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Abstract

Cardiovascular disease (CVD) is the leading cause of premature death in the United

Kingdom with one type, coronary artery disease, killing more than twice as many women as

breast cancer. Conventional CVD risk factors have been shown to have less accuracy for

females who are considered low-risk. Recently, researchers have noted that breast arterial

calcification (BAC), which is regularly observed as an incidental finding on mammograms,

could be used to risk-stratify women for CVD.

In 2023, almost 2 million women attended breast screening clinics in England. Automatic

BAC detection on mammograms could provide vital additional cardiovascular information,

without the need for further invasive tests or radiation exposure, and could direct patients to

relevant clinical pathways or therapies.

As a first step in automating the BAC grading process, I developed deep learning mod-

els for BAC classification, object detection and segmentation using an anonymised dataset

which was annotated for the presence and location of BAC under the guidance of two consul-

tant radiologists. Data augmentation was used in both the classification and object detection

networks, increasing the training data size.

My modified ResNet22 network showed promise in classifying the presence or absence

of BAC at image level, attaining a test accuracy of 80%, indicating that this method could

be used as a simple flag for this purpose. I also used this network for feature extraction

in Faster R-CNN and YOLO BAC object detection models. Despite improving on a recent

similar study, these latter networks performed poorly with very low average precision scores

at several thresholds. As an improvement, this study developed a DeepLabv3+-based BAC

segmentation network which doubled the IoU obtained by another study using a similar model

and achieved a BFScore of over 70% specifically for BAC.

Based on the findings of this research, a two-step pipeline is recommended with our

classifier triaging mammographic images for BAC and our segmentation model providing an

indication of the extent of its presence. This could provide the basis for further research in



order to realise the potential of concurrent, automatic BAC grading for women undergoing

mammographic imaging.
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1 | Introduction

1.1 Research Motivation

Cardiovascular disease (CVD) is the leading cause of premature death in the United King-

dom with one type, coronary artery disease (CAD), killing more than twice as many women

as breast cancer (British Heart Foundation, 2022). While risk algorithms such as QRISK3

(Hippisley-Cox & Coupland, 2017) can predict the likelihood of cardiovascular events over the

next ten years, conventional risk factors such as high blood pressure, smoking and cholestrol

levels have been shown to be less accurate when applied to those considered low-risk and

especially to women (McClintic, McClintic, Bisognano, & Block, 2010). Magni et al. (2023)

believe that this has led to both women and primary care physicians underestimating the

risk of developing CVD, noting that the latest prediction models, while supplying age- and

sex-specific multipliers, do not include female-specific risk factors.

Breast arterial calcification (BAC), shown in Figure 1.1, is regularly observed on mam-

mograms as a non-actionable incidental finding. It results from the diffuse calcification of

the media of small to medium-sized mammary arteries (Abi Rafeh et al., 2012) and is found

along the circumference of the media giving a “train track” appearance (Polonsky & Green-

land, 2017). Its prevalence was found to be 12.7% in breast screening programmes, rising

from 10% in 40 year olds to 50% in 80 year olds (Hendriks et al., 2015). Recent research has

led to BAC being considered as a potential female-specific risk factor for cardiovascular dis-

ease. Nudy, Asmaro, Jiang, and Schnatz (2022), in a ten-year follow-up prospective study

of 1039 patients, found that BAC-positive participants were 3.14 times more likely to develop

coronary artery disease and 5.10 times more likely to have a stroke. Similarly, Iribarren et al.
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Figure 1.1: Breast arterial calcification.

(2022), in a cohort study of 5059 post-menopausal women aged 60-79 years, found that BAC

is associated with a 1.51 times increased risk of incident atherosclerotic cardiovascular dis-

ease (ASCVD) and a 1.23 times increased risk of incident global CVD in multivariate models

that adjusted for traditional CVD factors. The latter authors believe that these results show

that the assessment and reporting of BAC status has the potential to change clinical prac-

tice and impact primary CVD prevention for women. Furthermore, utilising mammographic

images to screen for BAC affords the possibility of no additional invasive tests or radiation

exposure to the patient while providing useful supplementary diagnostic information (Magni

et al., 2023).

The grading of BAC, essential for the triage and management of potential cardiovascular

patients, is not a straightforward task, however. Arterial calcifications can exhibit topological

complexity (K. Wang, Khan, & Highnam, 2019), are sometimes subtle and can be easily

overlooked, especially as patterns can be mimicked by image noise or image processing

algorithms (Mordang, 2018). Manual BAC segmentation is known to be tedious, expensive,

time-consuming and subjective (J. Z. Cheng, Chen, & Shen, 2012; Ghamdi, Abdel-Mottaleb,

& Collado-Mesa, 2020). Despite Mantas and Markopoulos (2016) suggesting it would be a

reasonable policy to inform women of the presence of BAC on their mammogram, it is not

routinely reported. Some researchers have used deep learning to address these challenges

2



Figure 1.2: Deep learning skips segmentation, feature extraction and selection steps
(Suzuki, 2017).

in order to automate the process.

Deep learning is an area of machine learning that uses multi-layer artificial neural net-

works to automatically learn representations that are expressed in terms of other simpler

representations with each layer in the network refining the representation into more abstract

levels (Gonzalez & Woods, 2018; Goodfellow, Bengio, & Courville, 2016). It has subse-

quently replaced the need for manual segmentation, feature extraction and selection tradi-

tionally associated with machine learning as shown in Figure 1.2. In a review of deep learning

in medical imaging, Soffer et al. (2019) note that deep neural networks have been used for

a wide range of tasks including organ classification and disease detection, image segmen-

tation and optimisation. They also state that convolutional neural networks (CNNs), a type

of network especially suited to the grid-like structure of image data, are now state-of-the-art

in image analysis.

A small number of recent papers using deep learning have shown promising results

in BAC classification, detection and segmentation (Ghamdi et al., 2020; Guo et al., 2021;

R. Khan & Masala, 2023; Mobini et al., 2023; J. Wang et al., 2017; K. Wang et al., 2019).

Limitations of these papers included self-described low image quality (Ghamdi et al., 2020),

small datasets (Ghamdi et al., 2020; R. Khan & Masala, 2023; Mobini et al., 2023; K. Wang et

al., 2019) with relatively larger datasets limited to a single site and equipment manufacturer

(Guo et al., 2021). No paper employed full-image BAC classification and only one paper

used object detection techniques (K. Wang et al., 2019). Two papers (Guo et al., 2021;

3



K. Wang et al., 2019) used their own custom metrics to evaluate BAC segmentation making

comparisons difficult.

1.2 Research Methodology

Burrell and Morgan (1979) identified two approaches to social science research methodol-

ogy, namely idiographic and nomothetic. The idiographic approach places an emphasis on

getting close to one’s subject and allowing them to relate its nature and characteristics dur-

ing the investigative process mainly from case studies and action research. The nomothetic

approach, on the other hand, emulates methods employed in the natural sciences with for-

mal mathematical analysis, hypothesis testing and both experimental and non-experimental

methods such as laboratory experiments and surveys respectively. Iivari, Hirschheim, and

Klein (1998) add a third approach for information systems development, constructive meth-

ods, which are concerned with the design and creation of artefacts that may be conceptual

such as models and frameworks or technical such as software. Mingers (2001) notes that

different research methods focus on different aspects of reality and therefore a richer un-

derstanding can be obtained by combining several approaches in a pragmatic and pluralist

methodology.

Oates, Griffiths, and McLean (2022) note that most recent computer systems research is

based on a positivist scientific method similar to the nomothetic approach mentioned above.

With this paradigm, the world is ordered and regular, not random, and it can be investi-

gated objectively, mainly through experiments. This allows for the testing of hypotheses and

the use of quantitative data and mathematical techniques in a process of observation and

measurement. Combining this approach with constructive methods allowed us to iteratively

develop models for BAC classification, detection and segmentation.

The above theoretical methodological approaches were implemented using CRISP-DM

(CRoss-Industry Standard Process for Data Mining)(Chapman et al., 2000), which is the

de facto standard for applying a process model in data mining projects (Schröer, Kruse, &

Gómez, 2021). This technology-agnostic, iterative process, shown in Figure 1.3, consists
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of six phases: business understanding, data understanding, data preparation, modelling,

evaluation and deployment. CRISP-DM’s informal methodology also provides flexibility by

not enforcing a rigid framework, evaluation metrics or correctness criteria (Niakšu, 2015).

The sequence is not fixed and can move back and forth between stages. (Namora & Jan

Everhard Riwurohi, 2022).

Figure 1.3: Phases of the CRISP-DM Process Model for Data Mining. From Wirth and Hipp
(2000).

The first stage, business understanding, converts the core project objectives into a

deep learning problem and a preliminary project plan designed to achieve the objectives.

This was achieved by performing a systemic literature review which investigated BAC, computer-

aided detection and deep learning in order to identify gaps and potential areas for improve-

ment in automatic BAC detection. The development of three separate models for classifica-

tion, detection and segmentation aimed to assist radiologists in determining the presence or

absence of BAC, where it is located and how extensive it is.

The second stage, data understanding, concerns collecting and understanding the

data, identifying any problems and/or initial insights. Wirth and Hipp (2000) state that there

is a close link between the data understanding and business understanding phases, i.e. de-
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vising the deep learning problem and project plan requires at least some understanding of

the data. Niakšu (2015) proposed an extension to CRISP-DM, CRISP-MED-DM, to reflect

the non-uniformity of healthcare data in general. This was not needed with our dataset as it

was composed of breast screening mammography cases, each in DICOM format.

Stage 3, data preparation, encompasses all activities to construct the final dataset. This

included data annotation and validation and also image pre-processing such as DICOM to

PNG conversion, image cropping and padding, data augmentation and the application of

CLAHE (Contrast Limited Adaptive Histogram Equalisation).

In the fourth stage, modelling, various modelling techniques are chosen and applied and

their parameters optimised. In this project, this entailed selecting suitable architectures for

the deep learning task at hand and refining various hyperparamters such as learning rate,

dropout rate, batch size, loss function and normalisation techniques.

Stage 5, evaluation, thoroughly evaluates the model and reviews the steps executed to

construct it, making sure it achieves the business objectives from phase 1. In our case, mod-

els were evaluated using pre-stated metrics and compared to the results of similar projects

in the literature. It was then ascertained whether the research question, hypotheses and

objectives had been achieved.

Schröer et al. (2021) note that the last phase, deployment, is absent from most research

projects using CRISP-DM. If present, the model should be organised and presented in a way

that customers can use it. It was intended in this study that the trained deep learning models

would be made available on Github.com for other researchers to access.

The relationship of CRISP-DM phases to the thesis structure is shown in Figure 1.5 in

Section 1.5.

1.3 Research Aim & Objectives

Although adoption and deployment issues are an important consideration for the use of AI

in a clinical setting, the first step is to develop an accurate model. The aim of this study is to

answer the research question, namely:
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• What are the most effective deep learning architectures for the automatic detection,

classification and segmentation breast arterial calcification in digital mammography

images?

In order to achieve this aim, the following objectives will need to be met:

• To conduct a review of the literature regarding BAC and its detection, classification and

segmentation using automatic, computerised methods.

• To obtain, pre-process, augment and annotate a dataset of mammography images in

preparation for BAC model training.

• To validate BAC ground truth annotations using an observer reader study involving two

consultant radiologists.

• To develop and train deep learning models using MATLAB suitable for BAC detection,

classification and segmentation.

• To compare and evaluate the model results with other studies in the literature.

Hypotheses to be tested include:

• Our deep learning algorithms can be used successfully for image-level classification

of BAC.

• Our deep learning algorithms can be used successfully for region-level BAC object

detection.

• Our deep learning algorithms can be used successfully to more accurately segment

BAC at pixel-level than the current state-of-the-art.
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1.4 Thesis Outline

Introduction

CADe in MammographyBackground Deep Learning

Experimental Set-up

BAC Object Detection ModelBAC Classification Model BAC Segmentation Model

Results Results Results

Discussion Discussion Discussion

Conclusions and Future Work

Literature Review

BAC Model Development

Figure 1.4: Thesis structure.

The structure of the thesis is shown above in Figure 1.4 and each chapter is summarized

as follows:

Chapter 1. Introduction This chapter outlines the motivations for the research as well as

the theoretical basis for the methodology used in addition to identifying research hypotheses

and objectives.

Chapter 2. Background Chapters 2 to 4 make up the main literature review. Chapter

2 provides the background to breast arterial calcification and its links to cardiovascular risk

factors and coronary atherosclerosis. It finishes with an overview of current practices in BAC
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reporting and grading.

Chapter 3. Computer-aided Detection in Mammography This chapter introduces CADe

and its use in mammography along an overview of full field digital mammography. It con-

cludes with an examination of BAC detection using CADe which traditionally employed ma-

chine learning techniques.

Chapter 4. Deep Learning This chapter documents the rise of deep learning and the

success of CNNs in particular. CNN components are outlined along with networks suited

to classification, object detection and segmentation tasks. Applications of deep learning in

medical imaging and breast imaging are investigated, finishing with an overview of the core

literature relating to its use in BAC classification, object detection and segmentation.

Chapter 5. Experimental Set-up This chapter outlines the various experimental aspects

of the study beginning with the dataset and followed by the annotation, image-wise and

pixel-wise, and pre-processing, including data augmentation, of the images. An annotation

validaton reader study involving two radiologists is also described. The chapter finishes with

an outline of the development environment hardware and software.

Chapter 6. BAC Classification Model Chapter 6 describes the ResNet22 BAC classifica-

tion model including transfer learning and the network training undertaken with reference to

optimisation and metrics. Results are presented with a subsequent discussion and summary.

Chapter 7. BAC Object Detection Model This chapter begins with an overview of multi-

stage and single-stage detectors and progresses to describing the training one of each type,

namely Faster R-CNN and YOLOv4 respectively. Results are presented with a subsequent

discussion and summary.

Chapter 8. BAC Segmentation Model Chapter 8 outlines a preliminary evaluation stage

where several models were investigated to acsertain their suitability for BAC segmentation. A

DeepLabv3+-ResNet18 model was chosen and its training is further described. Results are
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presented in addition to evaluating a promising post-processing technique. This is followed

by a discussion and summary.

Chapter 9. Conclusions and Future Work In the final chapter, conclusions are made

including the main contributions of the research. Limitations of the study and possible future

research directions are also outlined.

1.5 CRISP-DM Phase Relationship to Thesis Structure

The relationship between CRISP-DM phases and the thesis structure is shown in Figure 1.5.

Business understanding correlates to the introduction and literature review chapters while the

two data phases are reflected in the experimental set-up chapter. Modelling and evaluation

phases correspond to the BAC model development chapters and the final conclusions and

future research recommendations. There was no deployment phase required in this project

although trained models were made available on Github.com.

Business Understanding

Data Understanding

Data Preparation

Modelling

Evaluation

Deployment

Introduction

Literature Review

Experimental Set-up

BAC Model Development

Conclusions and
Future Work

CRISP-DM Phases Thesis Structure

Figure 1.5: Relationship of CRISP-DM phases to the thesis structure.
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2 | Background

2.1 Breast Arterial Calcification

(a) Breast vascular anatomy. From Hogg et al.
(2015).

(b) BAC on mammogram

Figure 2.1: Breast vascular anatomy and BAC.

Figure 2.1a above shows the vascular anatomy of the breast. Around sixty percent of

the total breast arterial supply arises from the perforating branches of the internal mammary

artery. The rest is derived from the thoracoacromial artery, the lateral thoracic artery and the

intercostal arteries (Hogg et al., 2015). Venous drainage typically mimics the arterial supply

(McGuire, 2016).

Breast arterial calcification (BAC), shown in Figure 2.1b above, results from the diffuse
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calcification of the media of small to medium-sized mammary arteries and is a common

incidental finding on mammograms (Abi Rafeh et al., 2012). BAC is found along the circum-

ference of the media giving a “train track” appearance (Polonsky & Greenland, 2017) and

makes the vessel stiffer (Shah et al., 2014) although it remains non-occlusive, i.e. it does

not block blood flow (Trimboli et al., 2021). It is associated with increasing age and its preva-

lence was found to be 12.7% in breast screening programmes rising from 10% in 40 year

olds to 50% in 80 year olds (Hendriks et al., 2015). Reddy, Son, Smith, Paultre, and Mosca

(2005) note that BAC prevalence varies based on race/ethnicity with Hispanic women having

the highest prevalence of BAC at 34%, whereas Asian women have the lowest prevalence

of only 7%. Prevalence was found to be 25% in the white population and 24% in African-

American women. Lower prevalence was also found among those who are Ashkenazi1,

nulliparous2 or pre-menopausal or those who have dense breasts or breast implants or who

are currently using hormone replacement therapy (Montgomery et al., 2022).

2.2 BAC and Cardiovascular Risk Factors

Researchers have investigated the link between BAC and cardiovascular risk factors and

whether BAC itself could be considered as a potential female-specific risk factor for cardio-

vascular disease.

The idea of cardiovascular risk factors was first mooted during the Framingham Heart

Study which amalgamated several factors into a single risk score to estimate the absolute

CVD risk over a ten year period (Mahmood, Levy, Vasan, & Wang, 2014). Risk factors

have been categorised as medical or lifestyle (British Heart Foundation, 2018), controlled or

conventional (Hajar, 2017) and, perhaps most accurately, as modifiable or non-modifiable

(World Heart Foundation, 2017). In a recent study examining the impact of cardiovascular

risk factors on cardiac structure and function, Petersen et al. (2017) found the most important

risk factors to be: age, sex, ethnicity (non-modifiable) and systolic blood pressure, diastolic

blood pressure, smoking, levels of physical activity/exercise, body mass index (BMI), high
1One of two major ancestral groups of Jewish people whose ancestors lived in France and Central and

Eastern Europe, including Germany, Poland, and Russia.
2Women who haven’t given birth.
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cholesterol, diabetes and alcohol intake (modifiable). A recent state of the art review (Bays

et al., 2022) adds unhealthy nutrition, kidney dysfunction and genetics/familial hypercholes-

terolemia.

Iribarren et al. (2004) identified links between BAC and age, having had three or more

children and diabetes, while finding an inverse association with smoking. They noted that

BAC was significantly associated with a 1.32-fold increased risk of coronary heart disease,

a 1.41-fold increased risk of ischaemic stroke and a 1.52-fold increased risk of heart failure.

They concluded that screening mammograms may be a useful additional tool for the early

detection of CVD in women.

Hendriks et al. (2015), in a systematic review and meta-analysis covering data from 52

articles and over 90,000 women, also found that BAC appears to be associated with an

increased risk of cardiovascular disease events. Increased prevalence of BAC was found to

be associated with several risk factors including age, diabetes, having children and breast-

feeding. Smoking and hormone replacement therapy were found to be associated with a

decreased prevalence of BAC. This could be due to the effects of smoking on weight and

estrogen metabolism but the authors state that there is no satisfactory explanantion from the

literature. No associations were found for hyperlipidemia or hypertension. These findings

suggest that the aetiology of BAC may be different to the intimal atherosclerotic process and

they conclude that BAC may provide a novel route to a better understanding and treatment

of cardiovascular disease.

A more recent 23 year retrospective cohort study (Galiano et al., 2022) also examinied

the relationship between BAC and cardiovascular events, finding that BAC is an additional

risk factor for those women 59 years of age and under, especially diabetics. They recorded

a much higher number of deaths among those with BAC (42.1%) than those without (3.1%).

These results were echoed by another 10 year cohort study (Nudy et al., 2022) which found

that patients with BAC were 5.10 times more likely to have a stroke and 3.14 times more

likely to develop coronary artery disease.
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2.3 BAC and Coronary Atherosclerosis

Coronary atherosclerosis (CA) is a disease with multiple clinical manifestations ranging from

asymptomatic to stable angina, acute coronary syndrome, heart failure and sudden cardiac

death (Boudoulas, Triposciadis, Geleris, & Boudoulas, 2016). Plaque develops in the wall

of a coronary artery, remodelling the artery so that the luminal area of the vessel is en-

larged. Several papers recommend coronary arteriography in all patients with suspected

CA given the limitations of other diagnostic methods such as stress testing (could be done

too late) and multi-slice computed tomography (CT) (may not define the degree of stenosis)

(Arbab-Zadeh, 2016; Bober & Jahangir, 2015; Gould, 2009). Henein, Vancheri, Bajraktari,

and Vancheri (2020) indicate that the choice of imaging technique depends on the cardiovas-

cular risk of the patient with non-invasive modalities, such as CT, CT coronary angiography

(CTCA) and cardiac magnetic resonance (CMR), being more suitable in primary prevention

for low-to-intermediate populations in order to improve risk stratification and to identify in-

dividuals who may benefit from individual treatment. The coronary artery calcium (CAC)

score determined by CT, therefore, plays an important role in cardiovascular risk stratifica-

tion, showing a significant association with the medium- or long-term occurrence of major

cardiovascular events (Neves, Andrade, & Monção, 2017). Calcification is identified on a

CT image as areas of hyper-attenuation of at least 1mm2 with >130 Hounsfield units (HU),

which is a measure of radiodensity, or 3 adjacent pixels (Agatston et al., 1990).

The relationship between BAC and coronary atherosclerosis as diagnosed on coronary

angiography has been investigated by several studies. Both Abi Rafeh et al. (2012) and

Jiang, Clark, Singh, Juhn, and Schnatz (2015) noted that BAC on mammography may not

be a benign finding as its presence increases the risk of having obstructive coronary artery

disease (CAD) by 60% and it is significantly associated with stroke. Maas et al. (2007) sim-

ilarly identified the association of BAC to subsequent CAD development. Forty-four (76%)

women with BAC on mammograms at baseline had coronary artery calcifications after a

mean period of 9 years, whereas 218 (49%) women without BAC had coronary calcifica-

tions at follow-up. A more recent study by Kelly et al. (2018) found that the presence of
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BAC correlated to a CAD-RADS (coronary artery disease classification) score of 3, i.e. re-

quiring functional cardiac imaging. Similar results with asymptomatic women led Yoon et al.

(2018) to conclude that BAC evaluation provides an independent and incremental value over

conventional risk algorithms.

Chadashvili, Litmanovich, Hall, and Slanetz (2016) undertook a study of 145 patients

who underwent coronary CT within a year of screening or diagnostic mammography and

found that BAC correlated with a CAC score of >11 which indicates mild or greater risk of

developing CAD. They concluded that BAC can be used as a potential marker for increased

risk of developing CAD. This finding was replicated by Minssen et al. (2022) in a retrospective

study of patients who had mammogram and CT thorax exams between 2009 and 2018.

Interestingly, the highest diagnostic accuracy of BAC to detect CAC (93.2%) was noticed in

women under 60 years.

Margolies et al. (2016) also sought to determine whether BAC could predict CAC. BAC

was evaluated using a score (from 0 to 12) derived from the number of vessels involved

in each breast, the longest length of vessel involvement and the density of calcium in the

most severely affected segment. They found a strong quantitative association between BAC

with CAC and considered BAC to be superior to the Framingham Risk Score and Pooled

Cohort Equations in area under curve (AUC) comparisons of BAC > 0 and risk scores for

the presence of CAC. Nasir and McEvoy (2016) reiterate the latter study’s positive predictive

value of nearly 70% for identifying women with the presence of CAC and state that BAC

detection should be actively pursued in all mammograms performed and its reporting and

management tracked as part of core quality measures.

In some studies the association between BAC and CAC has been weak or absent. A

cross-sectional study by Moradi, Adibi, and Abedi (2014) found no significant correlation

of BAC severity to CAC severity. Matsumura et al. (2013) carried out a case-control study

comparing 98 women with BAC with a control cohort of 104 without BAC and found that BAC

was not predictive of a CAC score > 0 although in an age-adjusted model BAC presence

did correlate with a high risk calcium score. Another more recent study examining BAC and

atherosclerotic CVD in an Australian cancer population (S. C. Lee et al., 2023) found that
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while patients with BAC were 1.37 times more likely to experience a cardiovascular event, it

was not statistically significant.

Erbil et al. (2018) previously recommended age-controlled studies with longer follow-ups

in order to address this discrepancy and to maximise the potential of mammography as a

“vascular screening” tool. Since then, a recent study (Iribarren et al., 2022) found a 1.51

times increased risk of incident atherosclerotic CVD (ASCVD) in post-menopausal women

with the authors stating that BAC should be considered a risk-enhancing factor for ASCVD

and that it has potential to change clinical practice in primary CVD prevention. The same

team also found an association between BAC and atrial fibrillation (AF) in women over 70

(Iribarren et al., 2023), noting that BAC could inform who to screen for AF in that age cohort.

2.4 BAC Reporting and Grading

Iribarren and Molloi (2013) noted that early BAC evaluation studies were based on the pres-

ence or absence of BAC rather than a gradation and they suggested future studies should

look at the role of gradation in the prediction of CVD outcomes. Polonsky and Greenland

(2017) advocated a grading system that does not compromise workflow and recommended

mild, moderate and severe grade values. A BAC score from zero to twelve was introduced

by Margolies et al. (2016) based on the number of vessels in each breast, the longest length

of vessel involvement and the density of calcium in the most severely affected segment. In

addition to the significant association of the total BAC score, each of the three components

of the BAC score was quantitatively related to CAC.

Several studies (Heaney et al., 2022; Mostafavi et al., 2015; Ružičić et al., 2018a, 2018b)

use or recommend a four-point Likert scale as illustrated in Figure 2.2 with Grade 0 repre-

senting no vascular calcification and Grade 3 indicating severe, coarse, or tram track calcifi-

cations affecting three or more vessels. The Canadian BAC awareness study (Heaney et al.,

2022) also adds a suggested script for grade 3: “There are severe coarse vascular or tram

track calcifications affecting three or more vessels in the breasts (Grade 3). A strong associ-

ation between breast arterial calcifications and cardiovascular disease has been identified in
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Figure 2.2: Grading of breast arterial calcifications: Grade 0: No vascular calcification.
Grade 1: Few punctate vascular calcifications, without coarse, tram-track, or ring calcifi-
cations. Grade 2: Coarse vascular calcification or tram-track calcification in fewer than three
vessels. Grade 3: Severe, coarse, or tram track calcifications affecting three or more ves-
sels. From (Heaney et al., 2022).

multiple studies. Consider correlation with cardiovascular risk factors as clinically indicated.”

Ružičić et al. (2018a) added “four recognized risk factors” - age, blood sugar, total choles-

terol and BMI to their BAC Likert scale to create the BACCADS (Breast Arterial Calcification

and Coronary Artery Disease Scale) scoring system. Ordinal values of risk factor levels (total

CAD score) and the BAC Likert scores were combined as shown below to create the total

BACCADS score:

• BAC score (0-3).

• The total CAD score (0-3) = (age category + glycated haemoglobin category + total

triglycerides category + body mass index category) / 4.

• The total BACCADS score (0-6) = BAC score + total CAD score.

The BAC score, total CAD score and BACCADS score were evaluated on their ability to

predict a patient’s known SYNTAX score, which is a measurement of CAD severity (Neumann

et al., 2018). As Figure 2.3 shows all three scales were very good at detecting patients with

a SYNTAX score > 22 (intermediate-to-high severity CAD) with the BACCADS score better

than either risk factors or the BAC scale alone.

In a multi-ethnic quantitative study of BAC gradation and CVD, Iribarren et al. (2017)

used a BAC mass value determined by image densitometry applied to raw digital mam-
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Figure 2.3: The ROC (Receiver Operating Characteristic) curves of BAC scale, CAD score
and the total BACCADS score in the dissociation SYNTAX score patient groups (examined
status - SYNTAX score >22). From (Ružičić et al., 2018a).

mograms. This technique was developed previously using standard digital mammography

hardware and considered the effects of scatter correction, breast thickness, breast density,

anatomic background and magnification error (Molloi et al., 2009; Molloi, Xu, Ducote, & Irib-

arren, 2008). Their study found the overall prevalence of BAC to be 26% with a mean (SD)

BAC mass of 12 (23) mg and a range of 0-342 mg. The authors stated that, in future, they

aimed to study BAC mass associations with multiple risk factors and markers and investigate

the role of BAC in the prediction of CVD and whether adding BAC mass to prediction models

based on traditional risk factors improves reclassification of risk for CVD as a whole. This

work has still to come to fruition.

Three studies investigated the awareness among radiologists in Canada, Europe and

the United States of the association of BAC and higher cardiovascular risk (Brown, Wahab,

Zhang, Smetherman, & Mahoney, 2022; Heaney et al., 2022; Trimboli et al., 2021). They

found a high level of knowledge of the link and a wide range of BAC reporting levels from 16%

in Canada to 61.9% and 87% in Europe and the United States respectively. Despite this, the

three studies found that most reported BAC in a binary fashion for presence/absence and it

was rarely reported quantitatively. Only 1% of radiologists in the US study provided a BAC

score and only one radiologist (of 234 respondents) in the EU study performed “quantitative

measurement”. Trimboli et al. (2021) believe this may be due to the lack of validated and
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reproducible quantification methods that allow for cardiovascular risk stratification and further

state that this may be a barrier to standardised BAC reporting.

The literature has shown that BAC has the potential to be a female-specific risk factor for

cardiovascular disease with BAC-positive patients being over 5 times more likely to have a

stroke and over 3 times nore likely to develop coronary artery disease. Despite this, there is a

wide range of reporting levels and grading methods with the vast majority of radiologists not

providing a BAC score or any quantitative measurement. The situation could be improved by

applying computer technology to automate the latter processes. The next chapter examines

computer-aided detection in mammography and how it has been used for BAC detection

using traditional machine learning techniques.
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3 | Computer-aided Detection (CADe) in

Mammography

3.1 Introduction

Computer-aided detection (CADe) is a type of CAD (Computer-aided Diagnosis) which has

been defined as a diagnosis made by a radiologist who uses the output of a computer anal-

ysis of images when creating their report (Nishikawa, 2010). CADe software identifies and

marks suspicious areas on an image in order to aid radiologists in minimising interpretation

errors. CADx (Computer-aided Diagnosis) is another type of CAD that helps radiologists de-

cide whether a patient needs a biopsy or not. CAD refers to the whole field and comprises

both CADe and CADx.

Winsberg, Elkin, Macy, Bordaz, and Weymouth (1967) first proposed an automated sys-

tem for reading mammograms using a facsimile scanner and a CDC 160A computer. The

reason for doing so was the “problems inherent in the routine viewing of large numbers of ex-

aminations of presumably asymptomatic patients”. These problems still exist as the number

of mammograms each year in the United States, for example, has risen to 37 million while

radiologist numbers have decreased (Harvey et al., 2019).

Boyer, Balleyguier, Granat, and Pharaboz (2008) noted that breast density and difficulty

of interpretation, even for radiologists, led to fatigue, lack of attention and failure of detection.

Pisano et al. (2005) found that 45% of women who had cancer were given a normal diag-

nosis on screening mammography. Significant inter- and intra-observer variation also exists

with Beam, Layde, and Sullivan (1996) reporting that the sensitivity of radiologists reading
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screening mammograms could vary by as much as 45%.

3.2 The Introduction of CADe in Mammography

FDA (US Food and Drug Administration) approval was granted to two commercial mam-

mography CADe systems, R2 image checker® and iCAD Second Look®, in 1998 and 2002

respectively. These systems converted analog screen film images to digital using a feeder

as shown in Figure 3.1 and applied machine learning techniques before presenting areas of

interest to the radiologist.

Figure 3.1: iCAD Second Look® input tray.

Earlier studies had indicated the potential of CADe. Chan et al. (1990) found that CADe

could improve radiologists’ performance in detecting clustered micro-calcifications. An ob-

server study by Getty, Pickett, D’Orsi, and Swets (1988) showed that general radiologists,

when aided by CADx in classifying breast lesions as benign or malignant, could perform

at a level comparable with unaided expert breast radiologists. After FDA approval, Warren

Burhenne et al. (2000) reported that image checker® had the potential to reduce radiologists’

miss rate by 77%.

Cole et al. (2014) examined the impact of two CADe systems (R2 image checker® and
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iCAD Second Look®) on radiologist performance. Three hundred cases were retrospec-

tively reviewed by 29 radiologists using either system. The authors found that although both

systems increased the AUC (area under curve) and the sensitivity of the readers, the aver-

age differences were not statistically different. Interestingly, they state that radiologists rarely

changed their initial diagnostic decision after using CADe, regardless of which system was

used.

Figure 3.2: iCAD Second Look® System

CADe was initially seen as a tool to augment radiologists by lowering false negatives

and reducing the frequency of false positives. It did this by overlaying markings on top of

the mammography image, as shown in Figure 3.2, indicating areas where CADe has pro-

cessed and detected as potentially representing a malignant feature (Harvey et al., 2019).

Early algorithms utilised feature extraction via machine recognition of hand-engineered vi-

sual motifs. For example, image checker® M1000 detected spiculated lesions by identifying

radiating lines emerging from a 6mm centre within a 32mm circle (Taylor, Champness, Given-

Wilson, Johnston, & Potts, 2005). Feature extraction enabled rule-based classification using

decision trees, support vector machines (SVMs) or multi-layer perceptrons.

3.3 Full Field Digital Mammography

Kotre and dos Reis (2015) acknowledge that mammography is one of the most technically de-
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manding examinations in radiology ranging from 20-100µm high density micro-calcifications

to low contrast masses - all against a background of mixed densities. Despite the fact that

pathology can sometimes be difficult to demonstrate, they note that mammographic tech-

nology aims to identify structural or morphological differences in tumours such as tissue

masses, angiogenesis, asymmetry and architectural distortion.

The advent of full field digital mammography (FFDM) replaced film screen technology

that had been in use for 100 years. FFDM uses a digital detector to capture x-rays passing

through the breast in order to produce a latent image that is subsequently processed by a

digital computer. The digital image processing techniques enhance the visibility of detail and

contrast of the image in order to maximise the detectability of breast lesions (Seeram, 2019).

The main components of the system and processing steps are shown in Figure 3.3.

Figure 3.3: (a) FFDM equipment (b) The basic steps in producing the image. From Seeram
(2019).

The main advantages of FFDM include a wider dynamic range, greater bit depth, the use

of post-processing techniques to enhance image quality and the ability to communicate with

a Picture Archiving and Communication System (PACS) (Seeram, 2019). FFDM also allows

for a more efficient acquisition of the mammogram through (a) the absorption of most of the

x-rays transmitted through the breast, (b) the reduction of quantum noise and (c) a reduction

in radiation dose (Yaffe, 2009). The introduction of FFDM meant that mammography imaging

data became available in a format that lent itself to computational analysis (Krupinski, 2010).

Katzen and Dodelzon (2018) also believe that the permitting of simultaneous billing for FFDM

and CAD in the US encouraged the growth of CADe there.
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3.4 BAC Detection using CADe

Studies evaluating CADe for breast cancer detection have mostly used commercial systems

whereas studies investigating BAC detection have been more experimental and small-scale,

employing machine learning techniques. Machine learning is a subset of artificial intelligence

(AI) that has been used in a variety of domains to analyse complex datasets and to find

patterns and relationships therein without being explicitly programmed (Lakhani et al., 2017).

The performance of a machine learning algorithm depends on the representation of the data

given to it with each piece of information included in the representation known as a feature

(Bengio, Courville, & Vincent, 2012). Traditionally, in machine learning, these features were

hand-engineered or provided by domain experts.

J. Z. Cheng, Chen, Cole, Pisano, and Shen (2012) leveraged calcification and “vessel-

ness” cues into an integrated framework for detection of vessels with calcium deposits on

mammograms. They used a tracking with uncertainty scheme to generate multiple sam-

pling paths and subsequently compiled these paths into super-paths which are then linked

using an iterative process. Their study also correlated the association of BAC severity to the

degree of cardiovascular risk. Several quantitative measurements for the evaluation of BAC

severity were computed including the number of vessels with calcium deposits, vessel length

and diameter and calcification density. The authors concluded that their proposed method

could potentially be used as a convenient BAC measurement tool in replacement of tedious

manual delineation tasks.

J. Ge et al. (2008) employed a k-segments algorithm to find a set of line segments that

could suggest the presence of calcified vessels. A four-feature linear discriminant analysis

(LDA) reduced segments not linked to BAC. Adjacent segments were linked and dilated with

morphological dilation to identify areas of BAC.

In order to remove BACs as false positives in cancer lesion detection, Mordang, Gubern-

Mérida, den Heeten, and Karssemeijer (2016) used a GentleBoost classifier trained on micro-

calcification features describing their shape, topology and texture. This increased the per-

formance of the CADe system in finding micro-calcifications and showed that the same sen-
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sitivity at one false positive per 50 cases in the CADe system without BACs removal can be

achieved at one false positive per 80 cases in the CADe system with BACs removal.

More recently, Mazidi, Roobottom, and Masala (2019) used a line-strength algorithm

followed by a region-growing algorithm to automatically detect and grade BAC on a small

dataset of 26 patients (104 images). Despite this, they achieved 82% accuracy in classifying

low-grade and high-grade BAC. Classifying four individual grades of severity was less suc-

cessful at 40.9%, however, although they concluded that this type of system would be useful

to radiographers and radiologists in diagnosing and grading BAC.

Since 2015, machine learning techniques in CADe have largely been replaced by deep

learning with extracted features being superceded by automatic feature extraction. This has

been aided by more robust networks and the ability to handle more complex data (Loizidou,

Elia, & Pitris, 2023). The next chapter gives an overview of deep learning and its application

in breast imaging in general, finishing with an analysis of the literature relating to its use for

BAC detection, classification and segmentation.
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4 | Deep Learning

4.1 Introduction

Deep learning is an area of machine learning that uses multi-layer artificial neural networks

to automatically learn representations that are expressed in terms of other simpler represen-

tations with each layer in the network refining the representation into more abstract levels

(Gonzalez & Woods, 2018; Goodfellow et al., 2016). Deep learning has subsequently re-

placed the need for manual segmentation, feature extraction and selection. It uses deep

networks with many intermediate layers of artificial neurons between the input and the out-

put which, emulating the visual cortex, learn progressively more complex feature detectors

(see Figure 4.1). Feature detectors optimised for classification have allowed deep learning

models to outperform systems using hand-crafted features (G. Hinton, 2018).

Figure 4.1: Left: synapses connect between neurons. A larger synapse is a larger weight.
Repetitions let synapses grow, the basis of learning. Right: a simple artificial neural network
summing weighted inputs and passing the output through a non-linear threshold. From ter
Haar Romeny (2019).

Artificial neural networks, the technology supporting deep learning, have been around

since the 1940s when they were known as cybernetics. One of the early proponents, Nor-
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bert Wiener, viewed purposive behaviour as arising from a regulatory mechanism trying to

minimise “error” (Goodfellow et al., 2016). In the mid-1980s, at least four different groups re-

invented Bryson and Ho’s 1969 back-propagation algorithm (Bryson & Ho, 1969) leading to

so-called connectionist models of intelligent systems which learnt by adjusting the strength of

the connections (weights) between their nodes (neurons) according to some reinforcement

learning algorithm (Russell & Norvig, 2013). Wooldridge (2021) believes that the develop-

ment and potential of this approach at that time was thwarted by the poor performance and

limits of simple single-layer perceptrons which were wrongly associated with the more useful

multi-layer perceptrons.

LeCun et al. (1989) introduced the LeNet CNN (convolutional neural network) architecture

with innovative convolutional and pooling layers to tackle hand-written digit recognition. By

1998 CNNs were state of the art for this task (LeCun, Bottou, Bengio, & Haffner, 1998).

Unfortunately they were unable to scale to larger-scale problems due to the computational

cost at the time. G. E. Hinton, Osindero, and Teh (2006) improved network performance

by adding layers, and subsequently neurons and connections, making the network ‘deeper’,

thus neural networks became deep learning.

Figure 4.2: AlexNet architecture detail. From Krizhevsky, Sutskever, and Hinton (2012).

Deep learning came to prominence again in 2012 after the AlexNet algorithm won the

ImageNet challenge with an error rate that was 41% better than the algorithm which came

second (Krizhevsky, Sulskever, & Hinton, 2012). The ImageNet challenge evaluated algo-

rithms for object detection and image classification at large scale. AlexNet consisted of five

convolutional layers, using 60 million parameters and 650,000 neurons, and a final 1000-way

softmax classifier. The general architecture is shown in Figure 4.2 above. An efficient ap-
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proach to GPU (Graphics Processing Unit) implementation, where GPUs only communicate

with each other at certain layers, made the algorithm very fast. The use of the then recently

discovered (by the same team) regularisation method, dropout, in the fully connected layers

prevented over-fitting (Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014).

Deep learning has been applied successfully in areas such as speech recognition, spam

filters and drug discovery (Goodfellow et al., 2016). CNNs are now state of the art in image

analysis (Soffer et al., 2019).

Despite the above success deep learning is not without critics. Marcus and Davis (2019)

decry deep learning’s “narrow” AI and describe it as unreliable, greedy (needs a lot of data),

brittle (perfect in one situation, wrong in another) and cryptic (experts struggle to understand

why certain decisions are made). They believe speech recognition and object detection

are not intelligence and that reasoning, language and analogy are not handled by current

technology. These views are echoed by Wooldridge (2021) who notes that we have no idea

how to interpret the knowledge and representations that neural networks embody.

4.2 Convolutional Neural Networks

Figure 4.3: A CNN containing all the basic elements of a LeNet (LeCun et al., 1989) archi-
tecture. From Gonzalez and Woods (2018).

Convolutional neural networks (CNNs), shown above in Figure 4.3, are a special kind

of multi-layer deep learning network for processing data that has a known grid-like topology

such as image data (Goodfellow et al., 2016). CNNs are the most widely used model for

supervised learning (Litjens et al., 2017) and are particularly suitable for common tasks in
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computer vision such as image classification, object detection and segmentation (Soffer et

al., 2019). These tasks have been described as “the core of deep learning methods for

medical imaging” (P. M. Cheng et al., 2021).

Low-level (high-resolution) features in the images are found by the initial convolutional

and pooling layers. As the pooling layers reduce the resolution, these features are combined

into higher-level features that represent more complex objects. Therefore, the initial layer(s)

may find things like points, lines, and edges which are combined by later layers to identify

the main image subjects, e.g. faces or objects (Erickson, 2019). Their width, breadth and

height properties allow CNNs to share weights.

4.2.1 CNN Components

CNNs are simply neural networks that use convolutions in place of general matrix multiplica-

tion in at least one of their layers (Goodfellow et al., 2016). They compute a sum of products

between pixel values and a set of kernel weights at every spatial location in an image and

the result at each location (x, y) in the input is a scalar value (Gonzalez & Woods, 2018).

The following sections outline the commonly used layers in CNNs as described by Erick-

son (2019), Hamidinekoo, Denton, Rampun, Honnor, and Zwiggelaar (2018) and Selvikvåg

Lundervold and Lundervold (2018).

4.2.1.1 Input layer

The input layer supplies the convolutional layers with data. Data augmentation, mean-

subtraction or feature-scaling may happen here.

4.2.1.2 Convolutional layer

There may be several layers of convolutionals at the input in image-based tasks. They con-

tain three stages of operational units which learn the features needed for successful training:

Convolutional filters: Figure 4.4 shows how the first convolutional layer processes an

image. The 3x3 matrix in the middle is the convolutional filter, also known as the kernel.

29



This passes over the image pixel by pixel, multiplying each pixel value in the receptive field

by the corresponding value in the kernel and sums them to give the value of the centre

pixel in the resulting feature map. The stride is the number of spatial increments by which a

receptive field is moved and strides greater than one can be used for data reduction. Figure

4.5 illustrates a convolution kernel with optimised weights for edge detection and the resultant

image.

Figure 4.4: How the first convolutional layer processes an image. From Elgendy (2020).

Figure 4.5: Applying an edge detection kernel on an image. From Elgendy (2020).

Pooling: Performs down-sampling for the spatial dimension of the input which results in a

reduced-resolution output feature map which is robust to small variations in the locations of
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features in the previous layer. The most common pooling function is the “max pool” which

simply passes on the maximum value of its current window on to the next layer.

Activation: Feature maps from a convolutional layer are fed through non-linear activation

functions making it possible for the entire neural network to approximate almost any non-

linear function. Non-linear activation functions ensure there are no large swings in the value

of outputs such as those encountered using a “hard” thresholding function that outputs +1

or -1, for example (Gonzalez & Woods, 2018). The latter can cause stability issues in sub-

sequent nodes. Three common activation functions are shown in Figure 4.6.

Figure 4.6: Sigmoid, hyberbolic tangent and rectifier linear unit (ReLU) activation functions.
From Gonzalez and Woods (2018).

The output of a neuron based on the sigmoid function is

a = h(z) = 1
1+e−z

where z is the result of the computation performed by the neuron. The hyperbolic tangent

(tanh(z)) has the same shape as the sigmoid function but is symmetric around the axes

which improves convergence of the backpropagation algorithm (Gonzalez, Woods, & Eddins,

2020). The Rectified Linear Unit (ReLU) activation function has proved to be very efficient for

image processing applications. It outputs zero for any negative input and outputs the input

if it is positive. Modified versions include leaky ReLUs which allow a small positive gradient

when the unit is not active and exponential ReLUs in which some non-zero output is used

for a negative input.
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4.2.1.3 Normalisation layer

Usually located after activation layers, producing normalised activation maps by subtracting

the mean and dividing by the standard deviation for each training batch. Periodically forces

the network to change its activations to zero and unit standard deviation. This speeds up

training and negates the need for careful parameter initialisation.

4.2.1.4 Dropout regularisation layer

Dropout is an averaging technique based on stochastic sampling of neural networks. Neu-

rons are randomly removed during training resulting in slightly different networks for each

batch of training data. Weights of the trained network are then optimised to these multiple

variations of the network.

4.2.1.5 Fully connected layers

Compute the final output. They treat their input as a simple vector and output a single vector.

4.2.1.6 Residual layer

Uses a “bypass” layer which is basically the identity function. This is compared to the output

of a layer or a group of layers. Reduces the number of potential parameters to adjust when

learning and also reduces the likelihood of overfitting to the training data.

4.2.2 CNN Training

The objective of training a CNN is to minimise the difference between the predicted output

and the actual output of the network. A forward pass through the network is performed to

classify all the patterns of the training set and to determine the classification error (Goodfellow

et al., 2016). Backpropagation directs this error back through the network to update the

weighted parameter values (Hamidinekoo et al., 2018). There are four steps in the process

(Gonzalez et al., 2020):

1. Input a(0), the set of image pixel values in the input volume, to layer 1.
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2. For the feed forward pass, for each neuron corresponding to location (x, y) in each

feature map in layer ℓ compute:

zx,y(ℓ) = w(ℓ) ⋆ ax,y(ℓ− 1) + b(ℓ)

ax,y(ℓ) = h(zx,y(ℓ)); ℓ = 1, 2, . . . , Lc

where ax,y(ℓ) is the neuron output and w(ℓ) is the weight and b(ℓ) is the bias. ax,y(ℓ) is

obtained by passing zx,y(ℓ) through an activation function h. “⋆” denotes a convolution.

Lc is the number of convolutional layers.

3. For backpropagation, for each neuron in each feature map in layer ℓ compute:

δx,y = h′(zx,y(ℓ))[δx,y(ℓ+ 1) ⋆ rot180(w(ℓ+ 1))]; ℓ = Lc − 1, Lc − 2, . . . , 1

4. Update the weights and biases for each feature map using:

wl,k(ℓ) = wl,k(ℓ)− αδl,k(ℓ) ⋆ rot180(a(ℓ− 1))

and

b(ℓ) = b(ℓ)− α
∑
x

∑
y

δx,y(ℓ); ℓ = 1, 2, . . . , Lc

where α is the learning rate and k and l are the dimensions of the kernel.

This process is repeated until the error reduces to an acceptable level.

4.2.3 CNN Architectures

4.2.3.1 Classification

Examples of popular CNNs for image classification include VGGNet (Simonyan & Zisserman,

2014), GoogLeNet (Szegedy et al., 2015) and ResNet (He, Zhang, Ren, & Sun, 2016):

• VGGNet: The architecture of this network is known for its simplicity of alternating con-

volution and dropout layers. It was the first to use multiple 3 x 3 filters in each convolu-

tional layer in comparison to AlexNet’s 11 x 11 kernels. Although simple in architecture,
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it is computationally expensive in terms of memory as increasing kernels is associated

with higher computational time and a larger model (Chougrad, Zouaki, & Alheyane,

2018).

• GoogLeNet: The objective of GoogLeNet was to reduce computational complexity

compared to other CNNs. It did this by using “inception modules”, shown in Figure

4.7 below, containing multiple convolutional filter sizes in each block. Stacking the

modules on top of each other and using occasional max-pooling layers with a stride

of 2 allowed the resolution of the grid to be halved. It did this by using the 1x1 con-

volutions before the more expensive 3x3 and 5x5 convolutions. GoogleNet had more

layers (22) than any CNN before but had much less network parameters (7M) than

AlexNet (60M) or VGG-19 (138M) (Alom et al., 2018).

Figure 4.7: Inception module. From Szegedy et al. (2015).

• ResNet: Residual networks take a standard deep CNN and add shortcut (“skip”) con-

nections that bypass a few convolutional layers at a time. The shortcut connections

create residual blocks, shown overleaf in Figure 4.8, where the output of the convolu-

tional layers is added to the block’s input tensor. Having direct connections that short-

cut the convolutional layer allows gradients to more easily flow backward through the

network during training (Szeliski, 2022) thus solving the issue of vanishing or explod-

ing backpropagated gradients when using deeper networks (Glorot & Bengio, 2010).
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Computational overhead is kept low by these connections which also provide a rich

combination of features (Chougrad et al., 2018).

Figure 4.8: Residual learning building block. From He et al. (2016).

4.2.3.2 Object Detection

Faster R-CNN (Ren, He, Girshick, & Sun, 2017) is a network for object detection that built

on R-CNN (Girshick, Donahue, Darrell, & Malik, 2014) and Fast R-CNN (Girshick, 2015)

by utilising a CNN to extract features and obtain regions of interest using a region proposal

network (RPN) that shared full-image convolutional features with the detection network, thus

enabling nearly cost-free region proposals. An RPN is a fully convolutional network (FCN)

that simultaneously predicts object bounds and objectness scores at each position. The

RPN is trained end-to-end to generate high-quality region proposals, which are used by Fast

R-CNN for detection.

Figure 4.9: YOLOv4 “You Only Look Once” Object Detector. From Bochkovskiy et al. (2020)

YOLOv4 (Bochkovskiy et al., 2020), shown in Figure 4.9, also uses a feature extraction

backbone and combines this with a neck and head, the latter which can be one-stage or
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two stage. The neck comprises a spatial pyramid pooling (SPP) module and a path ag-

gregation network (PAN). These identify the most relevant features and aggregate feature

maps and pass them on to the head which predicts bounding boxes, objectness scores and

classification scores.

4.2.3.3 Segmentation

The encoder-decoder architecture has been widely used for pixel-level medical image seg-

mentation (Su, Zhang, Liu, & Cheng, 2021). U-Net (Ronneberger, Fischer, & Brox, 2015) is

a popular exemplar of this structure. With this model, named after its shape, there are two

steps to feature extraction, down-sample and up-sample. The image is reduced to the key

component being searched for, this is found at the bottom of the “U”. Once identified, “bypass

layers” using pixel data from higher resolution versions refine the key component until the

original resolution is achieved. Segnet (Badrinarayanan, Kendall, & Cipolla, 2017) improves

U-Net’s memory overload by pooling indices transferred from the compression path to the

expansion path.

Figure 4.10: DeepLabv3+ encoder-decoder architecture. From L. C. Chen, Zhu, et al. (2018).

DeepLabv3+ (L. C. Chen, Zhu, et al., 2018), shown in Figure 4.10, combines the benefits

of an encoder-decoder architecture and a spatial pyramid pooling module to provide multi-

ple effective fields-of-view and sharper object boundaries. Dilated convolutions aggregate

context around a feature allowing it to be better segmented. DeepLabv3+ performed best

in a recent study comparing networks (including U-Net and SegNet) for segmenting MRI
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(Magnetic Resonance Imaging) prostate studies, achieving a Dice score of 92.8% (Z. Khan,

Yahya, Alsaih, Ali, & Meriaudeau, 2020).

4.2.3.4 Generative Adversarial Networks

Generative adversarial networks (GANs) comprise two competing networks which are usu-

ally CNNs. A generative network creates samples that a discriminative network classifies

as originating in the generative network or in the training data (Selvikvåg Lundervold & Lun-

dervold, 2018). Originally GANs were used to test deep learning systems but have proved

useful in medicine in a number of ways including the creation of additional training and testing

images and providing interpretability of both deep learning systems and disease detection

(Erickson, 2019).

4.3 Deep Learning in Medical Imaging

In a review of deep learning in medical imaging, Soffer et al. (2019) note that deep neural

networks have been used for a wide range of tasks in including organ classification and dis-

ease detection, image segmentation and optimisation. CNNs are the core of deep learning

methods for imaging with classification, object detection and segmentation being the three

most popular applications (P. M. Cheng et al., 2021). Classification refers to categorisation of

a specific group or type of lesion(s) from one class to others while object detection highlights

a specific subregion in an image which is likely to contain a localised lesion (Montagnon et

al., 2020). Segmentation delineates or volume extracts a lesion or organ based on image

analysis. Mazurowski, Buda, Saha, and Bashir (2018) believe that recent successes are due

to availability of data, increased processing power, rapid development of algorithms and the

availability of GPUs.

Despite the above successes, Mukhlif, Al-Khateeb, and Mohammed (2022) note that

there are challenges too as large datasets are needed and labelling images takes a signif-

icant amount of time and effort. Datasets also may have quality issues such as a lack of

diversity and large class imbalances.
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Research publications in the area are increasing year on year. The following sections will

briefly describe their impact and application in breast imaging and, more specifically, BAC

detection.

4.4 Deep Learning in Breast Imaging

A number of network architectures have been used in recent breast imaging literature includ-

ing CNNs, GANs and an extended U-Net.

Liu et al. (2018) used an Inception V2 ResNet pre-trained on ImageNet to automate

breast density reporting. This network builds on the Inception architecture by replacing filter

concatenation with ResNet skip connections. They investigated training specific views sep-

arately but found the network was more accurate whenever all views were trained together.

Mohamed et al. (2018) also used a CNN, this time based on AlexNet, to differentiate “scat-

tered density” and “heterogeneously dense” BI-RADS (Breast Imaging Reporting and Data

System) breast density categories. They obtained an area under curve (AUC) of 0.9421 after

training the network from scratch and an AUC of 0.9265 using a pre-trained model and only

500 images.

Yi et al. (2018) used a ResNet pretrained on ImageNet to investigate predicting the image

view, laterality (right or left), breast density and benign versus malignant masses. Accuracy

for view and laterality was 99% while that for both breast density and lesion analysis were

found to be 68%. Pan, Chu, Wang, Merck, and Lourenco (2018) used a MobileNet CNN,

intended for embedded mobile applications, in order to predict breast nodule malignancy

from ultrasound images. They fine-tuned the network using data augmentation, dropout

probability and the learning rate. A mean AUC of 0.869 was achieved and at a threshold

of 0.10, the authors state the model would reduce the number of negative core biopsies by

40% while maintaining 95% sensitivity.

Singh et al. (2018) used a conditional generative adversarial network (cGAN) to optimise

breast mass segmentation and shape classification. The generative network learned the in-

trinsic features of tumours while the adversarial network forced segmentations to be similar
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to ground truth. The Dice co-efficient was found to be > 94%. Shams, Platania, Zhang, Kim,

and Lee (2018) combined CNNs with GANs in order to overcome the limitations of anno-

tations from real medical settings. They found that enhanced feature learning with a GAN

coupled with hybrid training with regions of interest resulted in more accurate classification.

They recorded an AUC of 92.5% for the small INBreast (Moreira et al., 2012) dataset.

S. Mehta et al. (2018) used a Y-Net (extended U-Net) for segmentation and classification

of breast biopsy images. The Y-Net extends U-Net by adding parallel branch discriminative

map generation and by supporting convolutional block modularity. This allows the user to

adjust the network without changing the network topology. The authors report state-of-the-

art segmentation with almost seven times reduction in parameters than its closest rival. An

increase of 7% in classification accuracy over the current state-of-the-art was also recorded.

Three recent large studies have showed excellent results in relation to breast screening

mammography. Using over a million images from 220,000 mammogram studies Wu et al.

(2019) achieved an AUC of 0.895 in predicting the presence of cancer when tested on the

screening population. They believe their success was due to:

• A two-stage architecture and training procedure incorporating a patch-level network

based on pixel-level labels.

• A custom ResNet optimised for large images.

• Pre-training on screening BI-RADS classification.

• Combining multiple input views.

They also found the combination of the model and a human reader was more accurate

than either of the two separately.

Lotter et al. (2019) presented an annotation-efficient approach that out-performed five of

five full-time breast imaging specialists by improving absolute sensitivity by an average of

14%. Their ResNet50-based model demonstrated state-of-the-art classification which also

extended to digital breast tomosynthesis. They note the challenges inherent in deep learning

and breast imaging – severe class imbalance (95% of images are normal), datasets are costly
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and impractical to collect, high resolution images that are ten to twenty times the resolution

of natural image datasets.

A cross-Atlantic study by McKinney et al. (2020) using over 30,000 cases also showed

a deep learning system capable of surpassing human experts in breast cancer prediction.

Significant reductions were achieved in both false positives and false negatives. In conjunc-

tion with a human reader, the AI maintained a non-inferior performance and reduced the

workload of the second reader by 88%.

Y. Chen, Taib, Darker, and James (2023) evaluated human readers and a commercially

available AI algorithm (Lunit Insight MMG (Lunit Inc., n.d.)) reading two test sets of 60 chal-

lenging breast imaging cases and found the diagnostic performance equal. They note that

although AI is not currently ready for deployment outside of clinical trials, it seems increas-

ingly likely that AI will eventually play a part in the interpretation of screening mammograms.

When this occurs, it may also be prudent to screen for arterial calcification. The next section

examines the literature relating to using deep learning to do just that.

4.5 Deep Learning and BAC

Table 4.1 on page 42 shows all the papers that have investigated the feasibility of automated

and accurate BAC detection on mammograms using deep learning methods. There are a

diverse range of networks, datasets, metrics and approaches.

J. Wang et al. (2017) were the first to do so. The problem was scoped as a pixelwise,

patch-based, two-class classification problem based on the presence or absence of BAC.

Patches around each pixel were directly entered into a custom 37-layer CNN trained to clas-

sify whether the central pixel belonged to a BAC class or not. Performance was measured us-

ing a two-round human reader study, free-response receiver operating characteristic (FROC)

and calcium quantification analysis. At a true positive rate of 60%, the area of false positives

was found to be 0.4762cm2, comparable to one of the human readers. Calcium quantifica-

tion analysis was used to compare the predicted calcium to ground truth. The coefficient of

determination R2 of the fitted model was found to be 0.9624, indicating a close correlation.
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K. Wang et al. (2019) tested deep learning techniques for BAC detection and segmen-

tation but concluded that a more traditional Hessian-based multi-scale filter coupled with a

self-adaptive thresholding algorithm showed the highest accuracy on validation data. The

deep learning algorithms, YOLOv2 for detection and UNet and DeepLabv3+ for segmen-

tation, performed extremely poorly, achieving an IoU of 0, 0 and 0.05 respectively. Their

small dataset contained both FFDM and DBT (Digital Breast Tomosynthesis) unprocessed

images which may have contributed to this. With DBT,https://www.github.com a sequence

of shorter exposures is made as the x-ray tube gantry moves through an arc rather than

a single exposure like that used to create an FFDM image (Sechopoulos & Sá dos Reis,

2022). A pseudo-3D image can be created using DBT as well as a single synthetic planar

image. The latter is the type used in this study. The authors note that detection of BAC can

be challenging due to its topological complexity and the fact that its intensity values are not

uniform and are sometimes similar to healthy breast tissue.

More promising results were achieved by two later studies using variations of the U-Net

model. Ghamdi et al. (2020) extended the U-Net model with DenseNet blocks that, unlike

ResNets, concatenate outputs from the previous layers instead of using summation before

passing them on to the next layer. The patch-based model was evaluated using 5-fold cross-

validation and achieved a test accuracy of 91.47%, sensitivity of 91.22% and specificity of

92.01%, out-performing human experts. These results were achived using what the authors

describe as a “small-sized and low-quality dataset”. Their dataset is the only one in all the

papers that came from a publically-available source, the Curated Breast Imaging Subset

of Digital Database for Screening Mammography (CBIS-DDSM) (R. S. Lee et al., 2017).

Images in this dataset were originally analog screen film images that were scanned in and

converted to digital.

Guo et al. (2021) adapted the U-Net model to make it deeper and thinner by extend-

ing the down-sampling layers to five and by using only a quarter of the convolutional chan-

nels compared to the standard U-Net. This reduced the number of parameters to train from

13,395,329 to 7,782,281. They used 512x512 patches that were concatenated together to

recover the whole segmentation mask for the original large-size FFDM image. Excellent
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results were achieved for accuracy (>99.8%) but less so for precision (<69%). They also

devised their own metrics to quantify the predicted calcium mass and obtained a quantita-

tive correlation of over 95%. The authors note that such measurements of breast arterial

calcification can offer a personalized, non-invasive approach to risk-stratify women for car-

diovascular disease at no additional cost or radiation.

Two recent studies also recorded satisfactory results although both seem to have issues

with their methodology. R. Khan and Masala (2023) investigated using deep learning to clas-

sify four grades of BAC severity. They tested muliple networks and achieved a test accuracy

of 94% using MobileNet. They seem to have used their full dataset of 104 images for the

validation and test data and created augmented images for the training set from the same

data. Furthermore, they resized their images to 300x400 which is 2% and 1.2% of their two

original image sizes, 2082x2800 and 2800x3518.

Using a VGG-16-based network, Mobini et al. (2023) obtained a test accuracy of 94%

with an AUC-ROC of 0.98. They also found a strong correlation between the Grad-CAM++

predicted lengths of BAC and manual measurements. Their training, validation and test data

were imbalanced class-wise, however, with the BAC+ve to BAC-ve ratio being 24% to 76%

in the training set and 10% to 90% in both the validation and test sets. They state the ratios

reflect the prevalence of BAC in clinical cohorts.

The largest dataset used in the literature was the 6573 unprocessed DBT images used

by K. Wang et al. (2023) in their study investigating BAC segmentation using UNet and

DeepLabv3+ networks. The data was divided in to a 80:10:10 train:validate:test split and

images were initially annotated by non-experts resulting in a Dice similarity score of 0.3771.

After finding many false positives such as areas of microcalcifications, they developed an au-

tomatic label correction algorithm for the training set and also manually re-annotated the test

set using a domain expert. The Dice score subsequently increased to 0.4849. They also

developed a novel length-based Dice score to negate any large negative effects of small

differences in predicted BAC areas and ground truth as well as recognising that BAC is clin-

ically measured by length rather than by area. The length-based Dice score was found to

be 0.6261. They conclude that deep learning models have shown promise in BAC segmen-
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tation and this promise can be optimised by using larger image sizes, larger models, better

quality annotations and appropriate image contrast adjustment.

In October 2023, Curemetrix® were granted approval by the FDA for a BAC detection

and localisation application (Hall, 2023). Unfortunately, no research paper has, as yet, been

published on it making it impossible to know whether machine or deep learning techniques

were used in its development. It will be the first of many.

4.6 Gap Analysis

The literature review identified a number of gaps, namely:

• No publically available dataset of BAC-annotated mammograms.

• No BAC studies using full-size mammography images as deep learning network inputs.

• No BAC studies that used a pre-trained breast cancer detection model for transfer

learning and weight initialisation.

• A class imbalance in studies with some papers only using BAC-positive images for

classification and others not having equal numbers of each class (BAC and non-BAC).

• Only one BAC paper used object detection techniques.

Chapter 5, Experimental Set-up, and the subsequent model development chapters outline

how these gaps were addressed.
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4.7 Summary

In Chapter 2, we looked at the background to BAC and its association with cardiovascular

risk factors and atherosclerosis. We then described computer-aided detection (CADe) in

mammography and the machine learning techniques to detect BAC. This was followed, in this

chapter, by an overview of deep learning and CNNs culminating in a review of the literature

relating to deep learning and BAC detection, classification and segmentation. The latter

informed our methodology in the next chapter in relation to the use of full-size, high quality

mammography images in network training, a proper class balance and a validated annotation

process.
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5 | Experimental Set-up

This chapter outlines the experimental basis of the study beginning with the dataset and

its annotation for BAC at an image, region and pixel level. Image pre-processing is then

described including cropping, padding, image conversion, data augmentation and the appli-

cation of a technique to reduce image noise and increase contrast. Finally, the software and

hardware development environments used are detailed. The experimental set-up provides

the necessary preparation for the model development chapters that follow.

5.1 Dataset

DICOM (Digital Imaging and COmmunication in Medicine) is a collection of standards that

provide all the necessary tools for the diagnostically accurate representation and processing

of medical image data (Pianykh, 2008). In addition to data transfer, storage and display pro-

tocols, it also encompasses an image file format. Each DICOM file has a header containing

a diverse range of data including patient demographic information, acquisition parameters,

referrer, practitioner and operator identifiers and image dimensions. The rest of the DICOM

file contains the image data (Graham, Perriss, & Scarsbrook, 2005) as shown in Figure 5.1.

Figure 5.1: DICOM image file showing header and image data. From Mathworks (2023a).
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There are currently no freely available BAC-annotated DICOM mammography datasets.

Only one paper (Ghamdi et al., 2020) has used a public dataset, CBIS-DDSM (R. S. Lee

et al., 2017), as a source of images for training deep learning models for BAC classifica-

tion, detection or segmentation. Their images, described by the authors as “low quality”,

were originally produced using an analog screen film combination and were subsequently

digitized. The authors also had to retrospectively annotate and segment the images for BAC.

The dataset used in this study was derived from the OPTIMAM Mammography Image

Database (Halling-Brown et al., 2021), a collection of high quality FFDM (Full Field Digital

Mammography) DICOM images collected from three NHS (National Health Service) clinical

centres, and was used under a purchased licence from Cancer Research UK. The latter

accept applications from commercial or non-profit organisations, healthcare institutions and

academic centres for access to the database. Access is granted based on the following

criteria:

• Scientific Merit - For example, if the scientific aims are achievable and realistic.

• Trustworthiness - What procedures are in place with regards to data storage security?

• Reputation - Does the Research Group have expertise in the subject area?

• Ethics - Is ethical approval present/being sought if applicable?

Ethical approval was granted in January 2019 by the University of Salford Research

Ethics Panel and was amended in August 2021, post-COVID, in order to allow the recruit-

ment of participants from clinical colleagues in the author’s own hospital group in Ireland.

The amendment also allowed an annotation observer study to be carried out at a suitable,

local viewing facility there too. Both ethical approval and amendment douments are shown

in Appendix A. The dataset licence granted access for three years from June 2019 (date of

signature) and the signed cover is shown in Appendix B.

The dataset contained both processed (“for presentation”) DICOM images and their un-

processed (“for processing”) counterparts, typically of women who had a breast-screening

examination. The data was pseudonymised at the point of collection using DICOM Stan-

dard 142 supplement compliance tools which outline clinical trial de-identification profiles.
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The Information Commissioners Office states that the collection of de-identified data without

patient consent is permissible provided there is “no likelihood of anonymisation causing un-

warranted damage or distress” (Information Commisioners Office, 2012). The Royal College

of Radiologists guidance reiterates that explicit consent is only required if the patient is, or

may be, identifiable (Royal College of Radiologists, 2017).

Metadata such as patient age, image size and manufacturer were interrogated using the

pydicom (Mason et al., 2020) Python library although an accompanying dataset API (ap-

plication programming interface) is now available. The dataset comprised of FFDM images

from 600 patients with each case containing at least four images, i.e. standard CC (cranio-

caudal) and MLO (mediolateral oblique) views of each breast as shown in Figure 5.2. Some

cases included repeat views or additional views to cover all the anatomy. The total number of

images was 2437. These were accompanied by clinical data from the NHS Breast Screening

Programme’s National Breast Screening System (NBSS) with DICOM header tags extended

to include expert annotations relating to cancer lesion status, position and classification.

None of the clinical data or annotations included information relating to BAC so were not

used in this study.

Figure 5.2: Left to right: MLO and CC standard mammography views of the right breast.

Because BAC is associated with increasing age, the age range of cases was limited to be-

tween 65 and 70 years in order to have a suitable number of images containing BAC. Images

were produced using hardware from two companies, Hologic, Inc and GE Medical systems
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(two machines each), and cases were divided equally among the four Volpara-designated

(Highnam, Brady, Yaffe, Karssemeijer, & Harvey, 2010) breast composition categories from

low to high density: A (almost entirely fatty), B (scattered areas of fibroglandular density), C

(heterogeneously dense) and D (extremely dense). Volpara uses a combination of mammog-

raphy physics and machine learning to generate an objective volumetric measure of breast

composition. A summary of the number of cases per age range including breast density

category is shown in Figure 5.3.

Figure 5.3: Number of cases per age range with associated breast density categories.

5.2 Image-wise Annotation

Willemink et al. (2020) note that the term ground truth usually refers to information acquired

from direct observation such as biopsy or laboratory results although annotations such as

image labels performed by radiologists can be considered ground truth if imaging is the ref-

erence standard, e.g. as in pneumothorax (collapsed lung). Such annotation of reference

standard training data is costly and time consuming for relevant clinically experienced pro-
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fessionals, however (P. Mehta et al., 2019). Some studies have addressed these challenges

by using non-expert crowdsourced annotators with one pilot study finding that the latter were

able to detect and refine innacurate liver contours with a quality similar to experts (engi-

neers with domain knowledge, medical students and radiologists) (Heim et al., 2018). In this

study, the author, who has almost 25 years medical imaging domain knowledge, albeit not in

mammography, carried out the BAC annotation. This was then validated by two consultant

radiologists in an observer reader study.

Images were manually examined and categorised using a demonstration version of MedX

Viewer (Medical eXtensible Viewer, (Looney, Young, & Halling-Brown, 2016)), a software tool

primarily used for breast cancer lesion detection remote reader studies. The software allows

users to draw bounding boxes on FFDM DICOM images and create questions that easily

facilitate image labelling. Answers and box coordinates could then be exported as a JSON

(JavaScript Object Notation) file for easy import into MATLAB. A data export from one of the

annotation validation reader studies is shown in Appendix D.

Figure 5.4: Using MedXViewer to annotate and label images.

A small number (n=5) of images were discarded due to the presence of cardiac pace-

makers or silicon implants. Images were labelled as “BAC” or “NON_BAC” with bounding

boxes drawn around BAC-positive areas (as shown in Figure 5.4). 127 (21.2%) cases were

found to have at least one BAC-positive image with 408 (16.7%) BAC-positive images in the

dataset as a whole.
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5.2.1 Annotation Validation Reader Study

Annotation ground-truth was validated in a reader study by two consultant radiologists with

8 and 3 years breast imaging experience respectively. Participation in the validation study

was requested via a formal letter. An information sheet outlining the rationale of the study

was also provided as were contact details for the author and his supervisors. Participants

were invited to sign a consent form. Confidentiality was assured and participants had the

right to withdraw at any stage. An information sheet, risk assessment form and two signed

consent forms for the reader study are shown in Appendix C.

The reader study was conducted on two separate days in a radiology reporting room in

the author’s own hospital group. The study was carried out under optimal viewing conditions

with dual 5MP (megapixel) Barco® monitors and appropriate ambient room lighting (less

than 10 lux) as outlined in the Royal College of Radiologists’ guidelines on diagnostic display

devices (Royal College of Radiologists, 2019). Participants were also given basic training

on the MedXViewer software. Covid-19 regulations were adhered to at all times.

Each participant was given 10 randomly selected cases of 4 images (n=40 images) each.

5 cases were BAC-postive and 5 were BAC-negative. A total of 80 images were used in the

study. As in Figure 5.4 above, participants were asked to mark the presence of BAC with

“Yes”, “No” or “Indeterminate”. They were also asked to provide a rectangular bounding box

around the area(s) in which they thought BAC was present. Each participant took approxi-

mately one hour to complete the tasks.

To assess the reliability of the author’s BAC annotations, a widely used measure of inter-

rater reliability , namely Cohen’s Kappa Co-efficient (Cohen, 1960), was used. This was

found to be 0.85 and 0.9 between the annotator and each radiologist respectively, denoting

near perfect agreement. A summary of these results is shown in Figure 5.5.
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Figure 5.5: Inter-rater reliability for BAC annotation results.

Each bounding box created by the two radiologists was compared to those outlined by the

annotator. The metric intersection over union (IoU) was used to measure similarity between

bounding boxes. IoU computes the ratio as the area of intersection between one box and

another, divided by the area of the union of the two:

ao =
area(Bp ∩Bgt)

area(Bp ∪Bgt)

where Bp is the predicted area and Bgt is the ground truth. Everingham et al. (2015) note that

IoU must exceed 50% to be considered a correct detection. The average IoU was found to

be 0.51 and a detailed summary of the results is shown in Appendix E. A visual comparison

of the author’s bounding boxes compared to those of the radiologists is shown in Figure 5.6.

(a) IoU = 0.84 (b) IoU = 0.80 (c) IoU = 0.88 (d) IoU = 0.96

Figure 5.6: Comparison of several BAC bounding boxes of the author (yellow) and the two
radiologist (red and green) readers.
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5.3 Pixel-wise Annotation

A number of traditional segmentation methods implemented in MATLAB by Gonzalez et al.

(2020) were investigated to try and lessen the manual pixel-labelling task. These included

active contours, Frangi vesselness filter, k-means clustering, Sobel edge enhancement and

graph-cut segmentation. Each method was evaluated visually for BAC enhancement with

active contours being the most helpful. Despite this, the latter method increased the time

needed for manual annotation compared to using assisted free-hand in MATLAB alone.

Some of the results are shown in Figure 5.7.

Figure 5.7: Image processing techniques investigated to ease the manual segmentation
task.

Using MATLAB’s Image Labeler app (MATLAB, 2022) under the guidance of a consultant

radiologist with 8 years breast imaging experience, 220 BAC-positive images were manually

segmented by the author using a Wacom Intuous S Tablet and Pen. BAC and background

pixel labels were added, aided by the flood fill and assisted freehand tools. The remaining

breast tissue was subsequently assigned programmatically, giving three classes in total: (i)

BAC, (ii) background (area with no tissue) and (iii) breast. Manual segmentation using Image

Labeler is shown in Figure 5.8.
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Figure 5.8: Using MATLAB’s Image Labeller app (MATLAB, 2022) to segment BAC.

Figure 5.9 shows hand-crafted ground truth segmented BAC from four papers. Most

outline the vessel completely although K. Wang et al. (2019) note that it is practically difficult

to achieve a pixel-level perfection. Figure 5.10 shows examples of the author’s ground truth

incorporating background, breast and BAC for comparison.

(a) Ghamdi et al. (2020) (b) K. Wang et al. (2019)

(c) Guo et al. (2021) (d) J. Wang et al. (2017). In red.

Figure 5.9: Ground truth segmented BAC from four papers.
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(a) (b)

Figure 5.10: Examples of hand-crafted BAC ground truth segmented manually by author.

5.4 Image Pre-processing

5.4.1 12-bit DICOM to 16-bit PNG Conversion

In order to reduce computational overhead, the 12-bit DICOM images were converted to

16-bit PNG (Portable Network Graphics) files using an open source tool, pydicom (Mason

et al., 2020). This allowed the images to retain their spatial resolution (number of pixels)

while reducing their memory footprint (Wu et al., 2019). This process removed the header

metadata and, on average, file sizes were reduced by a third.

5.4.2 Image Cropping and Padding

Images in the dataset came in four different matrix sizes and were generated on three mam-

mographic units:

(i) 2560 x 3328 (63.5%, Lorad Selenia and Selenia Dimensions (Hologic, Inc)),

(ii) 3328 x 4096 (34.54%, Lorad Selenia and Selenia Dimensions (Hologic, Inc)),

(iii) 1914 x 2294 (1.04%, Senographe Essential (GE)),
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(iv) 2394 x 3062 (0.95%, Senographe Essential (GE)).

Images were cropped to the breast using a Python function open-sourced by a recent

study (Wu et al., 2019) that used deep learning to classify breast lesions. This resulted in

images ranging from 567 x 1801 to 2953 x 4096 in size. While satisfactory for our segmen-

tation network which extracted patches from images of differing sizes, our BAC classification

and object detection network required all input images to be the same size. For this require-

ment, padding was added using the Python Pillow library (Clark, 2020) resulting in images

of 3372 x 4140 in size that retained the spatial resolution of the area of interest. Bounding

boxes were also amended accordingly for each image in both the above scenarios.

5.4.3 Data Augmentation

It has been noted that in image classification the input-output function should be insensitive to

variations in position, orientation or illumination allowing the possibility of data augmentation

to increase the dataset size (LeCun, Bengio, & Hinton, 2015). Goodfellow et al. (2016) also

state that an image classification network needs around 5000 training images in order to be

sufficiently robust.

Chougrad et al. (2018) note that data augmentation can increase the training dataset by

a factor of ten, reducing the possibility of overfitting which occurs when the gap between

the training error and test error is too large. They employed a range of techniques in their

own study including transformations such as width and height shifts with a fraction of 0.25

from the total width or height of the image, a random rotation range of zero to 40 degrees,

a shear range of 0.5 and a zoom range between 0.5 and 1.5. They also flipped the images

horizontally and applied a “fill mode” strategy for filling in newly created pixels, which can

appear after a rotation or a width/height shift. Jain and Levy (2017) filled these latter areas

with the mean pixel value of the training set.

As shown in Figure 5.11, several transforms were applied to the OPTIMAM dataset im-

ages including horizontal and vertical flipping and a combination of both. All original and

resulting images were then rotated by 5 degrees and cropped to the pre-rotation image size.

This increased the train:validation:test dataset from 652:82:82 (BAC and non-BAC images)
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to 5216:82:82 images. The total number of images pre- and post-augmentation per class are

shown in Table 5.1. Bounding boxes were also amended accordingly for each BAC-positive

augmented image.

Data augmentation was primarily used to increase the data size in order to reduce over-

fitting rather than addressing any class imbalance. For the classification model, the aim was

to have equal amounts of each class in the training, validation and test sets. Pixel-level class

imbalance was addressed in the segmentation model using inverse frequency as described

in Section 8.2.

Figure 5.11: Dataset images with vertical and horizontal flipping and 5 degree rotation.

Table 5.1: Total number of images pre- and post-augmentation per class.

Class BAC NON_BAC

Pre-augmentation 408 408
Post-augmentation 3264 3264

5.4.4 CLAHE (Contrast-limited Adaptive Histogram Equalisation)

Some papers like Zeiser et al. (2020) have used CLAHE (contrast-limited adaptive histogram

equalisation) in the pre-processing stage of mammography deep learning studies in order to

remove image noise and increase contrast. CLAHE works by dividing an image into contex-

tual regions of equal size, called tiles, and applying histogram matching for each tile individ-

ually. Neighbouring tiles are then combined to eliminate artificially induced boundaries. A
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clip limit specifies a contrast enhancement cut-off that avoids amplifying image noise (Gon-

zalez et al., 2020). Cunha Carneiro, Lemos Debs, Oliveira Andrade, and Patrocinio (2019)

noted better contrast between fibroglandular tissue and adjacent structures on dense breast

mammograms using a clip limit of 0.01, a patch size of 15 x 15 and a uniform distribution.

These parameters were implemented on our dataset to create a second set of images using

the MATLAB adapthisteq function which implements CLAHE. Figure 5.12 shows the effect

of various CLAHE clip limits and tile combinations on the original image on the left.

Figure 5.12: CLAHE: Effect of various clip limits and tile numbers.

5.5 Development Environment

MATLAB (MATLAB, 2022) was used as the main development environment as it provides a

range of deep learning models, visualization capabilities, the ability to import models from

other tools and built-in annotation tools. Other development environments could, of course,

also have been used.

The hardware used consisted of a desktop PC running Windows 10 Pro with 32GB RAM, an

Intel Core i7-8700 3.2 GHz processor and an 11GB Nvidia GeForce RTX 2080 Ti GPU.
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6 | BAC Classification Model

Classification involves asking a computer program to specify which of k categories some

input belongs to (Goodfellow et al., 2016). It does this by producing a function f : Rn →

{1, . . . , k} and when y = f(x), an input described by vector x is assigned to a category

identified by numeric code y. Szeliski (2022) states that visual category recognition or image

classification is an extremely challenging problem but notes that deeper networks and better

training algorithms post-AlexNet have increased recognition accuracy dramatically. In fact,

it is the main application for which deep networks were originally developed (LeCun et al.,

1989).

6.1 Transfer Learning

Bengio et al. (2012) showed that the transfer of knowledge in networks could be achieved by

first training a neural network on a domain for which there is a large amount of data, and then

retraining that network on a related but different domain via fine-tuning its weights by either

training the whole initialized network or by “freezing” some of the pre-trained weights. Applied

to radiology, even though the algorithm is being trained largely on non-medical images, these

networks perform just as well as those trained with purely medical images (McBee et al.,

2018).

MATLAB has thirteen pre-trained networks of varying depths trained on ImageNet (Deng

et al., 2009). Three pre-trained networks, namely AlexNet (Krishevsk, et al, 2012), SqueezeNet

(Iandola et al., 2016) and GoogLeNet (Szegedy et al., 2015), were chosen for the BAC clas-

sification task. AlexNet was the breakthrough network for the ImageNet competition and is

therefore often used as a benchmark network. GoogleNet reduced computational complexity
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post-AlexNet by using inception modules which comprised of multiple parallel convolutional

layers with different filter sizes. Squeezenet improved performance further by investigating

what combination of 1x1 and 3x3 filters affected model size and accuracy.

Initially all three networks were trained without the augmented images resulting in poor re-

sults (approx. 50% test accuracy) which did not improve significantly when the additional im-

ages were added. Input sizes of 227x227 (AlexNet, SqueezeNet) and 224x224 (GoogLeNet)

meant that the dataset images were resized to less than 1% of their size and transfer learning

using these networks may have been more appropriate for image patches rather than larger

images like those in the OPTIMAM dataset.

One recent large study investigating the use of deep learning in breast cancer screening

for lesion detection developed a custom ResNet-based network specifically targeted at high

resolution mammography images (Wu et al., 2019). Residual networks take a standard deep

CNN and add shortcut (“skip”) connections that bypass a few convolutional layers at a time.

The shortcut connections create residual blocks where the output of the convolutional layers

is added to the block's input tensor. They also solve the issue of vanishing or exploding back-

propagated gradients when using deeper networks (Glorot & Bengio, 2010). Computational

overhead is kept low by the connections which also provide a rich combination of features

(Chougrad et al., 2018).

The network used by Wu et al. (2019) is based on a ResNet-18 (He et al., 2016) topol-

ogy with an extra ResNet block (5 instead of four) which gives a balance of width and depth

allowing input image sizes of 2677x1942 for CC views and 2974x1748 for MLO views. In

this study, we build upon the proposal by Wu et al. (2019B), adapting it for use to clas-

sify BAC. Their publicly available trained network, including initial weights, was first ex-

ported from TensorFlow (Abadi et al., 2015) to an ONNX (Open Neural Network Exchange -

https://github.com/onnx/onnx) model and imported into MATLAB. It was customised with two

additional dropout layers to provide the 87-layer, 2-class BAC classification network shown

in Figure 6.1. The architecture we used included the following key layers:

1. The input layer which accepts images of size 3372x4140.

2. Layers 2 to 80 are similar to those in the original model, comprising 5 residual blocks.
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3. Two dropout layers were added to reduce overfitting. Dropout is an averaging tech-

nique based on stochastic sampling of neural networks. Neurons are randomly re-

moved during training resulting in slightly different networks for each batch of training

data. Weights of the trained network are then optimised to these multiple variations of

the network. Dropout probability was set at 50%.

A layer-by-layer description of the network is shown in Appendix F.

ResNet Block x5

Figure 6.1: ResNet-22 BAC classification network.

6.2 Network Training

To evaluate the model, 10-fold cross validation was used. As shown in Table 6.1, for 10

iterations two folds were used as validation and test data and the rest were trained with

augmented data for 20 epochs with a train:validate:test ratio of 5216:82:82 images (50%

BAC/50% non-BAC). Data was split based on the case so that no two sets had images from

the same patient. Training was undertaken using zerocenter, zscore, rescale-zero-one and

rescale-symmetric normalization with initial weights seeded from Wu et al. (2019)’s study.

Zerocenter normalization subtracts the mean while zscore subtracts the mean and divides
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by the standard deviation. Rescale-symmetric normalization rescales the input to be in the

range [-1,1] while rescale-zero-one rescales to the range [0,1].

Table 6.1: 10-fold cross validation training sequence.

Iteration 1 2 3 4 5 6 7 8 9 10

Fold 1 Test Train Train Train Train Train Train Train Train Val.
Fold 2 Val. Test Train Train Train Train Train Train Train Train
Fold 3 Train Val. Test Train Train Train Train Train Train Train
Fold 4 Train Train Val. Test Train Train Train Train Train Train
Fold 5 Train Train Train Val. Test Train Train Train Train Train
Fold 6 Train Train Train Train Val. Test Train Train Train Train
Fold 7 Train Train Train Train Train Val. Test Train Train Train
Fold 8 Train Train Train Train Train Train Val. Test Train Train
Fold 9 Train Train Train Train Train Train Train Val. Test Train
Fold 10 Train Train Train Train Train Train Train Train Val. Test

6.2.1 Optimisation

Three optimisers were initially investigated - stochastic gradient descent with momentum,

RMSProp and Adam. Szeliski (2022) notes that regular gradient descent is prone to stalling

when the current solution reaches a “flat spot” and this can be addressed by using momentum

where an exponentially decaying running average of gradients is accumulated and used to

update the direction. This prevents updates jumping wildly back and forth. RMSProp keeps

a history of the size of the gradient and uses this to scale the learning rate for each parameter

(G. E. Hinton, 2012). Adam (Adaptive moments estimation) scales the learning rate for each

parameter (like RMSProp) but also uses momentum to smooth out the updates (Kingma &

Ba, 2017). Goodfellow et al. (2016) note that RMSProp lacks the correction factor of Adam

and may have high bias early in training. They state that Adam is generally robust to the

choice of hyperparameters although the learning rate may need to be changed from the

suggested default.

After experimenting with several values (0.01, 0.001 and 0.0001), a learning rate of

0.0001 was used with an Adam optimiser. Batch size was limited to 4 as larger sizes led
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to “out of memory” errors on the GPU as shown in Figure 6.2. This increased the training

time. It took more than 37 hours to train one fold at full size (3372x4140). Images were

subsequently scaled to 70% size (2360x2898) leading to a training time of 60 hours for the

full ten folds.

Figure 6.2: GPU out of memory error.

6.2.2 Metrics

The BAC classification model outputs “BAC” or “NON_BAC” based on the input image. Net-

work performance was evaluated using the following metrics: test accuracy, precision, recall

and F1 score. These are defined as follows:

Accuracy =
TP + TN

TP + FP + FN + TN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1− Score =
2 ∗ Precision ∗Recall

(Precision+Recall)

where TP is the true positive, TN is the true negative, FP is the false positive and FN is the

false negative.

Layer activations and feature maps further provided a visual representation of the model’s

performance and are shown in Section 6.3.
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6.3 Results

Figure 6.3: Rounded aggregated confusion matrix for 10-fold classification.

The results from 10-fold cross validation for BAC classification using our ResNet22 model

with data augmentation are shown in Table 6.2. Using rescale-symmetric normalization re-

sulted in the highest mean accuracy (0.80) and recall (0.79). Zscore normalization provided

the highest mean precision (0.84) while both types attained identical mean F1 scores (0.81).

Initially, 10-fold cross validation was performed without images being divided into train-

ing, test and validation sets based on the patient case and also without the drop-out layers.

Mean accuracy was initially found to be 81%. When the two dropout layers were added, this

increased to 82.25%. When images were subsequently split by case, the results shown in

Table 6.2 were achieved. The rounded aggregated confusion matrix for 10-fold classification

indicating class-specific accuracy for both classes is shown in Figure 6.3 above.

Table 6.2: 10-Fold Cross Validation BAC Classification Results by Normalisation Type.

Normalisation Type Mean Accuracy Mean Precision Mean Recall Mean F1 Score

rescale-symmetric 0.80 0.83 0.79 0.81
zscore 0.79 0.84 0.78 0.81
rescale-zero-one 0.77 0.81 0.77 0.79
zerocenter 0.76 0.79 0.76 0.77
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Table 6.3 below compares the performance of CLAHE and non-CLAHE pre-processed

images with CLAHE-applied training sets achieving lower scores (averaging approximately

15.3% lower) across all metrics.

Table 6.3: BAC Classification Results Comparison of CLAHE to non-CLAHE.

Method Mean Accuracy Mean Precision Mean Recall Mean F1 Score

Non-CLAHE 0.80 0.83 0.79 0.81
CLAHE 0.63 0.66 0.64 0.65

Conv_0

Conv_15

Conv_30

Conv_45

Conv_60

Conv_75

Figure 6.4: Layer Activations and their Associated Feature Maps. Each section contains the
original image on the left. The middle image is the strongest activation for that layer applied
to the image. The feature maps for that layer are shown on the right.

Layer activations with their associated feature maps were recorded at 6 layers (Conv_0,

Conv_15, Conv_30, Conv_45, Conv_60 and Conv_75). A single image’s progression through
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the layers is shown in Figure 6.4. No feature maps examined provided clear representations

of any linear or curvi-linear structures although the model clearly focuses on regions con-

taining BAC.

6.4 Discussion

Only one other paper (Mobini et al., 2023) addresses image-level BAC classification for

the presence or absence of BAC making comparison difficult for this method. The authors

claimed 97% accuracy although only 10% of their test set were BAC-positive images. An-

swering the classification aspect of our main research question, i.e. how well do our models

perform?, is difficult, therefore. Despite this, with our ResNet22 network achieving a test

accuracy of 80%, we believe that this approach has the potential of being used as a simple

flag for BAC to alert humans and/or other algorithms of its presence on mammograms.

Surprisingly, CLAHE had a detrimental effect on the model’s performance. Multiple clip

limits, tile numbers and distributions were investigated but the test accuracy never reached

70%. We would not advocate using CLAHE in any BAC classification deep learning studies.

6.5 Summary

We have described a model to classify FFDM images for the presence or absence of BAC

using transfer learning built on a custom ResNet-22 network with weights originally used to

classify breast cancer lesions. Despite the application of CLAHE having a negative effect on

performance, our network shows promise as a simple flag for image-level BAC classification.

The next chapter describes using object detection techniques in order to extend the above

approach and predict the location of BAC on those images.
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7 | BAC Object Detection Model

As we have seen in the previous chapter, the goal of image classification is to predict the type

or class of an object in an image whereas object detection involves predicting the location

of objects in an image using bounding boxes and the classes of the located objects (El-

gendy, 2020). Object detectors operate by first proposing a number of plausible rectangular

regions then classifiying each detection while also producing a confidence score. Regions

undergo a non-maximum suppression stage (NMS) where a single entity is selected from

many overlapping entities (Szeliski, 2022). The application of NMS is shown in Figure 7.1.

Figure 7.1: NMS identifes the box with the maximum prediction probability and discards the
rest. From Elgendy (2020).
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7.1 Multi-stage Detectors

Girshick et al. (2014) introduced region-based convolutional neural networks (R-CNNs) which

consisted of four main components: extracting region proposals, a feature extraction mod-

ule, a classification module and a localisation module. R-CNNs extracted about 2,000 region

proposals which were then rescaled to a 224 square image and passed through an AlexNet

or VGG neural network with a support vector machine (SVM) final classifier (Szeliski, 2022).

Fast R-CNN (Girshick, 2015) interchanged the CNN and region extraction stages of R-

CNN and replaced the SVM with some fully connected layers leading to much faster training

and test times (2 seconds vs 50 seconds) as well as dramatically better accuracy.

Figure 7.2: Faster R-CNN replaces the selective search method of Fast R-CNN with a region
proposal network making the algorithm ten times faster. From Ren et al. (2017).

Faster R-CNN (Ren et al., 2017), shown in Figure 7.2 above, builds on R-CNN and Fast

R-CNN by utilising a CNN to extract features and obtain regions of interest using a region

proposal network (RPN). An RPN is a fully convolutional network that simultaneously predicts

anchor boxes of varying shapes and sizes and objectness scores at each position using

an instance of a Fast R-CNN head. Full-image convolutional features are shared with the
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detection network, thus enabling nearly cost-free region proposals. The detections are then

ranked and merged using non-maximum suppression. Faster R-CNN was found to be ten

times faster in testing images than Fast R-CNN (Elgendy, 2020).

7.2 Single-stage Detectors

Another type of object detection network is a single-stage network which uses a single neu-

ral network to output detections at numerous locations (Szeliski, 2022). The YOLO (“You

Only Look Once”) family of object detectors is a series of end-to-end deep learning models

designed for fast object detection (Elgendy, 2020). The first version, YOLOv1, unified the

two main components of a detector, i.e. the object detector and the class predictor (Redmon,

Divvala, Girshick, & Farhadi, 2016). Subsequent iterations improved test times and accuracy

through larger models (Redmon & Farhadi, 2017, 2018).

Figure 7.3: YOLOv4 architecture. From Mathworks (2023b).

YOLOv4 (Bochkovskiy et al., 2020), shown in Figure 7.3 above, comprises three parts:

a backbone, a neck and a head. The backbone acts as a feature extraction network that

creates feature maps from input images. The neck is composed of a spatial pyramid pooling

(SPP) module and a path aggregation network (PAN). It performs top-down feature enhance-
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ment and concatenates feature maps output by the backbone and passes these as inputs

to the head. The latter processes the concatenated features, predicting boundary boxes,

objectness scores and classification scores. This step uses one-stage object detectors, in

this case YOLOv3 (Redmon & Farhadi, 2018), as detection heads.

Only two YOLO models have been implemented in MATLAB since YOLOv4, namely

YOLOX (Z. Ge, Liu, Wang, Li, & Sun, 2021) and YOLOv8. Unfortunately, they were not

available at the time of training. YOLOX forgoes using anchors to predict bounding box di-

mensions, instead the network divides the input image into a grid of three different scales,

and uses the grid points as the top-left offsets of the bounding boxes. YOLOv8, which has

no paper published, was released by the company Ultralytics in January 2023. It uses the

same backbone as YOLOv4 and is also anchor-free and avails of mosaic augmentation dur-

ing training (Terven & Cordova-Esparza, 2023). Improved accuracy and better speed and

efficiency have led it to be considered the new state-of-the-art in object detection (Reis, Ku-

pec, Hong, & Daoudi, 2023).

7.3 Network Training

Both multi-stage (Faster R-CNN) and single-stage detectors were used in training the object

detection models. Multi-stage detectors offer greater accuracy while single-stage models

provide greater speed (Szeliski, 2022).

7.3.1 Faster R-CNN

The 96-layer Faster R-CNN with a ResNet-22 feature extraction network is shown in Figure

7.4. A layer-by-layer description of the network is provided in Appendix G. Faster R-CNN

adds a region proposal network to generate region proposals directly in the network instead

of using an external algorithm, i.e. it is ‘faster’ within the network (Ren et al., 2017).

As mentioned in Section 5.2, we collected and prepared 408 BAC-postive images. For

the object detection experiments, these were divided into training and test sets with a ratio

of 80:20, giving 326:82 images respectively. The training images were augmented using the
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Figure 7.4: Faster R-CNN network with modified ResNet-22 feature extraction network.

techniques described in Section 5.4.3 bringing the number of training images up to 2604 (4

augmented images were discarded due to invalid bounding box positions). Data was split

based on the case so that both sets did not have images from the same patient. Validation

data were not used as, at the time of training, the MATLAB function to train the network,

trainFasterRCNNObjectDetector, did not support it. The network was assembled using

the modified ResNet-22 network used for BAC classification as the feature extraction with

layer 65, “ReLu_63”, being used as the feature layer.

Another MATLAB method, estimateAnchorBoxes, was used to predict anchor boxes

based on the size of bounding boxes in the training data. This was done after plotting the

number of anchors against mean IoU on the training data as shown in Figure 7.5. This

showed significant increases in mean IoU between 6 and 9 and 9 and 15 boxes respec-

tively, so anchor boxes were estimated for these three amounts. Estimated box sizes ranged

from 148x132 to 1599x1014. More boxes increase the mean IoU but are accompanied by a

greater computational overhead and longer training times.

The network was trained for 20 epochs with images at 70% of the original size, i.e.

2898x2360. Data was pre-processed to resize images and rescale bounding boxes to the

target size. After experimenting with several values (0.01, 0.001, 0.0001), a learning rate of
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Figure 7.5: Number of anchor boxes versus mean IoU in the BAC-positive dataset.

0.001 was used with stochastic gradient descent optimisation.

We were unable to avail of parallel processing options in MATLAB to simultaneously train

the region proposal and region classification subnetworks as this resulted in “Out of Memory”

errors like those previously shown in Figure 6.2. These errors were also minimised by setting

the mini-batch size to 4. Each subnetwork was then trained sequentially in four steps.

7.3.2 YOLOv4

Only one previous paper, K. Wang et al. (2019), has used object detection techniques to

detect BAC. They found a mean IoU (Intersection over Union) of zero when using a YOLOv2

(Redmon & Farhadi, 2017) network. This project aimed to improve on that by using an up-

dated YOLOv4 (Bochkovskiy et al., 2020) network utilising our customised ResNet-22 model

as the feature extraction backbone. The network is shown in Figure 7.6 with a layer-by-layer

description available in Appendix H.

As before, BAC-positive images were divided into training and test sets with an additional

validation set. The training:validation:test ratio was 80:10:10. With augmented training data

this led to 2604 training images and 41 unaugmented validation and test images each. Data
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YOLOv4 Architecture

ResNet22

Spatial Pyramid Pooling 
(SPP) 

Path Aggregation 
Network  (PAN)

Bounding Box Predictions

Confidence Scores

Input Image Prediction

Backbone Neck Head

YOLOv3

Upsampling Downsampling

YOLOv3
PAN

SPP

Figure 7.6: YOLOv4 BAC object detection network comprising a backbone (ResNet22 fea-
ture extraction network), a neck (Spatial pyramid pooling and a path aggregation network)
and a head (Two YOLOv3 detectors).

was split based on the case so that no two sets had images from the same patient. The

network was assembled using the modified ResNet-22 network used for BAC classification as

the feature extraction module with layers 46 and 65, “ReLu_44” and “ReLu_63” respectively,

being used as the feature extraction layers.

The 101-layer network was trained for 70 epochs with BAC-positive images at 70% of

the original size (2898x2360). Data was pre-processed to resize images and rescale bound-

ing boxes to the target size. The resulting images, bounding boxes and labels were also

validated. Images were checked that they were non-empty and had 2 dimensions. Bound-

ing boxes required positive integer values stored in a M × 4 matrix and labels had to be

categorical and also non-empty.

After experimenting with several values (0.01, 0.001, 0.0001), a learning rate of 0.001 was

used with an Adam optimiser. Batch size was again limited to 4 to curtail “Out of Memory”

errors on the GPU. Six anchor boxes were used, the sizes of which were determined by

the MATLAB function estimateAnchorBoxes and were based on the training data. Training

YOLOv4 with 9 or 15 anchor boxes resulted in “Maximum variable size allowed on the device

is exceeded” errors therefore training was limited to 6.
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7.3.3 Metrics

Elgendy (2020) notes that the main tasks in object detection are to predict the coordinates

of bounding boxes around all the objects of interest and to correctly label the objects. The

most common metric is intersection over union (IoU), previously described in Section 5.2.1

and shown schematically in Figure 7.7a.

(a) (b)

Figure 7.7: (a) Schematic formula of IoU (b) Average precision averaged over several IoU
thresholds (from less to more accurate). From Szeliski (2022). ©2020 Ross Girshick.

In order to evaluate an object detector, we need to traverse all detections from most

confident to least and classify them as true or false positive (Szeliski, 2022). The former

reflects a correct label and sufficiently high IoU whereas the latter may indicate an incorrect

label or a ground truth object that has already been matched. Precision and recall can be

determined at each IoU threshold level giving us a precision-recall curve like those in Figure

7.7b. Average precision (AP) is the area under this curve and this provides a single number

that incorporates the ability of the detector to make correct classifications (precision) and the

ability of the detector to find all relevant objects (recall). The ideal precision is 1 at all recall

levels (Mathworks, 2023c).

Average precision was used to evaluate how successful our models were at detecting

BAC.
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7.4 Results

7.4.1 Faster R-CNN

Our ResNet-22 BAC classification network was used as a feature extraction backbone to a

Faster R-CNN network trained with augmented data for BAC object detection. It was tested

on 82 images. The average precision results for Faster R-CNN are shown in Table 7.1. At

an IoU threshold of 0.5, the maximum AP is 0.0579. This is quite low and was obtained by

the model being trained with 9 anchor boxes. Setting the threshold at 0.1 increases the AP

marginally.

The precision-recall curves for a threshold of 0.5 are shown in Figure 7.8. At this threshold

and with 9 anchor boxes, 17% (n=14) of the BAC-positive test set images were found to have

no BAC present. Despite this, for some images the models did well in identifying BAC positive

areas as shown in Figure 7.9.

Table 7.1: Faster R-CNN Average Precision Results.

No. of Anchor Boxes IoU Threshold Average Precision

6 0.5 0.0463
9 0.5 0.0579
15 0.5 0.0307
6 0.1 0.0516
9 0.1 0.0584
15 0.1 0.0319

7.4.2 YOLOv4

Our ResNet-22 BAC-classification network was again used as a feature extraction backbone

to a YOLOv4 network trained with augmented data for BAC object detection. It was tested

on 41 images. The results for average precision for two IoU thresholds are shown in Table

7.2. An average precision of 0.02 was found for a threshold of 0.5 with a slight increase to

0.03 when it was lowered to 0.1.
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(a) 6 anchor boxes. (b) 9 anchor boxes. (c) 15 anchor boxes.

Figure 7.8: Precision-recall curves for BAC object detection using Faster R-CNN with several
anchor boxes at an IoU threshold of 0.5.

(a) 6 anchor boxes. (b) 9 anchor boxes. (c) 15 anchor boxes.

Figure 7.9: BAC-positive locations predicted by Faster R-CNN models trained with 6, 9 and
15 anchor boxes respectively. The yellow boxes are ground truth and the predictions are
green.

Table 7.2: YOLOv4 Average Precision Results.

No. of Anchor Boxes IoU Threshold Average Precision

6 0.5 0.0189
6 0.1 0.027

Figure 7.10a overleaf shows the precision recall curve for BAC object detection using

YOLOv4 at an IoU threshold of 0.5. An average precision of 0.02 is even lower than that

achieved by the worst performing Faster R-CNN model. Table 7.3 shows the percentage of

images reaching detection confidence scores for BAC object detection, i.e. the probability

that the object in the box is BAC. 9.7% of test images (n = 4) attained confidence scores of

greater than 0.9 while 19.5% (n = 8) reached 0.5.
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(a) Threshold = 0.5,
Average Precision = 0.02

(b) Threshold=0.1,Average
Precision=0.02

(c) Threshold = 0.01,
Average Precision = 0.04

Figure 7.10: Average Precision for BAC Object Detection at several thresholds.

Table 7.3: Percentage of Test Images Reaching Detection Confidence Scores.

Confidence Score No. of Test Images Reaching Score % of Test Images Reaching Score

0.9 4 9.7%
0.8 5 12.1%
0.7 6 14.6%
0.6 7 17.1%
0.5 8 19.5%
0.4 9 22.0%
0.3 13 31.7%
0.2 17 41.5%
0.1 19 46.3%

Figure 7.11 shows a sample comparison of ground truth and predicted objects for test

images that attained a detection confidence score of greater than 0.9. The predicted boxes

correspond well to ground truth BAC regions. A sample comparison of ground truth and

predicted objects for test images that attained a detection confidence score of between 0.1

and 0.2 is shown in Figure 7.12. Despite these low scores, some predicted areas correspond

visually satisfactorily to ground truth BAC regions.

7.4.3 YOLOv4/Faster R-CNN Comparison

As we were unable to use validation data for the Faster R-CNN model, it was difficult to

compare the latter to YOLOv4 as the test set had twice as many images. We evaluated the

YOLOv4 test set, which makes up half of the Faster R-CNN test set, using two of the Faster

R-CNN models and the results are shown in Table 7.4. Both Faster R-CNN models improved
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(a) Confidence score: 0.9038 (b) Confidence score: 0.96244 (c) Confidence score: 0.9089

Figure 7.11: Comparison of ground truth and predicted objects for test images that attained
a detection confidence score of greater than 0.9. Ground truth is in yellow with the predicted
bounding box in red.

(a) Confidence score: 0.14493 (b) Confidence score: 0.15305 (c) Confidence score: 0.11261

Figure 7.12: Comparison of ground truth and predicted objects for test images that attained a
detection confidence score between 0.1 and 0.2. Ground truth is in yellow with the predicted
bounding box in red.

on the YOLOv4 trained model with the 6 anchor network more than doubling the AP.

Table 7.4: YOLOv4 vs Faster R-CNN Average Precision Results.

Model No. of Anchor Boxes IoU Threshold Average Precision

YOLOv4 6 0.5 0.0189
Faster R-CNN 6 0.5 0.0692
Faster R-CNN 9 0.5 0.0270
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Figure 7.13: BAC-positive locations predicted by a Faster R-CNN and a YOLOv4 model
trained with 6 anchor boxes respectively. The yellow boxes are ground truth and the predic-
tions are green for Faster R-CNN and red for YOLOv4.

7.5 Discussion

Our Faster R-CNN object detection models performed poorly in identifying BAC on screen-

ing mammograms achieving a maximum average precision of 0.0579. Our YOLOv4 object

detection network performed similarly poorly with an AP of just 0.0189. 83% of images

reached the 0.5 IoU threshold using Faster R-CNN while only approximately 20% did so

using YOLOv4. Despite this, the latter model obtained detection confidence scores of over

90% for four of the test images, three of which are shown in Figure 7.11. Furthermore, some

bounding boxes with low confidence detection scores appear in or near locations where

ground truth bounding boxes are situated as shown in Figure 7.12. Figure 7.9 also shows

satisfactory performance in detecting BAC using Faster R-CNN.

The low average precision obtained may be due insufficient training data although data

augmentation was used to increase the training set to 2604 images. Furthermore, the BAC

“object” represents very little of the bounding box area (in most cases less than 1%) which

may make training and detection difficult. Hyperparameter tuning was also curtailed in some

instances by the limits of the training hardware such as in the case of mini-batch size.

Another study using Faster R-CNN and MATLAB for breast cancer detection (Reiazi,

Paydar, Ardakani, & Etedadialiabadi, 2018) found similar results, i.e. an average precision

of 0.1. Our aim was to improve on the previous research by K. Wang et al. (2019), which
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was achieved. At higher IoU thresholds there may be some potential to use this approach

as an initial screen. The low metrics obtained overall, however, present a major obstacle to

its adoption for this task.

7.6 Summary

This chapter looked at BAC object detection using both multi-stage (Faster R-CNN) and

single-stage (YOLOv4) detectors. Models were developed using our ResNet-22 BAC clas-

sification network as a feature extraction module. Despite showing some promise at higher

IoU thresholds, the models performed poorly with a maximum average precision of approx-

imately 0.06. Our results indicate that object detection techniques may not be suitable for

BAC detection.

Chapter 8 will examine segmentation using deep learning as a potentially more promising

method for automatic detection of BAC. After preliminary testing of several network architec-

tures trained on a subset of images, we choose a model most suitable for BAC segmenta-

tion. This model will then be trained and evaluated using 220 images manually segmented

for BAC.
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8 | BAC Segmentation Model

Gonzalez et al. (2020) note that the segmentation of non-trivial images is one of the most

challenging tasks in image processing where accuracy determines the success or failure of

image analysis procedures. They describe this challenge as a “pixel-labelling” problem in

which pixels are assigned to labeled classes, the union of which constitutes an image. This

is also known as semantic segmentation (Minaee et al., 2022) with instance segmentation

denoting the accurate delineation of each object.

Deep learning models have outperformed and replaced traditional segmentation methods

such as thresholding (Otsu, 1979), k-means clustering (Dhanachandra, Manglem, & Chanu,

2015) and even advanced algorithms such as active contours (Kass, Witkin, & Terzopoulos,

1988). This has resulted in a paradigm shift in the field (Minaee et al., 2022).

Per-pixel semantic labeling using a single neural network was enabled by fully convo-

lutional networks (FCNs) which combined semantic information from deep, coarse layers

and appearance information from shallow, fine layers (Long, Shelhamer, & Darrell, 2015).

Szeliski (2022) states that FCN accuracy and resolution were then improved by the addi-

tion of conditional random fields (CRFs) at a final stage such as those used in DeepLab

(L.-C. Chen, Papandreou, Kokkinos, Murphy, & Yuille, 2018), deconvolutional upsampling

(Noh, Hong, & Han, 2015) and fine-level connections in U-nets (Ronneberger et al., 2015).

The next section first introduces architectures considered for BAC segmentation and then

describes the preliminary training undertaken to find the most promising model for the task.
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8.1 Preliminary Training

U-Net (Ronneberger et al., 2015), SegNet (Badrinarayanan et al., 2017) and the DeepLab

family of networks (L.-C. Chen, Papandreou, et al., 2018) are popular segmentation net-

works. U-Nets consist of two parts, a contracting path to capture context and a symmetric

expanding path that enables precise localisation. The original U-net study used a small num-

ber of light-transmitted microscopy images (n=30) along with data augmentation to produce

their results. The images only contained two intensities, black and white.

SegNet built on the deconvolutional upsampling of Noh et al. (2015)’s network decoder

by using pooling indices computed in the max-pooling step of the corresponding encoder to

perform non-linear up-sampling (Minaee et al., 2022).

Early iterations of DeepLab networks incorporated three features that made them suitable

for segmentation tasks (L.-C. Chen, Papandreou, et al., 2018):

• Dilated, or “atrous”, convolutions, shown in Figure 8.1, that reversed the adverse ef-

fects on resolution of max-pooling and striding. A 3x3 kernel with a dilation rate of 2

will have the same size receptive field as a 5x5 kernel while only using 9 parameters

and at no additional computational cost (Minaee et al., 2022).

Figure 8.1: Illustration of atrous convolution in 2-D. From L.-C. Chen, Papandreou, et
al. (2018).

• Atrous spatial pyramid pooling (ASPP), shown in Figure 8.1 which allows the capture
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of both objects and multi-scale image context due to the ability to filter the incoming

feature layer at multiple sampling rates.

Figure 8.2: Atrous spatial pyramid pooling (ASPP). From L.-C. Chen, Papandreou, et
al. (2018).

• Combining methods such as fully convolutional networks and CRFs to improve the

localisation of object boundaries.

DeepLabv3 (L.-C. Chen, Papandreou, Schroff, & Adam, 2017) combined cascaded and

parallel convolutions which allowed multiple dilation rates in order to further improve the

capture of multi-scale context. DeepLabv3+ (L.-C. Chen, Papandreou, et al., 2018) uses

DeepLabv3 as the encoder in a encoder-decoder architecture with the decoder module re-

fining segmentations along object boundaries.

Given the various options, a number of networks, including U-Net, SegNet and DeepLabv3+

with several backbones, were initially trained on a subset of images in order to identify those

more suitable for BAC segmentation. Unfortunately, MATLAB’s pre-trained segmentation

models do not support custom backbones. Backbones used with DeepLabv3+ included

ResNet18 (He et al., 2016), Xception (Chollet, 2017) and Inception ResNetv2 (Szegedy,

Ioffe, Vanhoucke, & Alemi, 2017). ResNet18 is closest to the ResNet22 network we used for

classification and object detection, minus one residual block. Inception ResNetv2 builds on

the Inception (Szegedy et al., 2015) architecture by replacing its filter concatenation stage

with residual connections thus reaping the benefits of the residual approach while maintain-

ing computational efficiency. The Xception model also extends the Inception approach by

replacing Inception modules with depthwise separable convolutions.

Models were trained using 61, 169 and 200 images. Visual results from the first stage
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are shown in Figure 8.3. Quantitative preliminary results are shown in Table 8.1. The

DeepLabv3+ models performed best at the first stage with DeepLabv3+ ResNet18 achieving

a BFScore of 0.67. The Inception ResNetv2 backbone network was eliminated as it took 60

hours to complete training with the rest of the models taking 6 to 8 hours. At the next two

stages, DeepLabv3+ ResNet18 attained better results than DeepLabv3+ Xception in terms

of accuracy and BFScore and was chosen as our BAC segmentation model.

Figure 8.3: Visual segmentation results after training each model with 61 images.

Table 8.1: Preliminary Segmentation Network Results.

Model Layers Images Patches Acc IoU BFScore

U-Net 58 61 7808 0.30 0.10 0.26
SegNet 59 61 7808 0.42 0.05 0.29
DeepLabv3+ ResNet18 100 61 7808 0.54 0.30 0.67
DeepLabv3+ Xception 205 61 7808 0.45 0.26 0.64
DeepLabv3+ Inception ResNetv2 853 61 7808 0.56 0.23 0.52
DeepLabv3+ ResNet18 100 169 21632 0.48 0.37 0.63
DeepLabv3+ Xception 205 169 21632 0.25 0.217 0.41
DeepLabv3+ ResNet18 100 200 25600 0.57 0.33 0.604
DeepLabv3+ Xception 205 200 25600 0.373 0.29 0.59
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Figure 8.4: DeepLabv3+-ResNet18 BAC segmentation network. N.B. MATLAB’s
DeepLabv3+ implementation does not include a global average pooling layer in the ASPP.

8.2 Network Training

Given the above preliminary investigation, the DeepLabv3+-ResNet18 model shown in Fig-

ure 8.4, was used for BAC segmentation. A layer-by-layer description is available in Ap-

pendix I. MATLAB’s implementation of DeepLabv3+-ResNet18 makes use of extracting ran-

dom patches from two image-based datastores containing ground truth images and pixel

label data and can handle multiple image sizes as input. 220 manually-segmented ground

truth images were cropped to the breast and converted to RGB (required by ResNet-18)

with the smallest and largest being 687x1904 and 2968x3944 respectively. The number of

patches per image was set to 128 with a size of 512x512 providing 28160 patches in total.

Image pixels had been already annotated for three classes during pre-processing: breast,

background and BAC. Class weights using inverse frequency were calculated in order to

increase the weight given to BAC. The training:validation:test ratio was 80:10:10 leading to

a 22528:2816:2816 patch ratio. With an initial learning rate of 0.001 and a mini-batch size

of 16, the 100-layer model was trained for 70 epochs using stochastic gradient descent with

a momentum of 0.9. Training lasted 78 hours as shown in Figure 8.5.

85



Figure 8.5: Training progress visualisation for DeepLabv3+ ResNet18 model over 70 epochs.

8.2.1 Metrics

Test images were segmented patch-wise and performance of the model for BAC segmenta-

tion was evaluated globally and class-wise in terms of accuracy, IoU (Intersection over Union)

and mean BF (Boundary F1) score. The latter metric is the harmonic mean of precision and

recall with a distance error tolerance to decide whether a point on the predicted boundary

matches one on the ground truth boundary or not (Csurka, Larlus, & Perronnin, 2013). The

metrics are defined as follows (accuracy is restated for ease of reference):

Accuracy =
TP + TN

TP + FP + FN + TN

IoU =
TP

TP + FP + FN

BFScore =
2 ∗ Precision ∗Recall

(Precision+Recall)

where TP is the true positive, TN is the true negative, FP is the false positive and FN is the

false negative.
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8.3 Results

Figure 8.6: Visual comparison of BAC ground truth and predicted BAC on two images. BAC
is denoted as blue, with background and breast tissue olive green and turquoise respectively.

Figure 8.6 shows a visual comparison of BAC ground truth and predicted BAC on two

images. Background and breast tissue were accurately segmented with predicted BAC being

satisfactory in terms of location on the whole although some small areas outside ground truth

were classified as BAC.

Table 8.2 shows semantic segmentation metrics aggregated over the entire dataset.

Global accuracy, a measure of correctly classified pixels regardless of class (background,

BAC or breast), was found to be 0.9937 whereas the mean accuracy, the ratio of correctly

classified pixels in each class to total pixels, was found to be 0.8585.

Table 8.2: Segmentation Global Results.

Global Accuracy Mean Accuracy Mean IoU Weighted IoU Mean BFScore

0.9937 0.8585 0.8044 0.9886 0.8636

The class-level results are shown in Table 8.3 with BAC segmentation accuracy lower

than that of both background and breast at 0.5834. IoU and BFScores for BAC were found to

be 0.4283 and 0.7019 respectively, again lower than the other two classes. The normalized

confusion matrix shown in Figure 8.7 indicates that many more BAC pixels were wrongly

classified as breast tissue (41.66%) compared to background (0.003162%).
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Table 8.3: Segmentation Class-level Results.

Class Accuracy IoU Mean BFScore

background 0.9961 0.9937 0.9683
BAC 0.5834 0.4283 0.7019
breast 0.9961 0.9911 0.9206

Figure 8.7: Normalized segmentation confusion matrix.

8.3.1 Post-processing

Minaee et al. (2022) note that some researchers have used active contours as a simple

post-processor to the output of segmentation models. We applied the edge-based MAT-

LAB activecontour function to the masks generated through training in order to ascertain

whether the predicted boundaries could be improved in relation to ground truth. Table 8.4

shows the effect of using active contouring post-processing for BAC segmentation. IoU in-

creased by 3% to 0.4415 whereas accuracy decreased by 9% to 0.5307.

Table 8.4: BAC segmentation class-level result comparison.

Accuracy IoU Mean BFScore

No post-processing 0.5834 0.4283 0.7019Class weights using inverse frequency were calculated in order to increase the weight given to BAC.
Post-processing 0.5307 0.4415 0.7222
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Figure 8.8 shows the stages of BAC segmentation from the original image to ground truth,

from predicted BAC to the post-processed revised prediction.

(a) Original image. (b) BAC ground truth. (c) Predicted BAC. (d) Revised prediction.

Figure 8.8: An example showing BAC Segmentation Stages.

8.4 Discussion

BAC segmentation is probably the most important pre-requisite for automating BAC grading

as it forms the quantitative basis of any calcification measurement and provides a more

granular location assessment than that of bounding boxes. Our DeepLabv3+ with ResNet18

backbone model doubled the best IoU score for BAC segmentation obtained by K. Wang et

al. (2019) who also used a DeepLabv3+-based network.

Our global results for segmentation accuracy matched those in two more recent papers

(Ghamdi et al., 2020; Guo et al., 2021) but were much lower specifically for the BAC class.

Wrongly classed BAC pixels were mostly classed as breast tissue. Only 23 BAC pixels were

wrongly classed as background. Predicted BAC segmentations were processed with an

edge-based active contour function which increased the mean IoU but decreased accuracy.

More research is needed to ascertain the effectiveness of this post-processing technique.

The BFScore measures how close the predicted boundary of an object matches the

ground truth boundary and replicates human qualitative assessment more so than the IoU
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metric (Csurka et al., 2013). The good BFScore we achieved indicates that our model shows

promise for BAC segmentation.

8.5 Summary

This chapter examined BAC segmentation using a DeepLabv3+ model with a ResNet18

backbone after having initially training a range of models including U-Net and SegNet on

a subset of the 220 hand-annotated FFDM image dataset. We improved IoU and matched

global segmentation accuracy compared to other papers in the literature while also achieving

good boundary predictions. This indicates that this model has the potential to be used in BAC

segmentation tasks.

The next chapter will review the research objectives and draw conclusions on our ap-

proaches to BAC classification, detection and segmentation, outlining our contribution to the

field. The limitations of our study will be described and recommendations for future research

will be made.
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9 | Conclusions and Future Work

9.1 Summary

In this study, we successfully achieved the research objectives set out in Chapter 1. We

conducted a review of the literature regarding BAC and its detection, classification and seg-

mentation using automatic, computerised methods, identifying the current state of the art.

We obtained, pre-processed, augmented and annotated an anonymised dataset of mam-

mography images in preparation for BAC model training. The latter annotation task was

validated to a satisfactory standard by an observer reader study involving two consultant

radiologists, one of whom also provided guidance for pixel-level manual segmentation.

We investigated a number of deep learning models to aid automatic classification, de-

tection and segmentation of BAC in order to assist radiologists in determining the presence

or absence of BAC, where it is located and how extensive it is. Our main research question

sought to ascertain how well our models performed in these three tasks. For classification,

we used a custom ResNet22 network initialised with weights from a recent breast cancer de-

tection study. A test accuracy of 80% indicates that this method could be used as a simple

flag for the presence or absence of BAC. The ResNet22 network developed was also used

as a feature extraction network for Faster R-CNN and YOLOv4 BAC object detection models.

These models performed poorly with very low average precision scores leading us to reject

the hypothesis that they could be successfully used for region-level BAC object detection.

More promising was a DeepLabv3+-based network for pixel-level BAC segmentation which

obtained a BFScore of over 70% and doubled the IoU achieved by a study that used a similar

model.
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Based on the findings of this research, a two-step pipeline is recommended with our

classifier triaging mammographic images for BAC and our segmentation model providing an

indication of the extent of its presence.

In conclusion, the main contributions of this study are: (i) it presents a comprehensive

and systematic review of BAC classification, object detection and segmentation approaches

using deep learning, (ii) it creates a new dataset, validated by consultant radiologists, which

has been annotated for the presence and location of BAC at an image, region and pixel level

and (iii) deep learning models for BAC classification, object detection and segmentation have

been developed and evaluated.

9.2 Study Limitations

The limitations of this study included the non-availability of any large public dataset with BAC-

annotated images for training. It would also have been useful to have had another dataset

to compare the performance of our models directly. Deep learning studies in retinal imaging

can avail of numerous high quality benchmark datasets (S. M. Khan et al., 2021). A similar

approach would be useful for BAC studies.

Ground truth for the presence, location and extent of BAC was provided by the author

who, while having significant medical imaging domain knowledge, is not a breast radiologist.

Ideally, ground truth would be provided by the latter practitioners but, as we have shown, this

is currently a challenging task to do so on a large scale.

Training full-size mammography images proved to be computationally expensive and

tested the memory limits of our GPU hardware and presented time challenges. This re-

sulted in reducing the image sizes to 70% of the original for both the classification and object

detection models. For the same reason, we also had to forego parallel processing features

available in MATLAB during the object detection task.
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9.3 Future Work

The results of this study show promise in relation to BAC classification and segmentation as a

first step towards automatic BAC grading to predict cardiovascular risk in patients undergoing

mammographic imaging and to direct women to further approved cardiac diagnostic testing

and treatment programs. There are several other aspects which would progress this journey

further and these include:

• The other papers examining BAC segmentation using deep learning had access to

similar small datasets as our own study. Our metrics for BAC segmentation improved

as we added more images. Many more images will be needed for future studies. Multi-

centre curation of images via a federated learning platform, for example, could prove

useful for training and minimising dataset bias.

• It would also be useful for a consensus to be reached on standardised BAC reporting

and what exactly BAC grading should be, i.e. is it a quantitative measure of area or

length?, and what subsequent clinical pathway actions need to happen based on its

severity.

• Future research should have a more clinical focus with prospective studies that mon-

itor patients over time. Our retrospective study used images from patients within a

narrow age range, 65-70. This cohort could be enlarged to include all age ranges over

forty. Clinical data such as BMI, blood pressure and other risk factor parameters could

be added to existing model features to boost network performance. Practical clinical

implementations deployed onsite would provide valuable feedback from clinicians on

their use and from metrics on their accuracy in the real world.

• It would be beneficial to investigate other types of deep models such as generative ad-

versarial networks as to their suitability for the above tasks. As we have shown, com-

bining deep models with traditional image processing such as active contours could

also prove a rewarding research pathway. All of the BAC papers used supervised

93



learning to train their models. Semi- and unsupervised learning methods could prove

useful while also reducing the manual annotation overhead.
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Version   [3]                                                 Date    [08/08/2021] 
 

1 

 
PARTICIPANT INFORMATION SHEET 

 

Title of study: The application of machine learning and computer-aided detection (CADe) to 
identify women at risk of cardiovascular disease from breast-screening mammography. 
 
Name of Researcher:  xxx 
 
1.  Invitation paragraph 

 
I would like to invite you to take part in a research study. Before you decide, you need to 
understand why the research is being done and what it would involve for you. Please take 
time to read the following information carefully. Ask questions if anything you read is not 
clear or you would like more information. Take time to decide whether or not to take part. 
 
2.  What is the purpose of the study? 
 

The study aims to develop a software tool to automatically identify breast arterial 
calcification on screening mammograms and to grade the level of calcification present in 
order to predict the risk of cardiovascular disease in women. The research is part of a PhD in 
machine learning I am doing at the University of Salford.   
 
3.  Why have I been invited to take part? 
 

Your clinical experience and skills in radiology/mammography reporting would be useful to 
the project as part of a human reader study for annotating images on the existence and 
extent of breast arterial calcification.  
 
4.  Do I have to take part? 
 

It is up to you to decide. We will describe the study and go through the information sheet 
which we will give to you. We will then ask you to sign a consent form to show that you 
have agreed to take part. You are free to withdraw at any time, without giving a reason. 
 
5.  What will happen to me if I take part? 
 

You will be asked to annotate a number of anonymised cases (n ≈ 60) from the OPTIMAM 
mammography dataset for the existence and extent of breast arterial calcification. These 
will be used to provide ground-truth information that will allow me to train machine 
learning algorithms. Each session will last around an hour and will take place in a suitable, 
local viewing facility. 
 
6.  Expenses and payments? 
 

You will receive no compensation/payment for your participation in the research study. 
 
7.  What are the possible disadvantages and risks of taking part? 
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There is no anticipated risk associated with participating in the study although the work 
could involve a considerable time commitment. The risk of Covid will be mitigated as much 
as possible. 
 
8.  What are the possible benefits of taking part? 
 

The information we get from the study will help progress automatic identification of 
patients at risk from cardiovascular disease, the number one cause of premature death in 
women. 
 
9.  What if there is a problem? 
 

If you have a concern about any aspect of this study, I can be contacted at xxx. 
If you remain unhappy and wish to complain formally you can do this by contacting my 
supervisors via email at xxx and xxx. 
 

However, if you remain dissatisfied and wish to complain formally, please forward your 
concerns to Professor Andrew Clark, Chair of the Health Research Ethical Approval Panel, 
Allerton Building, Frederick Road Campus, University of Salford, Salford, M6 6PU. Tel: 0161 
295 4109. E: a.clark@salford.ac.uk 
 
10.  Will my taking part in the study be kept confidential? 
 

All information which is collected from you during the course of the research will be 
anonymised. Your data will be stored safely and used only for the purposes of the study. 
Your data will be accessible only by authorised persons such as researchers within the team 
and supervisors. 
 
Depending on the OPTIMAM licence agreement, your data will be retained for a maximum 
of 3 years before being disposed of securely. 
 
11.  What will happen if I don’t carry on with the study? 
 

You are free to withdraw from the study at any time without notice or explanation. If you 
withdraw from the study we will use the data collected up to your withdrawal. 
 
12.  What will happen to the results of the research study? 
 

Findings will be disseminated through journals and conference papers. You will not be 
identified in any report/publication unless you have given consent. 
 
13.  Who is organising or sponsoring the research? 
 
University of Salford. 
 
14.  Further information and contact details:   

 

Xxx  
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CONSENT FORM 

 
 

Title of study: The application of machine learning and computer-aided detection (CADe) to 
identify women at risk of cardiovascular disease from breast-screening mammography. 
 
Name of Researcher:   Dominic Maguire 

      
Please complete and sign this form after you have read and understood the study information sheet.  
Read the following statements, and select ‘Yes’ or ‘No’ in the box on the right hand side. 
                      
 
1. I confirm that I have read and understand the study information sheet               

version 3.0, dated 08/08/2021, for the above study.  
I have had the opportunity to consider the information and to ask questions  
Which have been answered satisfactorily.  
       

2. I understand that my participation is voluntary and that I am free to    
withdraw at any time, without giving any reason, and without my rights  
being affected.  

 
3. If I do decide to withdraw I understand that the information I have given, up  

to the point of withdrawal, will be used in the research. 
 
4. I agree to participate by annotating anonymised mammogram images from the 
              OPTIMAM dataset for the existence and extent of breast arterial calcification. 
 
5. I understand that my personal details will be kept confidential and will not be 

revealed to people outside the research. 
  
6. I understand that my anonymised data will be used in the researcher’s thesis, 

 other academic publications, conference papers and presentations. 
 
 
7. I agree to take part in the study:        

 
 
_________________________ ___________________  ___________________ 
Name of participant   Date    Signature 
 
 
 
 
__________________________ ___________________  ___________________ 
Name of person taking consent  Date    Signature 

 
 
 
 

Yes/No 
 

Yes/No 
 

Yes/No 

Yes/No 
 

Yes/No 
 

Yes/No 
 

Yes/No 
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Risk Assessment Form 
 
ALL projects MUST include a risk assessment. If this summary assessment of the risk proves 
insignificant, i.e. you answer ‘no’ to all of the questions, then no further action is necessary. 
However, if you identify any risks then you must identify the precautions you will put in place to 
control these. 
 

1.  What is the title of the project? 
 

The application of machine learning and computer-aided detection (CADe) to identify 
women at risk of cardiovascular disease from breast-screening mammography. 
 

2.  Is the project purely literature based?      NO 
 
If YES, please go to the bottom of the assessment and sign where indicated. If NO, then please 
complete section 3 and list your proposed controls. 
 
 

3.  Please highlight the risk(s) which applies to your study: 
 

Hazards Risks If yes, consider what precautions will be taken to 
minimise risk and discuss with your Supervisor 

Use of ionising or non-
ionising radiation  

Exposure to 
radiation   
 
NO 

 

 

Use of hazardous 
substances  

Exposure to 
harmful substances  
 
NO 

 
 

Use of face-to-face  
interviews 
 
Interviewees could be 
upset by interview and 
become aggressive or 
violent toward 
researcher 

Interviewing … 
 
 
NO 
 

 

Use of face-to-face 
interviews  
 
Participants or 
interviewees could 
become upset by 

NO  
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interview and suffer 
psychological effects 
 
 
 
 
 
Sensitive data Exposure to data or 

information which 
may cause  
upset or distress to 
the researcher  
 
NO 

 

  

Physical activity 
 
 
 
 

Exposure to levels 
of exertion 
unsuitable for an 
individual’s level of 
fitness  
 
NO 

 

 

Equipment Exposure to faulty 
or unfamiliar 
equipment. 
 
NO 

 

Sensitive issues i.e. 
Gender/Cultural 
e.g. when observing or 
dealing with 
undressed members of 
the opposite sex 
 
 

Exposure to 
vulnerable 
situations/ 
sensitive issues 
that may cause 
distress to 
interviewer or 
interviewee  
 
NO 

 

 

Children NO  

Manual handling 
activities 

Exposure to an 
activity that could 
result in injury 
 
NO 

 

 
 
If you have answered ‘YES’ to any of the hazards in section 3, then please list the proposed 
precautions below: 
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Case Image IoU

'demd126320' '1.2.826.0.1.3680043.9.3218.1.1.41220200.1549.1546015312104.241.0.dcm' 0.839895

'demd126320' '1.2.826.0.1.3680043.9.3218.1.1.41220200.1549.1546015312104.238.0.dcm' 0.768616

'demd126320' '1.2.826.0.1.3680043.9.3218.1.1.41220200.1549.1546015312104.225.0.dcm' 0.556538

'demd126320' '1.2.826.0.1.3680043.9.3218.1.1.41220200.1549.1546015312104.235.0.dcm' 0.633927

'demd139399' '1.2.826.0.1.3680043.9.3218.1.1.14623017.5998.1547650561117.332.0.dcm' 0.388307

'demd139399' '1.2.826.0.1.3680043.9.3218.1.1.14623017.5998.1547650561117.343.0.dcm' 0.114656

'demd139399' '1.2.826.0.1.3680043.9.3218.1.1.14623017.5998.1547650561117.347.0.dcm' 0.279519

'demd139399' '1.2.826.0.1.3680043.9.3218.1.1.14623017.5998.1547650561117.345.0.dcm' 0

'demd125989' '1.2.826.0.1.3680043.9.3218.1.1.40564071.1740.1545949699164.190.0.dcm' 0.155205

'demd125989' '1.2.826.0.1.3680043.9.3218.1.1.40564071.1740.1545949699164.186.0.dcm' 0.129342

'demd125989' '1.2.826.0.1.3680043.9.3218.1.1.40564071.1740.1545949699164.196.0.dcm' 0.093888

'demd125989' '1.2.826.0.1.3680043.9.3218.1.1.40564071.1740.1545949699164.196.0.dcm' 0.081708

'demd125989' '1.2.826.0.1.3680043.9.3218.1.1.40564071.1740.1545949699164.184.0.dcm' 0.196424

'demd113666' '1.2.826.0.1.3680043.9.3218.1.1.13306350.3444.1543223927131.320.0.dcm' 0.087163

'demd113666' '1.2.826.0.1.3680043.9.3218.1.1.13306350.3444.1543223927131.324.0.dcm' 0

'demd113666' '1.2.826.0.1.3680043.9.3218.1.1.13306350.3444.1543223927131.324.0.dcm' 0.468282

'demd113666' '1.2.826.0.1.3680043.9.3218.1.1.13306350.3444.1543223927131.314.0.dcm' 0.717132

'demd113666' '1.2.826.0.1.3680043.9.3218.1.1.13306350.3444.1543223927131.327.0.dcm' 0.749743

'demd120047' '1.2.826.0.1.3680043.9.3218.1.1.22181111.5677.1548406370479.215.0.dcm' 0.492763

'demd120047' '1.2.826.0.1.3680043.9.3218.1.1.22181111.5677.1548406370479.225.0.dcm' 0.757246

'demd120047' '1.2.826.0.1.3680043.9.3218.1.1.22181111.5677.1548406370479.211.0.dcm' 0.883592

'demd9697' '1.2.826.0.1.3680043.9.3218.1.1.279800749.1916.1529288190893.16.0.dcm' 0.085768

'demd9697' '1.2.826.0.1.3680043.9.3218.1.1.279800749.1916.1529288190893.12.0.dcm' 0.289758

'demd9697' '1.2.826.0.1.3680043.9.3218.1.1.279800749.1916.1529288190893.12.0.dcm' 0

'demd9697' '1.2.826.0.1.3680043.9.3218.1.1.279800749.1916.1529288190893.12.0.dcm' 0

'demd9697' '1.2.826.0.1.3680043.9.3218.1.1.279800749.1916.1529288190893.12.0.dcm' 0.838449

'demd9697' '1.2.826.0.1.3680043.9.3218.1.1.279800749.19166.1529288190893.8.0.dcm' 0.055771

'demd9697' '1.2.826.0.1.3680043.9.3218.1.1.279800749.19166.1529288190893.8.0.dcm' 0

'demd9697' '1.2.826.0.1.3680043.9.3218.1.1.279800749.19166.1529288190893.4.0.dcm' 0

'demd9697' '1.2.826.0.1.3680043.9.3218.1.1.279800749.19166.1529288190893.4.0.dcm' 0.398554

'demd57707' '1.2.826.0.1.3680043.9.3218.1.1.83447471.1466.1537681772207.199.0.dcm' 0.440928

'demd57707' '1.2.826.0.1.3680043.9.3218.1.1.83447471.1466.1537681772207.197.0.dcm' 0.622183

'demd57707' '1.2.826.0.1.3680043.9.3218.1.1.83447471.1466.1537681772207.201.0.dcm' 0.769106

'demd57707' '1.2.826.0.1.3680043.9.3218.1.1.83447471.1466.1537681772207.205.0.dcm' 0.348069

'demd57707' '1.2.826.0.1.3680043.9.3218.1.1.83447471.1466.1537681772207.205.0.dcm' 0.374961

'demd127928' '1.2.826.0.1.3680043.9.3218.1.1.181979402.1279.1546370238730.99.0.dcm' 0.693953

'demd127928' '1.2.826.0.1.3680043.9.3218.1.1.181979402.1279.1546370238730.85.0.dcm' 0.964305

'demd134625' '1.2.826.0.1.3680043.9.3218.1.1.97068472.2953.1547158944053.315.0.dcm' 0.558332

'demd134625' '1.2.826.0.1.3680043.9.3218.1.1.97068472.2953.1547158944053.306.0.dcm' 0.804708

'demd134625' '1.2.826.0.1.3680043.9.3218.1.1.97068472.2953.1547158944053.297.0.dcm' 0.564337

'demd134625' '1.2.826.0.1.3680043.9.3218.1.1.97068472.2953.1547158944053.312.0.dcm' 0.799325

'demd103365' '1.2.826.0.1.3680043.9.3218.1.1.72939361.9942.1541966231393.377.0.dcm' 0.537556

'demd103365' '1.2.826.0.1.3680043.9.3218.1.1.72939361.9942.1541966231393.386.0.dcm' 0.446475

'demd103365' '1.2.826.0.1.3680043.9.3218.1.1.72939361.9942.1541966231393.386.0.dcm' 0.016643

'demd103365' '1.2.826.0.1.3680043.9.3218.1.1.72939361.9942.1541966231393.389.0.dcm' 0.677619

'demd103365' '1.2.826.0.1.3680043.9.3218.1.1.72939361.9942.1541966231393.389.0.dcm' 0

'demd103365' '1.2.826.0.1.3680043.9.3218.1.1.72939361.9942.1541966231393.380.0.dcm' 0.743044
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         Layer Name                 Layer Type               Description                           

     1   'Image_input_1'            Image Input              2898×2360×1 images with 'rescale-symmetric' normalization 

     2   'Conv_0'                   2-D Convolution          16 7×7×1 convolutions with stride [2  2] and padding [0  0  0  0] 

     3   'MaxPool_1'               2-D Max Pooling         3×3 max pooling with stride [2  2] and padding [0  0  0  0] 

     4   'BatchNormalization_2'    Batch Normalization     Batch normalization with 16 channels 

     5   'Relu_3'                    ReLU                     ReLU 

     6   'Conv_5'                   2-D Convolution          16 3×3×16 convolutions with stride [1  1] and padding [1  1  1  1] 

     7   'BatchNormalization_6'     Batch Normalization      Batch normalization with 16 channels 

     8   'Relu_7'                    ReLU                     ReLU 

     9   'Conv_8'                   2-D Convolution          16 3×3×16 convolutions with stride [1  1] and padding [1  1  1  1] 

    10   'Conv_4'                   2-D Convolution          16 1×1×16 convolutions with stride [1  1] and padding [0  0  0  0] 

    11   'Add_9'                    Addition                 Element-wise addition of 2 inputs 

    12   'BatchNormalization_10'   Batch Normalization      Batch normalization with 16 channels 

    13   'Relu_11'                  ReLU                     ReLU 

    14   'Conv_12'                  2-D Convolution          16 3×3×16 convolutions with stride [1  1] and padding [1  1  1  1] 

    15   'BatchNormalization_13'   Batch Normalization      Batch normalization with 16 channels 

    16   'Relu_14'                  ReLU                     ReLU 

    17   'Conv_15'                  2-D Convolution          16 3×3×16 convolutions with stride [1  1] and padding [1  1  1  1] 

    18   'Add_16'                   Addition                 Element-wise addition of 2 inputs 

    19   'BatchNormalization_17'   Batch Normalization      Batch normalization with 16 channels 

    20   'Relu_18'                  ReLU                     ReLU 

    21   'Conv_20'                  2-D Convolution         32 3×3×16 convolutions with stride [2  2] and padding [1  1  1  1] 



    22   'BatchNormalization_21'   Batch Normalization      Batch normalization with 32 channels 

    23   'Relu_22'                  ReLU                     ReLU 

    24   'Conv_23'                  2-D Convolution          32 3×3×32 convolutions with stride [1  1] and padding [1  1  1  1] 

    25   'Conv_19'                  2-D Convolution          32 1×1×16 convolutions with stride [2  2] and padding [0  0  0  0] 

    26   'Add_24'                   Addition                 Element-wise addition of 2 inputs 

    27   'BatchNormalization_25'   Batch Normalization      Batch normalization with 32 channels 

    28   'Relu_26'                  ReLU                     ReLU 

    29   'Conv_27'                  2-D Convolution          32 3×3×32 convolutions with stride [1  1] and padding [1  1  1  1] 

    30   'BatchNormalization_28'   Batch Normalization      Batch normalization with 32 channels 

    31   'Relu_29'                  ReLU                     ReLU 

    32   'Conv_30'                  2-D Convolution          32 3×3×32 convolutions with stride [1  1] and padding [1  1  1  1] 

    33   'Add_31'                   Addition                 Element-wise addition of 2 inputs 

    34   'BatchNormalization_32'   Batch Normalization      Batch normalization with 32 channels 

    35   'Relu_33'                  ReLU                     ReLU 

    36   'Conv_34'                  2-D Convolution          64 1×1×32 convolutions with stride [2  2] and padding [0  0  0  0] 

    37   'Conv_35'                  2-D Convolution          64 3×3×32 convolutions with stride [2  2] and padding [1  1  1  1] 

    38   'BatchNormalization_36'   Batch Normalization      Batch normalization with 64 channels 

    39   'Relu_37'                  ReLU                     ReLU 

    40   'Conv_38'                  2-D Convolution          64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1] 

    41   'Add_39'                   Addition                Element-wise addition of 2 inputs 

    42   'BatchNormalization_40'   Batch Normalization      Batch normalization with 64 channels 

    43   'Relu_41'                  ReLU                     ReLU 



    44   'Conv_42'                  2-D Convolution          64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1] 

    45   'BatchNormalization_43'   Batch Normalization      Batch normalization with 64 channels 

    46   'Relu_44'                  ReLU                     ReLU 

    47   'Conv_45'                  2-D Convolution          64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1] 

    48   'Add_46'                   Addition                 Element-wise addition of 2 inputs 

    49   'BatchNormalization_47'   Batch Normalization     Batch normalization with 64 channels 

    50   'Relu_48'                  ReLU                     ReLU 

    51   'Conv_50'                  2-D Convolution          128 3×3×64 convolutions with stride [2  2] and padding [1  1  1  1] 

    52   'BatchNormalization_51'   Batch Normalization      Batch normalization with 128 channels 

    53   'Relu_52'                  ReLU                     ReLU 

    54   'Conv_53'                  2-D Convolution          128 3×3×128 convolutions with stride [1  1] and padding [1  1  1  1] 

    55   'Conv_49'                  2-D Convolution          128 1×1×64 convolutions with stride [2  2] and padding [0  0  0  0] 

    56   'Add_54'                   Addition                 Element-wise addition of 2 inputs 

    57   'BatchNormalization_55'   Batch Normalization      Batch normalization with 128 channels 

    58   'Relu_56'                  ReLU                     ReLU 

    59   'Conv_57'                  2-D Convolution          128 3×3×128 convolutions with stride [1  1] and padding [1  1  1  1] 

    60   'BatchNormalization_58'   Batch Normalization      Batch normalization with 128 channels 

    61   'Relu_59'                  ReLU                     ReLU 

    62   'Conv_60'                  2-D Convolution          128 3×3×128 convolutions with stride [1  1] and padding [1  1  1  1] 

    63   'Add_61'                   Addition                 Element-wise addition of 2 inputs 

    64   'BatchNormalization_62'   Batch Normalization      Batch normalization with 128 channels 

    65   'Relu_63'                  ReLU                     ReLU 



    66   'Conv_64'                  2-D Convolution          256 1×1×128 convolutions with stride [2  2] and padding [0  0  0  0] 

    67   'Conv_65'                  2-D Convolution          256 3×3×128 convolutions with stride [2  2] and padding [1  1  1  1] 

    68   'BatchNormalization_66'   Batch Normalization      Batch normalization with 256 channels 

    69   'Relu_67'                  ReLU                     ReLU 

    70   'Conv_68'                  2-D Convolution          256 3×3×256 convolutions with stride [1  1] and padding [1  1  1  1] 

    71   'Add_69'                   Addition                 Element-wise addition of 2 inputs 

    72   'BatchNormalization_70'   Batch Normalization      Batch normalization with 256 channels 

    73   'Relu_71'                  ReLU                     ReLU 

    74   'Conv_72'                  2-D Convolution          256 3×3×256 convolutions with stride [1  1] and padding [1  1  1  1] 

    75   'BatchNormalization_73'   Batch Normalization      Batch normalization with 256 channels 

    76   'Relu_74'                  ReLU                     ReLU 

    77   'Conv_75'                  2-D Convolution          256 3×3×256 convolutions with stride [1  1] and padding [1  1  1  1] 

    78   'Add_76'                   Addition                 Element-wise addition of 2 inputs 

    79   'BatchNormalization_77'   Batch Normalization      Batch normalization with 256 channels 

    80   'Relu_78'                  ReLU                     ReLU 

    81   'avgpool2d'                2-D Average Pooling      5×5 average pooling with stride [1  1] and padding 'same' 

    82   'dropout_1'                Dropout                  50% dropout 

    83   'fc_1'                      Fully Connected          256 fully connected layer 

    84   'dropout_2'                Dropout                  50% dropout 

    85   'fc_2'                      Fully Connected          2 fully connected layer 

    86   'softmax'                  Softmax                  softmax 

    87   'classoutput'              Classification Output    crossentropyex 
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     Layer Name                     Layer Type                     Layer Description 

     1   'Image_input_1'            Image Input                  2898×2360×1 images with 'zerocenter' normalization 

     2   'Conv_0'                   2-D Convolution              16 7×7×1 convolutions with stride [2  2] and padding [0  0  0  0] 

     3   'MaxPool_1'                2-D Max Pooling              3×3 max pooling with stride [2  2] and padding [0  0  0  0] 

     4   'BatchNormalization_2'     Batch Normalization       Batch normalization with 16 channels 

     5   'Relu_3'                    ReLU                         ReLU 

     6   'Conv_5'                   2-D Convolution              16 3×3×16 convolutions with stride [1  1] and padding [1  1  1  1] 

     7   'BatchNormalization_6'     Batch Normalization       Batch normalization with 16 channels 

     8   'Relu_7'                    ReLU                         ReLU 

     9   'Conv_8'                   2-D Convolution              16 3×3×16 convolutions with stride [1  1] and padding [1  1  1  1] 

    10   'Conv_4'                   2-D Convolution              16 1×1×16 convolutions with stride [1  1] and padding [0  0  0  0] 

    11   'Add_9'                    Addition                     Element-wise addition of 2 inputs 

    12   'BatchNormalization_10'   Batch Normalization      Batch normalization with 16 channels 

    13   'Relu_11'                 ReLU                         ReLU 

    14   'Conv_12'                  2-D Convolution              16 3×3×16 convolutions with stride [1  1] and padding [1  1  1  1] 

    15   'BatchNormalization_13'   Batch Normalization       Batch normalization with 16 channels 

    16   'Relu_14'                  ReLU                         ReLU 

    17   'Conv_15'                  2-D Convolution              16 3×3×16 convolutions with stride [1  1] and padding [1  1  1  1] 

    18   'Add_16'                   Addition                     Element-wise addition of 2 inputs 

    19   'BatchNormalization_17'   Batch Normalization      Batch normalization with 16 channels 

    20   'Relu_18'                  ReLU                         ReLU 

    21   'Conv_20'                  2-D Convolution              32 3×3×16 convolutions with stride [2  2] and padding [1  1  1  1] 



    22   'Conv_19'                  2-D Convolution              32 1×1×16 convolutions with stride [2  2] and padding [0  0  0  0] 

    23   'BatchNormalization_21'   Batch Normalization       Batch normalization with 32 channels 

    24   'Relu_22'                  ReLU                         ReLU 

    25   'Conv_23'                  2-D Convolution              32 3×3×32 convolutions with stride [1  1] and padding [1  1  1  1] 

    26   'Add_24'                   Addition                     Element-wise addition of 2 inputs 

    27   'BatchNormalization_25'   Batch Normalization       Batch normalization with 32 channels 

    28   'Relu_26'                  ReLU                         ReLU 

    29   'Conv_27'                  2-D Convolution              32 3×3×32 convolutions with stride [1  1] and padding [1  1  1  1] 

    30   'BatchNormalization_28'   Batch Normalization       Batch normalization with 32 channels 

    31   'Relu_29'                  ReLU                         ReLU 

    32   'Conv_30'                  2-D Convolution              32 3×3×32 convolutions with stride [1  1] and padding [1  1  1  1] 

    33   'Add_31'                   Addition                     Element-wise addition of 2 inputs 

    34   'BatchNormalization_32'   Batch Normalization       Batch normalization with 32 channels 

    35   'Relu_33'                  ReLU                         ReLU 

    36   'Conv_35'                  2-D Convolution              64 3×3×32 convolutions with stride [2  2] and padding [1  1  1  1] 

    37   'BatchNormalization_36'   Batch Normalization       Batch normalization with 64 channels 

    38   'Relu_37'                  ReLU                         ReLU 

    39   'Conv_38'                  2-D Convolution              64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1] 

    40   'Conv_34'                  2-D Convolution              64 1×1×32 convolutions with stride [2  2] and padding [0  0  0  0] 

    41   'Add_39'                   Addition                     Element-wise addition of 2 inputs 

    42   'BatchNormalization_40'   Batch Normalization       Batch normalization with 64 channels 

    43   'Relu_41'                  ReLU                         ReLU 



    44   'Conv_42'                  2-D Convolution              64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1] 

    45   'BatchNormalization_43'   Batch Normalization       Batch normalization with 64 channels 

    46   'Relu_44'                  ReLU                         ReLU 

    47   'Conv_45'                  2-D Convolution              64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1] 

    48   'Add_46'                   Addition                     Element-wise addition of 2 inputs 

    49   'BatchNormalization_47'   Batch Normalization       Batch normalization with 64 channels 

    50   'Relu_48'                  ReLU                         ReLU 

    51   'Conv_49'                  2-D Convolution              128 1×1×64 convolutions with stride [2  2] and padding [0  0  0  0] 

    52   'Conv_50'                  2-D Convolution              128 3×3×64 convolutions with stride [2  2] and padding [1  1  1  1] 

    53   'BatchNormalization_51'   Batch Normalization       Batch normalization with 128 channels 

    54   'Relu_52'                  ReLU                         ReLU 

    55   'Conv_53'                  2-D Convolution              128 3×3×128 convolutions with stride [1  1] and padding [1  1  1  1] 

    56   'Add_54'                   Addition                     Element-wise addition of 2 inputs 

    57   'BatchNormalization_55'   Batch Normalization       Batch normalization with 128 channels 

    58   'Relu_56'                  ReLU                         ReLU 

    59   'Conv_57'                  2-D Convolution              128 3×3×128 convolutions with stride [1  1] and padding [1  1  1  1] 

    60   'BatchNormalization_58'   Batch Normalization       Batch normalization with 128 channels 

    61   'Relu_59'                  ReLU                         ReLU 

    62   'Conv_60'                  2-D Convolution              128 3×3×128 convolutions with stride [1  1] and padding [1  1  1  1] 

    63   'Add_61'                   Addition                     Element-wise addition of 2 inputs 

    64   'BatchNormalization_62'   Batch Normalization       Batch normalization with 128 channels 

    65   'Relu_63'                  ReLU                         ReLU 



    66   'rpnConv3x3'               2-D Convolution               128 3×3×128 convolutions with stride [1  1] and padding [1  1  1  1] 

    67   'rpnRelu'                  ReLU                          ReLU 

    68   'rpnConv1x1BoxDeltas'     2-D Convolution               24 1×1×128 convolutions with stride [1  1] and padding [0  0  0  0] 

    69   'rpnBoxDeltas'             Box Regression Output    smooth-l1 loss 

    70   'rpnConv1x1ClsScores'      2-D Convolution               12 1×1×128 convolutions with stride [1  1] and padding [0  0  0  0] 

    71   'rpnSoftmax'               RPN Softmax                   rpn softmax 

    72   'rpnClassification'        RPN Classification Output    cross-entropy loss with 'object' and 'background' classes 

    73   'regionProposal'           Region Proposal               region proposal with 6 anchor boxes 

    74   'roiPooling'               ROI Max Pooling               ROI Max Pooling with pooled output size [91 74] 

    75   'Conv_64'                  2-D Convolution               256 1×1×128 convolutions with stride [2  2] and padding [0  0  0  0] 

    76   'Conv_65'                  2-D Convolution               256 3×3×128 convolutions with stride [2  2] and padding [1  1  1  1] 

    77   'BatchNormalization_66'   Batch Normalization          Batch normalization with 256 channels 

    78   'Relu_67'                  ReLU                          ReLU 

    79   'Conv_68'                  2-D Convolution               256 3×3×256 convolutions with stride [1  1] and padding [1  1  1  1] 

    80   'Add_69'                   Addition                      Element-wise addition of 2 inputs 

    81   'BatchNormalization_70'   Batch Normalization          Batch normalization with 256 channels 

    82   'Relu_71'                  ReLU                          ReLU 

    83   'Conv_72'                  2-D Convolution               256 3×3×256 convolutions with stride [1  1] and padding [1  1  1  1] 

    84   'BatchNormalization_73'   Batch Normalization          Batch normalization with 256 channels 

    85   'Relu_74'                  ReLU                          ReLU 

    86   'Conv_75'                  2-D Convolution               256 3×3×256 convolutions with stride [1  1] and padding [1  1  1  1] 

    87   'Add_76'                   Addition                      Element-wise addition of 2 inputs 



    88   'BatchNormalization_77'   Batch Normalization        Batch normalization with 256 channels 

    89   'Relu_78'                  ReLU                          ReLU 

    90   'avgpool2d'                2-D Average Pooling         5×5 average pooling with stride [1  1] and padding 'same' 

    91   'fc_1'                      Fully Connected               256 fully connected layer 

    92   'rcnnFC'                   Fully Connected               2 fully connected layer 

    93   'rcnnSoftmax'              Softmax                       softmax 

    94   'rcnnClassification'      Classification Output        crossentropyex with classes 'BAC' and 'Background' 

    95   'fcBoxDeltas'              Fully Connected               4 fully connected layer 

    96   'boxDeltas'                Box Regression Output    smooth-l1 loss 
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          Layer Name  Layer Type   Description 

     1   'image_input.1'                Image Input             2898×2360×1 images 

     2   'Conv_0'                       2-D Convolution         16 7×7×1 convolutions with stride [2  2] and padding [0  0  0  0] 

     3   'MaxPool_1'                    2-D Max Pooling         3×3 max pooling with stride [2  2] and padding [0  0  0  0] 

     4   'BatchNormalization_2'      Batch Normalization     Batch normalization with 16 channels 

     5   'Relu_3'                       ReLU                     ReLU 

     6   'Conv_5'                       2-D Convolution         16 3×3×16 convolutions with stride [1  1] and padding [1  1  1  1] 

     7   'BatchNormalization_6'      Batch Normalization     Batch normalization with 16 channels 

     8   'Relu_7'                       ReLU                     ReLU 

     9   'Conv_8'                       2-D Convolution         16 3×3×16 convolutions with stride [1  1] and padding [1  1  1  1] 

    10   'Conv_4'                       2-D Convolution         16 1×1×16 convolutions with stride [1  1] and padding [0  0  0  0] 

    11   'Add_9'                        Addition                 Element-wise addition of 2 inputs 

    12   'BatchNormalization_10'  Batch Normalization     Batch normalization with 16 channels 

    13   'Relu_11'                      ReLU                     ReLU 

    14   'Conv_12'                      2-D Convolution         16 3×3×16 convolutions with stride [1  1] and padding [1  1  1  1] 

    15   'BatchNormalization_13'  Batch Normalization     Batch normalization with 16 channels 

    16   'Relu_14'                      ReLU                     ReLU 

    17   'Conv_15'                      2-D Convolution         16 3×3×16 convolutions with stride [1  1] and padding [1  1  1  1] 

    18   'Add_16'                       Addition                Element-wise addition of 2 inputs 

    19   'BatchNormalization_17'  Batch Normalization     Batch normalization with 16 channels 

    20   'Relu_18'                      ReLU                     ReLU 

    21   'Conv_20'                      2-D Convolution         32 3×3×16 convolutions with stride [2  2] and padding [1  1  1  1] 



    22   'BatchNormalization_21'  Batch Normalization     Batch normalization with 32 channels 

    23   'Relu_22'                      ReLU                     ReLU 

    24   'Conv_23'                      2-D Convolution         32 3×3×32 convolutions with stride [1  1] and padding [1  1  1  1] 

    25   'Conv_19'                      2-D Convolution         32 1×1×16 convolutions with stride [2  2] and padding [0  0  0  0] 

    26   'Add_24'                       Addition                Element-wise addition of 2 inputs 

    27   'BatchNormalization_25'  Batch Normalization     Batch normalization with 32 channels 

    28   'Relu_26'                      ReLU                     ReLU 

    29   'Conv_27'                      2-D Convolution         32 3×3×32 convolutions with stride [1  1] and padding [1  1  1  1] 

    30   'BatchNormalization_28'   Batch Normalization     Batch normalization with 32 channels 

    31   'Relu_29'                      ReLU                     ReLU 

    32   'Conv_30'                      2-D Convolution         32 3×3×32 convolutions with stride [1  1] and padding [1  1  1  1] 

    33   'Add_31'                       Addition                Element-wise addition of 2 inputs 

    34   'BatchNormalization_32'   Batch Normalization     Batch normalization with 32 channels 

    35   'Relu_33'                      ReLU                     ReLU 

    36   'Conv_34'                      2-D Convolution         64 1×1×32 convolutions with stride [2  2] and padding [0  0  0  0] 

    37   'Conv_35'                      2-D Convolution         64 3×3×32 convolutions with stride [2  2] and padding [1  1  1  1] 

    38   'BatchNormalization_36'  Batch Normalization     Batch normalization with 64 channels 

    39   'Relu_37'                      ReLU                     ReLU 

    40   'Conv_38'                      2-D Convolution         64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1] 

    41   'Add_39'                       Addition                Element-wise addition of 2 inputs 

    42   'BatchNormalization_40'  Batch Normalization     Batch normalization with 64 channels 

    43   'Relu_41'                      ReLU                     ReLU 



    44   'Conv_42'                      2-D Convolution         64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1] 

    45   'BatchNormalization_43' Batch Normalization     Batch normalization with 64 channels 

    46   'Relu_44'                      ReLU                     ReLU 

    47   'Conv_45'                      2-D Convolution         64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1] 

    48   'Add_46'                       Addition                Element-wise addition of 2 inputs 

    49   'BatchNormalization_47'  Batch Normalization     Batch normalization with 64 channels 

    50   'Relu_48'                      ReLU                     ReLU 

    51   'Conv_50'                      2-D Convolution         128 3×3×64 convolutions with stride [2  2] and padding [1  1  1  1] 

    52   'BatchNormalization_51' Batch Normalization     Batch normalization with 128 channels 

    53   'Relu_52'                      ReLU                     ReLU 

    54   'Conv_53'                      2-D Convolution         128 3×3×128 convolutions with stride [1  1] and padding [1  1  1  1] 

    55   'Conv_49'                      2-D Convolution         128 1×1×64 convolutions with stride [2  2] and padding [0  0  0  0] 

    56   'Add_54'                       Addition                Element-wise addition of 2 inputs 

    57   'BatchNormalization_55'  Batch Normalization     Batch normalization with 128 channels 

    58   'Relu_56'                      ReLU                     ReLU 

    59   'Conv_57'                      2-D Convolution         128 3×3×128 convolutions with stride [1  1] and padding [1  1  1  1] 

    60   'BatchNormalization_58'  Batch Normalization     Batch normalization with 128 channels 

    61   'Relu_59'                      ReLU                     ReLU 

    62   'Conv_60'                      2-D Convolution         128 3×3×128 convolutions with stride [1  1] and padding [1  1  1  1] 

    63   'Add_61'                       Addition                Element-wise addition of 2 inputs 

    64   'BatchNormalization_62'   Batch Normalization     Batch normalization with 128 channels 

    65   'Relu_63'                      ReLU                     ReLU 



    66   'featureConvInitial1'          2-D Convolution         64 1×1×128 convolutions with stride [1  1] and padding 'same' 

    67   'featureBatchNormInitial1' Batch Normalization    Batch normalization with 64 channels 

    68   'featureReluInitial1'           Leaky ReLU             Leaky ReLU with scale 0.1 

    69   'sppMaxPool1'                   2-D Max Pooling        5×5 max pooling with stride [1  1] and padding 'same' 

    70   'sppMaxPool2'                   2-D Max Pooling        9×9 max pooling with stride [1  1] and padding 'same' 

    71   'sppMaxPool3'                   2-D Max Pooling        13×13 max pooling with stride [1  1] and padding 'same' 

    72   'depthConcat_spp_1'            Depth concatenation    Depth concatenation of 4 inputs 

    73   'featureConvSPP1'               2-D Convolution        64 1×1×256 convolutions with stride [1  1] and padding 'same' 

    74   'featureBatchNormSPP1'         Batch Normalization    Batch normalization with 64 channels 

    75   'featureReluSPP1'               Leaky ReLU             Leaky ReLU with scale 0.1 

    76   'depthConcat1'                  Depth concatenation    Depth concatenation of 2 inputs 

    77   'featureConv_1_1'               2-D Convolution        64 1×1×96 convolutions with stride [1  1] and padding 'same' 

    78   'featureBatchNorm_1_1'         Batch Normalization    Batch normalization with 64 channels 

    79   'featureRelu_1_1'               Leaky ReLU             Leaky ReLU with scale 0.1 

    80   'customConv1'                   2-D Convolution        128 3×3×64 convolutions with stride [1  1] and padding 'same' 

    81   'customBatchNorm1'             Batch Normalization    Batch normalization with 128 channels 

    82   'customRelu1'                   Leaky ReLU            Leaky ReLU with scale 0.1 

    83   'customOutputConv1'            2-D Convolution        18 1×1×128 convolutions with stride [1  1] and padding 'same' 

    84   'featureConvInitial2'           2-D Convolution        32 1×1×64 convolutions with stride [1  1] and padding 'same' 

    85   'featureBatchNormInitial2'     Batch Normalization    Batch normalization with 32 channels 

    86   'featureReluInitial2'           Leaky ReLU             Leaky ReLU with scale 0.1 

    87   'featureConv_1_2'               2-D Convolution        32 1×1×64 convolutions with stride [1  1] and padding 'same' 



    88   'featureBatchNorm_1_2'         Batch Normalization    Batch normalization with 32 channels 

    89   'featureRelu_1_2'               Leaky ReLU             Leaky ReLU with scale 0.1 

    90   'featureResize2'                Resize                  nnet.cnn.layer.Resize2DLayer 

    91   'depthConcat2'                  Depth concatenation    Depth concatenation of 2 inputs 

    92   'featureConv_2_2'               2-D Convolution        32 1×1×64 convolutions with stride [1  1] and padding 'same' 

    93   'featureBatchNorm_2_2'         Batch Normalization    Batch normalization with 32 channels 

    94   'featureRelu_2_2'               Leaky ReLU             Leaky ReLU with scale 0.1 

    95   'customConv2'                   2-D Convolution        64 3×3×32 convolutions with stride [1  1] and padding 'same' 

    96   'customBatchNorm2'            Batch Normalization    Batch normalization with 64 channels 

    97   'customRelu2'                   Leaky ReLU             Leaky ReLU with scale 0.1 

    98   'customOutputConv2'            2-D Convolution        18 1×1×64 convolutions with stride [1  1] and padding 'same' 

    99   'featureConv_bottom_2'         2-D Convolution        32 1×1×32 convolutions with stride [2  2] and padding 'same' 

    100   'featureBatchNorm_bottom_2'   Batch Normalization    Batch normalization with 32 channels 

    101   'featureRelu_bottom_2'         Leaky ReLU             Leaky ReLU with scale 0.1 
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         Layer Name  Layer Type   Description      

     1   'Image_input_1'          Image Input                   512×512×3 images with 'rescale-symmetric' normalization 

     2   'conv1'                   2-D Convolution                64 7×7×3 convolutions with stride [2  2] and padding [3  3  3  3] 

     3   'bn_conv1'                Batch Normalization        Batch normalization with 64 channels 

     4   'conv1_relu'             ReLU                           ReLU 

     5   'pool1'                   2-D Max Pooling                3×3 max pooling with stride [2  2] and padding [1  1  1  1] 

     6   'res2a_branch2a'         2-D Convolution                64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1] 

     7   'bn2a_branch2a'         Batch Normalization          Batch normalization with 64 channels 

     8   'res2a_branch2a_relu'    ReLU                           ReLU 

     9   'res2a_branch2b'         2-D Convolution                64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1] 

    10   'bn2a_branch2b'          Batch Normalization           Batch normalization with 64 channels 

    11   'res2a'                   Addition                       Element-wise addition of 2 inputs 

    12   'res2a_relu'             ReLU                           ReLU 

    13   'res2b_branch2a'         2-D Convolution                64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1] 

    14   'bn2b_branch2a'          Batch Normalization           Batch normalization with 64 channels 

    15   'res2b_branch2a_relu'    ReLU                           ReLU 

    16   'res2b_branch2b'         2-D Convolution                64 3×3×64 convolutions with stride [1  1] and padding [1  1  1  1] 

    17   'bn2b_branch2b'          Batch Normalization           Batch normalization with 64 channels 

    18   'res2b'                   Addition                       Element-wise addition of 2 inputs 

    19   'res2b_relu'             ReLU                           ReLU 

    20   'res3a_branch2a'         2-D Convolution                128 3×3×64 convolutions with stride [2  2] and padding [1  1  1  1] 

    21   'bn3a_branch2a'          Batch Normalization           Batch normalization with 128 channels 



    22   'res3a_branch2a_relu'    ReLU                           ReLU 

    23   'res3a_branch2b'         2-D Convolution                128 3×3×128 convolutions with stride [1  1] and padding [1  1  1  1] 

    24   'bn3a_branch2b'          Batch Normalization           Batch normalization with 128 channels 

    25   'res3a'                   Addition                       Element-wise addition of 2 inputs 

    26   'res3a_relu'             ReLU                           ReLU 

    27   'res3a_branch1'          2-D Convolution                128 1×1×64 convolutions with stride [2  2] and padding [0  0  0  0] 

    28   'bn3a_branch1'           Batch Normalization           Batch normalization with 128 channels 

    29   'res3b_branch2a'         2-D Convolution                128 3×3×128 convolutions with stride [1  1] and padding [1  1  1  1] 

    30   'bn3b_branch2a'          Batch Normalization           Batch normalization with 128 channels 

    31   'res3b_branch2a_relu'    ReLU                           ReLU 

    32   'res3b_branch2b'         2-D Convolution                128 3×3×128 convolutions with stride [1  1] and padding [1  1  1  1] 

    33   'bn3b_branch2b'          Batch Normalization           Batch normalization with 128 channels 

    34   'res3b'                   Addition                       Element-wise addition of 2 inputs 

    35   'res3b_relu'             ReLU                           ReLU 

    36   'res4a_branch2a'         2-D Convolution                256 3×3×128 convolutions with stride [2  2] and padding 'same' 

    37   'bn4a_branch2a'          Batch Normalization           Batch normalization with 256 channels 

    38   'res4a_branch2a_relu'    ReLU                           ReLU 

    39   'res4a_branch2b'        2-D Convolution                256 3×3×256 convolutions with stride [1  1] and padding [1  1  1  1] 

    40   'bn4a_branch2b'          Batch Normalization           Batch normalization with 256 channels 

    41   'res4a'                   Addition                       Element-wise addition of 2 inputs 

    42   'res4a_relu'             ReLU                           ReLU 

    43   'res4a_branch1'          2-D Convolution                256 1×1×128 convolutions with stride [2  2] and padding 'same' 



    44   'bn4a_branch1'           Batch Normalization           Batch normalization with 256 channels 

    45   'res4b_branch2a'         2-D Convolution                256 3×3×256 convolutions with stride [1  1] and padding [1  1  1  1] 

    46   'bn4b_branch2a'          Batch Normalization           Batch normalization with 256 channels 

    47   'res4b_branch2a_relu'    ReLU                           ReLU 

    48   'res4b_branch2b'         2-D Convolution                256 3×3×256 convolutions with stride [1  1] and padding [1  1  1  1] 

    49   'bn4b_branch2b'          Batch Normalization           Batch normalization with 256 channels 

    50   'res4b'                   Addition                       Element-wise addition of 2 inputs 

    51   'res4b_relu'             ReLU                           ReLU 

    52   'res5a_branch2a'         2-D Convolution                512 3×3×256 convolutions with stride [1  1] and padding 'same' 

    53   'bn5a_branch2a'          Batch Normalization           Batch normalization with 512 channels 

    54   'res5a_branch2a_relu'    ReLU                           ReLU 

    55   'res5a_branch2b'         2-D Convolution                512 3×3×512 convolutions with stride [1  1], dilation factor [2  2], and padding 'same' 

    56   'bn5a_branch2b'          Batch Normalization           Batch normalization with 512 channels 

    57   'res5a'                   Addition                       Element-wise addition of 2 inputs 

    58   'res5a_relu'             ReLU                           ReLU 

    59   'res5a_branch1'          2-D Convolution                512 1×1×256 convolutions with stride [1  1] and padding [0  0  0  0] 

    60   'bn5a_branch1'           Batch Normalization           Batch normalization with 512 channels 

    61   'res5b_branch2a'         2-D Convolution                512 3×3×512 convolutions with stride [1  1], dilation factor [2  2], and padding 'same' 

    62   'bn5b_branch2a'          Batch Normalization           Batch normalization with 512 channels 

    63   'res5b_branch2a_relu'    ReLU                           ReLU 

    64   'res5b_branch2b'         2-D Convolution                512 3×3×512 convolutions with stride [1  1], dilation factor [2  2], and padding 'same' 

    65   'bn5b_branch2b'          Batch Normalization           Batch normalization with 512 channels 



    66   'res5b'                   Addition                       Element-wise addition of 2 inputs 

    67   'res5b_relu'             ReLU                          ReLU 

    68   'catAspp'                 Depth concatenation           Depth concatenation of 4 inputs 

    69   'aspp_Conv_1'            2-D Convolution                256 1×1×512 convolutions with stride [1  1] and padding 'same' 

    70   'aspp_BatchNorm_1'       Batch Normalization           Batch normalization with 256 channels 

    71   'aspp_Relu_1'            ReLU                           ReLU 

    72   'aspp_Conv_2'            2-D Convolution                256 3×3×512 convolutions with stride [1  1], dilation factor [6  6], and padding 'same' 

    73   'aspp_BatchNorm_2'       Batch Normalization           Batch normalization with 256 channels 

    74   'aspp_Relu_2'            ReLU                           ReLU 

    75   'aspp_Conv_3'            2-D Convolution                256 3×3×512 convolutions with stride [1  1], dilation factor [12  12], and padding 'same' 

    76   'aspp_BatchNorm_3'       Batch Normalization           Batch normalization with 256 channels 

    77   'aspp_Relu_3'            ReLU                           ReLU 

    78   'aspp_Conv_4'            2-D Convolution                256 3×3×512 convolutions with stride [1  1], dilation factor [18  18], and padding 'same' 

    79   'aspp_BatchNorm_4'       Batch Normalization           Batch normalization with 256 channels 

    80   'aspp_Relu_4'            ReLU                           ReLU 

    81   'dec_c1'                  2-D Convolution                256 1×1×1024 convolutions with stride [1  1] and padding [0  0  0  0] 

    82   'dec_bn1'                Batch Normalization           Batch normalization with 256 channels 

    83   'dec_relu1'              ReLU                           ReLU 

    84   'dec_upsample1'          2-D Transposed Convolution    256 8×8×256 transposed convolutions with stride [4  4] and cropping [2  2  2  2] 

    85   'dec_crop1'              Crop 2D                        center crop 

    86   'dec_c2'                  2-D Convolution                48 1×1×64 convolutions with stride [1  1] and padding [0  0  0  0] 

    87   'dec_bn2'                Batch Normalization           Batch normalization with 48 channels 



    88   'dec_relu2'              ReLU                           ReLU 

    89   'dec_cat1'               Depth concatenation           Depth concatenation of 2 inputs 

    90   'dec_c3'                  2-D Convolution                256 3×3×304 convolutions with stride [1  1] and padding 'same' 

    91   'dec_bn3'                Batch Normalization                     Batch normalization with 256 channels 

    92   'dec_relu3'              ReLU                           ReLU 

    93   'dec_c4'                  2-D Convolution                256 3×3×256 convolutions with stride [1  1] and padding 'same' 

    94   'dec_bn4'                Batch Normalization           Batch normalization with 256 channels 

    95   'dec_relu4'              ReLU                           ReLU 

    96   'scorer'                  2-D Convolution                3 1×1×256 convolutions with stride [1  1] and padding [0  0  0  0] 

    97   'dec_upsample2'          2-D Transposed Convolution    3 8×8×3 transposed convolutions with stride [4  4] and cropping [2  2  2  2] 

    98   'dec_crop2'              Crop 2D                        center crop 

    99   'softmax-out'            Softmax                        softmax 

    100   'Seg-Layer'              Pixel Classification Layer    Class weighted cross-entropy loss with 'background', 'BAC', and 1 other classes 
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