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Abstract 

The widespread use of wireless networks to transfer an enormous amount of sensitive information 

has caused a plethora of vulnerabilities and privacy issues. The management frames, particularly 

authentication and association frames, are vulnerable to cyberattacks and it is a significant concern. 

Existing research in Wi-Fi attack detection focused on obtaining high detection accuracy while 

neglecting modern traffic and attack scenarios such as key reinstallation or unauthorized decryption 

attacks.  This study proposed a novel approach using the AWID 3 dataset for cyberattack detection. 

The retained features were analyzed to assess their transferability, creating a lightweight and cost-

effective model. A decision tree with a recursive feature elimination method was implemented for the 

extraction of the reduced features subset, and an additional feature wlan_radio.signal_dbm was used 

in combination with the extracted feature subset. Several deep learning and machine learning models 

were implemented, where DT and CNN achieved promising classification results. Further, feature 

transferability and generalizability were evaluated, and their detection performance was analyzed 

across different network versions where CNN outperformed other classification models. The practical 

implications of this research are crucial for the secure automation of wireless intrusion detection 

frameworks and tools in personal and enterprise paradigms. 

Keywords: Feature Transferability, Wireless Communication; Authentication Attacks; Unauthorized Decryption; 

Machine Learning 

1. Introduction 

Wireless transmission networks have led to substantial advances in data networking and 

communications, as well as the establishment of integrated networks. The rapid progress of 

information and communication technologies (ICTs) has offered numerous benefits to system users, 

but these technologies also have various vulnerabilities that might be exploited by network 

adversaries [1]. Cyberattacks such as malware attacks, classified data breaches, denial of service, 

phishing, and other security-related incidents have increased significantly in recent years. A 
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cyberattack or a cyber threat refers to any unauthorized event or trespassing that compromises the 

network and carries out diverse malicious operations such as identity theft, spoofing, exfiltration, or 

exploitation of sensitive data and network resources [2]. A cyber-attack identification mechanism is a 

proactive approach that analyzes network traffic, identifies anomalies, and classifies cyber threats in 

the network [3].  

Wi-Fi, or the IEEE-802.11 wireless local area networking (WLAN) standard, is crucial in daily life. IEEE-

802.11 networks are at the forefront of this rapid change to a wireless space due to their potential to 

provide fast speed, enhanced mobility, usability, and cost-effective installation and maintenance 

expenses [4]. IEEE802.11-based wireless networks are widely used in homes, businesses, and public 

places, but also in critical infrastructures such as hospitals or manufacturing facilities where their 

availability is vital. Wi-Fi's success may be attributed to a variety of factors, including well-defined use 

cases, deployment and configuration flexibility, and the accessibility of inexpensive, highly 

interoperable hardware [5].  

As IEEE802.11-based networks became more ubiquitous, so did the possibility for hackers and other 

malicious activities to exploit them. Wi-Fi networks were initially open with data moving over the 

unencrypted medium. Individuals connected to their companies through public Wi-Fi networks such 

as coffee shops or libraries were always vulnerable to security threats. Anyone with a Wi-Fi receiver 

in the public space premises could access and interpret the sniffed data. Over the years, several 

approaches have been introduced to prevent security threats. Wired equivalent privacy (WEP) was 

the first scheme for the prevention of cyberattacks, but it had several flaws and soon became 

unreliable [6]. Later, Wi-Fi-protected access (WPA), WPA2, and WPA3 were introduced to secure 

wireless networks via authentication and encryption [7]. However, these standards are also vulnerable 

to cyberattacks with compromised encryption keys as authentication/association attacks are risky if 

the pre-shared key is down even though protected management frames (PMF) are operative. 

Conventional or traditional intrusion detection systems require skilled human expertise to analyze 

network traffic patterns for cyber-attack detection, and attackers are generally familiar with the 

working of these mechanisms [8]–[10], which leads to several challenges. With advancements in 

network environments and the use of transformative technologies, the nature of attacks is also 

modified. Therefore, contemporary intrusion detection systems leverage advanced technologies such 

as machine learning or deep learning for cyber-attack detection in a specific environment including 

Wi-Fi in an IoT environment  The amount of network data has significantly risen due to the increasing 

prevalence of connectivity, cloud services, and the Internet of Things (IoT) [11]. Due to this huge 

volume of data transmission through modern high-speed/ bandwidth communication networks, 

cyber-attack detection has become inefficient. [12]. Due to this, in-depth automated monitoring of 

network traffic is required to identify distinct network attacks. Machine learning and deep learning 

approaches have the potential to revolutionize technology and operations as they address the 

problem of big data. Neural networks and various other deep learning techniques consistently achieve 

commendable results in addressing classification problems [13]. Incorporating these techniques 

allows for intelligently analyzing and discovering useful insights and patterns to detect attacks or 

security threats [14]. This could be the key to lightweight and cost-effective intrusion detection 

systems. This domain's main shortcoming is that most publicly available benchmark wireless traffic 

datasets are outdated and do not include recent attack scenarios such as key reinstallation (Krack) or 

unauthorized decryption (Kr00k) attacks. It is crucial to acknowledge that the AWID3 dataset stands 

out as an exception in this regard, as it encompasses a more comprehensive range of scenarios, 



 

 

including those involving Krack and Kr00k attacks. Therefore, it is imperative to highlight the 

significance of the AWID3 dataset, emphasizing its relevance. Existing wireless attack datasets do not 

include the enterprise version of the 802.11 protocols. Another essential overlooked factor is the 

selection of appropriate performance metrics as accuracy measures do not demonstrate insights into 

the results [15]–[17]. However, it's important to note that this specific issue falls outside the scope of 

the current research. Therefore, an effective system is required that can indicate any data breach or 

vulnerability in the network before any major loss of sensitive data.   

Additionally, cyberattack detection is still a major challenge due to the ubiquity of successful 

cyberattacks publicized in the mainstream media. While there are some incredible cyber-

attack detection results, they frequently rely on certain datasets and can't always work well in a 

variety of real-world settings. In other words, while these models can thrive on their training data, 

their performance on varied network traffic remains uncertain. This highlights the need for intrusion 

detection features that are successfully transferable across different 802.11 datasets. The concept of 

feature transferability is especially significant when obtaining labeled data for the first time is 

excessively expensive, time-consuming, or unattainable.  These are the potential features that 

continuously perform well across various scenarios. Transferable features, in the context of deep 

learning or machine learning models, are those that demonstrate consistent performance and efficacy 

across a range of datasets or scenarios [18]. If the features consistently maintain their performance 

well across diverse datasets, it shows that the proposed cyber-attack detection model has real-world 

application potential under a variety of network environments. Conversely, if the transferability of the 

features is limited, it will prompt further investigations to refine the feature selection process or 

develop more flexible models for broader applications in different network environments. 

While extensive research has been conducted to improve the security of Wi-Fi networks, a distinct 

focus on  Krack and Kr00k attacks appears to be lacking. The Krack vulnerability exploits instil flaws in 

the 4-way handshake protocol, allowing an attacker to reinstall a key that is momentarily in use. This, 

in turn, could end up in the decryption of Wi-Fi traffic, allowing unauthorized parties to discreetly 

intercept important information. Conversely, the kr00k attack occurs when a device disconnects from 

a Wi-Fi network while still encrypting data. Kr00k exploits a weakness in this circumstance by 

manipulating the flow of unencrypted packets, revealing fragments of previously encrypted data. 

Given the rapid growth of cyber threats, this omission creates a crucial information gap in the attempts 

to adequately protect wireless networks. Additionally, it's evident that a substantial portion of prior 

research heavily relies on the AWID dataset. This dataset, however, has shown limitations over time, 

particularly because it does not include the most recent attack instances. This disparity is especially 

obvious in the case of protected management frames (PMF), a critical component in modern secure 

Wi-Fi networks. The absence of PMF in AWID is an important consideration for evaluating intrusion 

detection systems in the context of modern Wi-Fi security because it plays a critical role in reinforcing 

the authentication and association process. Another shortcoming is that many of the previous studies 

have focused on home-based Wi-Fi environments. These studies failed to recognize the necessity of 

testing their techniques and solutions in enterprise network environments. As the network setups, 

protocols, and security need to change significantly in corporate settings, this omission limits the 

practical relevance of research findings. Additionally, the absence of evaluation of generalization and 

transferability of features, so that the features can be used across different network conditions, is a 

major shortcoming in the existing literature. In this study, an innovative, lightweight cyber-attack 

detection model is proposed to identify existing attacks. These include Krack, Kr00k, de-



 

 

authentication, and disassociation attacks. In the proposed methodology, recursive feature 

elimination (RFE) was used to extract 8 out of 16 MAC layer and physical layer features, proposed by 

[4], and tested using several classifiers including decision trees (DT), random forest (RF), extra trees 

(ETs), light gradient boost machine (GBM), multi-layer perceptron (MLP) and convolutional neural 

network (CNN). Moreover, the extracted features were used for the analysis across different datasets 

to test whether the given features are conceivably transferable. The results of this research offered 

valuable information regarding how transferable and generalizable the retained features are. If the 

features consistently show effective performance across diverse datasets, it suggests that the 

proposed cyber-attack detection model can be successfully implemented in real-world scenarios with 

varying network conditions, making it more practical and valuable. The following are the main 

contributions of this work: 

• A decision tree with recursive feature elimination has been used to extract a reduced feature 

set. Several classifiers were tested on these features for attack detection. 

• The transferability of the extracted features has been evaluated with AWID and AWID 3. 

• A decision tree with RFE was used to extract a reduced feature set of the most meaningful 

features for each attack. These features expedite the attack detection process with a reduced 

number of computations and training time. 

• Feature generalization of these reduced feature sets has been studied across the different 

data sets. Selected features for de-authentication and disassociation attacks from AWID 3 

have been used in the AWID dataset for classification. 

The summary of this research is structured in the following manner: section 2 sheds light on existing 

literature regarding cyber-attack detection. Section 3 discusses the pre-processing and feature 

selection process. Tree-based and MLP approaches for cyber-attack detection are reviewed in Section 

4. Section 5 presents experimentation and results including feature transferability. Research work is 

concluded in section 6, with future work. 

2. Literature Survey 

The three primary methods for analyzing network traffic to detect attacks are classified as signature 

detection, anomaly detection, and hybrid techniques that integrate both signature and anomaly 

detection techniques [19]. Signature-based detection identifies cyberattacks using predetermined 

signatures stored in the signature database. Whenever an attack occurs, the attack’s signatures are 

compared with the signature database, and the alert is generated if the attack signatures match the 

ones in the database. The signature database needs to be updated constantly to keep up with new 

attacks. Still, this technique only detects those attacks that are present in the database and does not 

detect zero-day attacks [20]–[22]. Anomaly detection is a dynamic approach that analyzes network 

traffic and notifies if there is any anomalous variation or abnormal behaviour in the network. Although 

it detects unknown attacks, there exists a greater risk of a high false-positive rate (FPR) as not every 

anomaly or variation in the network is a sign of intrusion [8], [23].  Conventional intrusion detection 

technology has been extensively studied for the past few years. The integration of AI, however, has 

transformed it even if it might not have excellent real-time detection performance. Nevertheless, 

researchers are focusing on machine learning (ML) and deep learning (DL) techniques since they have 

demonstrated a considerable increase in accuracy and a reduction in FPR. Several widely used publicly 



 

 

available benchmark datasets including NSL-KDD, CIC-IDS2017, AWID, and UNSW_NB15 are available 

for research purposes. 

2.1. Conventional Network Intrusion Research Paradigm 

Various ML and DL approaches have been proposed which can improve efficiency and lessen the 

execution time of intrusion detection mechanisms. In a research work [24], multiple supervised 

learning techniques embracing artificial neural network (ANN), decision tree, random forest, and 

unsupervised techniques including K-means, self-organizing map (SOM), and expectation 

maximization (EM) algorithms were applied to CIC-IDS2017. Some algorithms demonstrated high 

accuracy while others such as SOM and EM failed to detect targeted attacks. A novel network structure 

of deep belief network (DBN) was proposed based on an artificial fish swarm algorithm (AFSA), genetic 

algorithm (GA), and particle swarm optimization (PSO) to detect network intrusions in NSL-KDD[25]. 

Although this model attained 98% accuracy, a higher number of layers can increase computational 

costs. The work in [26] proposed a hybrid technique to detect intrusions based on feature selection 

and classification using UNB ISCX 2012 and CIC-IDS2018 datasets in the Apache Spark environment. A 

stacked auto-encoder (SAE) performed feature selection and a support vector machine (SVM) 

algorithm was used for intrusion detection. Results demonstrated 90.2% accuracy with reduced 

training time. A hybrid technique consisting of K-means clustering with RF, CNN, and long short-term 

memory (LSTM) was applied in the Apache Spark environment [27]. Adaptive synthetic sampling was 

used to solve imbalanced datasets. The results showed 85% accuracy on NSL-KDD and 99.9% accuracy 

on CIC-IDS 2017. In [28], principal component analysis (PCA) and mutual information (MI) with LSTM  

were implemented for dimensionality reduction and classification of cyber-attacks. LSTM-PCA 

achieved the highest accuracy of 99.36%. Three feature selection techniques comprising autoencoder 

(AE), the stacked autoencoder (SAE), and deep autoencoder (DAE) with DNN were applied to indicate 

data breach in CIC-IDS2018 and NSL-KDD [29] where DAE-DNN attained the highest accuracy. DAE for 

feature selection and recurrent neural networks (RNN) for classification were implemented on CIC-

IDS2018 and Bot-IoT [30]. The highest accuracy for the Bot-IoT dataset 98.39% was obtained with DAE 

while significant results for CIC-IDS2018 were obtained with RNN, 97.38% accuracy. The major 

shortcoming was the lack of details of actual experimentation. In this work[32], The BAT optimal 

feature selection method to identify the most relevant features. To evaluate the accuracy of intrusion 

detection, the Support Vector Machine (SVM) classifier was tested using the KDD99 benchmark 

dataset. When compared to alternative machine learning algorithms, this approach outperformed 

others with a detection accuracy of 99%. The Perceptual-Pigeon-Galvanized-Optimization(PPGO) 

approach was used to choose the best parameters for intrusion detection in datasets NSL-KDD, CICIDS, 

and Bot-IoT[33]. Then the Likelihood Naive Bayes (LNB) classification method was implemented 

outperforming previous models with a remarkable accuracy rate of 99%. The study introduced a novel 

feature selection method based on the Capuchin-Search-Algorithm (CapSA). CNN-CapSA was 

evaluated using four IoT-Cloud datasets: NSL-KDD, BoT-IoT, KDD99, and CIC2017, and surpassed other 

state-of-the-art methods with approximately 99% accuracy. The study [34] proposed HetIoT-CNN IDS, 

an advanced Intrusion Detection System (IDS) that used a Convolutional-Neural-Network (CNN) built 

for the HetIoT (Heterogeneous Internet of Things) environment. The HetIoT-CNN IDS achieved high 

accuracy scores of 99.75% for binary classifications, 99.95% for 8-class classifications, and 99.99% for 

13-class classifications. 



 

 

2.2. Contemporary Wi-Fi Intrusion Research Paradigm 

The significance of intrusion detection in securing networks has drawn the attention of numerous 

researchers. Numerous publications proposed novel methodologies for intrusion detection for 

wireless sensors and Wi-Fi networks. Technologies like wireless networks, 4G, IoT, and others transmit 

a substantial amount of data and are pre-disposed to various cyberattacks and security risks that might 

jeopardize the reliability and confidentiality of information or services. Wi-Fi networks are nearly 

universally used in businesses nowadays to give employees access to the Internet. Business 

stakeholders have become more concerned about Wi-Fi networks and operational security. As the 

dynamics of technology and attack strategies are expanding, the IDS must be scalable and adaptable 

to counter new attacks. 

Several techniques have been proposed to detect cyberattacks on wireless networks. In [34], two 

models were introduced to draw out additional features using SAE, the features were then combined 

with the original features based on the amount of mutual information shared between the features 

and class labels. It was then merged with the radial basis function classifier (RBFC) to evaluate results 

on the AWID dataset. Results showed that RBFC acquired 98% accuracy with 7 optimal features. A 

novel system KTRACKER was proposed to detect novel cyber threats such as key re-installation (Krack) 

on Wi-Fi-protected access (WPA2) [35]. It grouped handshake packets and used traffic analysis to find 

KRACK. Cat boost attained the highest accuracy out of the three machine learning models XGBoost, 

Light Gradient Boosting Machine (Light GBM), and Cat boost. In a recent study, a feed-forward-deep-

neural-network (FFDNN) wireless-IDS system using a wrapper-based feature-extraction unit (WFEU) 

was introduced [36]. The WFEU extraction approach involved the extra trees algorithm to extract 

optimum feature selection. The proficiency of the proposed model was examined using the UNSW-

NB15 and AWID intrusion detection datasets. The proposed model acquired higher detection accuracy 

than existing techniques. Overall, the accuracies of 99.66% and 99.77% with 26 features from AWID, 

and 87% and 77% with 22 features using UNSW_NB for binary and multiclass classification were 

attained respectively.   

A novel, conditional deep-belief-network (CDBN), technique was proposed to detect wireless network 

intrusions in real-time and identify cyber-attacks [37]. A stacked contractive auto-encoder (SCAE) 

approach was presented for the reduction of data dimensionality to mitigate the effects of its 

unbalanced nature and data redundancy on detection accuracy. The experimental results showed 

better detection accuracy and speed, with an average detection time of 1.14 ms and 97.4% detection 

accuracy. Most modern IDSs utilize machine learning approaches that suffer from performance 

deterioration when used against an adversary and are unable to achieve a balance between accuracy 

and false-positive rate (FPR). Due to the open-sharing nature of wireless technology, organizations 

continue to have serious concerns about Wi-Fi security. A significant number of impersonation attacks 

were misclassified into injection attacks in previous studies. To overcome this limitation, a dual-stage 

Wi-Fi network-intrusion-detection (WNIDS) method, based on machine learning, was proposed to 

increase the detection accuracy for injection and impersonation threats in a Wi-Fi network[38]. In the 

first stage, the RF outperformed other models to classify the attacks into three classes normal, 

flooding, and unified impersonation or injection attacks from the AWID-CLS-R test dataset. In the 

second stage, NB outperformed other models by correctly classifying the unified attack instances into 

impersonation attacks and injection attacks with an accuracy of 99.42%. To prevent overfitting, a 

feature separation approach based on word embedding was developed to speed up calculations [39]. 



 

 

For classification, a dual/limited attention mechanism was proposed instead of global attention. These 

approaches were utilized with the UNSW-NB15 and AWID datasets where the gated recurrent unit 

(GRU) attained the highest accuracy of 93.47% on the AWID dataset and RNN attained 94.96% 

accuracy on the UNSW-NB15 dataset. However, only the accuracy metric was used as an evaluation 

metric even though accuracy alone is not a reliable metric.   

Another novel system, the Wi-Fi intrusion-detection-system (WIDS), proposed an anomalous 

behaviour analysis technique to identify assaults on Wi-Fi networks with significantly high accuracy 

and reduced rate of false alarms [40]. In this technique, n-grams were implemented to represent the 

normal behaviour of the Wi-Fi protocol, and several machine learning models were used to distinguish 

Wi-Fi traffic as normal or malicious. This technique was evaluated using numerous datasets gathered 

locally at the University of Arizona and the AWID dataset classified all Wi-Fi protocol assaults with low 

false positives (0.0174) and a variable low rate of false negatives for different attacks. [41] classified 

DoS attacks using an ensemble technique. Recursive feature elimination (RFE) was used for the 

selection of features and then an ensemble classifier, using RF, SVM, and Swell with 10-fold cross-

validation, for classification with AWID-CLS-Test dataset. The outcomes demonstrated a precision of 

99.98% and 0.12 FPR. For wireless intrusion detection, a feature selection technique based on Fuzzy 

C-Means (FCM) was introduced, which used the distance between the FCM centre point and the data 

point to determine the difference between the normal and attack centre distances, and then used the 

distances to pick the features [42]. This method was tested using the AWID dataset, and the findings 

demonstrated that it was quite accurate in attack detection. Researchers have lately deemed the 5G 

network environment to be significant, owing to the advancement of network communication and the 

growing number of users. As a result, wireless network security of 5G networks has become a crucial 

concern. This study made two major advances in the detection of network assaults [43]. Numerous 

ML and DL approaches, including multi-class neural networks, multi-class decision jungle, decision 

trees, KNN and multi-class decision forest were used to construct an intelligent system that classifies 

data into normal and abnormal traffic to detect cyber assaults. Using the AWID3 dataset, the 

performance was evaluated using the Omnet++ simulator tool to retrieve a subset of the packet 

transmission performance dataset for a run time of 20 seconds. This network attained 99% accuracy, 

however, only accuracy is used for evaluation metrics. Furthermore, ‘frame.time.epoch’is a time series 

feature and should be preprocessed accordingly. [44] proposed an intrusion detection technique for 

wireless sensor networks based on graph neural networks and Lyapunov optimization in this study. 

The AWID dataset was utilized for GNN with the Lyapunov optimization loss function. The acquired 

results were better than the previous SVM-based works. However, no confusion matrix or false alarm 

rate has been calculated. By resampling training data and redefining rewards in reinforcement 

learning, the research creates an environmental agent that improves intrusion detection[45]. In a 

multi-classification experiment, the system, AE-SAC, achieves excellent performance, with an accuracy 

of 84.15% and an F1-score of 83.97% on the NSL-KDD dataset and an accuracy and F1-score exceeding 

98.9% on the AWID dataset. Related work with the critical analysis is presented in Table 1. 

Table 1. Significant Summary of Literature 

Title Problem Feature 
selection 

Technique Dataset Result Gap 

Wei et al.[25]  - 
2019 

Optimization method 
for IDS 

N/A 

(41) 

PSO- AFSA-GA-
DBN 

NSL-KDD 99.85% Doesn’t reflect modern 
traffic scenarios 



 

 

Kasongo et al. 
[24] - (2020) 

Feature reduction for 
wireless IDS 

WFEU 

 

FFDNN UNSW_NB15, 

AWID 

77.17%, 

99.77% 

Absence of multiclass 
classification 

Reyes et al. [38] 
– 2020 

Two-stage wireless IDS RFE,  

Chi-square, 

Correlation, 

Feature 

Importance, 

PSO 

RF, NB, SHAP, ET, 

XGBoost, 

Bagging, 

LightGBM 

 

AWID 99.99% Doesn’t include the 
latest Wi-Fi attack 
scenarios 

Li et al. [39] -
2021 

Feature separation 
method for IDS to 
improve accuracy 

Word 
Embedding 

RNN, LSTM,  GRU AWID, 
UNSW_NB15 

94.96%, 

93.47% 

only accuracy for 
evaluation measures 

Laghrissi et al.  
[28]- 2021 

LSTM approach for IDS PCA, 

MI 

PCA-LSTM, 
LSTM-MI 

KDD99 99.44% Outdated dataset 

Sharafaldin 

et al. [24] -
2021 

ML for anomaly-based 
IDS 

N/A 

 

CNN, RF, ANN, 
SOM, EM, k-NN 

CIC-IDS2017 Approx. 

99% 

 

Mujahid et 
al.[43] - 
(2022) 

Wireless IDS for 5g 
networks 

Pearson 
correlation 

DT, NN, kNN, 
Decision Jungle,  
Decision Forest 

AWID3 99% Time-based feature 
‘frame.time.epoch’ is 

not preprocessed 
properly 

Agrawal et al. 
[35]- (2022) 

Krack detection using 
ML 

N/A LightGBM, 
XGBoost, 
Catboost 

AWID3 87.12% accuracy should be 
increased 

Shitharth et 
al.  

[32]-(2023) 

Optimization method 
for IDS 

Perceptual-
Pigeon-

Galvanized-
Optimization(

PPGO) 

Likelihood Naïve 
Bayes 

NSL-KDD, 
CICIDS, and 

Bot-IoT 

99% Doesn’t include the 
latest Wi-Fi attack 

scenarios 

Shitharth et 
al.  

[31]-(2023) 

Optimal feature 
selection method for 

IDS 

BAT  

Algorithm 

SVM KDD99, 99% Doesn’t reflect 
modern traffic 

scenarios 

 

In the extant literature, most of the research studies did not include modern Wi-Fi traffic. Many studies 

were conducted using publicly available datasets including even outdated KDD99 and NSL-KDD 

datasets launched in 1999 and 2009 with 42 features that do not reflect modern attack scenarios [24]. 

Other datasets that are widely used in research do not include the latest Wi-Fi attack scenarios such 

as ISCX 2012 is based on emulated traffic with 82 features and does not reflect the effectiveness of a 

practical network environment. It is comprised of over 2 million traffic packets, and attacks represent 

2% of the whole traffic [26].  UNSW-NB15 is based on a simulated network and consists of 49 features, 

175,341 normal traffic, and 82,332 anomaly classes making it a highly imbalanced dataset. In 2017, 

CIC-IDS2017 was introduced, and later CIC-IDS2018. These datasets contain various recent 

cyberattacks, such as brute-force attacks on FTP and SSH servers, denial-of-service attacks(DoS), 

Heartbleed attacks, and other online attacks such as XSS, SQL injection, and brute-force attacks. These 

statistics include assaults that were absent from the earlier datasets, such as infiltration, botnets, and 

DDoS attacks. Another benefit of this dataset is that the normal traffic generated in this dataset is 



 

 

based on network protocols such as HTTP, HTTPS, FTP, SSH, E-mail, etc., which is closer to a real-time 

network environment than the previous datasets [24]. The major shortcoming of the research with 

these datasets is that they do not include Wi-Fi attack scenarios. All these datasets are based on a 

wired network. Aegean Wi-Fi Intrusion Detection Dataset (AWID) is the only benchmark dataset that 

consists of attacks related to wireless intrusion networks. It provides a freely accessible dataset of 

legitimate and malicious traffic directed against 802.11 networks. This is the first dataset that includes 

802.11 attacks [46] but still does not include Krack and Kr00k attacks. The focus of this work is to 

extract the most meaningful features to have a secure Wi-Fi system. Wrapper approaches, such as 

RFE, use machine learning algorithms to regulate the performance of selected features and frequently 

outperform filter methods in terms of predictive accuracy [47]. 

Furthermore, the existing literature failed to extract and analyze the generalized features for each 

attack including  Krack and Kr00k, and authentication attacks which include de-authentication and 

disassociation attacks. AWID3 benchmark dataset includes these attacks and focuses on enterprise 

adaptations of the protocol unit thus considered more challenging than AWID and providing greater 

security methods.  

However, another significant shortcoming in current research is the lack of evaluation on the 

generalization of trained models with other datasets. The lack of evaluation in this regard raises 

uncertainties about the transferability and generalizability of the features and models. Without such 

evaluation, it remains unclear whether the proposed cyber-attack detection model will perform well 

and provide accurate results in real-world scenarios with varying network conditions. Consequently, 

as a result, additional research and testing are crucial to ascertain whether the retained features can 

be used successfully across various datasets, ensuring their dependability and usability in a wider 

spectrum of network environments.  

3. Methodology 

Corporate Wi-Fi networks are vital for both businesses and public administrations, offering a highly 

adaptable and secure infrastructure. Access points face vulnerabilities like deauthentication, 

disassociation attacks, and the KRACK attack, which exploits the four-way handshake. Recently, the 

Kr00k attack has emerged as a critical threat, specifically targeting Wi-Fi chips. These risks demand 

vigilant security measures to protect wireless networks and devices. Fig 1 shows the framework for a 

secure Wi-Fi network. One of the prime objectives of this research is to improve the detection rate of 

attacks with fewer features. Fig 2 outlines the proposed methodology for this research study. To 

conduct the proposed strategy and experimentation, the AWID3 dataset is utilized. Generally, the 

datasets consist of missing values, special characters, and different data types. Therefore, 

preprocessing of the dataset is performed in the second step. In the third step, the feature selection 

algorithm is utilized to get a minimized set of features using a recursive feature elimination algorithm, 

and several classification algorithms including DT, RF, ET, Light GBM, MLP, and CNN were used for 

classification. In the next step, DT-RFE was used to get features for each attack and classification was 

performed to analyze the accuracy of these features. In the last step, it was analyzed if the features 

for each attack were transferable. It is worth noting that while deep learning algorithms are known 

for their capacity to automatically learn hierarchical features and could be powerful, they might come 

with increased computational demands. Deep learning models often require a large amount of data 



 

 

for training, and the effectiveness of such models is typically observed in more extensive datasets. As 

the AWID 3 dataset is relatively small and lacks the complexity that could benefit deep learning, 

simpler models like decision trees performed better. 

 

Fig 1. Wi-Fi Intrusion Detection System 

 

 

Fig 2. Proposed Methodology 

3.1. Feature Selection using Recursive Feature Elimination 

The purpose of feature selection is the minimization of the time and space complexity of the model. 

Detection of attacks through reduced features and processing time without any delay will lead to an 

efficient lightweight IDS. RFE is a method for feature selection that uses a classifier to build the model. 

A machine learning model is trained and assessed using various feature subsets to determine the 

optimal feature subset that leads to improved performance of the model. The RFE process begins with 

training a machine learning model on an entire set of features, followed by ranking the features in 

order of significance to the model's performance. The model is then retrained and assessed with a 

smaller set of features after the least significant feature is eliminated. This process is repeated 

iteratively until a predetermined number of features is reached, or until a desired level of performance 

is achieved. The feature importance score for each feature is computed (Eq 1), and the feature with 

the lowest value is removed from the subset.  

𝑆(𝑖) =  ∑ (𝑟𝑚𝑖𝑛 − 𝑟𝑖𝑘)𝑛
𝑘=1                           …. Eq 1 

Wrapper-based RFE differs from other feature selection methods, such as filter-based or embedded 

methods, in that it evaluates the impact of feature subsets on the specific machine learning model 

being used, rather than just measuring the correlation between features and the target variable. 

3.2. Decision Tree 

The decision tree is a type of supervised learning technique to tackle classification problems. A DT's 

components include leaves, branches, and nodes. The branches indicate the collection of features that 

result in the class labels, whereas the leaves represent the labels for each class. Both discrete and 

continuous data sets can be used with these branches. The samples are categorized into two or more 

homogeneous sets by the DT approach. The classification process works in a top-to-down sequence, 

and an optimal conclusion is attained when the proper category of the leaf node is discovered. 

However, decision trees face overfitting problems. Decision Trees separate data at each node using 



 

 

splitting criteria such as Gini impurity(D) from a different number of classes(C) in the dataset where pi 

is the probability of an instance in D belonging to class i as shown in Eq. 2. 

𝐺𝑖𝑛𝑖(𝐷) = 1 − ∑ (𝑝𝑖)2𝐶
𝑖=1                                                         Eq. 2 

 For each feature and value, the algorithm examines the splitting criterion and chooses the one that 

minimizes the criterion. The data is split recursively into child nodes until a halting criterion is reached. 

It assigns a class label or numerical value based on the majority class or mean value when it reaches a 

leaf node. Algorithm 1 demonstrates the decision tree process.  

Algorithm 1. DT Algorithm 

 

3.3. Random Forest 

The RF method, an ensemble learning technique, is used for tackling classification and regression 

issues. Unlike decision trees, the random forest classifier uses numerous DTs to classify a given 

dataset. These decision trees calculate the entropy of features and then split the samples layer by 

layer. As a result, the dataset instances are divided according to the desired column. Random forest 

overcomes the problem of overfitting as opposed to decision trees. Random Forest is an ensemble 

learning method that uses numerous decision trees to improve prediction accuracy. Let (X, Y) 

represent the dataset, with X representing the feature matrix of shape (n, p), with n instances and p 

features, and Y representing the target variable. Then bootstrap of the dataset is created by randomly 



 

 

picking n instances from the original dataset with replacement. The original dataset (Xb, Yb) is the 

same size as the sampled dataset (Xb, Yb). For each tree, choose a subset of m features at random 

from the total p features. Create a decision tree T with (Xb, Yb) and the randomly chosen m 

characteristics. Create N decision trees using the preceding procedure to construct a Random Forest 

{T1, T2,..., TN}. To determine the most prevalent class for classification, employ a majority vote among 

the tree predictions just like in Eq. 3. 

𝑌𝑛𝑒𝑤̂ = 𝑚𝑜𝑑𝑒(𝑇1(𝑋𝑛𝑒𝑤), 𝑇2(𝑋𝑛𝑒𝑤), … , 𝑇𝑛(𝑋𝑛𝑒𝑤))… Eq. 3 

3.4. Extra Tree 

This algorithm attempts to fit randomized decision trees on distinct sub-samples of the dataset and 

implements the notion of averaging to improve accuracy as well as efficiency to overcome the 

overfitting problem. The extra tree algorithm uses the standard top-down approach to generate a 

sequence of raw gradient or regression trees. ETs are distinct from conventional tree-based clustering 

algorithms in such a way that they separate nodes by arbitrarily cutting points and construct the tree 

using the entire learning sample. Extra trees are similar to random forests. Compared to Random 

Forest, Extra Trees can be trained more quickly because the split thresholds are chosen at random and 

there is no need to look for the best thresholds. 

3.5. Light Gradient Boosting Machine 

The LightGBM method incorporates two innovative techniques: gradient-based one-side sampling 

(GOSS) with exclusive feature bundling (EFB). XGBoost is a deep-learning algorithm used for regression 

and classification tasks. For classification, the goal is to minimize the log loss function for n number of 

data points where yi is the true class label and pi is the probability of class for data point I as given in 

Eq. 4. 

𝐿(𝜃) =  ∑ (𝑦𝑖 log(𝑝𝑖) + (1 − 𝑦𝑖)log (1 − 𝑝𝑖))𝑛
𝑖=1                       …Eq. 4 

 It builds an ensemble of decision trees, called boosted trees, to make predictions. The objective 

function uses two regularization terms: L1 Regularization (Lasso) and L2 Regularization (Ridge), aiming 

to prevent overfitting and maximize gain scores. The ensemble's predictions are weighted according 

to performance. 

3.6. Multilayer Perceptron 

One of the most often used feed-forward neural networks is the multi-layer-perceptron (MLP) neural 

network. MLP neurons are linked in a one-way and one-directional manner. The MLP design is as 

follows: the initial layer that feeds the network with input variables is called the input layer, the last 

layer is called the output layer, and all the layers in between are called hidden layers. The hidden layer, 

which consists of m neurons, computes a weighted sum of inputs and expresses it for the jth neuron 

by passing it through an activation function as shown in Eq 5. Where Zj is the weighted sum of neuron 

j. The weight known as Wij is what connects the ith input neuron to the jth hidden neuron and the bias 

for neuron j is bj. The weighted sum of the output neuron can be expressed as in Eq. 6 where Zk is the 



 

 

k-th output neuron's weighted sum, ck is the bias for the k-th output neuron, and Vjk is the weight 

connecting the j-th hidden neuron to the k-th output neuron.  

𝑍𝑗 =  ∑ (𝑋𝑖 . 𝑊𝑖𝑗) + 𝑏𝑗                         …
𝑛
𝑖=1 Eq. 5 

𝑍𝑘 =  ∑ (𝐴𝑗. 𝑉𝑗𝑘) + 𝑐𝑘
𝑚
𝑗=1                …Eq. 6 

 It is provided with the necessary structural flexibility and representational capabilities, as well as 

access to a diverse set of data samples. 

3.7. Convolutional Neural Network 

CNNs are designed to learn spatial and temporal patterns in data. In the context of intrusion detection, 

CNNs can be used to learn patterns in the independent features of the dataset. The convolutional 

layer is the fundamental component of CNN, where a series of filters are applied to the input image 

to generate feature maps. The mathematical equation is given in Eq. 7 where in the lth feature map, 

Zij [l] is the value at position (i, j). The l-th layer’s filter at position (m,n) has assigned a weight Wm,n
[l]. In 

the (l-1)-th layer’s feature map, Xi+m, j+n
[l-1]  is the value at position (i+m, j+n). Following feature 

extraction, pooling layers are used to analyze the data and minimize the spatial dimensions of feature 

maps where Pi,j
[l] is the pooled value at position (i, j) and A2i2j

[l], etc. are the values at corresponding 

positions in the activated feature map given in Eq. 8. This is then followed by fully connected layers, 

which make the final prediction. The weights of the filters and fully connected layers are learned 

through training the network on a labeled dataset. This is demonstrated in algorithm 2. For example, 

if the independent features of the intrusion detection dataset are network packets, a CNN can be used 

to learn patterns in the packet’s header fields such as source-IP and destination-IP addresses, port 

numbers, and protocol type. By learning these patterns, CNN can detect anomalies in the network 

traffic, which may indicate an intrusion. 



 

 

𝑡ℎ𝑒 𝑍𝑖,𝑗
[𝑙]

=  ∑ ∑ (𝑊𝑚,𝑛
[𝑙]

 .  𝑋𝑖+𝑚,𝑗+𝑛
[𝑙]

) + 𝑏[𝑙]𝑓𝑤−1
𝑛=0

𝑓ℎ−1
𝑚=0                                 …Eq. 7 

𝑃𝑖,𝑗
[𝑙]

= max (𝐴2𝑖,2𝑗
[𝑙]

, 𝐴2𝑖,2𝑗+1
[𝑙]

, 𝐴2𝑖+1,2𝑗
[𝑙]

, 𝐴2𝑖+1,2𝑗+1
[𝑙]

)                           …Eq. 8 

Algorithm 2. Convolutional Neural Network (CNN) 

 

3.8. Feature Transferability 

The effectiveness of intrusion detection systems (IDS) is assessed using consolidated metrics such as 

precision, recall, F1 score, and AUC score. As anticipated, all IDS models achieve remarkably high F1 

scores, ranging from 0.98 to 1, and AUC scores, ranging from 0.97 to 0.99, when trained and tested 

on individual datasets like AWID and AWID3. These findings are consistent with prior research on IDSs 

applied to publicly available datasets and underscore the models' efficacy in their specific contexts. 

However, the transferability of these high-performing models to an unseen dataset leads to diverse 

outcomes. The performance may vary, indicating that the models' exceptional performance on a 

specific dataset does not automatically guarantee their ability to generalize to novel and unseen 

datasets under a distinctive network environment. 

Undoubtedly, a pivotal question arises: Can the chosen set of features be seamlessly transferred 

across datasets? To probe this matter, the model, having undergone training with the retained 

features, undergoes comprehensive testing using unseen network traffic. This evaluation 

encompasses real-time scenarios and diverse network environments, empowering researchers to 

gauge the enduring efficacy and broad applicability of the retained features beyond the confines of 

the original dataset. This evaluation assumes paramount significance as it validates the feasibility and 

versatility of the proposed cyber-attack detection model in dynamic and varied network conditions. 



 

 

3.9. Dataset Description 

Contrary to the first Aegean Wi-Fi Intrusion Detection Dataset (AWID), the AWID3 dataset focuses on 

enterprise adaptations of the protocol unit and is thus considered more challenging than AWID 

providing greater security methods such as the usage of protected management frames (PMF), 

introduced with the 802.11w amendment, and support for various network designs. AWID3 is a 

publicly accessible database of Wi-Fi network traffic that includes actual traces of both legitimate and 

unwanted 802.11 activity. It captures numerous different attacks launched against the IEEE 802.1X 

extensible authentication protocol (EAP) system. This dataset focuses primarily on attacks related to 

802.11 and higher-layer attacks. Furthermore, new 802.11-specific attacks, such as Krack and Kr00k, 

have been included for analysis. In this research, a minimized edition of the dataset has been used 

consisting of four types of attacks de-authentication, dissociation, Krack, Kr00k, and benign traffic.   

3.10. Data Preprocessing 

Timestamps, numerals, hexadecimal digits, strings, etc. are examples of features’ data types. The 

AWID3 dataset is an unbalanced distribution of records. For this research, the imbalance property of 

the dataset is not altered. Fig 3. demonstrates the distribution of the number of instances in the 

dataset. 

 

Fig 3. Classes Distribution 

For the feature selection phase, time-based features such as the frame.timedelta, 

frame.time_delta_displayed etc. have been discarded since the focus is not the time-based analysis. 

Only, cherry-picked MAC and physical layer features were selected and proposed in [4]. These features 

were considered due to their potential to function as a solid foundation for the development of a 

reliable, easy-to-handle, and economical 802.11 cyber threat detection system. The features with 

their description are presented in Table 2. 

Table 2. Selected Features 

Feature Name Description 

1. Frame.len Frame Length 

2. Radiotap.length Frame header length 

3. Radiotap.dbm_ansignal Present flag antenna signal (dbm) 

4. Wlan.duration Duration time 

5. Radiotap.present.tsft Present flag (Timing Synchronization Function 
Timer) 

6. Radiotap.channel.freq Channel frequency value 

7. Radiotap.channel.type.cck Complementary Code Keying-flag 

8. Radiotap.channel.type.ofdm Orthogonal Frequency Multiplexing-flag 

9. Wlan.fc.type Type- Flag 

10. Wlan.fc.subtype Subtype-Flag 

11. Wlan.fc.ds Distribution System-status flag 

12. Wlan.fc.frag More fragments-flag 

13. Wlan.fc.retry Retry-flag 

14. Wlan.fc.pwrmgt Power management – flag 

15. Wlan.fc.moredata More data-flag 

16. Wlan.fc.protected Protected frame-flag 

 



 

 

AWID3 dataset contains a few missing values in the instances. To encounter this problem, records that 

contain any missing values have been dropped. Here, wlan.fc.ds represents hexadecimal strings which 

are converted to numerical using label encoding. There exists a significant difference between the 

ranges of feature values, such as radiotap. channel.freq begins from 1000 while, the maximum value 

of radiotap. length for this dataset is approximately 100. In the given formula, the step size of the 

gradient descent will change depending on whether feature value X is present in the formula. Different 

step sizes for each feature will result from the differences in feature ranges. Data needs to be 

normalized before feeding it to the model to make sure that the gradient descent progresses evenly 

towards the local minima and that the steps for gradient descent are updated at the same pace for all 

the features demonstrated in Eq. 9.  

∅𝒋 = ∅𝒋 − 𝜶
𝟏

𝒎
∑ (𝒉𝜽(𝒙(𝒊)) − 𝒚(𝒊))𝒙𝒋

(𝒊)
 

𝒏

𝒊=𝟏
          Eq. 9 

                                            

For the trained classification algorithm to work properly, the primary data must first undergo some 

sort of data normalization due to the high level of irregularity present in the primary data. If the data 

is not normalized, the model will be dominated by variables on a larger scale, which will have a 

detrimental effect on the model's efficiency. As a result, normalization is an absolute necessity. The 

min-max scaling method given in Eq. 10 can be used to rationalize the set of diverse data. 

 

𝑿′ =
𝑿− 𝑚𝑖𝑛 (𝑥)

𝒎𝒂𝒙(𝒙)−𝒎𝒊𝒏(𝒙)
              Eq. 10 

3.11. Parameter Configuration 

For the decision tree, the maximum number of leaf nodes is set to 200. The minimum sample size per 

leaf was raised to 2 to compel each leaf to collect pertinent information. Additionally, a minimal cost-

complexity pruning impact was added using the ccp_alpha complexity parameter like regularization. 

When set to the minimum value, pruning iteratively locates the node with the "weakest connection." 

The weakest link is defined by its effectual alpha, with the nodes with the lowest effective alpha 

deleted first. The same parameter values used for the DT were evaluated for RF, with favourable 

results.  Regarding ET, the maximum number of leaf nodes is set to 500, maximum depth of nodes is 

300 with n_estimators set to 200. Table 3 shows the parameters of the tree-based algorithms. 

Table 3. Parameters of Tree-based Classifiers 

Parameters Tree Based Models 

Decision Tree Random Forest Light GBM Extra Trees 

Min_samples_leaf 2 2 2 2 

Max_leaf_nodes 100 100 50 500 

Max_depth 30 30 30 300 

Ccp_alpha 1.e-3 1.e-3 - 1.e-3 

N_extimators - - - 200 

 

Multi-layer perceptron was applied to detect network attacks where the parameters included 

adaptive moment estimation (Adam) as an optimizer with a 0.0001 learning rate. As shown in Table 

4, the parameters of the convolutional neural network included a 0.001 learning rate and an Adam 

optimizer. Early stopping for both models was specified to run the model 2 times more before stopping 



 

 

to avoid overfitting. The activation function adopted was the rectified linear activation unit, and the 

output was softmax. To lessen overfitting, dropout layers, and early stopping were used.  

Table 4. DNN Architectures 

Parameters MLP CNN 

Activator Relu, Softmax (Output) Relu, Softmax (Output) 

Optimizer  ADAM ADAM 

Learning rate 0.001 0.01 

Loss  Categorical cross-entropy Categorical cross-entropy 

Hidden layers 5 3 

Neurons per layer 512, 256,128, 64 128, 32,16 

Batch size 128 128 

Conv Layer - 5 

MaxPooling - 2 

3.12. Feature Transferability Evaluation 

The main differentiation between AWID (possibly referring to AWID2) and AWID3 lies in their distinct 

emphases and contexts. Although both datasets pertain to Wi-Fi intrusion detection, AWID3 is 

specifically tailored for corporate applications of the protocol, which often entails more robust 

security features. The key differences can be summarized as follows: 

• Protocol Focus: 

 AWID (AWID2) centers around conventional Wi-Fi intrusion detection scenarios, while AWID3 is 

geared towards business implementations of the protocol. 

• Security Measures: 

 AWID3 considers the incorporation of enhanced security measures that are prevalent in business 

settings. This includes the utilization of Protected Management Frames (PMF), introduced with the 

802.11w amendment, which enhances Wi-Fi network security. 

• Network Architecture: 

 AWID3 considers a wide range of network architectures commonly observed in commercial 

organizations. Consequently, the dataset encompasses information from more intricate network 

configurations unique to business Wi-Fi deployments. 

Conclusively, while both AWID (AWID2) and AWID3 are pertinent to Wi-Fi intrusion detection, AWID3 

provides a more specialized and focused dataset tailored for detecting intrusions in enterprise Wi-Fi 

environments. Its emphasis on better security mechanisms and diverse network designs enhances its 

relevance for real-world applications in the corporate sector. 

The primary objective of testing feature transferability is to identify the most robust and advantageous 

features that can be effectively applied and generalized across diverse network environments, 

especially between a general Wi-Fi network setting and an enterprise network setting. This research 

aims to uncover features that retain their effectiveness when transferred from a general Wi-Fi 

network environment to a corporate Wi-Fi network environment, with a specific focus on AWID3, 

which pertains to enterprise versions of the protocol. The incorporation of stronger security measures 



 

 

and varying network topologies in the corporate context may necessitate the utilization of specific 

features for efficient intrusion detection. 

Both datasets share common instances of deauthentication attacks. The training set encompasses 

AWID2-CLS-R, containing only the Normal and Flooding classes, while the test set comprises AWID3 

Deauth. pcap, featuring solely the Normal and Deauthentication traffic. 

4. Experiments and Results Discussion 

This section discusses the feature selection and classification process. The model was created on 

Google Colab with T4 GPU using the open-source TensorFlow Keras framework. Data preprocessing 

was performed to remove any inconsistencies. This consisted of handling missing information, 

standardizing data formats, and implementing the required transformations to ensure consistency 

and correctness. Machine learning models were trained and assessed. This entailed dividing the 

dataset into training and testing subsets, employing cross-validation techniques, and utilizing suitable 

evaluation metrics to measure model performance. The ethical aspects of implementing automated 

wireless intrusion detection methods were addressed. The data collected and analysed by these 

technologies was solely utilised to improve network security and combat cyber-attacks. Ethical 

considerations require that the data be treated responsibly and ethically, with strict measures in place 

to protect sensitive information from unauthorised access or misuse. By following these ethical 

standards, it was assured that automated intrusion detection systems positively contribute to network 

security while respecting individual privacy rights and sustaining faith in technology. The AWID3 

dataset used in these experiments has 5 classes: normal, de-authentication, disassociation, Krack, and 

Kr00k. Intrusion detection datasets are generally highly imbalanced as attack traffic is always 

significantly less than normal traffic. In this case, balancing the data with the use of oversampling 

techniques would not be appropriate. In this approach, stratified k-fold with 10-fold cross-validation 

(CV) has been implemented to neutralize the imbalance characteristic of the dataset.  

4.1. Evaluation Metrics 

The following are the appropriate evaluation metrics to detect cyberattacks. The efficiency of the 

proposed methodology has been evaluated using a confusion matrix that consists of true-positive (TP), 

true-negative (TN), false-positive (FP), and false-negative (FN) as defined below: 

• True-positive (TP): number of instances successfully categorized as cyber-attacks. 

• True-negative (TN): number of instances that are categorized as normal/regular network 

traffic. 

• False-positive (FP): number of instances wrongly categorized as any cyber-attack. 

•  False-negative (FN): number of instances of cyberattacks remained undetected by IDS.  

Accuracy, Precision, Recall, and F1 measures have all been used in this study as assessment metrics 

based on the characteristics of the confusion matrix. 

Accuracy: The ratio of cases in the dataset that the model correctly identified. The higher the accuracy, 

the better the model applied.  



 

 

Accuracy = 
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑣𝑒+ 𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

Precision: The ratio of the number of true positive instances that are classified exactly to the total 

number of positive instances (true positive and false positive). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 
 

Recall: The ratio of true positive instances that are precisely labeled as true positive to all true positive 

instances. This means the value of recall will be low when the FN rate is high. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑣𝑒

𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

F1-score: This is referred to as the harmonic mean of the accuracy and recall metrics. It is regarded as 

a useful assessment criterion for unbalanced data. 

𝑓1 − 𝑠𝑐𝑜𝑟𝑒 =
2𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑣𝑒

2𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

4.2. Feature Selection and Classification for All Attacks 

The process of feature selection presented various limitations throughout the investigation. One 

notable limitation revolved around the potential existence of irrelevant or redundant features within 

the dataset. The extensive features, while furnishing information, introduced complexities in 

discerning the most pertinent ones. Moreover, ensuring the transferability of chosen features across 

diverse network environments emerged as a persistent challenge. The ever-changing landscape of 

wireless networks compounded the intricacies of the feature selection procedure. Despite the 

application of rigorous methodologies, the ongoing struggle to strike a balance between achieving a 

lightweight model and maintaining requisite detection accuracy remained a formidable constraint. 

The wrapper method ranks the feature subsets according to how well they can classify the objects 

using the learning machine. Fundamentally, recursive feature elimination prioritizes features based 

on a relevance metric. RFE acts as a greedy algorithm and strategically performs feature ranking by 

prioritizing features by recursively finding the reliant collinear features while removing the weak 

features. In this approach, RFE with a decision tree (DT-RFE) has been implemented and the eight most 

relevant features have been extracted that will be ideal for building a cost-effective, lightweight IDS, 

reducing the dimensions of data. DT-RFE can categorize powerful predictors of a given outcome 

without assuming the model's internal mechanism. As mentioned above, DT-RFE selects the most 

meaningful features based on their ranks. Table 5 shows the most relevant selected features. 

Table 5. DT-RFE Features 

Selected Features 

1 frame.len 

2. radiotap.channel.flags.cck 

3. radiotap.channel.freq 

4. radiotap.dbm_antsignal 



 

 

5. wlan.duration 

6 wlan.fc.retry 

7. wlan.fc.subtype 

8. wlan.fc.type 

 

Apart from these 8 features, another feature wlan_radio.signal_dbm, which represents the 

broadcasting device's signal strength, was used for classification. When used with the radiotap.dbm 

antsignal, it can help pinpoint flooding and impersonation attacks. The use of this feature in 

combination with the other features reduced the false-positive rate. Certainly, 

"wlan_radio.signal_dbm" is essential to the cyberattack detection feature selection process. This 

feature represents a wireless network's signal strength and provides important information about the 

reliability and quality of the Wi-Fi connection. When "wlan_radio.signal_dbm" was incorporated along 

with a subset of eight other relevant attributes, the number of false positives during cyberattack 

detection was significantly reduced. This decrease suggests that by providing insightful contextual 

information about the wireless network environment, "wlan_radio.signal_dbm" enhances the 

selected subset of attributes. This feature integration improves the intrusion detection system's 

overall accuracy and effectiveness by providing more insights into network behavior and possible 

security threats. The classification results are shown later in Fig 4. Since the dataset is imbalanced, the 

results should be considered in terms of the F1-score and area under the curve (AUC) score.  

From Table 5, it is observed that CNN and DT have attained the best results in terms of accuracy, 

precision, recall, F1-score, and AUC score. However, the decision tree attained slightly better results 

in terms of F1-score, AUC score, and processing time of 99.82%, 99.90%, and 20.2s respectively. 

Decision Tree also attained the highest recall value of 99.82%. A high recall value is essential in wireless 

networks. If an attack instance is incorrectly classified as regular network traffic, it can cause a major 

loss of data in real-world businesses.  

  

 

Fig 4. Performance Evaluation 

Regarding deep learning architectures, the validation loss is less than the training because of the 

dropout layers used in the model [4]. Figs 5 and 6 show the average loss among all folds. To train the 

MLP and CNN architectures, it was found that the number of samples was insufficient. The ideal loss 

value was easily obtained by these architectures within four to five epochs. The models were therefore 

trained with quite a small loss, with the loss decreasing by a trivial 0.001 after each epoch. Summing 

up the results, machine learning models can be used to train data for an economical and time-saving 

cyber-attack detection mechanism. That would be suitable for small and medium enterprises (SMEs) 

as well. However, for large-scale data, DNN models are preferred. 

                                                                                     

                                                                                                                                                            Fig 6. CNN 

The confusion matrices in Figs 7-12 demonstrate the average confusion matrices of classifier analysis. 

Normal, de-authentication, and Krack attacks demonstrated significant accuracy as less than 100 

Fig 5. MLP 



 

 

instances are falsely classified with tree-based models. Whereas Light GBM and MLP classifiers had a 

hard time differentiating between Kr00k and disassociation attacks. Approximately 400 instances of 

these attacks were falsely classified even with 16 features set. Fig. 13 shows that DT and CNN have 

the least number of misclassified instances. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 7. Decision Tree 

 
Fig 8. Random Forest                 

 

Fig 7. Extra Trees 

 

Fig 8. Light GBM 

 

Fig 9. MLP 

 

Fig 10. CNN 



 

 

 

 

 

 

 

Fig 11.  Average Number of Misclassified Instances 

These results demonstrate that the DT-RFE method can reduce features from 16 to 8 for the detection 

of these attacks using DT. This could be helpful for attack detection in an enterprise network. With 8 

core features and an additional feature out of 16, the proposed method can detect Wi-Fi cyber-attack 

with little processing time and a high detection rate.  

Furthermore, stratified cross-validation proved efficient to alleviate the effects of overfitting and class 

imbalance. Despite being under-presented de-authentication and Krack classes with only 38,942 and 

49,990 samples, the detection rate is quite high.  

4.3. Feature Transferability 

According to the analysis done by [4], 30 features and 27 features were not transferable whereas 13 

feature sets and 5 feature sets were transferable, but the results attained needed to be improved. For 

this purpose, radiotap.channel.flags.cck and radiotap.dbm_antsignal were excluded to better 

comprehend this result. Radiotap.channel.freq, radiotap.flags.type.cck, and other features fall under 

this category. The fact that AWID2 and AWID3 were recorded on several radio stations had an impact 

on this decision. Furthermore, neither of the two flag-based features provided insightful information 

for identifying flooding assaults. Only the best models from ML and DL techniques such as DT and CNN 

have been used to evaluate the transferability of features and the evaluation of the results is given in 

Fig 14.  

 

Fig 12. Feature Transferability Evaluation 

The confusion matrices of both DT and CNN with these features are given in  Figs 15 and 16. The 

Decision Tree (DT) model shows zero instances of normal traffic being misclassified as flooding, 

resulting in no false positives. However, there is a significant issue with false negatives, where around 

84,000 instances of deauthentication attacks are wrongly classified as normal. On the other hand, the 

Convolutional Neural Network (CNN) exhibits notably low numbers of both false positives and false 

negatives, making it a superior choice for feature transferability. 

 

Figure 13: Transferability with DT 

 

Figure 14: Transferability with CNN 

CNN's superior performance in accuracy, precision, recall, and F1-score indicate its effectiveness in 

handling the classification task compared to DT. These results suggest that for this specific problem, 

CNN is a more suitable choice, as it provides a higher overall predictive capability with better precision 



 

 

and recall. The results demonstrated that these 6 features are transferable, achieving 90% and 97% 

F1 scores respectively. 

4.4. Recursive Feature Elimination for Reduced Feature Set 

DT-RFE was applied on 4 separate datasets (de-authentication/normal, disassociation/normal, 

Krack/normal, Kr00k/normal). A different subset of features has been extracted with three of the most 

useful features out of the mentioned 16 features. A stratified cross-validation score equal to 5-fold is 

used to avoid over-fitting and handle data imbalance problems. For each attack, different subsets of 

features are identified. These feature subsets could classify the incoming cyberattacks based on 3 top 

ranking features. Table 6 shows the combination of features for each attack.   

Table 6. Features for Each Attack 

Deauthentication Disassociation Krack Kr00k 

'frame.len',  'wlan.fc.type', 
'wlan.duration' 

'frame.len', 'wlan.fc.type',  

'wlan.duration' 

'radiotap. channel. freq', 

'wlan. duration', 

 'wlan.fc. protected' 

'frame.len',  

'wlan.fc.type', 

 'wlan.fc.subtype' 

 

Table 7 demonstrates the performance of algorithms on each attack. Three classifiers with the best 

performance including DT, RF, and ET were used for testing the AWID3 dataset. Random forest 

attained superficial results with maximum AUC and F1 scores for each attack. The decision tree 

completed the analysis in 2 seconds for de-authentication attacks. However, for the rest of the attacks, 

the decision tree was prone to overfitting.  

Table 7. Performance Metrics for Feature Reduction of Each Attack 

Model Accuracy  Precision  Recall  F1 score AUC score Execution 

time  

Deauthentication Attacks 

Random forest 99.99% 99.99% 99.99% 99.99% 99.99% 1min 50s 

Extra trees  99.33 % 99.40% 99.33% 99.35% 99.64% 1min 9s 

Decision Tree 99.18% 99.28% 99.18% 99.21% 99.56% 2.2s 

Disassociation Attacks 

Random forest 99.72% 99.73% 99.72% 99.72% 99.83% 57.7s 

Extra trees  99.92% 99.92% 99.92% 99.92% 99.93% 49.5 s 

Krack Attacks 

Random Forest 99.17% 99.18% 99.17% 99.16% 99.43% 27.5 s 

Extra Trees 99.88% 99.89% 99.88% 99.88% 99.78% 23 s 

Kr00k Attacks 

Random Forest 99.91% 99.91% 99.91% 99.91% 99.95% 3min 44s 

Extra Trees 99.81% 99.92% 99.81% 99.81% 99.88% 3min 18s 

 



 

 

The confusion matrices in Figs 17- 25 show the average results of all 10 folds for machine learning 

analysis. It is observed that with ET, approximately, only 150 instances were misclassified. 

 

Deauthentication Attacks 

 

Fig 15. Random Forest 

 

Fig 16. Extra Trees       

 

Fig 17. Decision Trees 

 

Disassociation Attacks 

 

Fig 18.  Random Forest 

 

Fig 19. Extra Trees 

 

 

Krack Attacks 

 

Fig 20. Random Forest 

 

Fig 21. Extra Trees 

Kr00k Attacks 



 

 

 

Fig 22. Random Forest 

 

Fig 23. Extra Trees 

It is simpler to understand the model's results when a more condensed collection of features is used. 

You can more easily see the significance of each aspect in classifying various attacks. The modelling 

process can be streamlined, model performance can be improved, and a better knowledge of the 

essential features driving attack classification can be obtained by choosing distinct feature subsets for 

classifying cyberattacks depending on the top-ranking features. When working with complicated, 

high-dimensional datasets, it is a useful strategy. 

4.5. Feature Generalization 

Generalization refers to the capability of the classification model to adapt to previously unseen data. 

In this experiment, the attack classification is performed to evaluate the generalization of the 

extracted features of each attack. The reduced feature subsets for de-authentication and 

disassociation attacks were used to perform analysis on the AWID dataset.  

Table 8 demonstrates the performance of feature generalization on the AWID dataset. AWID consists 

of two attacks from the AWID3 dataset which are de-authentication and disassociation attacks. The 

three most relevant features of each attack from AWID3 were tested on the AWID dataset with tree-

based models. For de-authentication attacks, RF, DT, and ET while for disassociation attacks, RF and 

ET were utilized.   

Table 8. Feature Generalization using AWID Dataset 

Model Accuracy  Precision  Recall  F1 score AUC score Execution 

Time 

Deauthentication Attack 

Random Forest 96.66% 96.86% 96.66% 96.65% 96.48% 5.77s 

Extra Trees  96.76 % 96.53% 96.76% 96.75% 96.59% 2 s 

Decision Tree 96.66% 96.87% 96.66% 96.65% 96.49% 111 ms 

Disassociation Attacks 

Random Forest 99.99% 99.99% 99.99% 99.99% 99.99 7 min 

Extra Trees  99.99% 99.99% 99.99% 99.99% 99.99 3 min 

 



 

 

The results confirm the feasibility of feature generalization and demonstrate that the extracted 

features from each type of attack can be effectively applied to another dataset with different network 

conditions for attack classification. 

4.6. Comparison with State-of-the-Art Techniques 

The proposed models exhibit impressive resilience against several cyberattacks, such as 

deauthentication, Krack, and Kr00k. These models have demonstrated the ability to efficiently identify 

and counteract these types of attacks, protecting wireless networks' security and integrity, through 

extensive testing and assessment. Even in the midst of the complexity of real-world network 

environments, these models can recognize patterns and abnormalities indicative of these particular 

attacks by utilizing significant machine learning and deep learning approaches. This robustness 

highlights the dependability and effectiveness of the proposed approach in defending against a variety 

of cyber-attacks, offering enhanced security to both network administrators. Since the imbalanced 

nature of data is maintained, the F1-score should be considered rather than accuracy for evaluation. 

The execution time of the proposed methods was less than the previous state-of-the-art techniques. 

Table 9 compares the proposed work performance measures with state-of-the-art techniques. Only 

the weighted values of the evaluation measures were considered.  

Table 9. Comparison with State-of-the-Art Techniques 

Model Features Classes Accuracy  Precision  Recall  F1 score AUC Balanced 

LightGBM [35] 5 3 82.57 82.33 82.57 82.18  - 

ET [4] 16 3 99.96 99.75 99.28 99.52 99.49% - 

MLP [4] 16 3 99.73 99.65 95.68 97.55 96.47%  

kNN [48] 30 2 99% - - -  ✓ 

Proposed 

work (DT) 

8 5 99.82 % 99.82% 99.82% 99.82% 99.90% - 

Proposed 

work (CNN) 

8 5 99.82%  99.82% 99.82% 99.82% 99.89% - 

 

Table 10 presents the outcomes of various models in terms of their performance metrics, including 

accuracy, precision, recall, and F1 score. To determine if the features could be applied to various 

network situations, these metrics were assessed using various sets of features. The results suggest 

that the proposed CNN model achieved a notable level of accuracy and well-balanced performance 

across precision, recall, and F1 scores, even with a smaller set of features. Furthermore, the 

performance of the Decision Tree (DT) models varied based on the number of features used, indicating 

the significance of feature selection in influencing the effectiveness of the models. 

Table 10. Transferability - State-of-the-Art Performance 

Model Features Accuracy  Precision  Recall  F1 score 

DT [4] 30 & 27 97.61 48.80 49.81 49.30 

DT [4] 13 99.63 98.69 93.48 95.93 



 

 

DT [4] 5 99.63 98.69 93.41 95.89 

Proposed CNN 6 97 98 97 97 

5. Conclusion and Future Works 

An adversary can access a victim’s critical details by launching a series of attacks on the network. 

Intelligent machine/ deep learning-based cyberattack detection mechanisms have gained popularity 

due to their high efficiency and automation. This study aimed at developing a Wi-Fi-based attack 

detection system. The decision tree with recursive feature elimination was used to extract the most 

meaningful features for a cost-effective, lightweight, and time-efficient system to detect cyberattacks. 

However, apart from 16 features, wlan_radio.signal_dbm with eight other relevant features 

significantly reduced false positives.  Different tree-based algorithms, such as decision tree, random 

forest, Light GBM, extra trees, MLP, and CNN have been used to detect four types of cyber-attacks 

(de-authentication, disassociation, Krack, and Kr00k) from the AWID3 dataset. In terms of accuracy, 

precision, recall, F1 score, and AUC, both Decision Trees (DT) and Convolutional Neural Networks 

(CNN) appear to perform exceptionally well. They obtain 99.82% accuracy for a five-class classification 

issue, which is comparable to or slightly better than other state-of-the-art models such as LightGBM, 

Extreme Trees (ET), and Multilayer Perceptron (MLP). The proposed approach showed that machine 

learning tree-based models would be appropriate for a lightweight IDS as it provides fewer 

computations with minimum execution time and better classification of attacks whereas MLP and CNN 

can be implemented for handling large and complex data. Furthermore, the evaluation of various 

metrics across extracted feature sets highlights the transferability of the features in diverse network 

contexts. The CNN model showcased impressive accuracy and a balanced performance with fewer 

features, while the DT models' effectiveness varied based on feature quantity, emphasizing the crucial 

role of feature selection. The features for each attack were extracted using DT-RFE. The three best 

models DT, RF, and ET were used to evaluate the extracted features, and RF along with ET achieved 

excellent results across all performance metrics including accuracy, precision, recall, F1 score, and 

execution time for attack detection. During the evaluation, overfitting occurred with DT for 

disassociation, Krack, and Kr00k attacks. Conclusively, features were utilized with the AWID dataset 

to find out if the extracted features were generic or not. Both deauthentication and disassociation 

attacks in AWID were evaluated where RF and ET achieved high AUC and F1 scores. This research 

provides both theoretical and practical implications in the field of secure Wi-Fi communication in 

enterprise networks. The study's practicality extends beyond specific datasets by taking into account 

the transferability of proposed features and models to various network contexts or situations. While 

the experimentation was carried out on benchmark Wi-Fi datasets, the absence of different 

benchmark datasets restricted the examination of other Wi-Fi network situations. Also, the suggested 

features are designed for Wi-Fi-based network setups which may limit their use in wired network 

settings. Despite this restriction, the study provides vital insights into Wi-Fi network security and sets 

the framework for future research to improve detection capabilities in a variety of network scenarios. 

The major shortcoming of this research is the unavailability of a proprietary dataset which is attributed 

to resource constraints, including budget, time, or the necessary infrastructure to collect and compile 

data for experimentation. For holistic security, future works can consider the development of newer 

datasets with attack and benign traffic from both enterprise and industrial networks and use different 



 

 

feature extraction and evaluation techniques for comparisons. The development of diversified 

datasets, exploration of different feature extraction methods, and rigorous evaluation can enhance 

the quality and applicability of intrusion detection systems in real-world network security. 

Collaboration and resource-sharing within the research community can also play a vital role in 

addressing these challenges. 
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