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Abstract:This work aims to figure out a way to accurately identify license plate numbers in photos taken by drones. This technology is used
in practical applications like managing parking and traffic. The goal is to extract features from the images that are robust and invariant
features using the phase congruency model. These proposed features can handle the challenges posed by drone images. After that, the work
will take advantage of a fully connected neural network to tackle the difficulties of fixing precise bounding boxes regardless of orientations,
shapes, and text sizes. The proposed work will be able to find the detected text for both license plate numbers and natural scene images
which will lead to a better recognition stage. Both our drone dataset and the benchmark license plate dataset (Medialab) are used to assess
the effectiveness of the study that has been done. To show that the suggested system can detect text of natural scenes in a wide variety of
situations. Four benchmark datasets, namely SVT, MSRA-TD-500, ICDAR 2017 MLT, and Total-Text are used for the experimental
results. We also describe trials that demonstrate robustness to varying height distances and angles. The code and data used in the
study will be made available on GitHub.
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1. Introduction

The rapid growth of cities and the migration of people to urban
areas have led to a significant increase in the number of vehicles,
particularly cars, in countries like Malaysia, India, and China. This
has resulted in several public safety issues related to cars and has
overwhelmed the capabilities of towns [1–3]. These issues include
problems with car parking management, organizing car spaces, and
traffic management, which can lead to illegal car parking. To
address these issues, some systems rely on detecting license plate
numbers and sensors. However, these conventional systems may
not be effective in densely populated towns with large car parks.
Additionally, manually processing a large car park area is not
practical. Therefore, the use of drones or unmanned aircraft
vehicles to capture a large car park area and traffic is proposed as a
solution that can quickly and automatically find a solution.

Drone images present unique challenges compared to regular
images taken from a straight-on angle, such as poor image quality
caused by defocusing, variations in height distance, and
perspective distortion due to an angled shot. Additionally, as the
height of the drone increases, not only does the number of
vehicles in the car park area increase, but also the size of the
license plates becomes smaller. This is because the camera’s focus

spreads out as the height distance increases, which affects the
quality of the license plate number, as can be seen in the sample
images in Figure 1(a). The license plates appear small and are
occluded due to the angled shot. These challenges make detecting
license plate numbers in drone images difficult. To the best of our
knowledge, this is one of the initial attempts to address these
challenges in the scope of this paper.

The task of detecting license plate numbers (LPD) is not a novel
problem in the field of intelligent transportation systems. In the
past, various methods have been developed to address issues such
as recognizing license plates that are dirty or obscured, identifying
license plates in images captured under different weather
conditions, handling uneven lighting, and dealing with complex
backgrounds [4]. Detection of license plates in images taken in
uncontrolled environments, images that contain multiple vehicles,
and images that are taken under difficult conditions such as
lighting variations, dirt, and distortion is a difficult task. However,
these methods are not suitable to handle the specific challenges
posed by drone images, as they were developed for images taken
from a straight-on angle [5, 6]. As shown in the example in
Figure 1(a), the license plate detection method that uses the
YOLOv3 architecture to detect license plates in various conditions
[5] is unable to detect license plate numbers or text in natural
scene images. This is not surprising as the method was
specifically designed for license plate detection, so it is not
optimized for natural scene images.
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If we consider the task of detecting license plate numbers as
the same as detecting text in natural scene images, as stated in
Shivakumara et al. [7], there are several powerful deep learning-
based methods available in the literature that can address
challenges such as images with text of arbitrary orientation,
multi-script, irregularly shaped text, low contrast, and complex
backgrounds. However, none of these methods have been
specifically designed to work with drone images. As a result, the
existing natural scene text detection methods may not perform
well when applied to drone images. This is demonstrated in
Figure 1(b), where a method [8] that uses a differential
binarization network to detect text in natural scene images is
able to detect text in natural scene images but fails to detect
license plate numbers in drone images of license plates.

In contrast, the proposed system has better text detection
capability for both license plate images captured by drones and
natural scene images captured by a straight-on angle, compared to
the existing methods. To address the challenges of detecting
license plate numbers in drone images, we propose to use a
modified version of the phase congruency model (PCM) [9, 10].
The PCM is robust to the effects of non-uniform illumination,
geometric transformations, and some level of distortion, making it
well suited for license plate detection in drone images. The PCM
takes into account both amplitude and phase angle information,
which are insensitive to these issues, and thus it helps to enhance
the fine details (such as the edges of the license plate numbers) in
the images.

2. Related Work

Both finding the registration number of the car and textual
information from original images are similar [7]. This is a logical
conclusion as both rely on finding the contrast differences
between the background and foreground data. Additionally, the
work related to find the textual information out of the images
captured by drones is very limited. Thus, our review will focus on
methods for both registration number of the car along with textual
information in general captured images.

2.1. State of the art of finding text in natural
scene images

Bartz et al. [11] conducted research that mixed between both
labeled and unlabeled training for textual identification by using
a shallow learning network, unlike other methods. The work
proposed a combined spatial-based transformer to perform the
task. Shi et al. [12] introduced a method to apply Neural Network
(NN) for a sequential order of images to be used for better text
detection identifying. The network integrates feature extraction,
sequence modeling, and transcription into a single system. On the
other hand, Tian et al. [13] put forth a model for locating and
identifying text from videos recorded via tracking. The approach
works well with videos but still frames. Ma et al. [14] proposed a
method to find arbitrarily oriented scene text via rotation
proposals. The method utilizes a deep architecture to exploit the
orientation of the text, which they call rotation region proposal
networks. [15] applied a single-shot-oriented text finder without a
need any enhancement after processing. This proposed method
needs only few data for training. The method works well for
arbitrary orientations, small fonts, and irregular-sized text in
images. Xu et al. [16] proposed a method of learning a deep
direction field for irregular scene text detection. The method uses
a fully convolutional neural network to determine the direction of
the text. The results are improved by the post-processing step. The
main aim of the method is to address the challenges of arbitrarily
shaped text.

Rong et al. [17] suggested a technique that merges visual
and language-related details for pixels and regions. Musil et al. [18]
proposed a method that regards text detection as object detection
and extracts features from the image based on a stripe memory
engine; however, it has a complex learning parameter for different
applications. Li et al. [19] proposed a progressive scale expansion
network for text detection in natural scene images, which focuses
on arbitrarily shaped text detection by fixing tight bounding boxes.
Baek et al. [20] work on extracting the relationship between two
characters based on deep learning models. Liao et al. [8] focused on
finding a proper adaptive binarization method that able to split the

Figure 1
Example of text detection results (a) by existing license plate
detection method, (b) by natural scene text detection method,

and (c) by the proposed system
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background from the foreground based on contrast changes. Hou et al.
[21] explored an attention anchor mechanism for text detection in
natural scene images and traffic guide panels, which uses an
attention model for predicting weights at each pixel anchor and the
anchor mechanism is used for reducing the gap between the
candidate anchor and the ground truth.

In summary, the current research has focused to sort out several
challenges such as arbitrarily oriented text and irregularly shaped text
in different scenarios. However, there is still a lack of work that
considers images taken by drones to identify the text existed in
them; hence, these methods are limited to images captured.

2.2. Methods for car registration number finding

On the other hand, there are several methods for finding
registration number described in the literature. For instance,
Hamam et al. [22] proposed using a very conventional method
based on Sobel edge detection to find the location of the plate.
Panahi & Gholampour [4] method proposes a system for real-time
applications, which addresses variation in color, contrast, weather
conditions and lightening conditions, etc. However, the method
focuses on number plates. Laroca et al. [23] investigated
the ability of using YOLO detector to propose a real-time
recognizer for car registration number. The success of the method
depends on the success of segmentation. Xie et al. [3] explored
MD-YOLO framework for extracting direction information of the
text to enhance the accuracy. The approach may fail in cases
where arbitrarily oriented text in images is involved.

Biglari et al. [24] worked on method that is trained based on
parts of the vehicle to identify a vehicle category. If the vehicle is
classified as particular category, it reduces the complexity of
license plate detection. However, the performance of the license
plate detection depends on this initial classification. Other
researchers explore part-based learning which is based on a
boosting algorithm. The approach incorporates deformation features
for improving the results. Though the approach addresses the
challenge of the distance between the camera and images, it does
not consider the images captured at different oblique angles [1].

From the examination of finding relevant techniques to locate
and identify car registration number, it can be seen that while some
methods are successful in detecting vehicle registration number in
various conditions and images with multiple vehicles, none of
them specifically target drone images. Overall, our evaluation of
methods for detecting license plates and text in natural scenes shows
that current techniques are primarily geared toward detecting license
plates or text in images captured from a direct, head-on perspective.
As a result, these methods may not be effective in dealing with the
unique challenges presented by drone images, such as poor quality
due to oblique angles, perspective distortion, defocusing, and
variations in height. As such, detecting license plates in drone
images remains a significant challenge for intelligent transportation
systems. This has motivated us to develop a new approach that
combines robust and invariant features obtained from the PCM
with a fully connected convolutional neural network to locate the
car registration numbers from these challenging images.

The work presents three key contributions: (1) extracting robust
and invariant features using the PCM that can overcome the
difficulties posed by drone images. To detect vehicle registration
numbers in a complex context, edges are crucial in displaying
text. The PCM captures coherence properties, in its coefficients,
which hold information about the edge pixels. As a result, the
proposed coefficients allow us to distinguish the text’s edge
information from the background in the extracted frames, even

when the image has been negatively impacted by the drone.
(2) Utilizing the benefits of a fully connected NN to sort out the
challenges of determining precise bounding boxes regardless of
orientations, shapes, and text sizes. (3) The proposed system can
effectively identify both vehicle registration number and text from
normal images.

3. Proposed System

PCM [9, 10] will be used for locating vehicle registration
number in drone images, as it utilizes amplitude and phase angle
information, which are insensitive to factors such as non-uniform
illumination, geometrical transformation, and distortion, and helps
in enhancing fine details like contrast changing in the images
(Figure 2).

3.1. Phase congruency estimation

Local amplitude Ano and phase φno as defined in equations (1)
and (2), respectively, are calculated for each pixel in the image.

Ano ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eno x; yð Þ2 þ Ono x; yð Þ2

q
(1)

φno ¼ atan2 eno x; yð Þ;Ono xyð Þð Þ (2)

The expressions for eno(x, y) and ono(x, y) are the responses of log
Gabor even-symmetric and logGabor odd-symmetric at scale (n) and
orientation (o).

Using equations (1) and (2), PC will be calculated as defined in
equation (3), which is the cosine minus the magnitude of the sine of
the phase deviation.

PC2 xð Þ ¼
P

n W0 xð Þ½An xð Þðcosðφn xð Þ � φ̄ xð ÞÞ � sin φ xð Þ � φ̄ xð Þð Þj jÞ � T�P
n An xð Þþ 2

(3)

where
– PC2 xð Þ represents the phase congruency changes.
– Wo xð Þ is to determine the relative importance of different

frequencies in a signal.
– T is the value to compensate noise.
– ε is the added value to avoid infinity value.
– φ is the weighted mean phase.

Figure 2
Phase congruency model for LPD from drone images
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information about how the phase congruency changes are used with
orientation by analyzing the moments, as defined in equation (4).

a ¼
X

PC θð Þ cos θð Þð Þ2

b ¼ 2
X

PC θð Þ cos θð Þð Þ PC θð Þ sin θð Þð Þ (4)

c ¼
X

PC θð Þ sin θð Þð Þ2

where PC θð Þ refers to the phase congruency value determined at
orientation θ, and the sum is performed over the discrete set of
orientations (the number of orientations used is 6), which is
determined empirically. Φ is calculated using equation (5) and
maximum momentM and the minimum moment m by implementing
equations (6) and (7).

φ ¼ 1
2
atan2

bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ a� cð Þ2

p ;
a� cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ a� cð Þ2
p

 !
(5)

M ¼ 1
2

cþ aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ a� cð Þ2

q� �
(6)

m ¼ 1
2

cþ a�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ a� cð Þ2

q� �
(7)

3.2. K-means clustering

The proposed method uses information from the phase
congruency variation with orientation, as defined in an equation,
to analyze the input image. Using pre-configured samples from
different datasets, the numbers for M and m are determined
empirically to represent the number of orientations. This allows
for the highlighting of edges (Figure 3(a) and (b)). To separate the
pixels representing the license plate from the rest, the method uses
K-means clustering with K= 2.

3.3. Candidate pixels

The creation of candidate pixels can be observed in Figure 3(c),
some of which are not text. We believe that characteristics such as
color, gradient, and angular values are shared between a candidate
text pixel and its neighboring pixels. Based on this idea, it is
logical to assume that the difference between a candidate pixel
and its eight neighbors will be similar for text pixels but may
differ for non-text pixels

3.4. Pixel selection by linearity checking

The clustering process takes into account the PCM values of
each candidate pixel. The system selects the element that is
closest to it among the other elements by minimizing the number
of its eight neighbors. As a result, cluster 1 contains two elements
that are close to each other. In the next iteration, it selects the
least number of remaining elements (excluding those in cluster 1).
Each cluster comprises two values, and the proposed method
calculates the absolute differences between them, such as
difference value -1. The proposed method calculates the same
difference values for the other three groups [25].

4. Experimental Results

We created our own dataset as no publicly available dataset
exists. Our dataset includes images taken at different times of the
day, such as early morning (8:00 am), afternoon (12:00 noon),
and evening (5:00 pm), in an open parking area on the MIMOS
campus. The images were taken from varying heights ranging
from 1 to 3 m, 3 to 5 m, and higher than 7 and below 10 m at
different angles, resulting in a total of 1,000 images for
experimentation. The dataset and code will be made publicly
available. We set the maximum height distance at 10 m from the
ground for collecting the dataset. The reason for this is to capture
all the cars parked in the parking area of our institute, which is
the focus of this study.

To ensure that the proposed model works well in traditional
scenarios, we also used a benchmark dataset called Medialab [26],
which includes 680 images with small font and variations in

Figure 3
Applying PCM to find candidate pixels
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distance. In total, we used 1680 images (1000+ 680) to evaluate the
proposed system for vehicle registration number detection. For text
in natural scene images, four benchmark datasets specifically
designed for natural scene text detection are used.

Recall (r), precision (p), and F-measure are used for validation (e).

p ¼
X

re2E m re;Tð Þ= Ej j and r ¼
X

rt2T m rt ;Eð Þ= Tj j (8)

where m r;Rð Þ is the best match for a block r in a set of blocks,
and E and T are our estimated block and the ground truth block,
respectively. The f measure is defined using recall and precision as

f ¼ 1
a
p
þ a

r

(9)

Methods that implement YOLO to find car registration number
[5, 8, 11, 20, 23, 27, 28] are used for benchmarking. However, these
methods were designed for data taken orthogonally.

4.1. Ablation study

This work assesses the effect of the clustering step in finding
vehicle registration number by skipping it and comparing the
results to the proposed system that uses it. The clustering step
improves precision but reduces recall. A second experiment is
conducted to evaluate the effectiveness of using Harris corners
versus PCM for detecting candidate pixels in vehicle registration
numbers. The results show that PCM is more effective than Harris
corners and insensitive to distortions. Overall, the proposed
combination of clustering and PCM is effective to sort out
problems of finding vehicle registration numbers in both drone
and conventional images as shown in details in Table 1.

4.2. Experiment on finding car registration number

The proposed system’s ability to accurately detect license plates
in both drone images and Medialab dataset images is shown in
Figure 4(a) and (b), respectively. Table 2 clarifies the ability of
the suggested model to achieve the highest measures compared to
others. The existing methods [27, 5, 10] are not as effective, with
method Peng et al. [5] being the best in recall for drone dataset
but producing a greater number of false positives.

4.3. Experiments on natural scene text detection

The following benchmark datasets such as SVT, MSRA-TD-500,
ICDAR 2017 MLT, and Total-Text are used for evaluation
(Figure 5(a)–(d)). Table 3 shows that the proposed system
consistently performs well, particularly in recall, across the different

datasets. In contrast, existing methods have inconsistent performance
and are not robust to the various challenges posed by different
datasets. The proposed system’s effectiveness is due to the
combination of PCM for candidate point detection, clustering for
false candidate removal, and the method of finding vehicle
registration numbers which differ from state-of-the-art methods.

4.4. Performance over different factors

Figure 6 illustrates sample results, showing that the system
performs well in detecting license plates in different height
distances and angles. As seen in Table 4, the recall is promising
and the Average precision time (APT) is fast, making the system
suitable for real-time implementation. However, it should be noted
that as the distance increases, the Average precision time (APT)
also increases due to the increased number of cars in the larger
area covered by the images.

Table 1
Different model implementation to locate car registration number over our and standard Medialab dataset

Methods Our dataset Medialab dataset

Measures R P F R P F

Proposed system without clustering 76.1 77.4 76.7 74.1 76.2 75.1
Proposed system with Harris corner 75.2 77.4 76.3 70.3 75.8 72.9
Proposed system (baseline) 80.2 81.8 81 77.2 78.2 77.7

Figure 4
Outcomes of proposed model on datasets
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5. Conclusion

In this study, we present a new technique for recognizing
license plates in aerial images. We utilize the PCM, clustering,
and license plate detection methods to read vehicle registration
numbers from both drone and traditional images, as well as
natural scene text. Our experiments show that our system is
more accurate and efficient than existing methods, in terms of

precision and F-measure. Moreover, our system demonstrates
consistent performance across different datasets and situations.
As far as our knowledge, this is the first research on license
plate detection in drone images, the dataset will be made
available to the public on GitHub. However, the system’s
performance is not optimal for natural scene text datasets,
particularly Total-Text, which suggests that there is room for
improvement.

Figure 5
Text detection of the proposed system

Table 3
Performance of different systems over natural scene datasets. “——“indicates that results are not reported in this paper

Methods SVT MSRATD-500 ICDAR 2017 MLT Total-Text

Measures R P F R P F R P F R P F

CRAFT [20] 87.2 73.1 79.5 78.2 88.2 82.9 80.6 68.2 73.9 87.6 79.9 83.6
PSENet [27] 54.0 69.8 60.8 52.0 85.9 64.5 75.3 69.2 72.2 84.0 75.2 79.6
DBNet [8] 62.2 72.5 67.0 79.2 91.5 84.9 67.9 83.1 74.7 82.5 87.1 84.7
TextField [16] – – – 75.9 87.4 81.3 – – – 79.9 81.2 80.6
TTD [29, 30] – – – 81.1 85.7 83.3 – – – 74.5 79.1 76.7
AAM [21] – – – 79.9 88.5 83.8 59.6 81.3 68.8 – – –

Proposed system 80.4 74.5 77.3 82.2 75.2 78.5 80.1 70.4 74.9 80.6 78.2 79.4

Table 2
Performance analysis over benchmark car registration number datasets

Methods Our dataset Medialab dataset

Measures R P F R P F

SEE [11] – Scene text 50.0 60.0 54.5 72.0 70.0 71.0
Peker [28] – License plate 71.7 62.7 66.9 75.4 71.9 73.6
OpenAlpr 72.0 68.0 69.9 76.0 75.0 75.5
Proposed system (baseline) 80.2 81.8 81 77.2 78.2 77.7
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