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A B S T R A C T
Recent years have witnessed increasing development towards federated learning. However, federated
learning has been proven to show biased predictions against certain demographic groups, such as
sex or race, especially under heterogeneous data distributions. Training fair federated models under
heterogeneous data distributions face the challenge of inherent unfair local training and bias propa-
gation during aggregation and mismatch between local fairness and global fairness. Current fairness
approaches for federated learning are struggling to balance fairness and privacy. More importantly,
they neglect that the differences in update objectives between heterogeneous clients lead to difficul-
ties in maintaining fair classification and learning among clients. To address these limitations, we
propose a self-aware, fair federated learning framework, SFFL, which jointly improves fairness and
performance under heterogeneous data distributions without the requirement for clients’ sensitive in-
formation. Firstly, we present the FairEM method, which considers the heterogeneous distributions
as a combination of multiple underlying distributions and decomposes the clients’ training objects to
the fair training objects on underlying distributions to alleviate the fairness and performance decrease
caused by inconsistency update objects. Secondly, we introduce a self-aware aggregation method to
mitigate the bias propagation across different component models without requiring sensitive statistics.
Extensive evaluation results demonstrate the effectiveness of our proposed framework in achieving
fairness and maintaining performance in heterogeneous data distributions.

1. Introduction
Federated learning [1], which is proposed as a machine

learning framework with distributed privacy protection, has
been increasingly applied throughout a wide range of the
real-world, including in healthcare [2, 3], finance [4], recom-
mendation systems [5, 6] and many more realms. Due to the
distributed nature of federated learning, the clients may not
only train a biased local model but also affect other clients
during aggregation (i.e., bias propagation) [7, 8]. In detail,
the local training for each client will encode the historical
biases that exist in their local data to their model parameters
and perpetuate such bias during decision-making, classifica-
tion, or recommendation. Then, the biased local models will
propagate and amplify their biased parameters to the global
model through aggregation, which makes the global model
unfair. Thus, achieving fairness in federated learning faces
more challenges and has caused considerable attention in re-
cent research.

Due to the privacy constraints in federated learning, where
the local data are private, previous works on ML cannot ex-
tend to FL since those methods are under the assumption that
the server has access to the entire dataset. In order to fulfill
the requirement for fairness in federated learning, several
works have investigated fairness issues, proposing that the
local clients can share their local bias or some additional pri-

jialezhang@yzu.edu.cn (J. Zhang); milesyli@163.com (Y. Li);
di.wu@unisq.edu.au (D. Wu); yczhao@nuaa.edu.cn (Y. Zhao);
S.Palaiahnakote@salford.ac.uk (S. Palaiahnakote)

ORCID(s):

vacy information as a surrogate of the entire dataset to help
the server formulate the global optimization objects, then
clients can solve them on local to finally train a fair model
[9, 10]. For example, Du et al. [11] propose a fairness-
aware agnostic federated learning framework, AgnosticFair,
to concur with the fairness challenge of unknown testing
data. In AgnosticFair, the server collects the clients’ bias and
loss information to formulate a minimax optimization object
to minimize the model bias under a given threshold. FPFL
[12] extends the modified method of differential multipli-
ers to empirical risk minimization with fairness constraints
and introduces differential privacy to protect the clients’ bias
and the loss information. Besides, the requirement for group
information of clients also limits the development of an FL-
based recommendation system, F2MF [13] is a fairness-aware
framework for recommendation through communicating group
statistics during federated optimization and uses differential
privacy techniques to avoid exposure of users’ group infor-
mation. Both of the above works perform well when the
distributions of each client are similar, i.e., clients’ data dis-
tributions follow the Independent and Identical Distributions
(IID) since the update directions of clients are similar.

However, data is generally distributed in non-IID across
clients, resulting in such approaches based on the global op-
timization objects not being applicable. The reason is that
there exists a mismatch between client-level fairness and global
fairness, and the global optimization methods in IID take
a global perspective, which may not find a fair classifica-
tion boundary for every client, then further results in the

Jiale Zhang et al.: Preprint submitted to Elsevier Page 1 of 12
This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4885246

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed

jialezhang@yzu.edu.cn
milesyli@163.com
di.wu@unisq.edu.au
yczhao@nuaa.edu.cn
S.Palaiahnakote@salford.ac.uk


SFFL: Self-Aware Fairness Federated Learning Framework

model prediction fairly from the data calculated on global
but unfairness on local. Therefore, addressing fairness is-
sues in heterogeneous data distributions should make the
model predict fairly on each client’s local, which means we
should leverage the client-level fairness to promote global
fairness. Besides, the model is ultimately deployed on the
client [14, 15] also indicates that client-level fairness should
have been prioritized more over global fairness.

Recent studies on solving fairness issues in federated learn-
ing, from our investigation, only FCFL [14], FairFed [16],
and GLocalFair [15] consider the client-level fairness prob-
lem. FCFL starts from the view of multi-objective constraint
optimization to address the algorithmic disparity and per-
formance inconsistency in heterogeneous federated learning.
FairFed proposes to address the mismatch of local fairness
and global fairness by combining the centralized debiasing
algorithms locally and reweighting the aggregation weight
on the server according to clients’ local bias. Besides, GLo-
calFair follows a similar path to FairFed, combining local
derbies and global fair aggregation methods. Specifically,
GLocalFair leverages the Gini coefficient as a surrogate of
privacy bias information, which addresses the privacy prob-
lem of previous works. However, existing research still faces
some shortages:

Unbalance of privacy and fairness. Previous works did
not balance privacy and fairness no matter the reweighting
[15, 16] or the optimization methods [14]. On the one hand,
FCFL and FairFed attempted to improve fairness through
collecting additional information from clients, which may
unintentionally leak the clients’ privacy. On the other hand,
GLocalFair introduces the Gini coefficient to move away from
the requirement for privacy information, but it decreases the
utility of the bias-based reweighting method since the Gini
coefficient tends to be less sensitive within a certain fairness
threshold.

Low-effective for non-IID. Recent works have not ad-
dressed the performance decrease introduced by heteroge-
neous data distributions. Approaches of FairFed and GLo-
calFair decrease the aggregation weight for highly biased
clients but neglect the fact that less biased clients may not
perform well for the prediction, resulting in the model los-
ing usability. Besides, both methods focus on addressing the
fairness issues on a powerful global model, however, a single
model may not have the ability to accurately predict samples
with similar features but have different labels. For example,
medical centers in different regions may give different diag-
noses when treating similar patients due to regional differ-
ences. As a result, a directly trained model may give wrong
diagnoses to patients in areas with specific characteristics,
causing unfair decisions.

In this paper, we focus on achieving group fairness in
federated learning under heterogeneous distributions. Firstly,
we propose a fairness-aware local training method: Fair-EM,
which considers the heterogeneous distribution as the linear
combination of underlying distributions with personalized
weights and introduces the fairness constraints with adaptive
budget adjustment to local training for clients with hetero-

geneous data distributions. Second, we present a self-aware
aggregation method for fair aggregation, which reweighting
clients’ aggregate weight by measuring the updated distance
to the global component model. The contributions of this
paper can be summarized as follows:

• We propose SFFL, a Self-aware Fair Federated Learning
Framework to achieve client-level group fairness in
heterogeneous data distributions with high effective
and free for bias information.

• We present a fairness-aware local training method, Fair-
EM, through incorporating the EM algorithm and dy-
namic updating of local fairness constraint achieves
local fair training under heterogeneous distributions.

• We introduce a self-aware aggregation method by reweight-
ing client aggregate weights of each component model
according to distance to achieve fair aggregation.

• We conduct extensive experiments to demonstrate that
the proposed framework can achieve fairness in feder-
ated learning under heterogeneous distributions while
maintaining high performance.

This paper will be organized as follows. In Section 2,
we review the important works on fairness machine learn-
ing. Then, we introduce the proposed SFFL framework in
Section 3. After that, we present the Experiments on certain
machine learning fairness datasets and analysis the results in
Section 4. Finally, we conclude in Section 5 and point out
future work directions.

2. Related works
2.1. Fairness Metrics

Group fairness essentially compares the results of the
classification algorithm about two (or more) groups, which
are defined according to sensitive groups, such as sex or race.
Over time, many different metrics have been proposed to
achieve fairness in machine learning in various aspects. In
the following, we describe the most prominent definitions
and measures of group fairness: statistical parity difference
(also referred to as Demographic Parity), Equalized odds
(EOD) and Equal opportunity (EOP).

Statistical Parity Difference (SPD) [17] is one of the ear-
liest definitions of fairness, it ensures that the two sensitive
groups have similar rates in positive predictions. The notion
of SPD can be formulated as follows:

𝑆𝑃𝐷 = 𝑃 [𝑌 = 1|𝑆 = 1] − 𝑃 [𝑌 = 1|𝑆 = 0], (1)
where 𝑌 represents the predictions and 𝑆 is the sensitive
group set with binary value. However, SPD is hard to in-
troduce to federated learning, especially in non-IID settings,
since it may consider an accurate classifier as unfair when
there exists significant heterogeneity among sensitive groups
[18, 19].

Hardt et al. [20] proposed Equalized odds (EOD) and
Equal opportunity (EOP) to conquer the limitations of SPD
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under unbalanced data. EOD computes the difference be-
tween the false-positive rates (FPRs) and the difference be-
tween the true-positive rates (TPRs) of the two sensitive groups
to mitigate the influence of unbalanced sensitive group dis-
tributions. This metric computes as follows:

𝐸𝑂𝐷 = MAX{
𝑃 [𝑌 = 1|𝑆 = 0, 𝑌 = 1] − [𝑌 = 1|𝑆 = 1, 𝑌 = 1],
𝑃 [𝑌 = 1|𝑆 = 0, 𝑌 = 0] − 𝑃 [𝑌 = 1|𝑆 = 1, 𝑌 = 0]}.

(2)
In contrast to EOD, EOP is more popular, which is a re-

laxed metric that considers a classifier to be fair when the
difference between the TPRs of the two sensitive groups is
close to zero, which can be formulated as:

𝐸𝑂𝑃 = 𝑃 [𝑌 = 1|𝑆 = 0, 𝑌 = 1]
− [𝑌 = 1|𝑆 = 1, 𝑌 = 1].

(3)

In this paper, we consider achieving fairness in federated
learning according to EOP since the heterogeneous data dis-
tributions lead to the SPD being unsuitable for FL, and EOP
does not overly influence the model during training as EOD
does, thus decreasing utility.
2.2. Fairness in Machine Learning

In order to achieve fairness in centralized machine learn-
ing, numerous mechanisms have been proposed, most of which
can be classified into three categories: 1) Pre-Processing.
Calmon [21] introduces a novel probabilistic formulation of
data pre-processing for reducing bias. Biswas [22] leverage
the causal method to reason about the fairness impact during
the pre-processing stage. 2) In processing. Roh [23] con-
verts the fairness problem into a bi-level optimization prob-
lem, introducing an outer optimizer to select minibatch size
to keep fairness adaptively. Furthermore, traditional con-
straint optimization methods are still an efficient way to ad-
dress the fairness problem [24, 25, 26]. 3) Post-Processing.
Chiappa [27] provides a method that neglects the impact of
unfair pathways based on counterfactual correction. Unfor-
tunately, works in machine learning cannot directly be intro-
duced into federated learning because not only does feder-
ated learning locally train biased models, but the aggregation
process also leads to bias propagation.
2.3. Fairness in Federated Learning

There are two different notions of fairness in federated
learning: Client Fairness and Group Fairness. The former
pays attention to optimal client selection for training, provid-
ing a fair measurement of clients’ contribution, or narrowing
the performance difference between clients. The latter tries
to make fair predictions among different sensitive groups,
such as sex or race.

Client Fairness The distributed training of federated learn-
ing naturally introduces fairness problems, such as unfair
client selection, mismatch between contribution and rewards,
and inconsistent model performance. Several works have
been done to address the above fairness issues. Huang et
al. [28] introduces a C2MAB-based method to estimate the

model exchange time between each client and server. Then,
they introduce RBCF-F, a fair client selection algorithm, to
reduce bandwidth usage and improve model performance
and convergence speed. FedCS [29] presents a client-selection
framework in MEC federated learning, which enables oper-
ators to actively allocate resources among MEC clients and
set deadlines for model downloading, updating, and upload-
ing, thus accurate the efficiency of training. In addition to
improving the overall training efficiency through fair client
election, a fair incentive mechanism is also essential to client
fairness. Gao et al. [30] propose a fair incentive mech-
anism for federated learning, FIFL, which provides a dy-
namic real-time worker assessment and rewards to encour-
age high-quality clients to join the training and prevent mali-
cious participants. [31] proposes FLI, which adaptively ad-
justs clients’ shares to mitigate the inequality between con-
tributions and rewards fairly. Other studies on client fair-
ness focus on the fairness problem caused by inconsistent
model performance. Mohri et al. [32] address the client
fairness problem by considering the FL problem as a min-
imax problem and optimizing the client with the worst per-
formance. Q-FFL [33] achieves fair federated learning by as-
signing higher aggregate weights to clients with higher loss,
reducing the performance difference of the model. Ditto re-
duces the performance difference between clients by intro-
ducing a regularization term in local training to make the
local model converge to the optimal global model as much
as possible [34]. Further, [35] introduces a regularized term
to penalize the differences among clients to address the fair-
ness problem of model accuracy.

Group Fairness Despite client fairness, group fairness
in federated learning has attracted more and more attention.
Abay et al. [36] explore the possibility of transferring the
fairness approach in ML to FL and present several approaches
for preliminary exploration. [11] notices the potential distri-
bution shift between training data and agnostic test data and
introduces a kernel-based fairness-aware reweighting method
to avoid the global model producing the bias classification
on unknown test data. In [12], authors introduce the mod-
ified method of differential multipliers with fairness con-
straints to federated learning to achieve fairness. Astral [37]
proposes a self-corrective federated learning framework to
reweight clients’ aggregation weight according to the test
accuracy and bias on the global test set. However, most of
the above approaches are under the assumption that clients
have similar distributions, which makes their application in
more general heterogeneous scenarios. FCFL [14] proposes
a gradient-based method, FCFL, to address both the group
fairness problem and inconstant performance in federated
learning, which formulate the bias classification and incon-
sistency performance as a multi-object optimization prob-
lem. Besides, reweighting-based methods have also been ap-
plied to achieve fair federated learning. Ezzeldin et al. [16]
proposes FairFed, which allows clients to select the debias
mechanism in machine learning and modify the weight of
clients according to the biased information. Follow FairFed,
Meerza [15] avoids the requirement for additional biased in-
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formation in the weighting mechanism by introducing the
Gini coefficient as a surrogate for biased information. How-
ever, it exhibits insensitivity under a certain bias threshold.
Notwithstanding the efforts of existing approaches in differ-
ent directions, these approaches still face one or more of the
following problems: additional information, low-effective
aggregation and utility. To overcome the shortages, we pro-
pose a self-aware fair federated learning framework to achieve
fairness in heterogeneous federated learning.

3. The proposed framework
In this section, we will describe the proposed Self-aware

Fairness Federated Learning (SFFL) framework, which achieves
client-level group fairness while maintaining utility. In the
following, we first provide the problem formulation in our
SFFL framework and then present the details.
3.1. Problem statement

We suppose there is a set of clients which can be denoted
as  (where || = 𝑁) participants in federated learning,
and the overall goal is to train a model that can get a better
estimation of their local data and perform fair classification.
For a specific client 𝑘 ∈  holds a set of data points gener-
ated from its local distribution 𝑘 over  × , where  and
 represent the input and output space, respectively. Gen-
erally speaking, it is appropriate to train a separate model
(hypothesis) ℎ𝑡 ∈  to fit their local distributions, which
vary with other clients. Thus, the goal is then to solve the
following optimization problems subject to the fairness con-
straints:

∀𝑘 ∈ , minimize𝐷𝑘
(ℎ𝑘),

𝑠.𝑡. 𝐹 𝑎𝑖𝑟(ℎ𝑘) ≤ 𝜖, (4)

where ℎ𝑘 ∶  → Δ|| represents the separate model (hy-
pothesis) of 𝑘-th client, and the Δ||is the unitary simplex
of dimension 𝐷. 𝑘

(ℎ𝑘) = 𝔼(𝐱,𝑦)∼𝑘
[𝑙(ℎ𝑘(𝐱, 𝑦))] is the

true risk of model ℎ𝑘 under 𝐷𝑘 and 𝑙(⋅) ∶ Δ|| ×  → 𝑅+

indicate the loss function. 𝐹𝑎𝑖𝑟(⋅) is the fairness metric. In
this paper, we consider EOP [20] as the fairness metric, and
the sensitive attribution 𝑆 is a binary attribute value of input
space  . Thus, the optimization problem can be rewritten
as follows:

∀𝑘 ∈ , minimize𝐷𝑘
(ℎ𝑘),

𝑠.𝑡. EOP(ℎ𝑘) ≤ 𝜖.
(5)

3.2. Overview
In FedEM, the authors guarantee the performance con-

sistency of models by treating the heterogeneous data distri-
butions as the mixture of multiple underlying distributions.
Inspired by FedEM, we first propose a fairness-aware local
training method to train fair component models locally by in-
corporating the fairness constraints as a penalty term to the
loss function. Then, we introduce a self-aware aggregation
method that tunes the aggregation weights through measur-
ing the distance of the clients’ updates on the component

models, further reducing the potential mismatch during ag-
gregation. By jointly training the component models with
fairness constraints and self-aware aggregation, each client
can benefit from the knowledge distilled from other clients
and keep their local model fair even if their distributions exit
significant differences. The framework is presented in Fig. 1.
In the following, we will describe the methodology in detail,
i.e., fairness-aware local training and self-aware aggregation.
3.3. Client-side: Fair-EM algorithm

In order to achieve fairness in federated learning under
heterogeneous data distributions, we propose Fair-EM, which
considers the local distribution of clients as the mixture of
multiple underlying independent distributions and trains a
fair component model for each underlying distribution through
incorporating the fairness constraints. Specifically, follow-
ing the assumption in FedEM [38] that the local distribu-
tion of 𝑘-th client 𝐷𝑘 can be represented as the mixture of
M underlying distributions ̂𝑚 with a set of weight 𝜋𝑘 =
[𝜋𝑘,1, 𝜋𝑘,2,… , 𝜋𝑘,𝑀 ], i.e., 𝐷𝑘 =

∑𝑀
𝑚=1 𝜋𝑘,𝑖 ⋅ ̂𝑚. Under this

assumption, we can train a component model for each under-
lying distribution. The predictor of 𝑘-th client can be illus-
trated as ℎ𝑘 =

∑𝑀
𝑚=1 𝜋𝑘,𝑖 ⋅ ℎ𝜃𝑘 (⋅), where ℎ𝜃𝑘 (⋅) represent the

hypotheses parameterized by 𝜃𝑘 ∈ ℝ𝑑 . Then, let 𝑙(⋅, ⋅) be the
log loss, and the optimization problem in Eq. 5 is converted
to:

minimize
Θ,Π

𝔼
𝑘∼𝐷

𝔼
(𝐱,𝑦)∼𝑘

[

𝑙(ℎ𝑘, 𝐱, 𝑦)
]

= minimize
Θ,Π

𝔼
𝑘∼𝐷

𝔼
(𝐱,𝑦)∼𝑘

[

− log 𝑝𝑘
(

𝐱, 𝑦 ∣ Θ, 𝜋𝑘
)]

,

𝑠.𝑡. EOP(ℎ𝑘) ≤ 𝜖.

(6)

For simplicity, let us first consider the problem in Eq. 6
without fairness constraints. FedEM introduces an EM-like
algorithm that provides a promising solution for that, i.e.,
we can estimate the parameters {Θ,Π𝑘} through minimiz-
ing the empirical version of 𝑙(ℎ𝑘, 𝐱, 𝑦) on 𝑘-th client. It can
be summarized into two steps: Expectation and Maximiza-
tion. In the Expectation step, 𝑘-th client updates the poste-
rior probability of 𝑚-th underlying distribution on 𝑖-th sam-
ple 𝑠(𝑖)𝑘 according to the classification performances of 𝑚-th
component model 𝜃𝑡𝑚 on 𝑖-th sample 𝑠(𝑖)𝑘 of client 𝑘 and the
mixture weight of 𝑚-th underlying distribution of the prior
iteration which calculated by Eq. 7. Then, the Maximiza-
tion step involves updating the mixture weights and the M
component model parameters. In detail, the client updates
the mixture weight of the underlying distribution ̂𝑚 with
𝑞𝑡𝑘,𝑚,𝑖 to capture its prominence in 𝐷𝑘, which is represented
as Eq. 8. Then, the client updates the parameters of the 𝑚-th
component model via solving the empirical risk minimiza-
tion problem weighted by 𝑞𝑡𝑘,𝑚,𝑖 defined in Eq. 9 to construct
an unbiased estimate of the true risk over each underlying
distribution ̂𝑚, 𝑚 ∈ .

Expectation-Step:
𝑞𝑡𝑘,𝑚,𝑖 ∝ 𝜋𝑡

𝑘,𝑚 ⋅ exp(−𝑙(𝜃𝑡𝑚, 𝐱
(𝑖)
𝑘 , 𝑦(𝑖)𝑘 )). (7)
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Client a

Fair-EM Self-aware Aggregation
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↗       ↘

{𝒘𝒂,𝟐
𝒕+𝟏,𝒘𝒃,𝟐
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{𝒘𝒂,𝟑
𝒕 ,𝒘𝒃,𝟑

𝒕 }
↘      ↗

{𝒘𝒂,𝟑
𝒕+𝟏,𝒘𝒃,𝟑

𝒕+𝟏}

E-Step

M-Step

E-Step

M-Step Distance Measure
Client b Reweight Aggregation

Distance Measure Reweight Aggregation

Distance Measure Reweight Aggregation

Figure 1: An overview of proposed SFFL framework. On client-side, client A utilizes the Fair-EM algorithm to train fair component
models, which first updates the prominence of each underlying distribution of its distribution (𝜋𝑎,𝑖) and the corresponding fairness
weight (𝜆𝑎,𝑖), where 𝑖 ∈ {1, 2, 3}, separately. Then, the client can train fair component models by solving a weighted empirical
minimization problem. On server-side, the server employs a self-aware aggregation method to mitigate the fairness mismatch
issues caused by inconsistent update objectives. It measures the distances of updates to estimate the prominence of the 𝑚-th
underlying distribution of clients, thus reweighting the aggregation weights.

Maximization-Step:

𝜋𝑡
𝑘,𝑚 =

∑𝑛𝑡
𝑖=1 𝑞

𝑡
𝑘,𝑚,𝑖

𝑛𝑡
, (8)

𝜃𝑡𝑚 ∈ argmin
𝜃∈ℝ𝑑

∑
𝑘=1

∑𝑛𝑡
𝑖=1

𝑞𝑡𝑘,𝑚 ⋅ 𝑙
(

𝜃𝑡𝑘,𝑚, (𝐱, 𝑦)
(𝑖)
𝑘

)

, (9)
Note that the above-described process did not contain

fairness constraints, which means it may expose potential
biases in the data to produce unfair component models. In
order to train a fair component model, we introduce the fair-
ness constraint to the model training, i.e., solving the em-
pirical risk minimization problem weighted by 𝑞𝑡𝑘,𝑚,𝑖 with
the fairness constraint. Specifically, we start from the defi-
nition of the Equalized Opportunity (EOP), which requires
the model to predict with similar true positive rates for the
sensitive group (𝑆 = 1) and non-sensitive group (𝑆 = 0),
i.e.,

𝐸𝑂𝑃 (ℎ) = 𝑃 [𝑌 = 1|𝑆 = 0, 𝑌 = 1]
− [𝑌 = 1|𝑆 = 1, 𝑌 = 1]

= 𝔼|=1

[

𝑃 ( = 1 ∣ 𝐱, 𝑌 = 1)
𝑃 ( = 1 ∣ 𝑌 = 1)

𝟙ℎ(𝐱)>0

−
𝑃 ( = 0 ∣ 𝐱, 𝑌 = 1)
𝑃 ( = 0 ∣ 𝑌 = 1)

𝟙ℎ(𝐱)>0
]

= 𝔼|=1

[

𝑃 (𝑆 = 1 ∣ 𝐱, 𝑌 = 1)
𝑃 (𝑆 = 1 ∣ 𝑌 = 1)

𝟙ℎ(𝐱)>0

+
1 − 𝑃 (𝑆 = 1 ∣ 𝐱, 𝑌 = 1)
1 − 𝑃 (𝑆 = 1 ∣ 𝑌 = 1)

𝟙ℎ(𝐱)<0
]

− 1.

(10)

Therefore, the constraint optimization problem for 𝑘-th
client of 𝑚-th component model with weight 𝑞𝑡𝑘,𝑚 can be
written as:

𝜃𝑡𝑚 ∈ argmin
𝜃∈ℝ𝑑

∑𝑛𝑡
𝑖=1

𝑞𝑡𝑘,𝑚 ⋅ 𝑙
(

𝜃𝑡𝑘,𝑚, (𝐱, 𝑦, 𝑠)
(𝑖)
𝑘

)

,

𝑠.𝑡. 𝔼|=1

[

𝑃 (𝑆 = 1 ∣ 𝐱, 𝑌 = 1)
𝑃 (𝑆 = 1 ∣ 𝑌 = 1)

𝟙ℎ(𝐱)>0

+
1 − 𝑃 (𝑆 = 1 ∣ 𝐱, 𝑌 = 1)
1 − 𝑃 (𝑆 = 1 ∣ 𝑌 = 1)

𝟙ℎ(𝐱)<0
]

− 1 ≤ 𝜖.

(11)

However, solving the problem above is intractable to com-
pute since the constraint contains the indicator functions 𝟙ℎ(𝐱)<0and 𝟙ℎ(𝐱)>0. An alternative approach is substituting the in-
dicator function with a surrogate function, thereby formu-
lating the EOP as a convex constraint for direct integration
into classification models [26]. In this paper, we follow [26]
and set the surrogate function as a logistic function (noted as
𝑓 (⋅)), then the Eq. 11 is rewritten as:

𝜃𝑡𝑚 ∈ argmin
𝜃∈ℝ𝑑

∑𝑛𝑡
𝑖=1

𝑞𝑡𝑘,𝑚 ⋅ 𝑙
(

𝜃𝑡𝑘,𝑚, (𝐱, 𝑦, 𝑠)
(𝑖)
𝑘

)

,

𝑠.𝑡. 𝔼|=1

[

𝑃 (𝑆 = 1 ∣ 𝐱, 𝑌 = 1)
𝑃 (𝑆 = 1 ∣ 𝑌 = 1)

𝑓 (ℎ(𝐱))

+
1 − 𝑃 (𝑆 = 1 ∣ 𝐱, 𝑌 = 1)
1 − 𝑃 (𝑆 = 1 ∣ 𝑌 = 1)

𝑓 (ℎ(𝐱))
]

− 1 ≤ 𝜖.

(12)

Then, the fairness constrain can be introduced as the penalty
term into the loss function, and the optimization problem in
Eq. 12 are reformulated as:
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SFFL: Self-Aware Fairness Federated Learning Framework

𝜃𝑡𝑚 ∈ argmin
𝜃∈ℝ𝑑

∑𝑛𝑡
𝑖=1

𝑞𝑡𝑘,𝑚 ⋅ 
(

𝜃𝑡𝑘,𝑚, (𝐱, 𝑦, 𝑠)
(𝑖)
𝑘

)

= argmin
𝜃∈ℝ𝑑

∑𝑛𝑡
𝑖=1

𝑞𝑡𝑘,𝑚 ⋅
(

𝑙𝑎𝑐𝑐𝑘,𝑚 + 𝜆𝑙𝑓𝑎𝑖𝑟𝑛𝑒𝑠𝑠𝑘,𝑚

)

,
(13)

where 𝜆 is the weight to balance the true risk and fairness. In
centralized learning, 𝜆 can select from empirical experimen-
tal results. However, in federated learning, it is impossible
to empirically set a suitable hyper-parameter for each client,
especially under heterogeneous distributions. Intuitively, for
a less-bias model, we can perform less modification to the
classification boundary to guarantee it fair, and it should be
higher in a high-bias model [13]. Following this inspiration,
we can take the difference between the bias of the compo-
nent model on 𝐷𝑘 and the target value as the basis for the
weight settings. Therefore, the update of hyper-parameter
of 𝑚-th component model 𝜆𝑡𝑘,𝑚 is represented as:

𝜆𝑡𝑘,𝑚 =𝜆𝑡−1𝑘,𝑚 − (𝜖 − 𝑔𝑎𝑝𝜃𝑡𝑚,𝐷𝑘
), (14)

where 𝑔𝑎𝑝{𝜃𝑚,�̂�𝑚}
is the EOP value of 𝜃𝑡𝑚 on 𝐷𝑚. Neverthe-

less, directly introduce 𝑔𝑎𝑝𝜃𝑚,𝐷𝑘
to update 𝜆𝑡𝑘,𝑚 is irrational,

since the difference of EOP between continue iterations can
be very large, especially in initial phase of training since the
classification boundaries of models may be arbitrary. For
this purpose, we introduce a parameter to control the update
step size, which is similar to the learning rate mechanism in
model training, to avoid the non-convergence of the model
due to the over update. Thus, the hyper-parameter updates
for 𝑚-th component model at 𝑡-th iteration are formulated as
follows:

𝜆𝑡𝑘,𝑚 =𝜆𝑡−1𝑘,𝑚 − 𝜂𝑘,𝑚 ⋅ (𝜖 − 𝑔𝑎𝑝𝜃𝑡𝑚,𝐷𝑘
), (15)

According to Fairness-aware local training, clients can
train fair component model over their heterogeneous data
distributions.
3.4. Server-side: Self-aware Aggregation

Recall that, FedAvg and FedEM utilize the regular ag-
gregation method which aggregates the global model de-
pending on the quantity of data held by the client, i.e.,

𝜃𝑡+1 =
∑𝐾

𝑘=1
𝑤𝑡

𝑘 ⋅ 𝜃
𝑡
𝑘,

𝑤𝑡
𝑘 =

𝑛𝑘
∑𝐾

𝑖=1 𝑛𝑖
.

(16)

In general, considering only the amount of data in aggre-
gation will bias the global component model towards clients
with large amounts of data, ignoring the differences in the
prominence of each client’s underlying distribution. The client
distributions vary in their prominence for the underlying dis-
tribution𝐷𝑚 corresponding to the𝑚-th parameterized model,
i.e., 𝜋𝑎,𝑚 ≠ 𝜋𝑏,𝑚. This allows their parameters to be updated
with different objectives, which means they may update the
parameters with different directions and sizes. If identical

aggregation weights are allocated to the clients which 𝜋𝑚are not similar, then results in the model fails to converge to
a fair classification boundary. In addition, since 𝜋𝑚 for each
client is iteratively updated during training, we cannot pre-
dict 𝜋𝑚 in a priori way, and using fixed weights cannot solve
the above problem. The key insight to address this problem
is that the clients with high prominence on 𝑚-th underlying
distribution should have similar objectives, which is similar
to the fairness problem of FL in IID distribution.

Consequently, it is necessary to assign distinct aggre-
gation weights according to their prominence of underlying
distributions and allocate higher weights for the clients with
higher 𝜋𝑚. Besides, considering the privacy requirements
of federated learning, keeping the mixture weights locally
within the client is essential, rather than uploading them to
the server.

Following the intuitions, let us recall that of Fair-EM,
each sample holds mixture weight 𝑞𝑡𝑘,𝑚,𝑖 represent the weight
for 𝑚-th underlying distribution, which is the prominence
of 𝑚-th underlying distribution, and update the local com-
ponent model based on this weight, leads to different step
size of model updates, i.e., samples with high weights up-
dates more. Thus, the differences in model updates between
clients can be used as a proxy for calculating mixture weights
in the server.

According to this observation, we propose a self-aware
aggregation method, which realizes the adjustment of com-
ponent model aggregation weights through self-aware aggre-
gation weight reweighting to mitigate the unfairness caused
by aggregation weights. Specifically, we calculate the up-
date size between the client component model of each round
and the component model of the previous round as a refer-
ence for updating the aggregation weights, and ultimately
achieve self-aware aggregation reweighting.

Next, we detail how this method reweights the aggrega-
tion weights in each round. We use the Euclidean norm to
calculate the update distance of 𝑘-th client, dis𝜃𝑡𝑚,𝜃𝑡𝑘,𝑚 , which
is a common way to calculate the differences between mod-
els:

dis𝜃𝑡𝑚,𝜃𝑡𝑘,𝑚 =

√

√

√

√

𝑛
∑

𝑖=1
(𝑝𝑖 − 𝑞𝑖)2, (17)

where, 𝑝𝑖 represents the 𝑖-th weight of model 𝜃𝑡𝑚, and 𝑞𝑖 is
the 𝑖-th weight in model 𝜃𝑡𝑘,𝑚. Therefore, we have the average
update distance in 𝑡-th iteration, which represent as:

dis𝑡𝑎𝑣𝑔 = 1
||


∑

𝑘=1
dis𝜃𝑡𝑚,𝜃𝑡𝑘,𝑚 . (18)

Then, the aggregation weight assigned to each clients up-
date follows:

𝑤𝑡+1
𝑚 =

exp(log(𝑤𝑡
𝑘,𝑚) − Δ𝑘)

∑
𝑘=1 exp(log(𝑤𝑡

𝑘,𝑚) − Δ𝑘)
(19)

Note that, Δ𝑘 = (dis𝑡𝑎𝑣𝑔 − dis𝜃𝑡𝑚,𝜃𝑡𝑘,𝑚 ) is the gap between
the average distance and the update distance of 𝑘-th client.
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SFFL: Self-Aware Fairness Federated Learning Framework

Then, the server aggregates the component models accord-
ing to the updated weights. The 𝑚-th component model for
next iteration aggregates as follows:

𝜃𝑡+1𝑚 =

∑

𝑘=1
𝑤𝑡+1

𝑚 ⋅ 𝜃𝑡𝑘,𝑚. (20)

The pseudo code of SFFL is provided in Algorithm. 1.

Algorithm 1: SFFL: Self-aware Fairness Feder-
ated Learning

Input: Underlying distributions Number 𝑀 , clients
, fairness threshold 𝜖, hyper-parameters 𝜂,
client dataset 𝐷, number of iterations 𝑇 .

Output: 𝜃𝑚, 𝑚 ∈ 𝑀 , 𝜋𝑘, 𝑘 ∈ .
Server initializes M component models.
Initialize 𝜋0

𝑘, 𝑘 ∈ .
for each iteration 𝑡 ∈ [1, 2,⋯ , 𝑇 ] do

// Client Executes
for each client 𝑘 ∈  do

EVENT: Received component models
𝜃𝑡𝑚, 𝑚 ∈ 𝑀

for component 𝑚 ∈ [1, 2,⋯ ,𝑀] do
//Expectation step
𝑞𝑡𝑘,𝑚,𝑖 ∝ 𝜋𝑡

𝑘,𝑚 ⋅ exp(−𝑙(𝜃𝑡𝑚, 𝐱
(𝑖)
𝑘 , 𝑦(𝑖)𝑘 ));

𝜆𝑡𝑘,𝑚 = 𝜆𝑡−1𝑘,𝑚 − 𝜂𝑘,𝑚 ⋅ (𝜖 − 𝑔𝑎𝑝𝜃𝑡𝑚,𝐷𝑘
);

//Maximization step
𝜋𝑡
𝑘,𝑚 = 1

𝑛𝑡

∑𝑛𝑡
𝑖=1 𝑞

𝑡
𝑘,𝑚,𝑖;

𝜃𝑚 ← 𝜃𝑚−𝜂 ⋅𝑞𝑚,𝑖 ⋅∇𝜃(𝑙𝑎𝑐𝑐𝑚 +𝜆𝑚𝑙
𝑓𝑎𝑖𝑟𝑛𝑒𝑠𝑠
𝑚 );

end
end
// Server Executes
for component 𝑚 ∈ [1, 2,⋯ ,𝑀] do

dis𝜃𝑡𝑚,𝜃𝑡𝑘,𝑚 =
√

∑𝑛
𝑖=1(𝑝𝑖 − 𝑞𝑖)2;

dis𝑡𝑎𝑣𝑔 = 1
||

∑
𝑘=1 dis𝜃𝑡𝑚,𝜃𝑡𝑘,𝑚

𝑤𝑡+1
𝑚 =

exp(log(𝑤𝑡
𝑘,𝑚)−Δ𝑘)

∑
𝑘=1 exp(log(𝑤𝑡

𝑘,𝑚)−Δ𝑘)

𝜃𝑡+1𝑚 ←
∑

𝑘=1𝑤
𝑡+1
𝑚,𝑘𝜃

𝑡
𝑘,𝑚;

end
end
Return 𝜃𝑚, 𝑚 ∈ 𝑀 , 𝜋𝑘, 𝑘 ∈ .

4. Experiments
4.1. Datasets

In the following, we evaluate SFFL’s performance on the
U.S. Census data, which consists of census data for the 50
U.S. states and Puerto Rico. Then, we consider three dif-
ferent tasks predefined by the folktables [39]: ACSEmploy-
ment, ACSIncome and ACSHealthInsurance. We consider
the binary notion of sex (male and female) as the sensitive at-
tribution. We leverage the data allocation method proposed
by Hsu et al. [40], which is a synthesis method based on

Dirichlet distribution through controlling the parameter 𝛼
to achieve different heterogeneity of sensitive attributions in
clients. We assign each state’s data to clients to better reflect
the potential heterogeneity between the data due to regional
differences. We allocate nearly 4000 samples to each client
consisting of 2400 training points and 1600 test points; the
test distribution and training distribution are drawn from the
same data distribution. For better understanding, we pro-
vide an example to illustrate the distribution of each partic-
ipant for different heterogeneity levels, which is shown in
Fig. 2. Note that some clients may have insufficient sam-
ples because some states do not have enough records for a
specific attribute (e.g., Male positive in ACSIncome task),
which is more noticeable when the 𝛼 is small.
4.1.1. Baselines

We compare our methods with the classic federated learn-
ing algorithm FedAvg, a personalize federated learning frame-
work FedEM, and two different state-of-the-art fair federated
learning frameworks FCFL [14] and FairFed [16]. We pro-
vide a brief description of the baseline methods as follows:

FedAvg [1] is the distributed machine learning frame-
work that trains clients’ models locally and aggregates the
global model according to the data size of each client.

FedEM [38] is a novel personalized federated learning
framework based on multi-task learning. FedEM introduces
the EM-like algorithm to update the mixture weights to fit
the local distribution and update the component model based
on these weights. Then, the component models are aggre-
gated according to the data size of each client.

FCFL [14] is a state-of-the-art FL framework to achieve
client fairness and performance inconsistency. FCFL con-
siders the fairness problem and performance inconsistency
as a multi-object constraint optimization problem and ad-
dresses this problem using a gradient-based optimization method.

FairFed [16] is a state-of-the-art fair federated learning
framework based on the reweighting method, which utilizes
the collection of fairness information uploaded by clients to
reweight the aggregation weights to make the global model
favor towards clients with high-fair clients as a way to achieve
fairness in federation learning.
4.1.2. Implementation details

Parameters are carefully chosen to optimize the model
for best performance. We implement the proposed method
and the baseline methods based on PyTorch. Following com-
mon practices for fair federated learning, we train a logistic
regression model as the component model for all tasks. The
batch size during training is set to 128. The local learning
rate is 0.01. The local fairness update step size in Eq. 15 is
0.1. We fixed the local epoch for all experiments as 2. The
training iteration is set to 150. Client numbers are set to 20.
The number of underlying distributions M is set to 3.
4.2. Accuracy and EOP

Table. 1 shows the performance of SFFL compared with
four baseline federated learning baseline methods, and we
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Figure 2: An example for data allocation. X-ares represent the clients, Y-ares are the percentages of data.

Table 1
Performance comparison between SFFL and baseline methods under five different hetero-
geneous levels. We test the performance of SFFL as well as other baselines five times and
report the mean and standard deviation results to eliminate the effects of randomness.
Note that the marker of "Acc(↑)" represents the accuracy, which higher is better, and
"EOP(↓)" means EOP, which lower is better. Besides, we highlighted the best perfor-
mance of each group’s experiments in bold.

FedAvg FedEM FCFL FairFed Ours
Acc(↑) EOP(↓) Acc(↑) EOP(↓) Acc(↑) EOP(↓) Acc(↑) EOP(↓) Acc(↑) EOP(↓)

ACSEmployment

𝛼=0.1 75.31 ± 1.32 9.28 ± 2.34 79.46 ± 0.24 5.37 ± 1.75 74.47 ± 0.66 4.26 ± 0.65 72.93 ± 3.01 5.40 ± 1.14 79.16 ± 0.55 1.75 ± 1.83
𝛼=0.5 78.32 ± 1.14 7.88 ± 1.98 78.98 ± 0.51 5.40 ± 0.79 73.75 ± 0.76 3.50 ± 0.39 73.73 ± 2.09 3.35 ± 0.93 79.03 ± 0.43 1.58 ± 0.71
𝛼=1000 78.53 ± 1.02 4.90 ± 1.93 79.09 ± 0.40 4.18 ± 0.48 74.30 ± 0.73 2.88 ± 0.63 73.97 ± 2.18 2.75 ± 0.79 79.15 ± 0.39 1.77 ± 0.61
𝛼=1000 79.16 ± 0.34 3.59 ± 0.78 79.22 ± 0.31 3.43 ± 0.38 75.58 ± 0.43 2.25 ± 0.54 74.40 ± 1.65 2.82 ± 1.41 79.21 ± 0.52 1.20 ± 0.67
𝛼=1000 79.18 ± 0.23 3.58 ± 0.89 79.27 ± 0.34 3.72 ± 0.37 74.45 ± 0.63 2.28 ± 0.53 73.92 ± 2.16 2.87 ± 1.17 79.27 ± 0.45 1.57 ± 0.41

ACSIncome

𝛼=0.1 73.55 ± 1.26 16.35 ± 1.56 79.49 ± 1.05 12.55 ± 3.72 75.06 ± 0.40 5.37 ± 1.09 69.50 ± 1.97 5.93 ± 1.30 77.76 ± 0.87 2.88 ± 1.75
𝛼=0.5 75.85 ± 0.67 10.81 ± 1.80 78.32 ± 0.67 8.34 ± 2.49 75.09 ± 0.52 4.50 ± 0.98 69.97 ± 2.02 5.56 ± 1.53 77.73 ± 0.63 2.59 ± 0.96
𝛼=1000 76.12 ± 0.94 9.73 ± 2.47 77.88 ± 0.67 5.86 ± 2.50 75.27 ± 0.44 3.22 ± 0.71 70.13 ± 1.97 4.96 ± 1.01 77.76 ± 0.58 2.17 ± 0.84
𝛼=1000 76.54 ± 0.29 4.83 ± 2.51 77.74 ± 0.56 3.86 ± 0.76 75.36 ± 0.33 2.81 ± 0.45 70.63 ± 1.89 3.91 ± 0.90 77.87 ± 0.43 2.16 ± 0.47
𝛼=1000 76.38 ± 0.19 5.60 ± 0.65 77.67 ± 0.53 3.91 ± 0.86 75.30 ± 0.46 2.92 ± 0.46 71.43 ± 1.98 3.81 ± 0.91 77.66 ± 1.08 2.13 ± 0.62

ACSHealthInsurance

𝛼=0.1 61.84 ± 4.32 11.89 ± 3.02 70.13 ± 1.84 11.64 ± 3.16 63.90 ± 2.11 6.09 ± 1.25 58.65 ± 2.10 6.86 ± 1.87 68.27 ± 1.39 3.63 ± 1.17
𝛼=0.5 66.10 ± 1.43 15.09 ± 4.07 69.25 ± 1.01 9.89 ± 1.85 64.02 ± 1.45 4.90 ± 1.30 57.96 ± 1.46 5.43 ± 1.82 67.83 ± 1.06 2.57 ± 1.57
𝛼=1000 66.90 ± 1.47 14.73 ± 3.09 68.45 ± 1.37 8.07 ± 3.50 64.40 ± 1.05 4.26 ± 0.84 59.08 ± 1.69 5.11 ± 1.50 67.83 ± 1.21 2.64 ± 1.87
𝛼=1000 65.27 ± 0.93 6.77 ± 2.36 67.78 ± 1.12 5.57 ± 0.69 64.57 ± 0.86 3.67 ± 0.85 59.32 ± 2.12 4.87 ± 2.07 68.05 ± 1.15 2.57 ± 1.23
𝛼=1000 64.53 ± 0.84 6.77 ± 1.43 67.97 ± 1.16 5.18 ± 0.60 64.49 ± 0.88 4.12 ± 1.34 59.33 ± 2.02 4.98 ± 2.49 67.99 ± 1.20 2.85 ± 1.41

follow the original settings in their papers. From the per-
spective of accuracy, the proposed SFFL only has a slight
decrease to FedEM since the introduction of fairness con-
straints but still outperforms other baseline methods, espe-
cially the other two fair federated learning methods. Numer-
ically, SFFL achieves an average accuracy improvement of
3.64% on the three tasks compared to FCFL and 7.31% for
FairFed. Overall, introducing underlying distributions pro-
motes knowledge sharing across clients, allowing them to
learn from other clients even with completely different data
distributions. Furthermore, the proposed Fair-EM can bet-
ter fit the local distribution through weight updating, which
improves the utility of each client.

For fairness benefits from the multi-component models,
aggregation separately naturally decreases the mismatch of
update directions, and SFFL achieves more fairness improve-
ments than FCFL and FairFed. Specifically, compared to
FairFed, SFFL has a maximum average fairness improve-
ment of 2.60% over the three tasks, representing an increase
of 56.89%. Concerning FCFL, the average fairness improve-
ment is 1.76%, which is a growth of 53.68%. As to FedEM,
the proposed Fair-EM algorithm and Self-aware aggregation
method effectively address the fairness problem in FedEM
with an average increase of 80.80% on three tasks.

Consequently, this experiment provides empirical evi-
dence that the proposed SFFL framework can achieve fair-
ness for each client while maintaining high utility.

4.3. Different Learners Numbers
An important assumption is that the client’s heteroge-

neous distribution is the mixture of M underlying distribu-
tions. Therefore, the selection of M plays a vital role in
SFFL. In this section, we test the performance of SFFL and
FedEM with different numbers of underlying distributions.
We present the results in Fig. 3. The conclusion on accu-
racy is similar to the conclusion in FedEM [38] where the
accuracy may not increase too much with the increase of M
(𝑀 ≥ 2), and the improvement from 𝑀 = 1 to 𝑀 = 2
implies that the efficient of the mixture model. Besides, as
described above, introducing fairness constraints slightly in-
fluences the accuracy of SFFL, but such a slight decrease is
acceptable. However, different from the accuracy, the in-
crease of 𝑀 does affect the improvement of EOP in SFFL
since the increase of underlying distribution better mitigates
the mismatch during aggregation. There is also a certain
degree of reduction in FedEM. Still, the lack of local fair
training methods makes it difficult for the model to converge
towards a fair direction, leading to a large gap between its
performance and SFFL.
4.4. Different Client Numbers

The client number is a crucial parameter in federated
learning, impacting federated learning models’ efficiency of
aggregation and fairness. In this case study, we extend the
scaling factor  from 10 to 50 to better test the robustness
of SFFL and several other baseline methods (FedEM, FCFL,
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Figure 3: Different Learners Numbers under different 𝛼. X-axes are the number of underlying distributions, the left Y-axes
represent the accuracy (bars), and the right Y-axes are EOP (lines).

and FairFed) under different client numbers, and the results
are presented in Fig. 3. We can see from the figure above that
both FedEM and SFFL receive remarkable performance on
accuracy and have little decrease with the increase of . We
consider this mainly because of the effectiveness of the EM
algorithm since every client can contribute to the component
models and learn from others. The EM algorithm can also
find an appropriate mixture weight for each client according
to the current component models, thus improving the perfor-
mance under heterogeneous distributions.

For the EOP, due to the FedEM not considering the fair-
ness problem, it has the worst performance, where clients
embed bias into their local component models and propa-
gate them to others. FCFL and FairFed perform better than
FedEM since they take fairness into consideration. Still,
they focus on solving the problem on a single global model,
making it hard to find a balance to achieve fairness for both
clients, and the trouble gets worse with the increase in client
numbers. On the contrary, SFFL achieves the best perfor-
mance in EOP, which, as described above, the Fair-EM and
Self-aware aggregation address the problem of training a fair
component model in heterogeneous environments. Although
the increase of clients at low heterogeneity levels (𝛼 is low)
slightly increases the mismatch, resulting in a slight rise in
the fairness gap as well, the declination is still acceptable
(numerically from 2.1% to 2.9 in the case of 𝛼 = 0.1).
4.5. Ablation study

To validate the effectiveness of our proposed components
in SFFL, we conduct additional experiments as ablation stud-
ies. In detail, we decouple the Fair-EM method and Self-
aware aggregation method and create three variations: Fe-
dEM (EM-like, FedAvg), Fair-EM Only (Fair-EM, FedAvg),
and SFFL (Fair-EM, Self-aware aggregation). Note that we
follow the setting above, and the task is ACSEmployment.
The results are shown in Fig. 5, which indicate that both
methods play vital roles in improving fairness but contribute
slightly differ with the change of 𝛼. When 𝛼 comes to 0.1,
0.5, and 1 (i.e., non-IID distribution), the unfairness is not
only produced by the local training but also during the model
aggregation. As described in Section.3.4, the mismatch be-
tween high-data clients and high-mixture-weight clients dur-
ing aggregation results in the global component model ag-
gregates in an unfair way. Thus, the Self-aware aggregation
addresses the problem through reweighting according to the

update distance, allowing high-weight clients to have higher
aggregation weights, thus guaranteeing fairness when 𝛼 is
small. For 𝛼 = 10 and 𝛼 = 1000, the influences of mis-
match are less than that of non-IID, and the major problem
of bias converts to how to achieve fairness locally. There-
fore, the Fair-EM can achieve more fairness improvements.
In conclusion, the higher the degree of IID of the data distri-
bution, the more outstanding contribution Fair-EM makes,
and conversely, the greater importance of self-aware aggre-
gation.
4.6. Hyper-parameter 𝜆

In Section. 3.3, we introduce a hyper-parameter 𝜆 in Eq. 15
for controlling the step size of the fairness weight 𝜆. In the
previous experiments, we empirically set 𝜆 = 0.1. To eval-
uate the effect of different 𝜆, we set four different 𝜆 using
heterogeneity level 𝛼 = 0.1 to conduct a case study. The
results are pictured in Fig. 6. Specifically, the performance
under 𝜆 = 0.5 is the worst, where it has the lowest down-
ward trend at the initial phase (𝑡 ≤ 45) and shows significant
fluctuation in the following training. As described before,
we consider the reason that overly large modifications may
make it difficult for the model to find an appropriate clas-
sification boundary in the initial phase. The results under
𝜆 = 0.3 are much better than that of 𝜆 = 0.5 but still exhibit
slight fluctuation. However, it is also a problem when the
𝜆 goes too small since it loses the ability to adjust the fair-
ness weight in time. The results come the best when 𝜆 = 0.1
since it does not change much in the initial phase and adjusts
well when the bias appears.
4.7. Effectiveness of Self-aware aggregation

In Section. 3.4, we propose a self-aware aggregation to
solve the mismatch of the update direction between clients
with more data and clients with higher mixture weight dur-
ing the aggregate of the component models. Self-aware ag-
gregation aims to improve matching between aggregation
weight and mixture weight without directly uploading mix-
ture weight. To better illustrate the performance of the pro-
posed method, we present the changing of aggregation weight
and mixture weight for specific client, the results are pro-
vided in Fig. 7. It shows that our proposed method success-
fully captures the change of mixture weights and adjusts cor-
respondingly. This also reflects that the proposed self-aware
aggregation method effectively realizes our conception.
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Figure 4: Performance of different client numbers. X-axes are 𝛼 and the above Y-axes are Accuracy (higher is better) and the
below Y-axes are EOP (lower is better).
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5. Conclusion
In this paper, we propose the SFFL framework to address

the fairness issues in federated learning under heterogeneous
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Figure 6: Performance with different hyper-parameter 𝜆. (The
X-axis represents iterations, and the Y-axis is EOP.)
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Figure 7: Trends of aggregation weights and mixture weights
with training rounds.

data distribution. Specifically, we first introduce a fairness
local training method: Fair-EM, which first addresses the
heterogeneous problem in FL and then introduces the fair-
ness constraint as a penalty term. Then, we propose an adap-
tive weighting algorithm to train a local fair model under
heterogeneous data distributions. Besides, we also propose
a self-aware reweighting algorithm to adjust the aggregation
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weights according to the update distance to alleviate both the
performance decrease and the fairness mismatch. We pro-
vide sufficient experiments from different aspects and verify
that the proposed framework outperforms the state-of-the-
art fair federated learning framework in terms of accuracy
and fairness under heterogeneous data. However, out pro-
posed framework still has some weaknesses. The introduc-
tion of the Fair-EM algorithm requires clients to repeat the
training locally for M times, and this may incur high com-
putational and communication overheads, which may limit
the applicability of our approach in large-scale scenarios. In
the future, we will try to solve this problem and extend our
framework in a lightweight way. Besides, we will extend our
framework to cover more common fairness notions, such as
equalized odds, by designing a mutual update method to bal-
ance the potential conflicts between TPR and FPR.
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