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Enhancing Image Security via Block Cyclic
Construction and DNA based LFSR

Subhrajyoti Deb , Abhilash Das, Bhaskar Biswas , Joy Lal Sarkar, Surbhi Bhatia Khan, Saeed Alzahrani,
Shalli Rani

Abstract—The rapidly growing multimedia image data driven
by real-time messaging technologies is particularly evident in
applications such as autonomous vehicle tracking, smart cities,
surveillance systems and many more. Considering images, data
privacy and security are of paramount importance. Yet, many
existing methods need to pay more attention to the specific chal-
lenges posed by chaotic maps, such as limited parameter coverage
and insufficient chaotic behaviour. We present a novel method
for image encryption that combines a cyclic block function
during the confusion phase and a DNA-based Linear Feedback
Shift Register (LFSR) in the diffusion phase to render the final
cipher image. This process involves diagonal cyclic shifting and
swapping of pixel blocks to minimize pixel correlation. DNA
cryptography-based LFSR is particularly efficacious in high-
quality pseudorandom number generation due to its robust
statistical effects. Besides that, DNA-based operations improve
the encryption speed, making the process more efficient. The
proposed cryptosystem is validated through several methods,
including histogram analysis, correlation assessment, entropy
measurement, key sensitivity evaluation, and χ2 testing. Our
algorithm offers superior security and efficiency, outperforming
established schemes in terms of security and robustness.

Index Terms—Image encryption, Block Cyclic Construction,
Confusion, DNA, LFSR, Encryption, Decryption.

I. INTRODUCTION

T he Internet and cloud technology are growing fast,
making multimedia data a must in our everyday lives.

Notably, images have become crucial for keeping records,
sharing stuff, and talking to each other. Their usage is
a lot in vehicular technology, military, social media, and
healthcare, which shows their importance. Keeping this image
data safe is a top priority; for instance, image security is
necessary for autonomous vehicles (AVs) to protect visual
data from unauthorized access, assuring precise and reli-
able object detection and decision-making. Comprehensive
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cryptanalysis evaluations have demonstrated that permutation-
based encryption schemes for images and videos may be
faulty to furnish sufficient security from a cryptographic
perspective, as emphasised by prior research [1]–[3]. Some
critical security points possess the partial recovery of plain
images under ciphertext-only attacks [4], the incapability to
diminish the substantial information redundancy intrinsic in
plain images, and the entire insecurity of secret permutations
against known or chosen plaintext attacks, entail more robust
image encryption methods [5]. For instance, Zhu et al. [6]
successfully broke the RT-enhanced chaotic tent map using a
CPA. At the same time, KPA has been utilised to investigate
various chaotic system-based image encryption techniques [7],
[8]. In our proposed Block Cyclic Construction, ζ(P ) uses
its low computational complexity of n log2 n for confusion.
Also, the inverse confusion ζ−1(P ) can be executed with an
order of 2, which can prevent CPA. By stacking m multiple
images to form a large image matrix and then applying Block
Cyclic Construction, the permutation of these stacked images
can result in m! possible orderings, making it significantly
challenging for an attacker to query all potential arrangements.

Among various cryptographic methods, DNA-based cryp-
tography is recognized for its strong security features and
has become a prominent research area with promising re-
sults. Simultaneously, continuous efforts seek to refine im-
age encryption algorithms employing DNA-based techniques
[9]–[12]. Also, classic cryptosystems convert plaintext into
ciphertext using binary values. In recognition, DNA-based
encryption utilises a distinct approach by applying DNA codes
i.e. nucleotide bases namely A, T, C, and G rather than binary
digits. The complicated structure of DNA’s cryptosystem has
accumulated substantial interest to field experts, especially for
protecting images from various attacks in real-time applica-
tions [13], [14]. Sony et al. proposed a cryptosystem consisting
of a DNA cryptographic algorithm based on Moore machine
principles, comprising three stages of encryption: a secret key,
an auto-generated Moore machine, and a password integra-
tion [15]. Their approach begins by encrypting the message
with a dynamically generated secret key. They implemented
a codebook lookup table to generate DNA sequence after
XORing partitioned 256-bit encrypted block. Various schemes
[16]–[18] have integrated chaotic systems with DNA encoding
theory to enhance system complexity. Nevertheless, challenges
still required to be handled in enhancing security due to
the limited dimensions of chaotic systems and constrained
key space. Recently, researchers [19]–[23] have presented
several new image encryption schemes that incorporate chaotic
mapping with DNA encoding, leading to enhanced encryption
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efficiency and strengthened security, thereby drawing substan-
tial interest and attention from researchers across multiple
disciplines.

A robust security scheme is essential to protect confidential
image data from differential attacks. Recent research works
[24]–[26] have investigated various DNA-based cryptographic
schemes for secure image data transmission. Nevertheless,
most of these methods extend security concerns and suffer
from high computational complexity, resulting in elongated
encryption and decryption times. As multimedia systems are
increasingly used, there is a demand for adequate, robust,
and highly secure systems to handle large data volumes. To
meet these demands, cryptosystems utilizing LFSR during the
diffusion phase may show promising potential [27]–[29]. As
this cryptosystem can generate good pseudorandom binary
sequences with robust cryptographic properties through a DNA
operation-based feedback shift register, which is well-suited
for high-throughput image encryption.

In consideration of the preceding discussion, this article
provides some significant contributions, outlined as follows:

• A novel technique applying Block Cyclic Construction is
employed to address the challenges identified in bitwise
confusion. This technique provides highly uniform dis-
tribution of bits within the confused pixel, characterized
by a non-repetitive pattern. The pixel values undergo
a sequence of even distribution of pixels with a swap
strategy of same-sized diagonal blocks of pixels where
each same-sized block contains an equal number of
pixels. Pixel distribution at highest and lowest possible
block size is exactly the same. Thus, the highest uneven
distribution point is achieved at a medium block size.

• This work presents a novel encryption technique to im-
prove pixel diffusion using an 8-bit keystream generator
based on DNA coding based LFSR sequences. Applied to
a permuted image, the method enhances image encryption
by furnishing better diffusion and security.

• Employing different rule-based DNA processes for the
XOR operation, this method can generate encrypted im-
ages with high randomization levels while maintaining a
high data throughput. The efficiency of its speed is also
cited as the effectiveness of its structure.

• The experimental findings reveal that the designed
scheme excels state-of-the-art and is resilient against
known cryptographic attacks.

The remaining framework of the manuscript is compiled as
follows. Section II consists of the preliminaries, and Section
III details the suggested cryptosystem. Section IV comprises
the experimental outcome and comparison with some existing
algorithms with closing discussion drawn in Section V.

II. PRELIMINARIES

Few preliminaries including DNA cryptography and LFSR
are discussed below.

A. DNA cryptography

In 1994, Adleman introduced DNA cryptography [30],
initially focusing on availing DNA molecules’ physical and

Table I
DNA ENCODING RULES.

Rule A C G T

1 00 01 10 11
2 00 10 01 11
3 11 01 10 00
4 11 10 01 00
5 01 00 11 10
6 01 11 00 10
7 10 00 11 01
8 10 11 00 01

chemical features to design encryption algorithms. Given
DNA’s robust information storage ability and intricate biolog-
ical components, it is identified as a favourable cryptographic
tool, prompting researchers to study it as a novel encryption
method in cryptography as DNA technology advances.

The four nucleobases in DNA can be placed in 24 different
forms according to permutation and combination principles.
However, in DNA calculation, adherence to the rule of com-
plementarity is essential, with A complementing T and C
complementing G, showing the structure of eight encoding
and decoding rules summarised in Tables I, and II; also, DNA
computation involves operations i.e. Addition (+), Subtraction
(-), XOR (

⊕
), Add complement ( ), Sub-complement, AND

(∧), OR (∨), and XNOR among them we have used XOR,
AND, and OR operations shown in Table III.

Table II
DNA DECODING RULES.

Rule 00 01 10 11

1 A C G T
2 A G C T
3 T C G A
4 T G C A
5 C A T G
6 G A T C
7 C T A G
8 C A T G

Table III
DNA OPERATIONS.⊕

A C G T ∧ A C G T ∨ A C G T

A A C G T A A A A A C G T
C C A T G A C A C C C T T
G G T A C A A G G G T G T
T T G C A A C G T T T T T

In the case of encoding and decoding of the same data
with different rules, it may result in different outcomes. For
example, we assume that a decimal number 142 is to be
encoded in a DNA sequence. Now we convert 142 in binary
10001110 and encode according to rule 3 to get the DNA
sequence ‘GTAG’. At the time of decoding, if we use rule
7, 11011011 will be decoded sequence, which is equivalent
to 219. According to rule 2, the decoded sequence will be
01110001, resulting in 113 [31].
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B. Linear Feedback Shift Register (LFSR)

LFSR is a mathematical construct frequently used in cryp-
tography. It is a binary sequence generator composed of a
shift register and a feedback function. The register holds a
certain number of bits; at each step, all bits are shifted by
one position. The feedback function uses specific bits from
the register to choose a new bit that’s fed back into the first
position, affecting the whole sequence—this interplay between
shifting and feedback results in a long, periodic series with
desirable cryptographic effects [32]. Mathematically, let k > 0,
a sequence t0, t1, · · · of elements of Fq satisfying the relation
tn+k = αk−1sn+k−1 + · · · + α1tn+1 + α0tn + α, where
α, α0, α1, · · · , αk−1 ∈ Fq The above recurrence relation
represents the ti denotes the ith bit and α0 through αk−1

are the LFSR coefficients. If α = 0, then the relation is
homogeneous otherwise inhomogeneous.

III. PROPOSED CRYPTOSYSTEM

A. Block Cyclic Construction for confusion

We describe the potential of block cyclic construction
lucidly. The usefulness of this construction is seen when a
plaintext image of higher width and height having equal value
is given to the scrambling unit, we call it the block cyclic
construction. The scrambling unit scrambles the pixel values
among each other. The block cyclic construction transforms
the image as shown in Fig. 1. The various levels of scrambling
are determined by λ = 2u where 0 ≤ u < log2(N) for
a N × N image matrix. In the consecutive paragraph, we
describe the working of the Algorithm 1 and all its aspects.
Later, we provide a theoretical bound of the scrambling level
for a N ×N image matrix.

We name our scrambling algorithm Recursive block
SWAP since it recursively swaps diagonal quadrants. Then for
each smaller quadrant, it applies the same recursive routine
breaking the image matrix into log2(N) levels. The quadrants
are broken into square matrices which are easy to handle recur-
sively. All the scrambling levels shown in Fig. 1 for the image
boat.jpg are applied independently for λ = 20, · · · , 29. But
we give a note here that the block cyclic construction can be
applied in composition. For a block cyclic construction ζ [σ],
we represent a composition for N ×N image P as

ζ [σ1] ◦ ζ [σ2](P ) = ζ [σ1◦σ2](P ) (1)

For instance, we show the composition of block cyclic
construction using APC.tiff with λ = 22, 24, 26, 27 in Fig.
2. Now we state one obvious result on the order of composition
of the same λ.

Lemma. The block cyclic construction in Algorithm 1
defined by the transformation

ζ [σ1] ◦ ζ [σ2](P ) = P (2)

if and only if σ1 = σ2.

Proof. Consider the input image P [N ][N ] of N × N order.
According to the Algorithm 1, the P is continuously split into
four quadrants until σ2

i with i ∈ {1, 2} pixels are left in each
quadrant, giving it the base condition. The base condition lies

at the bottom at level zero of the recursion tree formed during
splits. Then the two pixels at the base are SWAPPED for all
the pairs. The recurrence relation for the base case and the
recursive case is defined by

ζ(P [N ][N ]) =

{
ζ(P [N/2][N/2]) if (N/2) > σi

SWAP the diagonal block otherwise

where N can be expressed in powers of 2. The SWAP operation
is of order 2. Since, every λ is inverse of itself i.e. λ with
order 2, the Eq. 2 follows when σ1 = σ2 = λ = 2u with
1 ≤ u ≤ log2(N).

The corollary below follows the result of the above lemma.
Corollary. The composition of block cyclic construction

with σ1 and σ2 is commutative.

ζ [σ1] ◦ ζ [σ2](P ) = ζ [σ2] ◦ ζ [σ1](P ) (3)

Theorem. The number of scrambling levels Σ =
{20, · · · , 2log2 N} using block cyclic construction cannot ex-
ceed log2 N + 1.

Proof. Suppose the block cyclic construction on the plaintext
is given by

ζ [σ1◦···σi◦σj◦···σlog2 N ] (4)

with |Σ| = log2 N + 1. For if σi = σj with i ̸= j and i < j,
then from Lemma III-A it is obvious that

ζ [σ1◦···σi−1◦σj−1◦···σlog2 N ] ⊂ ζ [σ1◦···◦σi◦σj◦···σlog2 N ] (5)

with |Σ| < log2 N − 1. Thus, if any σi is composed in
multiples of two then the scrambling level Σ gets used by
two levels.

Block Cyclic Construction can tackle the issues associated
with bitwise confusion. This method ensures a remarkably
uniform distribution of bits within the perplexed pixel, show-
casing a non-repetitive pattern. The pixel values undergo a
series of evenly distributed pixels through a swapping strategy
involving same-sized diagonal blocks. Each block consists
of an equal number of pixels, resulting in identical pixel
distribution at both the highest and lowest possible block
sizes. Consequently, the highest point of uneven distribution
is attained at a medium block size.

Time complexity. The time complexity analysis of the
recursive block function algorithm involves examining both
the base and recursive cases. In the base case, when b1−a1 =
σ and b2 − a2 = σ, the algorithm executes nested loops
where the outer loop iterates σ/2 times and the inner loop
iterates σ times, resulting in σ2/2 iterations. Each iteration
performs a constant-time operation, leading to a base case
time complexity of O(σ2). In the recursive case, the algorithm
divides the current image segment into four quadrants and
calls the block function on each quadrant. The recurrence
relation for the time complexity T (n), where n is the side
length of the image, is expressed as T (n) = 4T

(
n
2

)
+O(σ2).

Solving this using the Master Theorem, where a = 4, b = 2,
and f(n) = O(σ2), and noting that logb a = log2 4 = 2,
we find that f(n) = O(1) (a constant) is less than n2.
Therefore, according to the Master Theorem, T (n) = O(n2).
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(a) (b) (c) (d) (e)

Figure 1. The transitions of the pixels by the Block Cyclic Construction for each λ = 20, 21, · · · , 29.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2. The composition of block cyclic construction using APC.tiff.

Algorithm 1 Recursive block function is denoted by ζ.
Given input image t with left corner pixel position (a1, a2)
and bottom right pixel position (b1, b2), the algorithm outputs
a scrambled image having σ scrambling factor.
Require: t, (a1, a2), (b1, b2), σ

1: if b1 − a1 = σ and b2 − a2 = σ then
2: for i = a1 to (a1 + b1)/2 do
3: for j = a2 to b2 do
4: if a2 ≤ j < (a2 + b2)/2 then
5: SWAP t[i, j] and t[i+ σ/2, j + σ/2]
6: else
7: SWAP t[i, j] and t[i+ σ/2, j − σ/2]
8: end if
9: end for

10: end for
11: else
12: t← block(t, a1, a2, (a1 + b1)/2, (a2 + b2)/2) ▷

quadrant 1
13: t← block(t, a1, (a2 + b2)/2, (a1 + b1)/2, b2) ▷

quadrant 2
14: t← block(t, (a1 + b1)/2, a2, b1, (a2 + b2)/2) ▷

quadrant 3
15: t← block(t, (a1 + b1)/2, (a2 + b2)/2, b1, b2) ▷

quadrant 4
16: end if
17: return t

Consequently, the overall time complexity of the block
function algorithm is O(n2).

B. Key stream generation through DNA-LFSR
The proposed cryptosystem uses a key stream generated

by employing an LFSR in conjunction with DNA-encoded
streams for each LFSR block, including multiple randomizing
operations for improved security.

D0 D1 D2 D3 D4 D5 D6 D7 Output
^Dr2

L.R
R.R&Dr1L.R

Feedback

Figure 3. Block diagram of DNA LFSR.

In Fig. 3, we have shown the architecture of the proposed
DNA-LFSR, where labelled blocks D0,2,3,...,7 denoting dif-
ferent segments of the DNA-LFSR and various operations
involved in the feedback generation process. Also, the DNA
sequence generation method uses an LFSR-based structure,
where each block acquires a unique DNA sequence as input.
This DNA LFSR performs as the core component because
it can generate pseudo-random sequences with low compu-
tational overhead. Our proposed structure includes multiple
internal operations designed to improve the randomness of
the generated DNA stream, and LFSR consists of eight DNA
blocks, each containing a four-character DNA stream (e.g.,
‘ATGC’). Through this technique, LFSR produces a four-
character output DNA sequence in a single cycle. Here, critical
operations within this LFSR structure possess a left rotation in
D1, a proper rotation in D3, and an AND operation between
a random DNA sequence Dr1 and D2. Besides, a randomly
generated DNA sequence Dr2 undergoes an OR operation with
D6, and the consequent sequence is XOR with D7 during the
feedback generation process. Results of these operations are
XOR and fed back into the loop, providing robust feedback
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generation. In diffusion, the proposed integrated combination
of LFSR operations and DNA sequences effectively generates
a pseudo-random DNA stream that is well-suited for high
throughput.

C. DNA-LFSR based diffusion

The diffusion process is the core part of any cryptosystem.
The image produced through the suggested confusion process
loses its visual information but retains the statistical data, mak-
ing it susceptible to potential attacks. The diffusion process
eliminates all statistical connections between the input and
output, ensuring no similarities exist between input and output.
The proposed diffusion step begins by splitting the scrambled
image IS into its constituent channels via split function.
Each channel is then transformed into bit-planes, followed by
DNA encoding using random encoding rules. Next, each DNA-
encoded bit plane is XOR with a key sequence obtained from
the logistic-sine chaotic map (LSCM) [33]. DNA decoding
is performed on the XOR components using random rules to
get the corresponding enciphered image components. Finally,
all the ciphered components are combined to create a cipher
image IC . Random rules for DNA encoding, decoding, and the
XOR process are derived from the Eq. 6 [33]. The diffusion
process is detailed in Algorithm 2 and illustrated in Fig. 4.

xi+1 =

(
rxi(1− xi) +

(4− r) sin(πxi)

4

)
mod 8 (6)

Algorithm 2 Diffusion using DNA-LFSR
1: Input: Scrambled Image IS , DNA encoded Key k, and

rules from LSCM.
2: Output: Cipher Image IC of size m× n.
3: Read the Scrambled Image IS of size m × n with
channels ch = {1, 2, 3} i.e. R, G, B.

4: ch← split(IS)
5: for i = 1 to m do
6: for j = 1 to n do
7: for k = 1 to ch do
8: A(ch(k)[i, j]← DNAenc(IS(ch(k)[i, j], rule).

/*DNA encoding*/
9: B(ch(k)[i, j]← XOR(A(ch(k)[i, j], k, rule).

/*DNA XOR*/
10: C(ch(k)[i, j] ← DNAdec(B(ch(k)[i, j], rule).

/*DNA decoding*/
11: end for
12: end for
13: end for
14: IC ←

⋃3
k=1 C(k)[i, j].

15: return IC .

IV. RESULTS AND DISCUSSION

This section presents the execution procedure of the sug-
gested encryption algorithm, including results and discussion.
The experimental work was done on a Windows 11 platform
with a system configuration of Intel(R) Core(TM) i7-10700

DNA encoded
key 

DNA
encoding

Logistic-sine
chaotic map

(LSCM)

Pseudo random sequence of 80 bits

Output of
DNA-LFSR

at one
clock cycle

56 33

223 164
Scarembled 

image

R3 R1

R6 R4

AGCA TGCC

CTAG GCAT

DNA
XOR

R5 R8

R7 R1

128 227

81 36

GTCA TCGA

ACTG GTAC

CTAG ACGT

TAGC AGCT

Cipher image

DNA encoding
rule

DNA encoded
image

DNA XOR
rule

000111011100011101011110001110000111010100100010011110010000010001

ACTC TACT CCTG ATGA CTCC AGAT CTGC CGCT CTAG

GCTATCAG
AND ORL.R

R4 R6

R1 R3

DNA decoding
rule

DNA XORed
image

Figure 4. Illustration of the DNA-LFSR based diffusion process.

(a) (b)

(c)
Figure 5. (a) Original image, (b) Encrypted image, and (c) Decrypted image
of dimension (450× 200).

CPU and 32GB RAM using MATLAB2023 and Python lan-
guage. Various test images for experimental work were taken
from the standard USC-SIPI image dataset [34].

In Figs. 5, and 6 we have shown the visual results of
encryption process. Fig. 5 shows a grayscale plain image
(boat.tif) of dimension 450 × 200 and its corresponding
encryption and decryption results. In Fig. 6, the visual result
of the proposed encryption process applied on RGB image
(house.tiff) of dimension (400× 150) are shown.

(a) (b)

(c)
Figure 6. (a) Original image, (b) Encrypted image, and (c) Decrypted image
of dimension (400× 150).
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Table IV
χ2 TEST VALUES OF ORIGINAL AND ENCRYPTED IMAGES.

Image Original image Pass/Fail Encrypted image Pass/Fail
χ2 χ2

Baboon 1092658.62 Fail 257.3138 Pass
House 325049.15 Fail 255.3854 Pass
Peppers 441923.29 Fail 214.1061 Pass
Pirate 267545.48 Fail 268.4160 Pass

Table V
CORRELATION COEFFICIENT OF ORIGINAL AND ENCRYPTED IMAGES.

Image Original Image Encrypted Image
H V D H V D

House
0.9415 0.9653 0.9131 0.0047 0.0094 -0.0070
0.9137 0.9810 0.8975 0.0102 0.0097 -0.0041
0.9795 0.9809 0.9649 -0.0016 0.0035 0.0088

Boat 0.9736 0.9393 0.9247 -0.0050 -0.0051 -0.0020
Pirate 0.9660 0.9649 0.9417 0.0041 0.0051 -0.0116

Average 0.9638 0.9632 0.9375 0.0017 0.0056 -0.0050

A. Statistical analysis

This subsection gives our proposed scheme’s evaluation
metrics for histogram analysis, correlation coefficients, and
differential analysis.

1) Histogram analysis: The histogram contains the statis-
tical information about the original image. A good image en-
cryption algorithm should be able to produce a well-distributed
and equalized flat histogram that does not preserve statistical
information.

The χ2 test is employed to derive numerical outcomes,
helping to mitigate potential visual misinterpretations. The Eq.
7 calculates the chi-square values.

χ2 =
∑ (OI − Ei)

2

Ei
(7)

In Eq. 7, Oi is the observed value, and Ei is the expected
value. If χ2 ≥ 293.24783, then the histogram distribution is
uniform [35]. In Table IV, we have given χ2 test results of
the original and encrypted images. The results show that it can
resist statistical attacks.

2) Correlation coefficient analysis: The images exhibit a
notable correlation between neighbouring pixels. An encryp-
tion algorithm must be good enough to disrupt this inherent
correlation. The correlation values are calculated using Karl
Pearson formula [36] as follows:

ρ(x, y) =
cov(x, y)

σ(x)σ(y)
(8)

In Eq. 8, x and y denote the values of adjacent pixels. In Table
V, the correlation coefficient values for horizontal, vertical,
and diagonal directions are given.

From Table V, it has been observed that horizontal correla-
tion ranges from 0.9638 to 0.0017, which shows a change
of around 99.82%, in case of vertical correlation ranges
from 0.9632 to 0.0056 and a change around 99.41% and
diagonal correlation changes from 0.9375 to −0.0050 which
is around 99.46%. The results indicate no correlation between
the original and encrypted images. Fig. 7 presents correlation

(a) (b)
Figure 7. Correlation plot of boat. (a) Original image and (b) Encrypted
image.

plots for the original and encrypted image (boat), illustrating
the horizontal, vertical, and diagonal correlations.

3) Differential analysis: The ability of any encryption
algorithm to resist a CPA is evaluated through differential
analysis. The test parameters used for differential analysis are
the Number of Pixels Change Rate (NPCR) and the Unified
Average Changing Intensity (UACI) [37].

Let C be an encrypted image obtained from a plain image
P using a cryptosystem and key k. Now, if one pixel of P
is changed to create P ′, and P ′ is encrypted with the same
key k to produce C′, then for an image of width w, height h,
and bit depth d per pixel, the NPCR (N ) and UACI (U) is
calculated as follows:

D (i, j) =

{
0, C (i, j) = C′ (i, j)
1, C (i, j) ̸= C′ (i, j)

(9)

N (C, C′) =
∑

x,y D(x, y)
w × h

× 100% (10)

U(C, C′) =
∑

x,y |C(x, y)− C′(x, y)|
(2p − 1) · (w × h)

(11)

The critical N and U values [37] for a 512× 512 and 8-bit
pixel depth image are given in Table VI. Further, Tables VII
and VIII show the N and U values for different significant
levels for the proposed method.

Table VI
CRITICAL VALUES OF N AND U RANDOMNESS TEST WITH SIGNIFICANCE

LEVEL (α) 0.05, 0.01, AND 0.001.

Pixel Significance Critical N Critical U
depth level

P α N ∗
α U∗+

α U∗−
α

8 0.05 99.589335 33.372959 33.554124
8 0.01 99.581033 33.344496 33.582587
8 0.001 99.571726 33.311465 33.615618

Table VII
N TEST RESULTS FOR DIFFERENT SIGNIFICANCE LEVEL.

Image N Critical N value
α= 0.05 α = 0.01 α = 0.001

Boat 99.6051% Pass Pass Pass
Pirate 99.6117% Pass Pass Pass
House 99.5956% Pass Pass Pass
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Table VIII
U TEST RESULTS FOR DIFFERENT SIGNIFICANCE LEVEL.

Image U Critical U value
U∗−
0.05/U∗+

0.05 U∗−
0.01/U∗+

0.01 U∗−
0.001/U∗+

0.001

Boat 33.4175% Pass Pass Pass
Pirate 33.4322% Pass Pass Pass
House 33.5160% Pass Pass Pass

B. Information entropy

The measurement of randomness for any information is
denoted as information entropy [38], defined by as follows:

H(S) =

N∑
i=1

pi log2
1

pi
(12)

In Eq. 12, xi consists of N bits, with P (xi) representing the
probability and N denoting the gray level. The entropy H(x)
is a crucial measure in image cryptography as it quantifies the
unpredictability and disorder within an image, which is essen-
tial for assessing randomness. Higher entropy indicates greater
uncertainty in gray values, thereby enhancing the security of
cryptographic systems. In an ideal scenario with a random
image featuring 256 grey levels, H(x) reaches its maximum
value of 8, reflecting high unpredictability and serving as a key
metric for evaluating the robustness of cryptographic systems.
Table IX presents the entropy values of the encrypted images
using the proposed encryption algorithm.

Table IX
INFORMATION ENTROPY OF ENCRYPTED IMAGES.

Image Cipher Image
R G B

House 7.9974 7.9972 7.9970
Peppers 7.9993 7.9994 7.9994

Grayscale
Boat 7.9992
Cameraman 7.9992

C. Comparison

This section compares our proposed algorithm with exist-
ing image cryptosystems using statistical metrics as detailed
in Refs [11], [12], [21]–[23]. Image encryption is typically
vulnerable to CPA, where an adversary selects plaintexts
and analyzes the resulting ciphertexts to find weaknesses.
KPA occur when an attacker has access to known plaintext-
ciphertext pairs, allowing them to detect patterns and compro-
mise security. To counter both CPA and KPA attacks, Fig. 8
shows encryption and decryption results for 512 × 512 pixel
Black and White images using the DNA-LFSR algorithm. Test
results in Tables X and XI demonstrate strong NPCR, UACI,
and Chi-square performance, aligning closely with theoretical
expectations. The entropy and correlation values also match
theoretical predictions, affirming the algorithm’s security. The
block-cyclic construction and DNA LFSR randomization ef-
fectively thwart cryptanalytic attacks, as our algorithm’s high
levels of confusion and diffusion make such attacks ineffective.

(a) (b) (c)

(d) (e) (f)

Figure 8. Encryption and decryption by DNA-LFSR, (a) Plain image white,
(b) Cipher image, (c) Decrypted image, (d) Plain image black, (e) Cipher
image, and (f) Decrypted image.

Table X
INFORMATION ENTROPY AND CORRELATION OF CIPHER IMAGES.

Image Entropy H V D

Black 7.9992 -0.0094 0.0125 0.0076
White 7.9993 -0.0022 -0.0066 -0.0209
Average 7.99925 -0.0058 0.0029 -0.0066

Table XI
χ2 VALUE, NPCR, UACI VALUES OF CIPHER IMAGE.

Image χ2 value NPCR (%) Result UACI (%) Result

Black 274.8379 99.6052 Pass 33.4886 Pass
White 267.6250 99.6113 Pass 33.4802 Pass
Average 271.2315 99.60825 Pass 33.4844 Pass

Table XII
SECURITY COMPARISON WITH EXISTING SCHEME.

Algorithm Entropy Horizontal Vertical Diagonal

Proposed 7.99925 -0.0050 -0.0051 -0.0020
Lai et al. [11] 7.9978 0.0036 -0.0034 0.0083
Wang et al. [12] 7.9993 -0.0088 0.0047 0.0053
Sun et al. [21] 7.9988 0.0022 -0.0105 -0.0035
Chen et al. [22] 7.9914 -0.0043 -0.0067 0.0006
Ali et al. [23] 7.9984 -0.0032 -0.0017 0.0027

So, our proposed scheme ensures no information about the
original images is revealed, confirming its robustness against
potential attacks. Comparative assessments with proposed
encryption methods referenced in [11], [12], [21]–[23] are
summarized in Table XII. The proposed encryption algorithm
is resilient against differential attacks, as the NPCR value is
99.61% and UACI is 33.46%, which is near the ideal value,
respectively and outperforming all states of the arts ciphers.
Overall, the proposed algorithm shows flexibility, efficiency,
and high security, rendering it a practical option for image
encryption requirements.

V. CONCLUSION

In current storage systems, users do not have direct control
over their stored images, which inevitably reveals their privacy
to potential risks. This paper introduces confusion through
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block-cyclic construction mapping. Subsequently, it offers to
integrate a Deoxyribonucleic Acid (DNA)-based LFSR into
the diffusion phase to increase the security level. Considerable
performance evaluations and analyses were conducted, includ-
ing comparisons with other cryptographic systems proposed
in existing literature. These estimations demonstrated that the
current cryptosystem exhibited favourable random character-
istics and high-security levels. Comprehensive experimental
studies and attack simulations have been conducted to validate
the security of the proposed algorithm. These studies show
that the algorithm possesses a sufficiently large key space and
sensitivity. Additionally, the attributes of the ciphertext image,
such as information entropy, correlation of adjacent pixels,
NPCR, and UACI, closely align with theoretical values. The
practicality and usefulness of the proposed scheme are val-
idated through experimental findings, indicating its potential
suitability for multimedia security applications.
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