements while maintaining their
interpretability and effectiveness.

By addressing these research directions, the integration of XAI in
ealthcare can be significantly improved, leading to more transpar-

ent, trustworthy, and effective AI-driven solutions that benefit both
clinicians and patients.

10. Conclusion

This paper has provided a comprehensive review of XAI in health-
care, highlighting its potential to improve clinical decision-making,
patient outcomes, and regulatory compliance. Techniques such as SHAP
and LIME have proven effective in making complex AI models more
interpretable and accessible to healthcare professionals, and these tech-
iques were examined in detail. Additionally, the study explored chal-
enges in healthcare AI and XAI, including the trade-off between in-
erpretability and accuracy, the integration of XAI into clinical work-
lows, and the need for robust regulatory compliance. Challenges,
pportunities, and future directions were analyzed, offering substantial

contributions to the existing literature on healthcare AI. The study
emphasized the need to focus on developing inherently interpretable
models, integrating causal inference techniques, advancing visualiza-
tion tools, and ensuring the ethical implications of XAI are addressed,
with the ultimate goal of creating more transparent, trustworthy, and
effective AI-driven healthcare solutions.
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