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A B S T R A C T

The working conditions of gas pipelines directly impact urban populations and factory operations. However,
accurate and rapid detection of gas pipeline defects is challenging. To improve the accuracy of gas pipeline
defect detection, we propose an improved RefineDet (Im-RefineDet) for gas pipeline defect detection, in
which the improvement is carried out from the backbone network and the detection head. Specifically, to
extract richer features, we design an improved CrossFormer as the backbone network. It first adopts a small
convolutional cross-scale embedding layer to perform convolution, and then uses stripe window self-attention
in vertical and horizontal directions in sequence to extract different features. In the detection head, we present
a Double Attention Decouple Head (DADH) for classification and localization, enabling the model to perform
independent optimization of the two branches. DADH employs spatial-aware and scale-aware attention to
acquire multi-scale features, subsequently conducting classification and localization separately to derive final
detection outcomes. Additionally, we apply channel pruning to the model to achieve a lightweight design,
improving computational efficiency without significantly compromising detection performance. Experimental
results, derived from an in-house developed gas pipeline defect image dataset, as well as two publicly available
datasets — the NEU-DET dataset and the PCB dataset — demonstrate the effectiveness of the proposed
Im-RefineDet. These results highlight its superior performance compared to state-of-the-art methods, further
validating its robustness and adaptability across diverse scenarios. Specifically, the model achieves the mean
Average Precision (mAP) of 92.6% on the gas pipeline defect image dataset, 77.8% on the NEU-DET dataset,
and 99.2% on the PCB defect detection dataset.
1. Introduction

Gas pipelines are mainly used for gas transmission in daily life
and factory operations (Arya, Jain, Yadav, Bisht, & Gautam, 2022).
After reaching a certain service age, defects in shape and size can
occur inside the gas pipeline due to chemical corrosion and physical
damage. For defects, untimely detection and treatment can lead to
safety accidents, which pose a threat to the healthy development of
cities. Therefore, it is important to accurately understand the pipeline
operating conditions (Mezher & Marble, 2024; Tian, Jiao, Liu, Ren, &
Song, 2022). However, in practice, problems such as low defect image
quality and diverse defect types cause manual interpretation to take
relatively much time and energy (Layouni, Hamdi, & Tahar, 2017).

Recently, there have been some studies on defect detection meth-
ods based on deep learning. According to the processing flows, they
belongs to two different types: two-stage models and single-stage mod-
els (Qi, Yang, & Zhong, 2020). Models of the former type first produce
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candidate boxes, and then do classification and localization on each
candidate region to obtain the final detection result. For example,
to detect the unobvious defects on printed circuit boards, Luo et al.
presented a decoupled two-stage detection model by decoupling classi-
fication and localization tasks (Luo, Yang, Li, & Wu, 2021). Chen et al.
presented a fabric defect detection model by combining Gabor filter
with Faster RCNN (Chen et al., 2022). To detect small defects, Zeng
et al. raised a balanced-feature pyramid network with atrous spatial
pyramid pooling operation (Zeng et al., 2022).

For the later type, models realize the target detection with a regres-
sion procedure. They use only one network to analyze both the position
and class information of the target simultaneously, directly outputing
the detection results (Qi et al., 2020). For instance, Li et al. put forward
to a defect detection method based on improved YOLOv4 (Li et al.,
2023). It achieves higher accuracy on electric-arc additive manufac-
turing defect detection, as well as not decreasing the running speed.
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Shafi et al. proposed a model based on improved SSD to detect the
defects on the surface of hollow cylinders (Shafi, Mazahir, Fatima, &
Ashraf, 2022). By integrating different channel attention and adaptive
spatial features, Cheng et al. proposed a RetinaNet model, achieving
good results in steel surface defect detection (Cheng & Yu, 2020). Zheng
et al. first released an insulators defects detection dataset, and then
provided a benchmark Network-FINet (Zhang et al., 2022).

Two-stage models perform dual regressions on anchor boxes, yield-
ng higher accuracy. However, it requires saving the results of the first
tage, needing more computing resources and time. Conversely, the
ingle-stage models conduct only one regression on the anchor boxes
ith fewer computing resources and time. However, this comes at the

ost of lower accuracy. Later on, Zhang et al. presented the RefineDet
odel by combining the two types of methods (Zhang, Wen, Bian, Lei,
 Li, 2018). It maintains the same running efficiency as the single-

stage methods, while the accuracy is better than the two-stage ones.
However, when it is applied to defect detection, the diversity and
complexity of defect features lead to low detection accuracy. There are
mainly two reasons:

(1) Firstly, the features obtained from the backbone network are not
ich enough. The RefineDet model uses VGG (Simonyan & Zisserman,

2014) or ResNet (He, Zhang, Ren, & Sun, 2016) to extract single-scale
features, resulting in insufficient feature expression.

(2) Secondly, the two branches of the detection head share the same
features, which is not conducive to detection. The focus of two tasks are
different. The former relies more on the high-level abstract features,
while the later are more dependent on the low-level features.

In response to the first problem, vision Transformer is widely used
n computer vision tasks (Carion et al., 2020; Dosovitskiy et al., 2021;

Li, Yao, Pan & Mei, 2022; Xie et al., 2021; Zheng et al., 2021; Zhu, Su,
Lu, Li, Wang, & Dai, 2021) with its good feature extraction capabilities.
With two special operations, the cross-scale embedding layer (CEL) and
ong short distance attention, CrossFormer can interact and fuse multi-
cale features, achieving better results than other models on multiple
asks (Wang et al., 2022). However, the CrossFormer network has the

following problems when performing gas pipeline defect detection. On
the one hand, when the cross-scale embedding layer in CrossFormer
uses a large convolutional kernel for convolution, the detailed informa-
tion of the feature may be lost, leading the network difficult to capture
the features of small-size defects. On the other hand, the window self-
attention in CrossFormer cannot align defect features well, making it
easy to focus on some irrelevant features.

To address the second issue, existing methods usually decouple
the classification branch and the localization branch. Usually, the two
ranches use different networks (Ge, Liu, Wang, Li, & Sun, 2021; Song,

Liu, & Wang, 2020; Wu et al., 2020). Consequently, they have a large
umber of model parameters and lower detection speed. Furthermore,
he mutual influence of different scales of features are not fully utilized.

Consequently, an improved RefineDet model is proposed for gas
ipeline defect detection. For the backbone network, an improved

CrossFormer is presented to extract features. Two enhancements are
implemented: on the one hand, the cross-scale embedding layer is
decomposed, gradually decreasing the size of the feature maps to
void the loss of defect feature information. On the other hand, stripe
indow self-attention is utilized to better highlight defective areas. In

he detection head, two changes are introduced. First, spatial-aware
ttention and scale-aware attention are applied to obtain multi-scale
eatures, enabling the network to detect defects at different scales.
econd, a double attention decoupled head is designed to separate the
lassification and localization branches.

The main contributions of our work are:
(1) We propose an improved RefineDet for gas pipeline defect detec-

ion, in which the improved CrossFormer is used to extract features and
he double attention decouple head is designed to handle classification

and localization, respectively.
2 
(2) We present a small convolutional cross-scale embedding layer,
alled SCCEL, which uses small convolutional kernels to retain more
patial information.

(3) We introduce a stripe window self-attention, named SWSA. The
ackbone network employs Stripes Windows Self-Attention (SWSA) in
oth vertical and horizontal orientations. Vertical SWSA uses taller-

than-wide attention windows to capture vertical features, while hor-
izontal SWSA uses wider-than-tall windows to focus on horizontal
eatures. This combination enhances the network’s ability to effectively
apture features from multiple directions.

(4) We put forward a double attention decouple head, denoted
as DADH, to decouple classification and localization branches. It uses
spatial attention and scale attention to enhance the model’s perception
of targets.

(5) We conduct abundant of experiments on two datasets to verify
the effectiveness of the proposed method.

The remaining of the paper is organized as follows. Section 2 briefly
nalyzes the related work, Section 3 describes in detail the improved

RefineDet, Section 4 provides the experimental results on the pipeline
defect dataset and the public dataset, as well as their corresponding
analysis, and the last section concludes the work of this paper.

2. Related works

Our work is mainly related to three aspects, including target detec-
tion, vision Transformer and window self-attention.

2.1. Target detection based on deep learning

Currently, existing target detection models belong to either two-
stage or single-stage. For the two-stage method, the representative mod-
els are regions with R-CNN series (Cai & Vasconcelos, 2018; Girshick,
2015; Mittal, Sharma, Singh, & Dhull, 2022; Ren, He, Girshick, & Sun,
2015; Sun et al., 2023). Among them, the first proposed model is R-

NN (Mittal et al., 2022). It includes three step: obtaining the candidate
egions, extracting features from candidate regions, classifying with
upport vector machine. Some models have been developed to address
he problems of RCNN taking up a lot of memory and slow calculation.
or example, Girshick et al. put forward the Fast R-CNN (Girshick,

2015). Unlike R-CNN, it does classification with a neural network. By
introducing the region proposal network, Ren et al. presented the Faster
RCNN (Ren et al., 2015). It further accelerates the running speed. Based
n the cascading idea, Cai et al. proposed Cascade RCNN (Cai & Vascon-
elos, 2018). It uses multiple cascade sub-networks to gradually screen

candidate anchors, which improves the detection accuracy. Based on
he sparsity of the target, Sun et al. proposed Sparse RCNN (Sun et al.,

2023). It builds an efficient and accurate end-to-end target detection
model through the design of sparse prior boxes.

For the single-stage models, the common used are Single Shot Multi-
ox Detector (SSD) (Liu et al., 2016) and You Only Look Once (YOLO)

series (Bochkovskiy, Wang, & Liao, 2020; Jocher et al., 2022; Redmon,
Divvala, Girshick, & Farhadi, 2016; Redmon & Farhadi, 2017, 2018). By
extracting multi-level features, SSD is able to detect multi-scale targets,
with relatively high detection accuracy and computational efficiency.

OLO series just use a network to simultaneously provide the location
nd category of the target. Among them, YOLOv1 is the first version of
he YOLO series (Redmon et al., 2016). It first divides the input image

into different grids, and then uses a convolutional neural network to
obtain bounding boxes and categories for each grid. YOLOv2 uses the
Darknet-19 network as the backbone network, and introduces a multi-
scale input training strategy and anchor boxes mechanism to improve
mall object detection capabilities (Redmon & Farhadi, 2017). YOLOv3
onducts a series of improvements based on YOLOv2, including using

deeper Darknet-53, applying the feature pyramid module to obtain
multi-scale features, and then to prediction (Redmon & Farhadi, 2018).
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In addition to the above two types of models, there are also some
ybrid models that combine them (Zhang et al., 2018). For example,
efineDet first extract features with the backbone network, then applies

he anchor refinement module to obtain candidate regions, and finally
ses the target detection module to classify and localize the obtained

candidate regions. It can be viewed as a combination of RPN and SSD.
Alongside these conventional models, Transformer-based object de-

tection models, such as the Detection Transformer (DETR) (Carion
t al., 2020), represent a significant advancement in the field. Un-
ike traditional methods that rely on predefined anchors or proposal
etworks, DETR treats object detection as a direct set prediction prob-
em, utilizing a transformer architecture to model global relation-
hips between objects and the image. Variants like DAB-DETR (Liu
t al., 2022), DN-DETR (Li, Zhang, et al., 2022), and Deformable

DETR (Zhu et al., 2021) have been introduced to address specific
limitations of the original DETR model. DAB-DETR introduces dynamic
anchor boxes to improve the model’s ability to adapt to object size
and shape, enhancing performance on small and irregularly shaped
targets. DN-DETR integrates denoising training to speed up conver-
gence and improve robustness, while Deformable DETR introduces
deformable attention mechanisms to reduce computational overhead
and better capture fine-grained spatial details, particularly for small
and occluded objects. These transformer-based models have demon-
strated state-of-the-art detection accuracy, particularly in scenarios
with complex object relationships and cluttered environments.

Although two-stage models generally offer higher detection accu-
racy, they tend to be slower. Single-stage models, while faster, often
equire improvements in accuracy. Hybrid models like RefineDet offer

a balance, providing high accuracy without significantly sacrificing
speed. Similarly, transformer-based models such as DETR and its vari-
ants have introduced a new paradigm for achieving end-to-end object
detection without relying on handcrafted proposal mechanisms. These
models excel at modeling global object relationships and achieve state-
of-the-art accuracy in complex scenes. However, DETR models also
have notable drawbacks. The original DETR suffers from slow conver-
gence during training and requires large datasets to fully exploit its
potential. Variants like DAB-DETR, DN-DETR, and Deformable DETR
address some of these issues, but the convergence issue is not entirely
resolved. Therefore, in constructing our model, we base it on RefineDet,
while incorporating insights from both traditional and modern ap-
proaches like Transformer-based methods to achieve a balance between
accuracy and speed.

2.2. Vision transformer

Transformer is previously applied to natural language process-
ing (Devlin, Chang, Lee, & Toutanova, 2018). Later on, Dosovitskiy
et al. proposed Vision Transformer (ViT), and applied it to image
lassification (Dosovitskiy et al., 2021). Although ViT has got good
esults, it needs relatively high requirements on data scale and running
quipment.

Subsequently, researchers proposed a variety of improved mod-
els (Gao, Zhang, Yang, & Zhou, 2022; Liu et al., 2021; Wang et al.,
2022). For example, Liu et al. presented Swin Transformer, and ap-
lied it on image classification (Liu et al., 2021). It uses window
elf-attention to process large-size images in stages, achieving better

classification accuracy. Gao et al. then put Swin Transformer on surface
defect detection model (Gao et al., 2022). It uses a new window shift
method to enhance the feature interaction between windows. Wang
t al. built CrossFormer (Wang et al., 2022). First, it designs a cross-

scale attention module. Second, it combines cross-scale attention with
ransformer to extract features. It achieves higher results compared to
ther models in multiple tasks.

However, the large convolutional kernel of the cross-scale embed-
ding layer in CrossFormer will lost the target information. Additionally,
3 
the window self-attention in CrossFormer cannot align defect features
well, making it easy to focus on some irrelevant features.

To overcome the shortcomings of CrossFormer, we use small con-
volutional kernels in the cross-scale embedding layer to retain more
target information, and utilize windows in different directions for
self-attention to enhance the ability of feature extraction.

2.3. Window self-attention

Self-attention obtains a representation of a single sequence by
omputing the relationship between different positions in that se-
uence (Vaswani et al., 2017). Traditional self-attention requires cal-

culating attention weights between all position pairs. This may result
in excessive computational and storage costs. Therefore, the window
self-attention was proposed (Ramachandran et al., 2019). It avoids
global calculation of the entire input sequence by introducing window
constraints in self-attention. In this approach, only certain areas of
interest need to be focused on. For example, Swin Transformer uses
window self-attention for information interaction within and across
windows (Liu et al., 2021). Additionally, Axial-deeplab uses axial
self-attention to deal with the feature map as a local self-attention
window (Wang et al., 2020). CSWin Transformer uses cross-shaped win-
dow self-attention, which can be viewed as parallel multiple rows and
columns of axial self-attention (Dong et al., 2022). Pale Transformer
eals with a pale-shaped area with the pale-shaped self-attention (Wu,

Wu, Tan, & Guo, 2022). Pale-shaped self-attention can be viewed as
parallel multiple rows and columns of axial self-attention with certain
intervals.

Although the window self-attention makes the model focus on dif-
ferent targets, it cannot perceive different directions. Indeed, the other
type of window self-attention mentioned above have perception capa-
bilities in different directions. However, since the attention scope is
global in the horizontal or vertical direction, the aspect ratios of the
self-attention window are too large, resulting in an imbalance in the
information extracted by the window from two different directions.
Furthermore, due to the different sensitivities to different directions,
feature learning will produce biases, limiting the feature extracting
ability.

Therefore, we propose a new window self-attention, namely stripe
window self-attention. Through horizontal or vertical window self-
attention, the interaction range of image tokens in the corresponding
direction is increased. Besides, the appropriate aspect ratio of the
window can better highlight the object defect area of interest.

3. Method

In this section, we first introduce the overall framework of Im-
efineDet, then describes the two improved parts (backbone network
nd detection head) in detail, and finally gives its loss function.

3.1. Overall architecture

Similar to RefineDet, there are four parts in the improved RefineDet,
namely backbone network, neck module, anchor refinement module
and target detection module. Fig. 1 displays the overall architecture
f the Im-RefineDet.

Backbone Network: It is an improved CrossFormer network (Im-
CrossFormer). Especially, we design an improved cross-scale embed-
ding layer as well as a stripe window self-attention to fuse cross-scale
features. Therefore, it can provide effective features for the subsequent
anchor refinement module and target detection module.

Neck Module: It uses both high-level and low-level features to
integrate contextual information, thereby improving detection accu-
racy. For feature maps of different scales, it gradually integrate fea-
tures. Then, the fused multi-scale feature map is input to the anchor
refinement module and target detection module, respectively.
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Fig. 1. The overall framework of the improved RefineDet. This enhanced model, fundamental to our methodology, prioritizes a meticulous approach towards identifying discrepancies
and anomalies within gas pipeline structures. By focusing on refining the inherent defect detection mechanisms, our improved RefineDet (Im-RefineDet) meticulously scrutinizes
image data, extracted from surveillance of pipeline networks, to effectively discern and localize potential defects. Consequently, this method facilitates not only the swift identification
of defects, but also fosters a reliable mechanism to preemptively address potential pipeline failures, ensuring an augmented degree of safety and operational continuity within
urban gas distribution networks and associated industrial entities.
Anchor Refinement Module: It is used to adjust the locations and
sizes of the anchors to provide better initialization for the regression
in the Object Detection Module (ODM). Specifically, 𝑛 anchor boxes
are associated with each regularly divided cell on the feature map.
Initially, the position of each anchor box relative to its corresponding
cell is fixed. At each feature map cell, the ARM predicts four offsets
for the refined anchor boxes relative to the original tiled anchors. It
also predicts two confidence scores that indicate the likelihood of the
presence of foreground objects in those boxes, resulting in 𝑛 refined
anchor boxes at each feature map cell. To eliminate some redundant
low-quality candidate anchor boxes, the ARM removes those with
low confidence scores based on the predicted foreground confidence,
thereby reducing the computational burden on the model.

Target Detection Module: It performs classification and localization
on the candidate anchors to obtain the final detection result. First,
it receives the candidate anchors filtered by the anchor refinement
module and the fused multi-scale feature maps from the neck mod-
ule. After convolutions, the feature maps are input into the double
attention decouple head (DADH). Finally, the classification results and
coordinate location results are predicted by DADH.

3.2. Im-CrossFormer

Since the cross-scale embedding layer realizes the convolution
with large convolutional kernels, this may lost the detailed infor-
mation of the target. Meanwhile, the window self-attention cannot
align defect features well, making it easy to focus on some irrele-
vant features. Therefore, we propose an improved CrossFormer (Im-
CrossFormer) as the backbone network. Fig. 2 manifests the structure
of Im-CrossFormer.

As shown in Fig. 2, there are four stages in Im-CrossFormer. They
are Stage-1, 2, 3, 4. There are two parts in each stage: a cross-scale
embedding layer (or improved cross-scale embedding layer) as well
4 
as an Im-CrossFormer module. Among them, the cross-scale feature
extraction layer of Stage-1 is small convolutional cross-scale embedding
layer (SCCEL). For the remaining stages, we use the cross-scale embed-
ding layer (CEL). For the four stages, the number of Im-CrossFormer
blocks are 3, 3, 9 and 3, respectively.

Fig. 3 manifests the internal structure of three consecutive Im-
CrossFormer blocks. From Fig. 3, we can find that each Im-CrossFormer
block contains multilayer perceptron, window self-attention, layer nor-
malization and cross-layer connection.

The first Im-CrossFormer block employs vertical stripe window
self-attention, which focuses on capturing dependencies between fea-
tures in the vertical direction at close distances. This helps the model
understand local spatial relationships along the vertical axis.

The second Im-CrossFormer block uses horizontal stripe window
self-attention, which focuses on capturing dependencies between fea-
tures in the horizontal direction at close distances. This complements
the vertical dependencies by modeling local relationships along the
horizontal axis.

The third Im-CrossFormer block applies long-range self-attention
(Wang et al., 2022), which captures dependencies between features that
are spatially distant from each other. This helps the model understand
global relationships across the entire feature map.

The cascading mechanism of these three blocks is designed to
progressively refine the feature representation by integrating local and
global dependencies. By stacking these specialized blocks, the model
achieves a balanced learning of hierarchical spatial relationships, which
enhances its capacity for accurate classification and localization tasks.
This sequential design mirrors the multi-scale feature extraction mech-
anism seen in classical convolutional neural networks, but with a focus
on leveraging the strengths of attention mechanisms in different spatial
contexts.

They can be expressed as:

𝑴 ′ = V-SWSA(Layer Nor m(𝑴 )) +𝑴 (1)
𝑙 𝑙−1 𝑙−1
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Fig. 2. The architecture of Im-CrossFormer.
Fig. 3. Visualization of three successive Im-CrossFormer blocks.
𝑴 𝑙 = MLP(Layer Nor m(𝑴 ′
𝑙)) +𝑴 ′

𝑙 (2)

𝑴 ′
𝑙+1 = H-SWSA(Layer Nor m(𝑴 𝑙)) +𝑴 𝑙 (3)

𝑴 𝑙+1 = MLP(Layer Nor m(𝑴 ′
𝑙+1)) +𝑀 ′

𝑙+1 (4)

𝑴 ′
𝑙+2 = LDA(Layer Nor m(𝑴 𝑙+1)) +𝑴 𝑙+1 (5)

𝑴 𝑙+2 = MLP(Layer Nor m(𝑴 ′
𝑙+2)) +𝑴 ′

𝑙+2 (6)

where 𝑴 𝑙−1 means the input of the 𝑙th Im-CrossFormer block, 𝑴 𝑙,
𝑴 𝑙+1 and 𝑴 𝑙+2 denote the output of the 𝑙th, 𝑙 + 1-th and 𝑙 + 2-th Im-
CrossFormer block, respectively; 𝑀 𝐿𝑃 (⋅) is the multilayer perceptron,
and 𝐿𝑎𝑦𝑒𝑟𝑁 𝑜𝑟𝑚 (⋅) stands for layer normalization. 𝑉 -𝑆 𝑊 𝑆 𝐴 (⋅) and
𝐻-𝑆 𝑊 𝑆 𝐴 (⋅) indicate the vertical and horizontal stripe window self-
attention, respectively. Their detailed introduction is given in Section 3
of 3.2. 𝐿𝐷 𝐴 (⋅) stands for long-distance self-attention.

3.2.1. SCCEL and CEL
To generate embeddings of the input of each stage, both the small

convolutional cross-scale embedding layer (SCCEL) and the cross-scale
embedding layer (CEL) use multi-scale convolution operations for
down-sampling. For Stage-1, CEL in Crossformer uses four sets different
sizes of convolution kernels, namely 4 × 4, 8 × 8, 16 × 16 and 32 × 32.
All of the strides of the four groups of convolutional kernels are 4.

SCCEL decomposes the 8 × 8, 16 × 16 and 32 × 32 convolutional
kernels in the above CEL into two 4 × 4, two 8 × 8, and two 16 × 16
convolution kernels, respectively.

In defect detection, images often suffer from issues like incomplete
data and noise, making it harder to extract meaningful features. In the
original CEL in Stage-1 of the CrossFormer network, large convolutional
kernels with a stride of 4 are used to capture multi-scale features.
However, this large stride results in significant downsampling of the
feature map, which may cause the model to miss finer details of defects.

The SCCEL module improves on this by replacing the large kernels
with two smaller kernels that have a stride of 2. This approach allows
the model to retain more important defect information while still
considering a larger area of the image. It is like using a smaller lens
to zoom in and capture more detail, rather than using a large lens that
might overlook smaller, important features.

Additionally, we introduce normalization layers (Layer Normaliza-
tion, LN) and an activation function (Gaussian Error Linear Unit, GELU)
5 
to improve the training process and make the model more effective.
These additions allow the network to better capture richer and more
diverse multi-scale features.

By using smaller kernels, the SCCEL module increases the receptive
field (the area the kernel ‘‘sees’’) more effectively, leading to a better
balance between capturing fine details and a larger context from the
image. This improvement ensures the model can handle defects better
while maintaining efficiency in feature extraction.

Fig. 4 exhibits the process of SCCEL. For the input image, SCCEL
first uses four sets of convolutional kernels for convolution to obtain
four groups of feature maps. Then, it concatenates the feature maps
according to the channel direction, obtaining the final embedding.
Fig. 5 displays the detailed network structure diagram of SCCEL. In
Fig. 5, GELU and LayerNorm represent Gaussian Error Linear Unit
and Layer Normalization, respectively. Concat means concatenating the
feature maps.

For the later three stages, CEL in Im-Crossformer uses two convo-
lutional kernels of different sizes (2 × 2 and 4 × 4) to do convolution.
The step size of the CEL of each stage is all set to 2, and the number of
embeddings is a quarter of the original. Fig. 6 shows the CEL structure.
The number of channels of the three stages are 192, 384 and 768,
respectively.

3.2.2. Stripe window self-attention
The window-based attention mechanism reduces the computational

cost of self-attention by limiting the interaction range of tokens. How-
ever, in pipeline scenarios, object features may have significant di-
rectionality, and the regular window self-attention, due to its square
shape, may not align well with object features within the defined
attention range, leading it to focus on background features that are
unrelated to pipeline defect characteristics. Therefore, we propose the
Stripes Windows Self-Attention (SWSA) module. SWSA enhances the
interaction range of tokens in the corresponding direction through
horizontal or vertical window self-attention, effectively highlighting the
regions of interest with object defects without significantly increasing
the computational burden. To further improve model performance, we
enhance local feature extraction capabilities by concatenating SWSA
in vertical and horizontal directions. SWSA is displayed in Fig. 7. For
two adjacent Im-CrossFormer blocks, they have similar procedure: the
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Fig. 4. Visualization of the SCCEL layer.
Fig. 5. The small convolutional cross-scale embedding layer.
Fig. 6. Cross-scale embedding layer.

former divides the feature maps into several vertical stripe windows
with height and width of 5 and 2, then performs self-attention calcula-
tion within the window; the later divides the feature maps into several
horizontal stripe windows with height and width of 2 and 5, and then
performs self-attention calculation within the window.

For feature map 𝑴 ∈ 𝑅𝐻×𝑊 ×𝐶 , stripe window self-attention divides
it into k non-overlapping (𝐺ℎ × 𝐺𝑤) × 𝐶 windows, where 𝐺ℎ and 𝐺𝑤
are the height and width of the window, respectively; k is equal to
6 
𝐻
𝐺ℎ

× 𝑊
𝐺𝑤

, and 𝐺ℎ and 𝐺𝑤 are not equal. Stripe window self-attention
can be expressed as:

𝑴 = [𝑴1,𝑴2,… ,𝑴𝑘] (7)

𝒀 𝑖 = Sof t max(𝑴 𝑖𝑾 𝑄(𝑴 𝑖𝑾 𝐾 )𝑇 ∕
√

𝐶 + 𝑩)𝑴 𝑖𝑾 𝑉 (8)

SWSA(𝑿) = [𝒀 1, 𝒀 2,… , 𝒀 𝑘] (9)

where 𝑴 𝑖 ∈ 𝑅𝐺ℎ×𝐺𝑤×𝐶 is the feature map, 𝑘 = 𝐻
𝐺ℎ

× 𝑊
𝐺𝑤

, 𝑖 = 1, 2,… , 𝑘.
𝑾 𝑄 ∈ 𝑅𝐶×𝐶 , 𝑾 𝐾 ∈ 𝑅𝐶×𝐶 , and 𝑾 𝑉 ∈ 𝑅𝐶×𝐶 respectively represent the
projection matrix used to generate queries, keys and values during the
self-attention calculation process; 𝒀 𝑖 represents the feature map after
self-attention calculation in the 𝑖th window; B is the relative position
encoding matrix. When 𝐺ℎ is greater than 𝐺𝑤, the above stripe window
self-attention is called vertical stripe window self-attention. When 𝐺ℎ
is smaller than 𝐺𝑤, it is called horizontal stripe window self-attention.

3.2.3. Analysis of computational complexity of stripe window self-attention
In the Swin Transformer method (Liu et al., 2021), the computa-

tional complexity for a single attention window is given as:

𝛺(𝑊 𝑆 𝐴) = 4𝐻 𝑊 𝐶2 + 2𝑀2𝐻 𝑊 𝐶 (10)
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Fig. 7. The window self-attention in two successive Im-CrossFormer blocks.
where H and W represent the height and width of the feature map, C
is the number of channels, and M denotes the size of each attention
window.

In the SWSA module, a feature map with width W and height H is
first divided into several equal-sized windows. Assuming each window
has a width 𝐺𝑤 and height 𝐺ℎ, the total number of windows is:

𝑘 = 𝐻 𝑊
𝐺ℎ𝐺𝑤

(11)

Multi-head self-attention is then applied within each window. Based
on the attention window complexity formula from the Swin Trans-
former, the computational complexity for a single attention window in
SWSA is:
𝛺(𝑆 𝑊 𝑆 𝐴) = 4𝐺ℎ𝐺𝑤𝐶

2 + 2(𝐺ℎ𝐺𝑤)2𝐶 (12)

where 𝐺ℎ is the height and 𝐺𝑤 is the width of the attention window,
and C is the number of channels. Since there are k windows, the overall
complexity for all attention windows in the feature map is:
𝑘 ×𝛺(𝑆 𝑊 𝑆 𝐴) = 𝐻 𝑊

𝐺ℎ𝐺𝑤
(4𝐺ℎ𝐺𝑤𝐶

2 + 2(𝐺ℎ𝐺𝑤)2𝐶)

= 2𝐻 𝑊 𝐶(2𝐶 + 𝐺ℎ𝐺𝑤)
(13)

3.2.4. Lightweight channel pruning
As shown in Section 3.2.3, computational complexity is quadrati-

cally affected by both the number of channels and the window size.
Since window sizes are significantly smaller than the number of chan-
nels, channel pruning is employed to reduce the overall computational
load (Yamamoto & Maeno, 2018; Yu et al., 2022). By pruning channels,
the number of channels is reduced from C to 𝛼C (0 < 𝛼 < 1), and
the complexity decreases by a factor of (1 − 𝛼2). The complexity then
becomes:

𝑘 ×𝛺(𝑆 𝑊 𝑆 𝐴) = 2𝐻 𝑊 (2𝛼2𝐶2 + 𝛼 𝐺ℎ𝐺𝑤𝐶) (14)

where H and W represent the height and width of the feature map, 𝐺ℎ
is the height and 𝐺𝑤 is the width of the attention window, and C is the
number of channels.

This represents a quadratic reduction. For example, if 𝛼=0.7 (prun-
ing 30% of the channels), the computational load in the first part of
the complexity formula decreases by approximately 51%.

The pruning method utilized is gradient-weighted pruning. This
approach evaluates the importance of each channel based on the magni-
tude of the channel weights and gradient information, determining each
channel’s contribution to the loss function. By analyzing the sensitivity
of the weights to the loss, channels that have less impact on the loss
are pruned.

The pruning process begins with evaluating the importance of each
channel. This is done by computing the gradient of the channel weights
with respect to the loss function, which determines the contribution
7 
of each channel to the final prediction. The importance score for each
channel is calculated as:

𝐼 =
|

|

|

|

𝑊𝑖 ×
𝜕 𝐿
𝜕 𝑊𝑖

|

|

|

|

(15)

where 𝐿 represents the loss function, and 𝜕 𝐿
𝜕 𝑊𝑖

is the gradient of the
weights. This provides a measure of how critical each channel is to the
overall model performance.

Once the importance scores are calculated, channels are ranked and
the least impactful ones are pruned to reduce model complexity while
preserving key features.

In multi-head self-attention, this pruning also reduces the dimen-
sions of the query, key, and value matrices, as well as the number
of attention heads, lowering computational cost without significantly
affecting performance.

After pruning, fine-tuning is performed to recover or improve model
accuracy by adapting to the reduced parameter set, ensuring efficiency
without sacrificing.

3.3. Double attention decouple head

To make the model better detect defects with different scales, we
present a double attention decouple head (DADH). On the one hand, we
use spatial-aware and scale-aware attention to fuse multi-scale features
so that the model has position and scale awareness. On the other
hand, we decouple classification and localization branches to reduce
the mutual influence between them. Fig. 8 displays the overall structure
of the double attention decouple detection head and the specific details
of its subparts. As shown in Fig. 8(a), we fuse the spatial-aware features
with the scale-aware features. It is the remaining part of dynamic
head after removing task-aware attention (Dai et al., 2021). Fig. 8(b)
illustrates the structure of spatial- and scale-aware attention.

By generating offsets, the spatial-aware attention is designed to
obtain the different spatial positions information. Given 𝑴 ∈ 𝑅𝐻×𝑊 ×𝐶 ,
it can be defined as:

𝜋𝑆 (𝑴) ×𝑴 =
𝐾
∑

𝑘=1
𝑤𝑘𝑴(𝑝𝑘 + 𝛥𝑝𝑘)𝛥𝑚𝑘 (16)

where 𝜋𝑆 (⋅) is a spatial attention function, 𝑤𝑘 means the projection
weight of the corresponding sampling point, 𝛥𝑝𝑘 denotes the learned
offset of the sampling point, 𝛥𝑚𝑘 denotes the importance modulation
scalar of 𝛥𝑝𝑘 learned at the position, and 𝑝𝑘 + 𝛥𝑝𝑘 stands for the new
sampling points to be convolved.

The role of scale-aware attention is to enhance the scale perception
ability of the model by changing the expressive ability of targets of
different scales. It is defined as:

𝜋𝐿(𝑴) ×𝑴 = 𝜎(GELU(𝑓 ( 1
𝐻 𝑊 𝐶

∑

𝐻 𝑊 ,𝐶
𝑴))) ×𝑴 (17)

where 𝑓 (⋅) is a linear function, 𝜋𝐿(⋅) represents a scale attention func-
tion, 𝜎(𝑥) = max(0,min(1, 𝑥+1 )).
2
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Fig. 8. The overall structure of DADH and its two branches.
Given three feature maps 𝑴 𝑖−1, 𝑴 𝑖 and 𝑴 𝑖+1, the two attentions
(spatial-aware attention and scale-aware attention) can be computed
as:

𝑴 𝑖
′ = 𝜋𝐿((𝜋𝑆 (𝑴 𝑖−1) ×𝑴 𝑖−1) ×𝑴 𝑖−1) + 𝜋𝐿((𝜋𝑆 (𝑴 𝑖) ×𝑴 𝑖) ×𝑴 𝑖)

+ 𝜋𝐿((𝜋𝑆 (𝑴 𝑖+1) ×𝑴 𝑖+1) ×𝑴 𝑖+1)

(18)

where 𝜋𝑆 (⋅) and 𝜋𝐿(⋅) are the spatial attention function and the scale
attention function, respectively.

Later on, the double attention decouple head uses a depth-wise
separable convolution of 3 × 3 (Shaheed et al., 2022) to generate
different feature maps, and then make classification and localization,
respectively. Fig. 8(c) and Fig. 8(d) display the corresponding of the
structures of two branches. Both branches include a 3 × 3 depth-wise
convolution, a 1 × 1 point-wise convolution, layer normalization, and a
GELU activation function. Finally, 3 × 3 convolutional kernels are used
for classification and localization.

3.4. Loss function

The loss function of Im-RefineDet includes two parts: the loss of
ARM and that of ODM. The localization loss of both modules is smooth-
ing L1 loss (Ren et al., 2015), which is defined as:

𝐿𝑟 (𝑝𝑢, 𝑣) =
∑

𝑘∈{𝑎,𝑏,𝑤,ℎ}
𝑆 𝑚𝑜𝑜𝑡ℎ𝐿1

(

𝑝𝑢𝑘 − 𝑣𝑘
)

(19)

𝑆 𝑚𝑜𝑜𝑡ℎ𝐿1
(𝑥) =

{

0.5𝑥2, |𝑥| ≤ 1
|𝑥| − 0.5, |𝑥| > 1

(20)
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where 𝑣 =
(

𝑣𝑎, 𝑣𝑏, 𝑣𝑤, 𝑣ℎ
)

, (𝑣𝑎, 𝑣𝑏) is the center point coordinate axis
of the true box, 𝑣𝑤 and 𝑣ℎ are the width and height of the box;
𝑝𝑢 =

(

𝑝𝑢𝑎, 𝑝𝑢𝑏, 𝑝𝑢𝑤, 𝑝𝑢ℎ
)

, (𝑝𝑢𝑎, 𝑝𝑢𝑏) is the center point coordinate axis of the
predicted box, 𝑝𝑢𝑤 and 𝑝𝑢ℎ are the width and height of the predicted
box; 𝑘 ∈ {𝑎, 𝑏, ℎ, 𝑤}, in which a, b, w and h, (𝑎, 𝑏) is the center point
coordinates of the box, w and h are its width and height.

For the classification loss, the ARM and the ODM use the binary
cross entropy loss (Shaheed et al., 2022) and multi-classification cross
entropy loss, respectively.

For the 𝑡th sample, its label is 𝒚𝑡′, and its predicted output is 𝒚𝑡,
then the binary cross entropy loss is:

𝐿𝑏(𝒚𝑡, 𝒚′𝑡) = −
𝑁𝐴𝑅𝑀
∑

𝑖=𝑡
(𝒚𝑡𝑙 𝑜𝑔(𝒚′𝑡) + (1 − 𝒚𝑡)𝑙 𝑜𝑔(1 − 𝒚′𝑡)) (21)

where 𝑁𝐴𝑅𝑀 is the number of training samples.
For the label of the 𝑐th category in the 𝑡th sample is 𝒚′𝑡,𝑐 , the

multi-classification cross entropy loss is:

𝐿𝑚(𝒚𝑡,𝑐 , 𝒚′𝑡,𝑐 ) = −
𝑁𝑂 𝐷 𝑀
∑

𝑡=1

𝐶
∑

𝑐=1
𝒚𝑡,𝑐 𝑙 𝑜𝑔𝒚′𝑡,𝑐 (22)

where 𝑁𝑂 𝐷 𝑀 is the number of training samples and C is the number
of categories.

The loss functions of the anchor refinement module and target
detection module can be expressed as:

𝐿𝐴𝑅𝑀 (𝒚𝑡, 𝒚′𝑡 , 𝑝𝑢, 𝑣) = 𝐿𝑏(𝒚𝑡, 𝒚′𝑡) + 𝐿𝑟(𝑝𝑢, 𝑣) (23)

𝐿𝑂 𝐷 𝑀 (𝒚𝑡,𝑐 , 𝒚′𝑡,𝑐 , 𝑝𝑢, 𝑣) = 𝐿𝑚(𝒚𝑡,𝑐 , 𝒚′𝑡,𝑐 ) + 𝐿𝑟(𝑝𝑢, 𝑣) (24)
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Fig. 9. Examples of the PIP-DET dataset.
4. Experiments

In this section, we compare the detection performance of Im-
RefineDet with other methods to evaluate its effectiveness. This section
explains in turn the experimental dataset, evaluation metrics, training
details, ablation experiments, and comparison of experimental results
with other methods, as well as providing corresponding analysis. The
deep learning framework used in all experiments in this paper is
Pytorch with the version of 1.11.0, and the version of Python is 3.8.10.
We train our model with a single NVIDIA RTX 3090 GPU card.

4.1. Datasets

We constructed a pipeline defect dataset (PIP-DET) for experiments.
It is a gas pipeline defect image dataset, which contains 20 defect
categories and a total of 6010 samples. We use Labelimg (Tzutalin,
2022) to obtain the corresponding image labels. With a ratio of 7:3,
the dataset is divided into two parts: the training dataset and the test
dataset. Accordingly the training dataset and the test dataset have 4258
and 1752 images, respectively. During training and testing, the image
size in the dataset is uniformly adjusted to 320 × 320. Table 1 provides
9 
the details of PIP-DET. Fig. 9 shows examples of different defect image
annotations.

4.2. Evaluation metrics

The evaluation metrics used in this paper are mean Average Preci-
sion (𝑚𝐴𝑃 ) (Lin et al., 2014), Params and FLOPs.

𝑚𝐴𝑃 refers to the average precision of all categories, which is
calculated as:

Pr ecision = Tp
Tp + Fp (25)

Recall = Tp
Tp + Fn (26)

AP𝑖 =
𝑛−1
∑

𝑗=0
(𝑅𝑗+1 − 𝑅𝑗 )𝑝∗𝑗 (27)

mAP = 1
𝑁𝑐

𝑁𝑐
∑

𝑖=1
AP𝑖 (28)

where Tp, Fp and Fn denote the number of true positives, false positives
and false negatives samples, respectively; n means the number of times
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Table 1
The detail information of PIP-DET.

No. Class Samples No. Class Samples

1 Incomplete fusion 694 11 Root concavity 417
2 Porosity 697 12 Lack of fusion (internal) 217
3 Incomplete penetration 699 13 Lack of fusion (external) 327
4 Crack 389 14 Porosity cluster 243
5 Tungsten inclusion 699 15 Root burn-through 385
6 Slag inclusion 710 16 Transverse crack 340
7 Undercut 286 17 Hot crack 271
8 Burn-through 364 18 Weld bead 482
9 Blowhole 417 19 Insufficient weld metal 300
10 Concave 283 20 Misalignment 392
Table 2
Detection accuracies with different improved methods.

No. SCCEL V-H-SWSA DADH 𝑚𝐴𝑃 𝑚𝐴𝑃50 𝑚𝐴𝑃75 𝑚𝐴𝑃𝑠 𝑚𝐴𝑃𝑚 𝑚𝐴𝑃𝑙

1 ✗ ✗ ✗ 55.8 92.1 61.3 32.6 48.7 61.2

2 ✔ ✗ ✗ 56.4 92.4 61.4 32.5 48.6 62.3
3 ✗ ✔ ✗ 56.7 92.1 63.6 31.9 48.8 62.5
4 ✗ ✗ ✔ 56.9 92.4 61.7 32.5 48.8 63.3

5 ✔ ✔ ✗ 57.1 92.5 63.0 30.8 47.8 63.9
6 ✗ ✔ ✔ 57.1 92.2 63.2 32.4 49.2 62.9
7 ✔ ✗ ✔ 56.9 92.3 62.3 31.7 49.5 63.0

8 ✔ ✔ ✔ 57.4 92.6 63.6 34.7 49.8 63.0
b
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to interpolate the precision–recall curve; the recall after interpolation
s 𝑅𝑗 = 𝑗

𝑛 , 𝑗 ∈ {0, 1, 2,… , 𝑛}; 𝑝∗𝑗 represents precision at 𝑅𝑗 ; 𝑁𝑐 is the
number of categories; 𝐴𝑃𝑖 represents the average accuracy of the 𝑖th
class.

Different metrics are used to measure model performance, including
he overall mean Average Precision (mAP), which is the average value

across all categories under the Intersection over Union (IoU) threshold
of [0.5, 0.95] with a step size of 0.05.

Additionally, the mAP at an IoU threshold of 0.50 is referred to
s 𝑚𝐴𝑃50, while the mAP at an IoU threshold of 0.75 is denoted as

𝑚𝐴𝑃75. The metric 𝑚𝐴𝑃𝑠 specifically measures the performance on
mall objects, defined as those with a pixel area size of 𝑎𝑟𝑒𝑎 < 322. For
edium-sized objects, indicated by the metric 𝑚𝐴𝑃𝑚, the pixel area size

alls within the range 322 < 𝑎𝑟𝑒𝑎 < 962.
Finally, the metric 𝑚𝐴𝑃𝑙 refers to large objects, which are defined

as having a pixel area size greater than 962.
Params and FLOPs represent the parameter amount and calculation

mount of the model respectively, and the units are M (size of 1 × 106)
nd G (size of 1 × 109), respectively.

4.3. Implementation protocol

The number of blocks in the four stages of the backbone network
s 3, 3, 9, and 3, with attention head counts of 2, 4, 8, and 16. The
rop path rate is set to 0.2, and the MLP ratio is 2. In the V-SWSA
nd H-SWSA modules, the attention window sizes are set to 5 × 10 and

10 × 5, respectively, and the channel pruning rate of the model is 30%.
During training, the initial learning rate is 5 × 10−4. We employ

the Adam (Kingma & Ba, 2015) to optimize, with the weight decay
f 0.05 and the momentum of 0.9. Warmup (Goyal et al., 2017) and
osine (Loshchilov & Hutter, 2016) are used to adjust the strategy. The

‘Warmup’’ phase is used at the start of training to gradually increase
he learning rate from a very small value to the initial target learning
ate over a few epochs. This helps to stabilize the training process
nd prevent large updates to the model parameters in the early stages,
hich can be especially important when using high learning rates.
he ‘‘Cosine’’ learning rate strategy adjusts the learning rate following
 cosine curve throughout the training process. At the beginning of
raining, the learning rate remains relatively high, and then it gradually
ecays towards zero as training progresses. This slow decay ensures a
10 
steady learning process, allowing the network to converge more slowly
ut often with better final accuracy.

In detail, the learning rate increases with a linear pattern from 0 to
5 × 10−4 in the first 10 epochs of training. Additionally, the remaining
training times learning rate gradually decreases from 5 × 10−4 to 1 × 10−6
in the form of cosine function.

Additionally, the training epochs is 130, the batch size is 14. We use
he SSD’s data augmentation method to increase the number of train-

ing samples (Liu et al., 2016), including coordinate conversion, pixel
content transformation, spatial geometry transformation, coordinate
ransformation and scaling, and mean subtraction.

4.4. Ablation study

4.4.1. Ablation study of the different improved methods
To evaluate the contributions of each enhancement to the overall

model performance, we provides a clear understanding of how each
component influences the model’s success. We use different improved
methods to observe the effectiveness of each method.

Table 2 shows the corresponding detection results. Among them,
H-V-SWSA is vertical–horizontal SWSA. The baseline model is the Re-
ineDet model that uses CrossFormer as the backbone network (Zhang

et al., 2018).
From Table 2, it can be observed that: Firstly, all improvement

methods (No. 2 to No. 8) show better results compared to the baseline
odel (No. 1). Specifically, 𝑚𝐴𝑃 , 𝑚𝐴𝑃50, and 𝑚𝐴𝑃75 increased by up to
.6%, 0.5%, and 2.3%, respectively, while 𝑚𝐴𝑃𝑠, 𝑚𝐴𝑃𝑚 and 𝑚𝐴𝑃𝑙 im-
roved by up to 2.1%, 1.1%, and 2.7%, respectively. This demonstrates
hat the improved backbone network, window self-attention mecha-
ism, and detection head can effectively enhance RefineDet’s detection
apabilities. Secondly, comparing the results using all three improved
ethods (No. 8) with those using only one improved method (No. 2,
o. 3, and No. 4), we observe improvements in all metrics except 𝑚𝐴𝑃𝑙.
otably, 𝑚𝐴𝑃 , 𝑚𝐴𝑃50 and 𝑚𝐴𝑃75 improved by up to 1.0%, 0.5%, and
.2% respectively, while 𝑚𝐴𝑃𝑠 and 𝑚𝐴𝑃𝑚 increased by up to 2.8%
nd 1.2% respectively. This indicates that simultaneously employing
he improved backbone network, window self-attention mechanism,
nd detection head yields better detection performance than using just
ne improvement. Furthermore, when comparing the results of using
ll three improved methods (No. 8) with those using two improved

methods (No. 5, No. 6, and No. 7), we again see improvements across
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Table 3
Accuracy of CrossFormer using different types of window self-attention.

No. Windows self-attention type 𝑚𝐴𝑃 𝑚𝐴𝑃50 𝑚𝐴𝑃75 𝑚𝐴𝑃𝑠 𝑚𝐴𝑃𝑚 𝑚𝐴𝑃𝑙

1 WSA(Baseline) 56.2 91.6 62.1 31.1 47.6 61.6
2 A-WSA 56.6 92.1 62.6 32.5 48.7 62.1
3 C-SWSA 56.8 92.2 62.8 32.6 48.4 62.4
4 H-SWSA 56.4 92.0 62.7 32.1 47.9 62.0
5 V-SWSA 56.5 91.7 62.6 32.3 48.2 62.3
6 V-H-SWSA(Ours) 57.0 92.3 63.0 33.4 48.6 62.5
Table 4
Comparison with state-of-the-art methods on the PIP-DET dataset.

Style Methods Backbone mAP 𝑚𝐴𝑃50 𝑚𝐴𝑃75 𝑚𝐴𝑃𝑠 𝑚𝐴𝑃𝑚 𝑚𝐴𝑃𝑙 Params FLOPs FPS

Two-stage Faster RCNN ResNet50 52.6 89.2 54.1 20.4 42.1 59.6 41.45M 20.37G 56.0
Cascade RCNN ResNet50 53.3 89.0 56.3 18.2 43.7 60.4 69.21 M 22.37G 54.7

One-stage

SSD VGG16 50.2 88.0 51.8 26.4 39.7 56.0 26.29M 35.31G 50.6
YOLOv3 Darknet53 50.8 88.8 52.5 26.1 43.0 56.6 61.50M 19.40G 58.5
YOLOv5 CSPDarknet53 57.2 92.0 62.0 36.4 48.0 63.5 46.24M 13.53G 66.5
FINet CSPDarknet53 54.0 90.6 48.2 25.8 38.7 54.1 7.30M 4.30G 78.5
DEA-RetinaNet ResNet50 51.6 87.5 52.9 19.9 40.4 59.6 41.03M 22.86G 56.1

Transformer
Deformable DETR ResNet50 54.9 88.9 59.1 29.1 45.7 60.9 41.05M 23.47G 54.3
DAB DETR ResNet50 56.9 91.7 61.3 34.2 46.4 63.6 47.42M 31.93G 52.8
DN DETR ResNet50 57.1 91.6 63.1 35.9 48.0 63.9 47.30M 31.47G 52.6

Mixed
RefineDet VGG16 54.2 91.5 58.2 28.0 46.3 59.4 36.16M 140.67G 20.4
Im-RefineDet Im-CrossFormer 57.4 92.6 63.6 34.7 49.8 63.0 56.31M 72.10G 28.6
Im-RefineDet-lite Im-CrossFormer-lite 57.2 92.3 63.1 34.3 49.5 62.6 22.57M 38.14G 47.5
d

s

all metrics except 𝑚𝐴𝑃𝑙. Specifically, 𝑚𝐴𝑃 , 𝑚𝐴𝑃50 and 𝑚𝐴𝑃75 improved
y up to 0.5%, 0.4%, and 1.3% respectively, while 𝑚𝐴𝑃𝑠 and 𝑚𝐴𝑃𝑚
ncreased by up to 3.9% and 2% respectively. This further confirms that
tilizing all three improved methods simultaneously can achieve higher
etection accuracy. Finally, by incorporating all three improved meth-
ds (SCCEL, SWSA, and DADH), the model achieved the best results in
𝐴𝑃 , 𝑚𝐴𝑃50, 𝑚𝐴𝑃75, 𝑚𝐴𝑃𝑠 and 𝑚𝐴𝑃𝑚, reaching 57.4%, 92.6%, 63.6%,
4.7%, and 49.8% respectively. This conclusively demonstrates that the
imultaneous application of these three improved methods contributes
o obtaining superior detection results.

4.4.2. Ablation study of the SWSA
To explore the impact of different window self-attention mecha-

nisms on detection performance in the pipeline defect dataset, we
seek to determine how the directional characteristics of horizontal and
ertical attention windows contribute to improved feature capture and
verall detection accuracy.

Table 3 presents the detection results of CrossFormer using var-
ious types of window self-attention on the pipeline defect dataset.
Here, WSA indicates the standard window self-attention with equal
width and height (Liu et al., 2021). A-WSA is Axial Windows Self-

ttention (Wang et al., 2020), while C-SWSA is Cross-Shaped Windows
Self-Attention (Dong et al., 2022). H-SWSA and V-SWSA represent Hor-
izontal Stripes Windows Self-Attention and Vertical Stripes Windows
Self-Attention, respectively. V-H-SWSA refers to the simultaneous use
of both Vertical and Horizontal Windows Self-Attention.

From Table 3, it can be observed that: Compared to the results of
SA (No. 1), the results of using V-H-SWSA (No. 6) show improve-
ents in 𝑚𝐴𝑃 , 𝑚𝐴𝑃50, 𝑚𝐴𝑃75, 𝑚𝐴𝑃𝑠, 𝑚𝐴𝑃𝑚, and 𝑚𝐴𝑃𝑙, with increases

f 0.8%, 0.7%, 0.9%, 2.3%, 1.0%, and 0.9%, respectively. Additionally,
ompared to the results of A-WSA and C-SWSA (No. 2 and No. 3), the
esults of using V-H-SWSA (No. 6) show improvements in 𝑚𝐴𝑃 , 𝑚𝐴𝑃50,
𝐴𝑃75, 𝑚𝐴𝑃𝑠, 𝑚𝐴𝑃𝑚, and 𝑚𝐴𝑃𝑙, with the highest increases of 0.4%,
.2%, 0.4%, 0.9%, 1.2%, and 0.4%, respectively. Moreover, compared
o the results of H-WSA and V-SWSA (No. 4 and No. 5), the results of
sing V-H-SWSA (No. 6) show improvements in 𝑚𝐴𝑃 , 𝑚𝐴𝑃50, 𝑚𝐴𝑃75,
𝐴𝑃𝑠, 𝑚𝐴𝑃𝑚, and 𝑚𝐴𝑃𝑙, with the highest increases of 0.5%, 0.6%,
.4%, 1.3%, 0.7% and 0.5%, respectively. This progressive improve-
ent indicates that the bidirectional focus of V-H-SWSA provides a
roader context for feature extraction, leading to more robust detection
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capabilities. In summary, by simultaneously utilizing both vertical and
horizontal attention, V-H-SWSA enables a more comprehensive feature
extraction process, enhancing the overall detection performance.

4.5. Comparison Im-RefineDet with different methods on pipeline defect
dataset

To evaluate the performance of the Im-RefineDet, we compare it
with the state-of-the-art detection methods, as well as providing the
corresponding analysis. Table 4 displays the detection results on the
ataset PIP-DET, where the bold numbers denote the best results.

From Table 4, it can be observed that: when compared to two-
tage methods, Im-RefineDet demonstrates significant improvements in

detection performance. It enhances 𝑚𝐴𝑃 , 𝑚𝐴𝑃50, and 𝑚𝐴𝑃75 by up
to 4.8%, 7.7%, and 9.5%, respectively. For targets of different sizes,
𝑚𝐴𝑃𝑠, 𝑚𝐴𝑃𝑚, and 𝑚𝐴𝑃𝑙 show improvements of up to 16.5%, 3.6%,
and 3.4%, respectively. Additionally, in comparison with single-stage
models, Im-RefineDet shows remarkable improvements. It enhances
𝑚𝐴𝑃 , 𝑚𝐴𝑃50, and 𝑚𝐴𝑃75 by up to 7.2%, 5.1%, and 11.4%, respec-
tively. Particularly in detecting medium-sized targets, Im-RefineDet’s
𝑚𝐴𝑃𝑚 surpasses these five single-stage models by 10.1%, 6.8%, 1.8%,
11.1%, and 9.4%, respectively. Besides, when compared to the hybrid
model RefineDet, Im-RefineDet shows notable improvements. It en-
hances 𝑚𝐴𝑃 , 𝑚𝐴𝑃50, and 𝑚𝐴𝑃75 by 3.2%, 1.1%, and 5.4%, respectively.
For targets of different sizes, 𝑚𝐴𝑃𝑠, 𝑚𝐴𝑃𝑚, and 𝑚𝐴𝑃𝑙 increase by 6.7%,
3.5%, and 3.6%, respectively. Moreover, Im-RefineDet also outperforms
detection Transformer models, improving 𝑚𝐴𝑃 , 𝑚𝐴𝑃50, and 𝑚𝐴𝑃75
by 2.3%, 3.4%, and 4.0%, respectively. For targets of different sizes,
𝑚𝐴𝑃𝑠, 𝑚𝐴𝑃𝑚, and 𝑚𝐴𝑃𝑙 increase by 5.2%, 3.8%, and 1.7%, respec-
tively. This indicates that Im-RefineDet achieves higher accuracy than
state-of-the-art Transformer-based detection models.

In detecting small objects, Im-RefineDet achieves the second-best
𝑚𝐴𝑃𝑠 at 34.7%. This is attributed to the addition of an attention
module, which allows the model to focus more on critical areas of the
image. However, small targets, occupying fewer pixels, still pose chal-
lenges as their feature information can be easily overlooked, making it
difficult for the model to learn accurate feature representations.

In conclusion, compared to existing mainstream single-stage and
two-stage detection models, Im-RefineDet achieves optimal overall
𝑚𝐴𝑃 performance.



T. Zhang et al. Expert Systems With Applications 267 (2025) 126212 
Table 5
Comparison with state-of-the-art methods on the NEU-DET dataset.

Style Methods Backbone 𝑚𝐴𝑃50 Crazing Inclusion Patches Pitted surface Rolled-in scale Scratches

Two-stage Faster RCNN ResNet50 71.2 36.3 72.8 87.8 86.7 56.1 87.5
Cascade RCNN ResNet50 74.9 46.5 76.8 88.7 87.0 60.8 89.7

One-stage

SSD VGG16 66.5 31.4 66.1 86.1 78.6 65.7 71.2
YOLOv3 Darknet53 71.3 30.1 75.3 89.0 83.8 55.8 93.7
YOLOv5 CSPDarknet53 77.3 46.7 78.3 91.1 87.0 65.4 94.8
FINET CSPDarknet53 71.4 37.1 78.9 91.0 83.0 57.3 81.0
DEA-RetinaNet ResNet50 70.6 36.4 74.2 90.0 86.5 63.7 72.4

Transformer
Deformable DETR ResNet50 75.4 46.8 78.4 89.7 85.5 61.1 90.7
DAB DETR ResNet50 75.2 45.4 72.7 88.1 85.2 62.8 93.8
DN DETR ResNet50 75.7 47.7 78.7 89.9 82.2 62.9 92.9

Mixed
RefineDet VGG16 76.1 47.3 80.2 90.5 85.4 60.0 93.1
Im-RefineDet Im-CrossFormer 77.8 51.6 79.6 89.4 88.8 64.0 93.1
Im-RefineDet-lite Im-CrossFormer-lite 77.5 51.4 79.4 89.2 88.5 63.7 93.0
Table 6
Comparison with state-of-the-art methods on the PCB dataset.

Methods 𝑚𝐴𝑃50 Missing hole Mouse bite Open circuit Short Spur Spurious copper

Faster RCNN 92.2 92.5 92.3 91.5 92.4 92.6 91.9
Cascade RCNN 93.1 93.4 93.5 93.0 93.2 92.8 92.7
SSD 87.5 87.3 87.6 87.5 88.1 87.2 87.4
YOLOv3 94.9 95.2 95.0 94.5 95.4 94.6 94.9
YOLOv5 98.5 98.7 97.8 98.5 98.6 98.9 98.4
FINet 92.8 92.4 92.5 93.0 93.2 92.8 92.7
DEA-RetinaNet 92.3 92.6 92.3 91.7 92.4 92.5 92.0
Deformable DETR 93.2 93.2 93.4 93.3 93.4 93.0 93.1
DAB DETR 97.5 97.8 97.5 97.2 97.4 97.8 97.5
DN DETR 97.8 97.9 97.8 97.4 97.7 97.1 97.6
RefineDet 95.3 95.6 95.4 94.9 95.0 95.5 95.1
Im-RfineDet 99.2 99.3 99.1 99.5 99.2 99.0 99.1
Im-RfineDet-lite 98.9 99.0 98.9 99.2 98.7 98.6 98.8
Fig. 10. Examples of defect images with annotations in NEU-DET.

4.6. Comparison Im-RefineDet with different methods on public dataset
NEU-DET

To verify the performance of the Im-RefineDet on public dataset, we
select a public dataset NEU-DET to do experiments.

NEU-DET is a steel surface defect dataset (He, Song, Meng, & Yan,
2019). This dataset contains 6 defect categories, with 300 samples for
each category. There are a total of 1800 samples and corresponding
labels. Further, the training dataset and the test dataset have 1260 and
540 samples, respectively. Fig. 10 shows an example of defect image
annotation.
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Table 7
Comparison of computational efficiency across different models.

Method 𝑚𝐴𝑃50 Params FLOPs FPS

Faster RCNN 89.2 41.45M 20.37G 56.0
Cascade-RCNN 89.0 69.21 M 22.37G 54.7
SSD 88.0 26.29M 35.31G 50.6
YOLOv3 88.8 61.50M 19.40G 58.5
YOLOv5 92.0 46.24M 13.53G 66.5
FINet 90.6 7.30M 4.30G 78.5
DEA-RetinaNet 87.5 41.03M 22.86G 56.1
Deformable DETR 88.9 41.05 23.47 54.3
DAB DETR 91.7 47.42 31.93 52.8
DN DETR 91.6 47.30 31.47 52.6
RefineDet 91.5 36.16M 140.67G 20.4
Im-RefineDet 92.6 56.31M 72.10G 28.6
Im-RefineDet-lite 92.3 22.57M 38.14G 47.5

The detail detection results of different methods are provided in
Table 5, with the bold numbers indicating the best results.

From Table 5, it can be observed that: when compared to two-stage
methods of Faster RCNN and Cascade RCNN, Im-RefineDet’s 𝑚𝐴𝑃50
has increased by 6.6% and 2.9%, respectively. In the detection of
Crazing category, 𝑚𝐴𝑃50 increased by 15.3% and 5.1%. In detecting the
Pitted surface category, 𝑚𝐴𝑃50 improved by 2.1% and 1.8%. In other
categories, it also has certain improvements. This demonstrates that
it can achieve higher results than the existing mainstream two-stage
models on this public dataset. Additionally, in comparison with single-
stage models of SSD, YOLOv3, YOLOv5, FINet and DEA-RetinaNet,
Im-RefineDet improves 𝑚𝐴𝑃50 by 11.3%, 6.5%, 0.5%, 6.4% and 7.2%,
respectively. Especially in the Crazing category, Im-RefineDet’s 𝑚𝐴𝑃50
is significantly higher than the above-mentioned single-stage model.
This clarifies that the proposed In-RefineDet performs better than the
state-of-the-art single-stage models on the NEU-DET dataset. Moreover,
when compared to the hybrid model of RefineDet, Im-RefineDet im-
proves 𝑚𝐴𝑃 by 1.7%. In detecting of the types of defects, crazing,
50
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Fig. 11. Training Loss and learning rate at iterations (multiples of 300).
Fig. 12. The 𝑚𝐴𝑃50 results of different methods on the PIP-DET dataset.
Pitted surface and Rolled-in scale, 𝑚𝐴𝑃50 increased by 4.3%, 3.4%
and 4.0%, respectively. Furthermore, Im-RefineDet surpasses detection
Transformer models, improving 𝑚𝐴𝑃50 by 2.6%, with notable enhance-
ments of 6.2% and 6.6% in the Crazing and Pitted surface categories
respectively. It demonstrates that Im-RefineDet achieves higher accu-
racy than state-of-the-art Transformer-based detection models on the
NEU-DET dataset.

In conclusion, Im-RefineDet achieved higher 𝑚𝐴𝑃50 than existing
models on the public dataset. Besides, its detection accuracy in different
categories has also been improved to varying degrees. This manifests
that the proposed Im-RefineDet has certain generalization ability.
13 
4.7. Comparison Im-RefineDet with different methods on PCB defect dataset

We have conducted further validation of our proposed method, Im-
RefineDet, on the publicly available PCB defect dataset (Ding, Dai, Li, &
Liu, 2019). This dataset is specifically designed for defect detection in
printed circuit boards and consists of a total of 12,428 images across six
defect categories: Missing hole, Mouse bite, Open circuit, Short, Spur,
and Spurious copper.

The detail detection results of different methods are provided in
Table 6. From Table 6, it can be concluded that: Im-RefineDet outper-
forms all other models across the board, achieving a 𝑚𝐴𝑃 of 99.2%.
50
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Fig. 13. Detection examples of different methods on PIP-DET dataset.
Fig. 14. Detection examples of different methods on NEU-DET dataset.
This demonstrates its effectiveness in detecting defects in printed circuit
boards. The slight drop in performance for Im-RefineDet-lite indi-
cates that channel pruning can effectively reduce model complexity
without significantly compromising accuracy, making it suitable for
resource-constrained environments.
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4.8. Comparison of computational efficiency

This section provides a detailed comparison of computational effi-
ciency across different models, including Params(parameters), FLOPs
(floating-point operations) and FPS (frames per second) of different
models, and gives their performance in Table 7.
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Fig. 15. Detection examples of different methods on PCB dataset.
From Table 7, it can be observed that: For the Parameters, FINet
(7.30M) and Im-RefineDet-lite (22.57M) have the smallest parameter
counts, making them suitable for resource-limited devices. Cascade-
RCNN (69.21M) and Im-RefineDet (56.31M) have the largest, which
may lead to higher memory and storage requirements. For the FLOPs,
FINet (4.30G) and YOLOv5 (13.53G) have the lowest FLOPs, which
makes them highly efficient, especially for real-time detection. Re-
fineDet (140.67G) has higher FLOPs than the other models, leading
to slower inference speeds and unsuitability for real-time applications.
With channel pruning, Im-RefineDet-lite reduces its FLOPs from 72.10G
to 38.14G, nearly halving its computational load and significantly
improving efficiency. For the FPS, FINet (78.5 FPS) achieves the best
performance in real-time scenarios due to its low parameter count and
FLOPs. Im-RefineDet-lite boosts its FPS from 28.6 to 47.5 after pruning,
greatly improving inference speed along with reduced computation.

Additionally, compared to Im-RefineDet, by applying the channel
pruning method, Im-RefineDet-lite’s FLOPs reduced from 72.10G to
38.14G, and the number of parameters decreased from 55.31M to
22.57M, while its 𝑚𝐴𝑃50 decreased from 92.6% to 92.3%. Our method
achieves an inference speed of 47.5 FPS on a 4060 GPU, indicating
its potential suitability for real-time applications. It can be concluded
that, despite the significant reduction in computational and parameter
counts, the accuracy only decreased by 0.2% and 0.3%.

4.9. Visualization analysis

(1) Visualization of training and testing processes
15 
The results of Fig. 11 demonstrate a continuous decline in training
loss as the iterations progress, eventually stabilizing, which indicates
successful model convergence. The learning rate adjustment strategy,
starting high to accelerate convergence and decreasing later, further
optimizes model performance.

Fig. 12 shows that the proposed models, Im-RefineDet and Im-
RefineDet-lite, achieve 𝑚𝐴𝑃50 scores of 92.6% and 92.3%, respectively,
significantly surpassing other mainstream models. These results collec-
tively validate the training efficiency and detection accuracy of the
proposed models.

(2) Visualization of detection results
In Fig. 13, the PIP-DET results show that the detection boxes ac-

curately cover all major areas of the targets, with high confidence
scores, reducing redundant boxes and improving clarity compared to
other methods. Similarly, in Fig. 14, the NEU-DET results indicate that
the proposed method minimizes missed detections and provides high
accuracy in identifying most targets, even though some instances of
multiple detections occur in complex backgrounds. Lastly, in Fig. 15,
the PCB results highlight the method’s ability to detect small targets
with high confidence, accurately predicting positions and addressing
issues related to complex backgrounds, making it highly robust and
applicable for such tasks. The analysis of the PIP-DET, NEU-DET and
PCB datasets demonstrates the superior performance of the proposed
method.

5. Conclusion

In this paper, we introduce an improved RefineDet model for
pipeline defect detection, aimed at enhancing feature extraction and
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detection performance through specific modifications to the back-
bone network and detection head. The backbone utilizes an improved
CrossFormer with the SCCEL module to decompose large convolu-
tional kernels into smaller, stride-2 kernels, reducing feature loss and
expanding the receptive field for richer multi-scale feature capture.
We also propose the Stripes Windows Self-Attention module, which
accommodates the directional characteristics of defects by incorpo-
ating horizontal and vertical attention windows, thereby improving
oken interaction range without significantly increasing computational

costs. Additionally, the model employs a double attention decou-
pled head to separate classification and regression tasks, allowing
for targeted optimizations, and incorporates spatial and scale-aware
attention to enhance feature fusion across scales. Collectively, these
nhancements lead to superior accuracy and computational efficiency,
s demonstrated on both public and custom datasets.
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