
Knowledge-Based Systems 275 (2023) 110691

A
a

b

c

d

e
p
s
l
m
R
h
t
e
i
e
h
e
h
s
h

h
0

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

DEFEG: Deep EnsemblewithWeighted Feature Generation
Anh Vu Luong a, Tien Thanh Nguyen b, Kate Han c, Trung Hieu Vu d, John McCall b,
lan Wee-Chung Liew a,∗

School of Information and Communication Technology, Griffith University, Australia
School of Computing Science and Digital Media, Robert Gordon University, Aberdeen, UK
Salford Business School, The University of Salford, Manchester, UK
School of Electronics and Telecommunications, Hanoi University of Science and Technology, Viet Nam

a r t i c l e i n f o

Article history:
Received 20 September 2020
Received in revised form 29 April 2023
Accepted 28 May 2023
Available online 2 June 2023

Keywords:
Ensemble method
Deep learning
Multiple classifiers
Ensemble of classifiers
Random forest
Feature generation

a b s t r a c t

With the significant breakthrough of Deep Neural Networks in recent years, multi-layer architecture
has influenced other sub-fields of machine learning including ensemble learning. In 2017, Zhou
and Feng introduced a deep random forest called gcForest that involves several layers of Random
Forest-based classifiers. Although gcForest has outperformed several benchmark algorithms on specific
datasets in terms of classification accuracy and model complexity, its input features do not ensure
better performance when going deeply through layer-by-layer architecture. We address this limitation
by introducing a deep ensemble model with a novel feature generation module. Unlike gcForest where
the original features are concatenated to the outputs of classifiers to generate the input features for
the subsequent layer, we integrate weights on the classifiers’ outputs as augmented features to grow
the deep model. The usage of weights in the feature generation process can adjust the input data of
each layer, leading the better results for the deep model. We encode the weights using variable-length
encoding and develop a variable-length Particle Swarm Optimization method to search for the optimal
values of the weights by maximizing the classification accuracy on the validation data. Experiments on
a number of UCI datasets confirm the benefit of the proposed method compared to some well-known
benchmark algorithms.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Deep Neural Networks (DNNs) nowadays has become a pow-
rful supervised machine learning technique. While being ap-
lied to various domains for visual and text information, the de-
ign concept of DNNs has influenced other sub-fields of machine
earning. By going deeply through layer-by-layer processing, the
achine learning models are likely to get better prediction ability.
ecently, ensemble methods based on multi-layer architecture
ave become a new trend in the design of ensemble learning sys-
ems. Starting with the simple combination between two layers of
nsemble methods like in RotBoost [1], cascade model of Boost-
ng [2], and two-layer heterogeneous ensemble [3], some deeper
nsemble systems have been introduced [4–8]. Experiments in [4]
ave confirmed the benefit of multi-layer architecture to the
nsemble system as the deep ensemble systems offer not only
igher classification performance than the one-layer ensemble
ystems and DNNs on some datasets but also fewer number of
yper-parameters than DNNs.

∗ Corresponding author.
E-mail address: a.liew@griffith.edu.au (A.W.-C. Liew).
ttps://doi.org/10.1016/j.knosys.2023.110691
950-7051/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a

nc-nd/4.0/).
In 2017, Zhou and Feng [4] introduced a deep random forest
(called gcForest, see Fig. 1), a learning architecture involving sev-
eral layers of Random Forest-based classifiers. gcForest involves
multiple layers of two Random Forest and two Completely Ran-
dom Tree Forests (also Random Forest in which only one feature
is considered when looking for the best split for node samples)
in each layer. Each tree in a forest is made to output the class
distribution vector which indicates the probabilities that a sample
belongs to the class labels. The prediction vector of a forest is the
average of the class distribution vectors of all the trees inside.
The prediction vectors of the four forests are concatenated with
the original training data at each layer as the new input training
features for the subsequent layer. gcForest is better than Multi-
Layer Perceptron (MLP) and well-known ensemble methods on
diverse types of datasets in the authors’ experiments [4].

gcForest uses the concatenation of the original training data
and the predictions of classifiers in one layer as input to the next
layer. It was assumed that the deeper we grow the model, the bet-
ter the classification accuracy. However, our experiments show
that the classification accuracy of gcForest could reduce when
going to deeper layers. It means that either the input features
do not improve data discriminative ability or going deeper in
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://doi.org/10.1016/j.knosys.2023.110691
https://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2023.110691&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:a.liew@griffith.edu.au
https://doi.org/10.1016/j.knosys.2023.110691
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

A.V. Luong, T.T. Nguyen, K. Han et al. Knowledge-Based Systems 275 (2023) 110691

c
n
a
o
s
g
S
d
c
t
g
c
t
v
a
v
o
w

s
s
e
o
d
S

Fig. 1. The deep random forest. Fig. 1 shows the model of deep random forest called gcForest including multi-layers of two Random Forests and two Completely
Random Tree Forests. The predictions of the forests are grouped and then are concatenated with the original training data (green arrows) to form the input features
for the next layer. The prediction of the last layer is aggregated with a combiner to obtain the final classification.
gcForest does not provide any benefit compared to the one-layer
ensemble models.

In this study, we introduce a novel deep ensemble learning
model called Deep Ensemble with Weighted Feature Generation
alled DEFEG to address the limitations of gcForest. We propose a
ew approach to generate the input features for each layer using
weighted feature generation module that integrates weights
n the classifiers’ outputs. Like the gcForest, DEFEG involves
everal different classifiers in each layer. The difference between
cForest and DEFEG is the way to grow the deep learning model.
pecifically, the predictions of the classifiers are integrated with
ifferent weights which shows the different contributions of the
lassifiers to the predictions. The number of weights depends on
he number of layers in the deep model. We propose two feature
eneration approaches: weighted predictions themselves or the
oncatenation between weighted predictions and the original fea-
ures as the input features for the subsequent layer. The optimal
alues of weights are obtained by maximizing the classification
ccuracy on the validation data. In this work, we develop a
ariable-length Particle Swarm Optimization (VLPSO) to solve the
ptimization problem using a variable-length encoding for the
eights.
The main contributions of our work are as follows:

• We propose an approach to generate new augmented fea-
tures to grow the deep ensemble models, based on the
weighted predictions.
• We propose to encode the weights for all layers in a

variable-length encoding
• We develop a VLPSO algorithm to search for the optimal

weights.
• We experimentally show that DEFEG is better than some

well-known benchmark algorithms on a number of datasets.

In Section 2, we briefly introduce deep ensemble learning,
ome variants of Particle Swarm Optimization algorithms, and
ome recent developments of Evolutionary Computation for the
nsemble systems. In Section 3, we give a detailed description
f the proposed method. Experimental studies on a number of
atasets are provided in Section 4, followed by conclusions in
ection 5.
2

2. Background and related work

2.1. Deep ensemble learning

Ensemble learning is a sub-field of machine learning in which
a collection of classifiers is combined for the collaborative de-
cision. Two main stages need to be considered when designing
an ensemble system namely ensemble generation and ensemble
integration. In the ensemble generation, multiple classifiers are
generated by using homogeneous strategy (training a learning
algorithm on multiple training sets generated from the original
training data) [9,10] or heterogeneous strategy (training differ-
ent learning algorithms on the original training data) [11,12].
The predictions of the selected classifiers are aggregated by a
combining method in the ensemble integration stage to obtain
the collaborated prediction. Several top-performance methods for
the classification problem have been reported including Random
Forest [13], XgBoost [14], and Rotation Forest [15].

Recently, there are a number of interests to the ensemble gen-
eration inspired by the success of DNNs. Instead of using only one
layer like in traditional ensemble models, the ensemble systems
were made to train deeply through multiple layers. The first deep
ensemble system was proposed by Zhou and Feng [4] (called
gcForest) with two Random Forests and two Completely Random
Tree Forests working in each layer. Kim et al. [5] introduced
a deep ensemble of Support Vector Machine (SVM) classifiers
with an uncertainty checker in each layer. If the uncertainty in
the predictions of the SVM classifiers in one layer is less than
a threshold, these predictions are combined to obtain the final
classification, otherwise, they are fed into the next layer. Utkin
et al. [6] proposed a weight average approach for gcForest when
combining the class distribution vectors of the trees in each
forest. In this way, each tree is associated with a weighted vector
for its class distribution vector. The weight vectors of the trees
in a forest in one layer are found by minimizing the distance be-
tween the class label vector in a binary encoding scheme and the
weighted prediction vector of this forest. To reduce the number of
weight vectors when using too many trees in a forest, the authors
proposed to group the class distribution vectors of the trees and

A.V. Luong, T.T. Nguyen, K. Han et al. Knowledge-Based Systems 275 (2023) 110691

o
d
e
p
S
f
t
a
t
i
i
t
o
o
D
m
t
p
f
s
w
t
l
o
c
i
i
a
a
i
d
a
b
r
S
R
t
f
s

2

i
i
c
c
(
w
c
A
t
r
c
e
t
i
a
i
a
c
m
t
f
C
D

(

nly set a weight vector for each group. Qi et al. [7] introduced a
eep ensemble model including an ensemble of SVM classifiers in
ach layer. In each layer, the authors used AdaBoost to find the
arameters of the models including the kernel functions of the
VM classifiers, the number of classifiers, and the weights of the
eatures. Chen et al. [8] proposed a feature generation approach
o grow the deep ensemble model in which the predictions of
ll previous layers are concatenated to the original features as
he input feature for the subsequent layer. Nguyen et al. [16]
ntroduced MULES, a deep ensemble framework in which each of
ts layers is optimized by classifier and feature selection. The au-
hors modeled the selection process at each layer as a bi-objective
ptimization problem, where classification accuracy and diversity
f the ensemble in each layer are two objectives to be maximized.
ang et al. proposed a two-layer ensemble of deep learning
odels for the problem of medical image segmentation [17]. In

his method, the pixel-wise predictions for each training image
roduced by the first layer’s models are used as augmented data
or training models in the second layer. Predictions made by the
econd layer are then combined to form the final output using a
eighted approach that gives each model a different weight, and
hese weights can be optimized by solving linear regression prob-
ems. In [18], Dang et al. introduced another multi-layer ensemble
f deep learning models for medical image segmentation, which
ontains a new last layer’s combining strategy based on swarm
ntelligence. The authors addressed the high time complexity
ssue of the optimization process by employing a surrogate-based
pproach. Recently, Luong et al. applied the multi-layer ensemble
rchitecture to the data stream setting to tackle the problem of
nsect stream classification [19]. The authors also made use of
ynamic GA to develop an online ensemble selection method,
iming to find the optimal subset of classifiers at each layer. Last
ut not least, a multi-layer ensemble system comprised of gated
ecurrent unit (GRU), bidirectional long short-term memory (BiL-
TM), and support vector machine (SVM) is used in [20] to predict
NA-binding proteins after employing a number of biological
echniques to extract useful features, applying autoencoder for
eature selection, and making use of SMOTE-ENN to balance the
amples.

.2. Evolutionary Computation for ensemble systems

Evolutionary Computation (EC) have been widely applied to
mprove the performance of ensemble systems in terms of optim-
zation for selection and optimization for adaptation. In the first
ategory, an EC method is used to search for the optimal subset of
lassifiers, original features, combining algorithms, or predictions
called meta-data) to obtain better performance than using the
hole set of classifiers or features. In [21], the optimal set of
lassifiers was obtained based on searching with a hybrid Genetic
lgorithm (GA). The hybrid GA involves a local search procedure
o make the offspring likely be improved before going to the
eplacement stage. In [22], Wang et al. built an ensemble of
lassifiers by training decision tree on 100 new training sets gen-
rated by using the random subspace and bootstrap resampling
echniques on the original training data. The non-dominated sort-
ng genetic algorithm II (NSGA-II), a multi-objection optimization
lgorithm then was used to search for the optimal set of classifiers
n terms of two objectives: maximizing classification accuracy
nd minimizing ensemble complexity i.e. the number of selected
lassifiers. In [12], Nguyen at el. proposed an ensemble selection
ethod by comparing confidence in each classifier’s predictions

o an associated confidence threshold. The optimal values of con-
idence thresholds of classifiers are found by using Artificial Bee
olony algorithm. In [23], Mendialdua et al. used Estimation of
istribution Algorithm (EDA), an stochastic optimization method
3

belonging to the class of Evolutionary Algorithm, to search for the
optimal set of classifiers. In [24], both classification accuracy and
ensemble diversity were addressed in the selection of classifiers
and combining algorithms. The solution was obtained by using
NSGA-II. In [25], the authors addressed the performance of en-
semble on the imbalanced datasets in searching of ensemble of
classifiers among the set of 20 classifiers. In [26], Nguyen et al.
proposed to simultaneously select the optimal predictions and
combining algorithms from the whole ensemble by using Ant
Colony Optimization.

Meanwhile, in optimization methods for adaptation, the pa-
rameters of the classifiers or the combining algorithms are tuned
by using an EC method to adapt to each specific classification
task. In [27], GA was used to find the optimal weights which
are the contributions of the learning algorithms on each training
instance. These learning algorithms then train on the weighted
training data to obtain the ensemble of classifiers. In [28], Genetic
Programming and PSO were used in searching for the prediction
function as the combining algorithm and in searching for the
threshold for the prediction functions in different feature spaces,
respectively. PSO was used to find the optimal representation in
the form of vector [29] or vector of intervals [30] for each class
labels on the meta-data as the basis for the combining algorithm
on the classifiers’ prediction.

There are also methods to handle both selection and adapta-
tion. For example, in [31], the selection and adaptation approach
for an ensemble of SVM classifiers were conducted based on the
searching on chromosomes of encoding for classifiers, features,
and parameters and weights of classifiers. In [32], the feature
selection methods were encoded to indicate which features were
used for each learning algorithm to train the classifiers. The
optimal solution then was obtained by using GA. The detail of EC
techniques for ensemble systems can be found in [29].

2.3. Particle swarm optimization and comprehensive learning

As mentioned, Evolutionary Computation is a popular ap-
proach to search for the optimized configuration for ensemble
systems. Particle Swarm Optimization (PSO) [33], a kind of swarm
algorithm inspired by the emergent motion of a flock of birds
searching for food, can be used for this task. This algorithm
performs a local search within each particle and global search
among the whole swarm at the same time. For a U-dimension
optimization problem, a particle in typical PSO is defined by xi =

x1i , x
2
i , . . . , x

U
i

)
; vi =

(
v1
i , v

2
i , . . . , v

U
i

)
in which xi and vi are the

position and velocity of the ith particle. Each particle’s velocity
is updated based on its current velocity, local best position, and
global best position. This ensures each particle is learned from the
whole swarm search result while it performs its own search.

vu
i ← a×vu

i +c1× r1×
(
pbestui − xui

)
+c2× r2×

(
gbestu − xui

)
(1)

Then each particle’s position is updated based on its velocity
and its current position

xui ← xui + vu
i (2)

Three learning parameters (a, c1, c2) are defined to control the
speed convergence of the search: a is the inertia weight which
is used to control the velocity speeding rate, c1 is an acceleration
constant used to control the learning rate of the particle’s local
best while c2 is an acceleration constant used to control the learn-
ing rate of the swarm global best. pbestui is the uth dimension
of ith particle’s best position and gbestu is the uth dimension
of the swarm’s best position. r1 and r2 are two random number
drawn from a uniform distribution over [0, 1]. Until now, various
variants of PSO aiming to enhance the performance of original
one can be found in the literature [34].

A.V. Luong, T.T. Nguyen, K. Han et al. Knowledge-Based Systems 275 (2023) 110691

p

{

l

T

D

F
w
t
C

L

It is believed that the original PSO can easily get trapped by
local optimum as all particles learn from the global best position
even if the current global best is far from the global optimum [35].
In 2006, Liang et al. proposed a variant of PSO called Comprehen-
sive Learning PSO (CLPSO) [35] in which each particle is designed
to learn from all particles’ local best position. Specifically, each
particle with U-dimension will also have a U-dimension exem-
lar vector ei =

(
e1i , e

2
i , . . . , e

U
i

)
for comprehensive learning.

The exemplar vector is introduced for a particle to learn from
the local best (pbest) of itself as well as all the other particles.
For example, a particle with the position (0.13, 0.43, 0.22, 0.74,
0,11), the velocity (0.48, 0.25, 0.52, 0.13,−0.15), and the exemplar
(6, 8, 4, 8, 4) would learns/updates the 3rd dimension position
value based on the 3rd dimension position value of the 4th
particle’s pbest . A particle is randomly assigned with an exem-
plar vector after initialization. The exemplar will be renewed if
a particle’s pbest stop improving after a number of iterations.
For each dimension of a certain particle, two different particles
will be selected randomly and the better one will be assigned
as the exemplar for the updated particle on the corresponding
dimension [35,36]. Therefore, only one acceleration of constant c
is needed. The updated equation is given by:

vu
i ← a× vu

i + c × r1 ×
(
pbestueui

− xui
)

(3)

in which c is an acceleration constant used to control the learning
rate of the exemplars’ local best, pbestueui

is the uth dimension
of particle’s best position referring to the uth dimension of ex-
emplar ei. Later in 2014, Yu et ca. proposed an Enhanced CLPSO
algorithm (ECLPSO) [37]. Targeting the low solution accuracy
disadvantage of CLPSO, they proposed two approaches. First, they
used a perturbation term to update each particle’s velocity to
improve the exploitation of the swarm. Normative knowledge
about dimensional bounds of personal best positions is used to
appropriately activate the perturbation-based exploitation. Sec-
ond, they changed the particles’ learning probabilities from the
initial pre-determined based on particle ranking to adaptative to
speed up convergence. Lynn et al. [38] proposed a heterogeneous
comprehensive learning particle swarm optimization algorithm
(HCLPSO). The approach aims at enhancing both exploration and
exploitation during the searching process. Specifically, the swarm
is divided into two subswarm with different focus: exploration
and exploitation. The exploration group exemplars are generated
based on its own subswarm particles local best experience while
the exploitation group exemplars are calculated based on the
entire swarm particles local best experience.

In this paper, we introduce a novel deep ensemble model,
DEFEG, which addresses the limitation of gcForest’s performance.
Our model addresses the research gap of gcForest by enhancing
the input feature’s discriminative ability and making performance
gain possible from going deeper in layer in the ensemble. We
propose a new approach to generating input features for each
layer using a weighted feature generation module that integrates
weights on the classifiers’ outputs. We encode the weights using
variable-length encoding and develop a variable-length Particle
Swarm Optimization (VLPSO) method to search for the optimal
values of the weights by maximizing the classification accuracy
on the validation data.

3. Proposed system

3.1. General description

We denote D =
{(

xn, ŷn
)}

as the training data with N
instances, where xn = {xnd|d = 1, . . . ,D} ∈ RD is the D-
dimension feature vector of the training instance, ŷ ∈ Y =
n

4

{ym,m = 1, . . . ,M} is its corresponding label, K =

Kk, k = 1, . . . , K } as the set of K learning algorithms. In each
ayer, we train the set of classifier H(i) =

{
h(i)
k , k = 1 . . . K

}
. The

classifiers in the first layer of DEFEG receive the original training
features and outputs the predictions for the training instances.
These predictions are integrated with the weights of classifiers
then will be used as augmented features for the second layer.
The process continues until reaching the last layer where the
predictions of classifiers in this layer (e.g. sth layer) are combined
by a combining algorithm C: h̃ = C

{
H(s)

}
for the final prediction.

he proposed method DEFEG is illustrated in Fig. 2:
There are two questions concerning the proposed model of

EFEG:

• How to generate the predictions for the training observa-
tions and then integrate these predictions with the weights
of classifiers to create the input data for the subsequence
layer?
• How to combine the predictions of classifiers of the last

layer to obtain the final prediction?

or the first question, we use the Cross Validation procedure
ith K learning algorithms to obtain the predictions for the
raining instances. In detail, in the first layer, we use T1-fold
ross Validation procedure on the original training data D = L0

to divide the training data into T1 disjoint parts that are nearly
equal in cardinality. We use one part as testing while the others
as training for K learning algorithms that make each training
instance be used for training (T1 − 1) times and for the testing 1
time. After running through all T1 folds, we obtain the predictions
of the classifiers in the first layer for the training instances. The
same Ti-fold Cross Validation procedure is conducted at the ith
layer for prediction generation. The kth classifiers trained on the
complementary of Ti in the Cross Validation procedure at the ith
layer gives support for the hypothesis that xn ∈ Ti belongs to
class label ym which is denoted by p(i)

k,m (xn). For M class labels, all

predictions will give in a vector
{
p(i)
k,m (xn)

}
, m = 1, . . . ,M which

shows the probabilities xn belongs to each class label [12,29].
Let W (i) =

{
w

(i)
km

}
i = 1, . . . , s; 1 ≤ s ≤ Smax denotes the inte-

grated weights on the prediction vector in which w
(i)
km ∈ [0, 1] is

the weight (i.e. the contribution) of classifier h(i)
k to the integration

associated with the class label ym. In this study, we propose using
W (i) to generate features for the (i+ 1) th layer. The weights of
classifiers in a layer is an approach to change the structure of
the prediction data with the aim of making deep model become
better after going through the subsequent layer. Table 1 presents
the feature generation model based on weighted integration in
which we integrate each prediction with its associated weights
and also shows the combining result associated with the class
labels. The output of the feature generation model is a weighted
integration vector P(i) (xn) for each training instance xn.

The prediction vector for xn based on the weights is given by:

P(i) (xn)

=

[
w

(i)
11p

(i)
1,1 (xn) , . . . , w

(i)
1Mp(i)

1,M (xn) , . . . , w
(i)
K1p

(i)
K ,1 (xn) , . . . , w

(i)
KMp(i)

K ,M (xn)
]

(4)

We propose two approaches to generate input training data for
one layer. The first approach is to concatenate P(i) (xn) to the
original training features. The input training data associated with
xn for the (i+ 1) th layer is given by:

Li (xn) =
[
xn1, xn2, . . . , xnD, P(i) (xn) , ŷn

]
(5)

The second approach is to use P(i) (xn) only as the training data
associated with xn for the (i+ 1) th layer

x =
[
P(i) x , ŷ

]
(6)
i (n) (n) n

A.V. Luong, T.T. Nguyen, K. Han et al. Knowledge-Based Systems 275 (2023) 110691

w
v
c
l
t
t

L

T
t
l
t
w
l

h̃

a
s

Fig. 2. The proposed method DEFEG.
Table 1
The weighted integration on the predictions of ith layer.

Class 1 Class 2 . . . Class m . . . Class M

Classifier 1 p(i)
1,1 (xn) w

(i)
11 p(i)

1,2 (xn) w
(i)
12 . . . p(i)

1,m (xn) w
(i)
1m . . . p(i)

1,M (xn) w
(i)
1M

Classifier 2 p(i)
2,1 (xn) w

(i)
21 p(i)

2,2 (xn) w
(i)
22 . . . p(i)

2.m (xn) w
(i)
2m . . . p(i)

2,M (xn) w
(i)
2M

.

Classifier k p(i)
k,1 (xn) w

(i)
k1 p(i)

k,2 (xn) w
(i)
k2 . . . p(i)

k,m (xn) w
(i)
km . . . p(i)

k,M (xn) w
(i)
kM

.

Classifier K p(i)
K ,1 (xn) w

(i)
K1 p(i)

K ,2 (xn) w
(i)
K2 . . . p(i)

K ,m (xn) w
(i)
Km . . . p(i)

K ,M (xn) w
(i)
KM

Combining
1
K

K∑
k=1

w
(i)
k1P

(i)
k,1 (xn)

1
K

K∑
k=1

w
(i)
k2P

(i)
k,2 (xn)

1
K

K∑
k=1

w
(i)
kmP

(i)
k,m (xn)

1
K

K∑
k=1

w
(i)
kMP (i)

k,M (xn)
d
t
t
o
p
p
w
m
b
b

x
d
p
w
(
d
r

In fact, P(i) =
{
P(i) (xn)

}
can be treated as the augmented features

hich would change the structure of the prediction data with the
alues of the weights. The input data of all training instances are
oncatenated to form the new training data Li for the (i+ 1) th
ayer in the shape of an N × (M × K + D) matrix in case of using
he first approach in (5) or an N×(M × K) matrix in case of using
he second approach in (6)

i = [Li (x1) , . . . ,Li (xn) , . . . ,Li (xN)]T (7)

he combining algorithm C: h̃ = C
{
H(s)

}
works on the predic-

ions of the classifiers in the last layer to obtain the final predicted
abel. Assume for a model with s layer, a class label is assigned
o sample x by getting one associated with the maximum of the
eighted average on the predictions of the classifiers in the last

ayer:

(x) : x ∈ y if y = arg max
ym,m=1..M

1
K

K∑
k=1

w
(s)
kmP

(s)
k,m (x) (8)

Algorithm 1 and 2 present the training and classification process
of DEFEG. The training process gets the training data, K learning
lgorithms, and weights for feature generation and outputs the
et of classifiers in each layer. In ith layer, we first train the
5

set of classifiers H(i) =

{
h(i)
k

}
by using K learning algorithms

on the whole input training data L(i−1) of this layer in Step 4–
6. The following steps aim to generate input training data for
the (i+ 1) th layer. In step 7, the input training data L(i−1) is
ivided into Ti disjoin nearly equal parts. For each part L(i−1)

j , we
rain classifiers on its complementary L(i−1)−L

(i−1)
j and then use

hese classifiers to predict for its observations. These predictions
f all parts are joined together in Step 11 so that we obtain the
redictions for all training observations at ith layer. In Step 14,
redictions of all training observations are integrated with the
eights to obtain weighted predictions P(i) in a N × (M × K)
atrix. The input training data for the (i+ 1) th layer is generated
y concatenating P(i) to the original training data L(0) = D (5) or
y using P(i) only (6).
The classification process meanwhile gets an unseen sample

, the set of classifiers in each layer, and the weights as the input
ata. For ith layer, we use the set of classifiers in this layer to
redict on L(i−1) (x) (Step 5). All predictions then are integrated
ith the weights W (i) to create the weighted prediction P(i) (x)
4). P(i) (x) will be used with or without x to generate the test
ata for the (i+ 1) th layer (Step 8). The classification process
uns through layers in the model until reaching the last layer

A.V. Luong, T.T. Nguyen, K. Han et al. Knowledge-Based Systems 275 (2023) 110691

i
a

t
W
p
o
V

i
t
o

i
a
m
I
p
e
l
c

.e. sth layer. Finally, the predictions of classifiers in the last layer
re combined by using weights W (s) to obtain the predicted label

(Step 11).
6

3.2. Proposed encoding

One question that arises from this model is to search for the
weights W =

{
W (i)

}
. In this work, W is found by maximizing

he classification accuracy of the ensemble on a validation set V.
e define the empirical fitness function on V by comparing the
rediction hypothesis for x ∈ V i.e. h̃ (x) to its ground truth ŷ. The
ptimization problem based on the fitness function computed on
is given by:

max
W={W (i)}

⎧⎨⎩ 1
|V|

∑
x∈|V|

[[̃
h (x) = ŷ

]]⎫⎬⎭ (9)

s.t w
(i)
km ∈ [0, 1] ,W (i)

=

{
w

(i)
km

}
i = 1 . . . s; k = 1 . . . K ;m = 1 . . .M

n which h̃ is the combining model in the last layer, |·| denotes
he cardinality of a set, and [[.]] is equal 1 if the condition is true,
therwise equal 0.
We propose using Evolutionary Computation-based approach

n solving the optimization problem in (9) since it is an effective
pproach to deal with non-differentiable, discontinuous, or multi-
odel objective functions involved in the optimization problems.

n this way, the proposed encoding for the weights in DEFEG is
resented in Fig. 3 in which we use the variable-length numerical
ncoding for the weights of s layers. Since the weights of each
ayer are given in the shape of M × K vector (see Table 1), the
hromosome associated with the model of s layers has s×K ×M
numerical elements: w

(i)
km ∈ [0, 1]. The proposed encoding is

divided into two parts: the first part including the weights for
layers from 1 to (s− 1): W (i) =

{
w

(i)
km

}
i = 1, . . . , s − 1

and the second part is the combining weight for the last layer
W (s) =

{
w

(s)
km

}
k = 1, . . . , K ;m = 1, . . . ,M . The weights W (i)

i = 1, . . . , s − 1 is used to generate augmented features for the
subsequent layer while the weight W (s) is used for the combining
method in (8) to obtain a predicted class label. It is noted that
the length of the chromosome is not fixed and depends on the
number of layers that we use to construct the deep model. Here
the number of layers is chosen by 1 ≤ s ≤ maxS in which maxS
is the maximum number of layers. Based on this encoding, we
can obtain not only the optimal weights for feature generation
and combining but also the optimal number of layers for the deep
model.

3.3. Variable-length PSO

VLPSO is a research topic that has emerged recently as an
efficient tool to solve optimization problems with numerical
variable-length encodings [36]. Some VLPSO methods have been
introduced in the literature. Wang et al. [39] proposed to use
VLPSO to search for the optimal structure of CNN and the pa-
rameters in each layer. The proposed searching works on fixed-
length particles and then uses IP encoding/decoding to realize
the variable-length search. Another example of the VLPSO can be
found in [36] which aimed to solve the feature selection problem.
In this study, we develop a VLPSO algorithm to solve the opti-
mization problem of (9) based on the studies of comprehensive
learning PSO [35] and the VLPSO for feature selection [36].

VLPSO representation: Each particle is represented with a triple:
a position vector, a velocity vector, and an exemplar vector.
The position vector is decoded into the weights W for fitness
evaluation. The velocity vi =

(
v1
i , v

2
i , . . . , v

s×M×K
i

)
is used to

update the position vector for the searching purpose. By using

A.V. Luong, T.T. Nguyen, K. Han et al. Knowledge-Based Systems 275 (2023) 110691

t

v

Fig. 3. Proposed encoding for the DEFEG.
i
i
f
o
w
i

s

t
t
i
l
n
T
M
f
d
n
b

Fig. 4. The flowchart of VLPSO.

wo update Eqs. (2) and (3), we have:

u
i ← vu

i × a+ c × r1 ×
(
pbestueui

− wu
i

)
(10)

wu
i ← wu

i + vu
i (11)

Adaptive learning probability: In order to maintain the converg-
ing speed, comprehensive learning is controlled by a learning
probability Pc. This allows particle with worse performance to
have more chance to learn from other particles’ pbest while
7

particles with better performance learn more from their own
pbest . The learning probability is calculated as below [36]:

Pc ith = 0.05+ 0.45 ∗
e

10∗(rank(i)−1)
(number_of _particles−1)

e10 − 1
(12)

n which rank(i) is the performance ranking of the ith correspond-
ng particle. For this particle, it has a probability Pc ith to learn
rom other particles while probability (1-Pc ith) to learn from its
wn pbest . Specifically, when assigning or renewing exemplars,
ith a probability (1-Pc ith) the exemplar will be the correspond-

ng particle’s index while with a probability Pc ith the exemplar
will be randomly picked from other particles.

Particle groups division: The VLPSO aims to search for the best
structure of the deep ensemble model and the weights simulta-
neously. In order to identify the best structure (number of layers),
the number of particles (PopSize) is equally divided into a number
of groups which is set to Smax. To ensure all the particle candidates
be feasible, we initialized all the particles length as a multiple
of M × K . In detail, we first generate a set of particle length by
randomly picking up a value in the group size set of [M × K , 2×
M × K , . . . , Smax × M × K]. The proposed VLPSO will enable the
search of different layers at the same time. For example, if the
maximum layer number Smax is set to 5 and M×K = 12, we will
divide all the particles into 5 groups and initialized them with 5
different lengths [12,17,29].

Length changing: The length of all particle division will be
changed when the global best (gbest) stops changing after a
certain number of iteration. When the length changing happens,
the current maximum length will be reduced by M × K , and
all the particle divisions’ size will be updated proportionally to
the current maximum length except the group having the same
length with the gbest size. For example, if the current gbest
particle’s size is Lg and the maximum particle length is LMax, the
maximum size will be updated to LMax−M×K and the particles
group size will be updated to the proportion of LMax except for
the particle groups that have size Lg . After the update, the particle
length updated to lower than the minimum size M × K will be
et to M × K to ensure the solution is feasible.
There are two differences between the proposed VLPSO and

he VLPSO for feature selection in [36]. The first difference is in
he initialization phase in which to ensure the particles encoding
s feasible to construct the deep ensemble model, all the particle
engths are initialized as a multiple of M × K . Meanwhile, the
umber of groups was set to the maximum number of layers Smax.
hus Smax groups with the lengths [M×K , 2×M×K , . . . , Smax×

× K] are initialized (see Fig. 4). The second difference comes
rom the length changing procedure. The VLPSO in [36] was
eveloped to handle the feature selection problem in which the
umber of retained features should be chosen as small as possi-
le, resulting in the quick reduction of the particles’ length in the

A.V. Luong, T.T. Nguyen, K. Han et al. Knowledge-Based Systems 275 (2023) 110691

w
m
o
t
e
c
g
c
a
W
p
u
p

I
w
r
i
p
m
i
o
n
p

T

Table 2
Summary of notations.
Notations Mathematical meaning

N The number of training instances
D =

{(
xn, ŷn

)}
, n = 1, . . .N The training data

D The dimension of feature vector
xn = {xnd|d = 1, . . . ,D} ∈ RD The feature vector of the nth training instance
M The number of classes
ŷn ∈ Y = {ym,m = 1, . . . ,M} The label of the nth training instance
K The number of learning algorithms
K = {Kk, k = 1, . . . , K } The set of K learning algorithms
H(i) =

{
h(i)
k , k = 1 . . . K

}
The set of K classifiers trained from K

s The number of layers
maxS The maximum number of layers
C A combining algorithm
p(i)
k,m (xn) The support for the hypothesis that xn belongs to class label ym given by the kth classifier at the ith layer

W (i) =

{
w

(i)
km

}
The integrated weights on the prediction vector, where w

(i)
km is the weight of classifier h(i)

k to the integration
associated with the class label ym .

W =
{
W (i)

}
The weights

P(i) (xn) The prediction vector of the ith layer for xn based on weights
Li The training data for the (i+ 1) th layer
xi =

(
x1i , x

2
i , . . . , x

U
i

)
The position of the ith particle in PSO

vi =
(
v1
i , v

2
i , . . . , v

U
i

)
The velocity of the ith particle in PSO

ei =
(
e1i , e

2
i , . . . , e

U
i

)
The U-dimension exemplar vector of a particle

a The inertia weight which is used to control the velocity speeding rate in PSO
c The acceleration constant used to control the learning rate of the exemplars’ local best
r1 and r2 Two random number drawn from a uniform distribution over [0, 1]
Pc The learning probability to control comprehensive learning
PopSize The number of particles
Smax The number of initial groups of particles
pbesti The ith particle’s best position
gbest The swarm’s best position
Lg The current gbest particle’s size
LMax The maximum particle length
algorithm. For DEFEG, we only reduce from the maximum length
to one-layer size less every time the length changing procedure
is triggered.

The flowchart of proposed VLPSO is presented in Fig. 4. First,
e initialize Smax groups of particles according to lengths of the
ultiple of M × K as mentioned above. For each particle, based
n its a position vector (i.e. weights), we use Algorithm 1 to train
he deep ensemble model including an ensemble of classifiers in
ach layer. The deep ensemble model then will be used to predict
lass labels for the observations in the validation set. Since the
round truth of validated observations is known in advance, we
an calculate the fitness value of the particle as the classification
ccuracy of the deep ensemble model on the validation data.
e also update pbest of these particles and calculate learning
robability Pc for all particles by using (12). In this study, we
se the algorithm introduced in [36] to assign exemplars for all
articles.
The VLPSO algorithm runs until reaching the last iterations.

n each iteration, for each particle, we do three tasks (i) check
hether its exemplar vector needs to be renewed by using a
enewExemplars flag (ii) update its velocity and position by us-
ng (10) and (11) and (iii) calculate its fitness and update its
best . If pbest is not improved after a number of iterations, we
ark renew for its exemplar in the next iteration by setting

ts renewExemplars flag to true. Finally, we update the value
f gbest . The length changing procedure is conducted if gbest is
ot improved for several times. The VLPSO algorithm returns the
article associated with gbest choosing from the last iteration.
The summary of notations used in this section is shown in

able 2.
8

4. Experimental studies

4.1. Configurations

We designed the experiments to address two questions:

• Which is a suitable feature generation approach for DEFEG?
• Does DEFEG perform better than several well-known bench-

mark algorithms?

For the first question, we compared the performance of DEFEG
with two proposed approaches in generating input features for
the subsequent layer introduced in (5) and (6). This would help
to choose a suitable one for practice. We experimented and
compared the performances of DEFEG using 5 classifiers in each
layer: Naïve Bayes (using Gaussian distribution to approximate
the likelihood distribution), Random Forest (using 200 classifiers),
XgBoost (using 200 classifiers), K Nearest Neighbors (K was set to
5), and Logistic Regression. These classifiers were implemented
from the scikit-learn library.

To design the experiment for the second question, we com-
pared DEFEG to four well-known ensemble methods namely Ran-
dom Forest [13], Completely Random Tree Forest [4], Rotation
Forest [15], and XgBoost [14] in which we used 200 classifiers for
each method by referencing [2,12]. We also compared DEFEG to
two multiple layer models namely gcForest and Multiple Layer
Perceptron (MLP). In each layer of gcForest, we used 2 Random
Forests and 2 Completely Random Tree Forests like the experi-
ments in [4]. Since the performance of MLP significantly depends
on the network structure, we experimented with these methods
on a number of different network configurations and then re-
ported the best result among all configurations for comparison.

A.V. Luong, T.T. Nguyen, K. Han et al. Knowledge-Based Systems 275 (2023) 110691

t
e
v
T

Table 3
The experimental datasets.
Dataset name # of training observations # of testing observations # of classes # of dimensions

Abalone 2921 1253 3 8
Artificial 490 210 2 10
Australian 483 207 2 14
Balance 437 188 3 4
Breast-Tissue 74 32 6 9
Bupa 241 104 2 6
Cleveland 207 90 5 13
Conn-bench-vowel 369 159 11 10
Electricity 31718 13594 2 8
Embryonal 42 18 2 7129
Fertility 70 30 2 9
Hayes-roth 112 48 3 4
Heart 189 81 2 13
Hill_Valley 1696 728 2 100
Leukemia 50 22 2 7129
Madelon 1400 600 2 500
Magic 13314 5706 2 10
Musk1 333 143 2 166
Musk2 4618 1980 2 166
Newthyroid 150 65 3 5
Page-Blocks 3830 1642 5 10
Penbased 7694 3298 10 16
Phoneme 3782 1622 2 5
Pima 537 231 2 8
Ring 5180 2220 2 20
Satimage 4504 1931 6 36
Skin_NonSkin 171539 73518 2 3
Sonar 145 63 2 60
Spambase 3220 1381 2 57
Svmguide2 273 118 3 20
Texture 3850 1650 10 40
Tic-tac-toe 670 288 2 9
Twonorm 5180 2220 2 20
Vehicle 592 254 4 18
Vertebral 217 93 3 6
Waveform_w_noise 3500 1500 3 40
Waveform_wo_noise 3500 1500 3 21
Wdbc 398 171 2 30
Wine_red 1119 480 6 11
Wine_white 3 428 1470 7 11
MLP was constructed with different configurations: input-30-20-
output, input-50-30-output, and input-70-50-output by referenc-
ing the experiments in [4]. Also, all the network configurations
use ReLU as activation function, and their weights are found by
minimizing the log-loss function using Adam algorithm. DEFEG
was compared to two deep learning models, namely DeepFM [40]
and WideDeep [41], for tabular data. WideDeep learning model
aims to leverage the benefits of both wide linear models and deep
neural networks. Specifically, WideDeep employs a wide compo-
nent of a generalized linear model to effectively memorize sparse
feature interactions using cross-product feature transformations.
That wide component is trained jointly with a feed-forward neu-
ral network, to generalize previously hidden feature interactions
via low dimensional embeddings. DeepFM meanwhile was pro-
posed by combining the advantages of factorization-machine-
based recommendation and feature learning in deep models, to
exploit both low- and high-order feature interactions. Essen-
tially, DeepFM jointly trains an FM component, which models
order-1 and order-2 feature interactions, and a deep component,
which is employed to capture high-order feature interactions.
In this study, we used DeepTables library (https://deeptables.
readthedocs.io/en/latest/index.html) with default parameters to
train WideDeep and DeepFM.

For DEFEG, we used the 5-fold Cross-Validation in each layer
o generate the predictions for the training data. We followed the
xperiments of gcForest by choosing 20% of the training data for
alidation [4]. We also initialized the parameters for the VLPSO.
he maximum number of layers was set to 5. The maximum
9

number of iterations and the population size were set to 50. The
inertia weight a is updated at the tth iteration as [29]:

a = amax −
(amax − amin) t

maxT
(13)

in which amax = 0.9, amin = 0.5. Meanwhile, c was set to 1.49445
based on the experiments in [29]. The length changing frequency
was set to 2/3 of the maximum number of iterations. Finally,
the number of iterations used to update the exemplars was set
to 10. Although careful task-specific tuning may bring better
performance, here we used the same settings for experiments
on all datasets to show that DEFEG performs better than the
benchmark algorithms even with the simple settings.

The DEFEG and benchmark algorithms experimented on 40
datasets collected from UCI Machine Learning Repository. The
information of the datasets is present in Table 3.

4.2. Experimental results

Comparing two different feature generation approaches:
We first compared the performance of DEFEG with two fea-
ture generation approaches given in (5) and (6) for classification
accuracy and F1 score, respectively. We denoted DEFEG (Concate-
nation) for the approach using the concatenation between the
weighted predictions and the original training data in (5) and
DEFEG (Prediction) for the approach using the weighted predic-
tions only in (6). Figs. 5 and 6 show the performance of DEFEG
on 40 experimental datasets. In general, DEFEG (Concatenation)

https://deeptables.readthedocs.io/en/latest/index.html
https://deeptables.readthedocs.io/en/latest/index.html
https://deeptables.readthedocs.io/en/latest/index.html

A.V. Luong, T.T. Nguyen, K. Han et al. Knowledge-Based Systems 275 (2023) 110691

i
m

D
2
O
S
D
d

Fig. 5. The comparison between DEFEG (Prediction) and DEFEG (Concatenation) on classification accuracy.
Fig. 6. The comparison between DEFEG (Prediction) and DEFEG (Concatenation) on F1 score.
s slightly better than DEFEG (Prediction) for both performance
etrics.
For classification accuracy, the outstanding performances of

EFEG (Concatenation) over DEFEG (Prediction) are reported on
1 datasets while two approaches perform equally on 6 datasets.
n 6 datasets namely Artificial, Breast-Tissue, Fertility, Musk1,
vmguide2, and Vertebral, DEFEG (Concatenation) is better than
EFEG (Prediction) for more than 3%. Meanwhile, DEFEG (Pre-
iction) is significantly outperformed DEFEG (Concatenation) on
10
only 2 datasets namely Cleveland (3.3% better, 0.6444 vs. 0.6111)
and Madelon (3.8% better, 0.7917 vs. 0.7533).

For F1 score, DEFEG (Concatenation) is better than DEFEG
(Prediction) on 18 datasets in which the significant differences
in the performance are presented on 8 datasets (more than 3%
better). For example, on Fertility and Vertebral dataset, F1 scores
of DEFEG (Concatenation) are more than 25% and 11% higher than
those of DEFEG (Prediction). DEFEG (Concatenation) meanwhile is
equal and worse than DEFEG (Prediction) on 5 datasets and 17

A.V. Luong, T.T. Nguyen, K. Han et al. Knowledge-Based Systems 275 (2023) 110691

o
(

Fig. 7. The illustration of obtained configurations of DEFEG with two feature generation approaches for Musk2 dataset. * The above figure is the configuration
btained by DEFEG (Concatenation) (the green line from the training data shows this concatenation). The below figure is the configuration obtained by using DEFEG
Prediction).
Fig. 8. The illustration of obtained configurations of DEFEG with two feature generation approaches for Hayes-roth dataset. * The above figure is the configuration
obtained by DEFEG (Concatenation) (the green line from the training data shows this concatenation). The below figure is the configuration obtained by using DEFEG
(Prediction).
datasets, respectively. DEFEG (Prediction) is significantly better
than DEFEG (Concatenation) on some datasets like Balance (6.4%
better, 0.8499 vs. 0.7861), Bupa (3.2% better, 0.7383 vs. 0.7063),
Madelon (4.2% better, 0.7915 vs. 0.7499), and Wine_red (3.96%
better, 0.3549 vs. 0.3153).
11
Figs. 7 and 8 show the obtained configurations of two feature
generation approaches on Musk2 and Hayes-roth dataset. For
2-class label Musk2 dataset, we acquired a 3-layer model with
DEFEG (Concatenation) and a 2-layer model with DEFEG (Predic-
tion). In the first layer of the model of DEFEG (Concatenation), the

A.V. Luong, T.T. Nguyen, K. Han et al. Knowledge-Based Systems 275 (2023) 110691

w
t

h
o
t
p
v
t
(
[
o
t
a

t
t
D

Table 4
The classification accuracy of DEFEG and the benchmark algorithms.
Data Completely

Random
Tree Forest

gcForest Random Forest XgBoost MLP Rotation Forest DEFEG DeepFM WideDeep

Abalone 0.5235 (9) 0.5387 (5) 0.5323 (6) 0.5499 (4) 0.5611 (1) 0.5515 (3) 0.5563 (2) 0.5243 (8) 0.5299 (7)
Artificial1 0.7143 (6) 0.7905 (2) 0.7905 (2) 0.7619 (5) 0.6476 (7) 0.781 (4) 0.7905 (2) 0.5 (9) 0.6238 (8)
Australian 0.8599 (6) 0.8792 (4) 0.8889 (1) 0.8744 (5) 0.7005 (8) 0.8841 (2.5) 0.8841 (2.5) 0.5072 (9) 0.8068 (7)
Balance 0.8564 (5) 0.8564 (5) 0.8085 (8) 0.8457 (7) 0.9734 (1) 0.8564 (5) 0.8936 (2) 0.7287 (9) 0.8883 (3)
Breast-tissue 0.7188 (3.5) 0.6875 (6) 0.7188 (3.5) 0.7188 (3.5) 0.625 (7) 0.7188 (3.5) 0.75 (1) 0.1563 (8) 0.125 (9)
Bupa 0.7308 (2) 0.7212 (4) 0.7308 (2) 0.7019 (6.5) 0.7115 (5) 0.7019 (6.5) 0.7308 (2) 0.5769 (8) 0.4615 (9)
Cleveland 0.6222 (2.5) 0.6222 (2.5) 0.6333 (1) 0.5889 (5) 0.5 (7) 0.5333 (6) 0.6111 (4) 0.1 (9) 0.1333 (8)
Conn-bench-vowel 0.6478 (5) 0.6415 (6) 0.6101 (7) 0.8239 (4) 0.8365 (3) 0.956 (1) 0.9182 (2) 0.1258 (9) 0.1698 (8)
Electricity 0.7725 (9) 0.7998 (7) 0.7745 (8) 0.8529 (3) 0.805 (4) 0.8955 (2) 0.9303 (1) 0.8049 (5) 0.8035 (6)
Embryonal 0.5 (7) 0.5 (7) 0.3889 (9) 0.5 (7) 0.6111 (2.5) 0.5556 (4.5) 0.6111 (2.5) 0.5556 (4.5) 0.6667 (1)
Fertility 0.9 (5.5) 0.9 (5.5) 0.9 (5.5) 0.9 (5.5) 0.9 (5.5) 0.9333 (1.5) 0.9333 (1.5) 0.8667 (9) 0.9 (5.5)
Hayes-roth 0.75 (6) 0.7292 7) 0.8333 (2.5) 0.8125 (4) 0.7708 (5) 0.8333 (2.5) 0.875 (1) 0.625 (8) 0.375 (9)
Heart 0.8148 (4.5) 0.8272 (3) 0.8025 (6.5) 0.7531 (9) 0.8642 (1) 0.8025 (6.5) 0.8519 (2) 0.7901 (8) 0.8148 (4.5)
Hill-valley 0.544 7) 0.5824 (5) 0.5755 (6) 0.6126 (4) 0.8942 (3) 0.978 (2) 0.9821 (1) 0.4698 (9) 0.5124 (8)
Leukemia 0.7727 (8.5) 0.9091 (4.5) 0.9545 (1.5) 0.9091 (4.5) 0.9091 (4.5) 0.9091 (4.5) 0.9545 (1.5) 0.8182 (7) 0.7727 (8.5)
Madelon 0.5433 7) 0.635 (4) 0.62 (5) 0.7 (3) 0.545 (6) 0.8133 (1) 0.7533 (2) 0.5417 (8) 0.5317 (9)
Magic 0.8267 (8) 0.8375 (7) 0.8228 (9) 0.8735 (3) 0.8396 (6) 0.8796 (2) 0.8843 (1) 0.8531 (5) 0.8547 (4)
Musk1 0.7762 (9) 0.8531 (3) 0.8042 (8) 0.8322 (6) 0.8252 (7) 0.8462 (4.5) 0.8951 (1) 0.8462 (4.5) 0.8811 (2)
Musk2 0.8449 (9) 0.951 (7) 0.8944 (8) 0.9768 (4) 0.9798 (3) 0.9808 (2) 0.9899 (1) 0.9652 (6) 0.9717 (5)
Newthyroid 0.9538 (6.5) 0.9692 (3.5) 0.9538 (6.5) 0.9692 (3.5) 0.9846 (1.5) 0.9538 (6.5) 0.9846 (1.5) 0.9538 (6.5) 0.7385 (9)
Page-blocks 0.9214 (9) 0.9452 (6) 0.9525 (5) 0.9683 (2.5) 0.9629 (4) 0.9714 (1) 0.9683 (2.5) 0.9348 (8) 0.9379 (7)
Penbasd 0.8472 (6) 0.8957 (5) 0.8357 (7) 0.9897 (4) 0.99 (3) 0.9955 (1) 0.9948 (2) 0.7216 (8) 0.6595 (9)
Phoneme 0.8002 (7) 0.8181 (5) 0.8033 (6) 0.857 (4) 0.8631 (3) 0.8859 (2) 0.9001 (1) 0.7879 (8) 0.7707 (9)
Pima 0.7446 (3.5) 0.7359 (6) 0.7576 (2) 0.7186 (9) 0.7316 (7.5) 0.7403 (5) 0.7619 (1) 0.7446 (3.5) 0.7316 (7.5)
Ring 0.9446 7) 0.9635 (6) 0.927 (8) 0.9707 (3) 0.8432 (9) 0.968 (4) 0.9811 (1) 0.9649 (5) 0.9721 (2)
Satimage 0.8493 (6) 0.8695 (4) 0.8576 (5) 0.912 (3) 0.8364 (7) 0.9259 (2) 0.9332 (1) 0.8276 (8) 0.8141 (9)
Skin_Nonskin 0.9655 (8.5) 0.9829 (7) 0.9655 (8.5) 0.9977 (4) 0.99914 (3) 0.99955 (1) 0.99951 (2) 0.9837 (6) 0.9868 (5)
Sonar 0.8254 (8.5) 0.8254 (8.5) 0.8413 (6) 0.8413 (6) 0.8889 (1) 0.8413 (6) 0.873 (3) 0.873 (3) 0.873 (3)
Spambase 0.929 6) 0.9385 (4) 0.9254 (8) 0.9544 (2) 0.9356 (5) 0.9493 (3) 0.9616 (1) 0.9261 (7) 0.9232 (9)
Svmguide2 0.7458 (3) 0.6949 (9) 0.7373 (6) 0.7458 (3) 0.7034 (8) 0.7373 (6) 0.7712 (1) 0.7458 (3) 0.7373 (6)
Texture 0.8 (7) 0.8436 (5) 0.8345 (6) 0.9812 (4) 0.9933 (1) 0.9927 (2) 0.9885 (3) 0.6394 (9) 0.6448 (8)
Tic-Tac-Toe 0.7153 (9) 0.816 (5) 0.8056 (6.5) 0.9861 (2) 0.9271 (4) 0.9375 (3) 0.9965 (1) 0.7951 (8) 0.8056 (6.5)
Twonorm 0.9662 (8) 0.9671 (7) 0.9604 (9) 0.9734 (5) 0.9707 (6) 0.9811 (1) 0.977 (3) 0.9761 (4) 0.9779 (2)
Vehicle 0.689 (6.5) 0.7283 (4) 0.7126 (5) 0.7756 (3) 0.689 (6.5) 0.815 (2) 0.8189 (1) 0.622 (9) 0.6378 (8)
Vertebra 0.7957 (7.5) 0.7957 (7.5) 0.8495 (2) 0.828 (5) 0.7957 (7.5) 0.871 (1) 0.8387 (3.5) 0.7957 (7.5) 0.8387 (3.5)
Waveform_wo_Noise 0.8267 (7) 0.8473 (4) 0.838 (6) 0.8487 (3) 0.8433 (5) 0.86 (1) 0.858 (2) 0.75 (9) 0.778 (8)
Waveform_w_Noise 0.8087 (7) 0.8573 (4) 0.8447 (5) 0.8667 (3) 0.8367 (6) 0.872 (2) 0.8787 (1) 0.772 (8) 0.74 (9)
Wdbc 0.9649 (6.5) 0.9649 (6.5) 0.9591 (8) 0.9766 (3) 0.9532 (9) 0.9766 (3) 0.9825 (1) 0.9766 (3) 0.9708 (5)
Wine_red 0.575 (6) 0.5854 (5) 0.5938 (4) 0.6375 (3) 0.5646 (9) 0.6583 (1.5) 0.6583 (1.5) 0.5688 (8) 0.5708 (7)
Wine_white 0.5299 (8) 0.5707 (4) 0.5524 (6) 0.6122 (3) 0.5163 (9) 0.685 (1) 0.6748 (2) 0.5571 (5) 0.5517 (7)
Average 0.7729 0.7969 0.7898 0.8250 0.8082 0.8507 0.8650 0.7068 0.7121
Average ranking 6.575 5.2625 5.625 4.275 5.0375 2.9875 1.725 6.9875 6.525
t
a
s
D
i

weights associated with the predictions of K Nearest Neighbors
are [1e−8, 1e−8] which means the predictions of this classifiers
are set to 0 in the input training data for the second layer.
All predictions of Logistic Regression are used in generating the
training data for the second layer but after the second layer,
because the weight vector of Logistic Regression is [1e−8, 1e−8]
hich means the predictions of this classifier are set to 0 in the
raining data for the third layer.

On the 3-class Hayes-roth dataset, both models of DEFEGs
ave 2 layers with different weights. For example, in the model
f DEFEG (Concatenation), the weight vector of Naïve Bayes in
he first layer is [1, 1, 0.3102] for 3 class labels, that means the
redictions for 1st and 2nd class label are used with original
alues while 31.02% of the predictions for 3rd class label are used
o generate new training data. Meanwhile, in the model of DEFEG
Prediction), the weight vector of Naïve Bayes in the first layer is
1e−8, 0.0004, 0.3324] for 3 class labels, that means only 33.24%
f the predictions for 3rd class label is used to generate new
raining data while the predictions for 1st and 2nd class labels
re set to 0.
The choosing of DEFEG (Concatenation) or DEFEG (Prediction)

hus is somewhat data-dependent. Although DEFEG (Concatena-
ion) is slightly better than DEFEG (Prediction) in general, using
EFEF (Prediction) may bring benefits concerning the training
12
ime in some cases. By concatenating the original training data
nd weighted predictions in DEFEG (Concatenation), the dimen-
ion of new training data for the subsequent layer would be
+M×K which is much higher than those of DEFEG (Prediction)
n cases the original data is given in high dimensions i.e. D
is a large number, resulting in high training cost. On Musk 2,
for example, the training process of DEFEG (Concatenation) and
DEFEG (Prediction) takes 7 and 2.5 h, respectively.

In the next section, we used the experimental results of DEFEG
(Concatenation) to compare to those of the benchmark algo-
rithms.

Comparison with benchmark algorithms: Tables 4 and 5 shows
the classification accuracy, F1 score, and related ranking of DEFEG
and the benchmark algorithms on the experimental datasets.
For classification accuracy, DEFEG is better than all benchmark
algorithms except Rotation Forest based on the Nemenyi posthoc
test (see Fig. 9). DEFEG ranks first with the rank value 1.725 . Ro-
tation Forest ranks second with a rank value of 2.9875, followed
by XgBoost (rank value 4.275) and MLP (rank value 5.0375).
DeepFM and Completely Random Tree Forest are the two poorest
methods in our experiment with rank value 6.9125 and 7.0875
respectively.

In detail, DEFEG ranks first or shares the first ranking on 21
datasets (52.5%) and ranks second or shares the second-ranking

A.V. Luong, T.T. Nguyen, K. Han et al. Knowledge-Based Systems 275 (2023) 110691

T
d
R
e
F
d
f
r

Table 5
The F1 score of DEFEG and the benchmark algorithms.
Data Completely

Random
Tree Forest

gcForest Random Forest XgBoost MLP Rotation Forest DEFEG DeepFM WideDeep

Abalone 0.4586 (8) 0.5052 (5) 0.4801 (6) 0.5343 (3) 0.5456 (2) 0.5522 (1) 0.53 (4) 0.4371 (9) 0.4654 (7)
Artificial 0.65 (6) 0.7608 (4) 0.769 (2) 0.7464 (5) 0.6 (7) 0.7654 (3) 0.7779 (1) 0.4986 (9) 0.5654 (8)
Australian 0.848 (6) 0.8704 (4) 0.882 (1) 0.8669 (5) 0.6635 (8) 0.8778 (2) 0.8722 (3) 0.3826 (9) 0.7972 (7)
Balance 0.6004 (6) 0.6985 (3) 0.5664 (9) 0.597 (8) 0.9578 (1) 0.5996 (7) 0.7861 (2) 0.626 (4) 0.6217 (5)
Breast-Tissue 0.6989 (3) 0.6389 (6) 0.7037 (1) 0.6989 (3) 0.5781 (7) 0.6989 (3) 0.688 (5) 0.045 (8) 0.037 (9)
Bupa 0.6986 (3) 0.6899 (7) 0.7063 (1.5) 0.6937 (5) 0.6916 (6) 0.6956 (4) 0.7063 (1.5) 0.3659 (9) 0.3786 (8)
Cleveland 0.2418 (7) 0.2559 (5) 0.2571 (4) 0.3016 (2) 0.2456 (6) 0.272 (3) 0.3581 (1) 0.0367 (9) 0.0689 (8)
Conn-bench-vowel 0.6356 (6) 0.6442 (5) 0.6134 (7) 0.8208 (4) 0.8288 (3) 0.9539 (1) 0.9223 (2) 0.0621 (9) 0.0863 (8)
Electricity 0.7532 (9) 0.7961 (5.5) 0.7571 (8) 0.8483 (3) 0.8002 (4) 0.8925 (2) 0.9285 (1) 0.7961 (5.5) 0.7937 (7)
Embryonal 0.3333 (9) 0.4109 (7) 0.3378 (8) 0.4582 (5) 0.5786 (3) 0.5325 (4) 0.6099 (2) 0.4462 (6) 0.6667 (1)
Fertility 0.4737 (6.5) 0.4737 (6.5) 0.4737 (6.5) 0.6727 (3) 0.6296 (4) 0.7321 (1.5) 0.7321 (1.5) 0.4643 (9) 0.4737 (6.5)
Hayes-roth 0.7889 (5) 0.7718 (6) 0.8561 (3) 0.8262 (4) 0.7674 (7) 0.8593 (2) 0.8944 (1) 0.5957 (8) 0.295 (9)
Heart 0.797 (5) 0.8056 (3) 0.7817 (7) 0.7271 (9) 0.8571 (1) 0.791 (6) 0.8389 (2) 0.7765 (8) 0.8052 (4)
Hill_valley 0.5435 (7) 0.5803 (5) 0.5755 (6) 0.6122 (4) 0.8942 (3) 0.978 (2) 0.9821 (1) 0.4283 (8) 0.3462 (9)
Leukemia 0.6508 (9) 0.8854 (5) 0.9454 (1.5) 0.8854 (5) 0.9018 (3) 0.8854 (5) 0.9454 (1.5) 0.7412 (7) 0.727 (8)
Madelon 0.5377 (7) 0.6248 (4) 0.6196 (5) 0.6996 (3) 0.4949 (9) 0.8129 (1) 0.7499 (2) 0.5417 (6) 0.5299 (8)
Magic 0.7898 (9) 0.8177 (6) 0.7959 (8) 0.8551 (3) 0.8119 (7) 0.8634 (2) 0.8704 (1) 0.8313 (4) 0.8271 (5)
Musk1 0.7652 (9) 0.8513 (3) 0.798 (8) 0.8292 (6) 0.8209 (7) 0.8434 (4.5) 0.8946 (1) 0.8434 (4.5) 0.8803 (2)
Musk2 0.458 (9) 0.8968 (7) 0.7163 (8) 0.9538 (4) 0.9606 (3) 0.9617 (2) 0.981 (1) 0.9273 (6) 0.9431 (5)
Newthyroid 0.926 (6.5) 0.9453 (3.5) 0.926 (6.5) 0.9453 (3.5) 0.9742 (1.5) 0.926 (6.5) 0.9742 (1.5) 0.926 (6.5) 0.4734 (9)
Page-blocks 0.4631 (7) 0.6302 (6) 0.6745 (5) 0.7875 (3) 0.7746 (4) 0.8302 (1) 0.8008 (2) 0.3517 (9) 0.3891 (8)
Penbased 0.8442 (6) 0.8961 (5) 0.8318 (7) 0.9897 (4) 0.99 (3) 0.9955 (1) 0.9949 (2) 0.683 (8) 0.6474 (9)
Phoneme 0.7474 (7) 0.7822 (5) 0.7566 (6) 0.828 (4) 0.8395 (3) 0.8615 (2) 0.8784 (1) 0.734 (8) 0.71 (9)
Pima 0.6989 (6) 0.723 (3) 0.7255 (2) 0.6952 (7) 0.6741 (8) 0.7164 (4) 0.7363 (1) 0.7078 (5) 0.6617 (9)
Ring 0.9445 (7) 0.9635 (6) 0.9266 (8) 0.9707 (3) 0.8429 (9) 0.968 (4) 0.9811 (1) 0.9649 (5) 0.9721 (2)
Satimage 0.7927 (6) 0.8322 (4) 0.8092 (5) 0.8932 (3) 0.792 (7) 0.9092 (2) 0.9149 (1) 0.7196 (8) 0.7121 (9)
Skin_NonSkin 0.9481 (8.5) 0.9745 (7) 0.9481 (8.5) 0.9965 (4) 0.9987 (3) 0.99932 (1) 0.99925 (2) 0.9756 (6) 0.9804 (5)
Sonar 0.8225 (8) 0.8209 (9) 0.838 (6.5) 0.8393 (5) 0.8871 (1) 0.838 (6.5) 0.8704 (4) 0.8722 (2.5) 0.8722 (2.5)
Spambase 0.926 (6) 0.9364 (4) 0.9225 (8) 0.9529 (2) 0.9338 (5) 0.9476 (3) 0.9603 (1) 0.9237 (7) 0.9212 (9)
Svmguide2 0.5834 (7) 0.6017 (6) 0.6157 (5) 0.6825 (2) 0.4729 (9) 0.6535 (4) 0.7371 (1) 0.5241 (8) 0.6602 (3)
Texture 0.787 (7) 0.8378 (5) 0.8258 (6) 0.9804 (4) 0.9929 (1) 0.9925 (2) 0.9882 (3) 0.5561 (8) 0.5501 (9)
Tic-tac-toe 0.5328 (9) 0.7715 (5) 0.7383 (6) 0.9841 (2) 0.9138 (4) 0.9259 (3) 0.9961 (1) 0.7085 (8) 0.7305 (7)
Twonorm 0.9662 (8) 0.9671 (7) 0.9604 (9) 0.9734 (5) 0.9707 (6) 0.9811 (1) 0.977 (3) 0.9761 (4) 0.9779 (2)
Vehicle 0.649 (7) 0.7037 (4) 0.6692 (6) 0.7639 (3) 0.6742 (5) 0.799 (2) 0.8046 (1) 0.5404 (9) 0.5633 (8)
Vertebral 0.6706 (9) 0.6809 (7) 0.766 (3) 0.7395 (4) 0.7025 (6) 0.813 (1) 0.7729 (2) 0.6755 (8) 0.7271 (5)
Waveform_wo_noise 0.8206 (7) 0.8464 (4) 0.8365 (6) 0.8481 (3) 0.8427 (5) 0.8592 (1) 0.8573 (2) 0.7473 (9) 0.7742 (8)
Waveform_w_noise 0.8025 (7) 0.8571 (4) 0.8439 (5) 0.8667 (3) 0.8367 (6) 0.872 (2) 0.8785 (1) 0.766 (8) 0.7373 (9)
Wdbc 0.9618 (7) 0.962 (6) 0.9556 (8) 0.9749 (2) 0.949 (9) 0.9747 (3.5) 0.981 (1) 0.9747 (3.5) 0.9685 (5)
Wine_red 0.2107 (9) 0.262 (5) 0.2517 (8) 0.3535 (2) 0.2577 (7) 0.3608 (1) 0.3153 (3) 0.265 (4) 0.2584 (6)
Wine_white 0.1666 (9) 0.2314 (6) 0.2005 (8) 0.3273 (3) 0.217 (7) 0.4136 (1) 0.4133 (2) 0.239 (4) 0.2363 (5)
Average 0.6747 0.7301 0.7164 0.7755 0.7541 0.8051 0.8225 0.6169 0.6208
Average ranking 7.0875 5.2125 5.825 3.8875 5.0125 2.7125 1.775 6.9125 6.575
on 14 datasets (35%). On the datasets where DEFEG ranks first,
the significant differences between the classification of DEFEG
and that of the second rank methods are presented on some
datasets like Breast-Tissue (3.12%, 0.75 vs. 0.7188), Electricity
(3.48%, 0.9303 vs. 0.8955), Hayes-roth (4.17%, 0.875 vs. 0.8333).
DEFEG performs poorly compared to the first rank method on 4
datasets: Balance (0.8936 vs. 0.9734 of MLP), Conn-bench-vowel
(0.9182 vs. 0.956 of Rotation Forest), Madelon (0.7533 vs. 0.8133
of Rotation Forest), and Vertebral (0.8387 vs. 0.871 of Rotation
Forest). This demonstrates the advantage of DEFEG comparing
to the state-of-the-art ensemble methods and multi-layer based
methods.

Rotation Forest is the second-best method in our experiment.
his ensemble method ranks first or shares the first rank on 11
atasets. Based on the Nemenyi test on the experimental datasets,
otation Forest is better than MLP, gcForest, Random Forest, Wid-
Deep, Completely Random Tree Forest, and DeepFM. Rotation
orest creates an ensemble of classifiers on many new training
ata generated from the subset of the original one with PCA trans-
ormation. This ensemble generation makes new training data
ichness of diversity, resulting in high performance on several
13
datasets. Meanwhile, although there is no difference between
Rotation Forest and DEFEG based on the Nemenyi test, DEFEG
is significantly better than Rotation Forest on many datasets,
for example, more than up to 5% better on Cleveland, Heart,
Leukemia, Musk1, and Tic-tac-toe.

XgBoost does not rank first on any datasets although this
ensemble method ranks third in our experiment. Moreover, it
is noted that XgBoost does not win DEFEG on any datasets. The
significant difference in the classification accuracy of XgBoost and
DEFEG is presented on many datasets such as Balance (0.8936
vs. 0.8453), Conn-bench-vowel (0.9182 vs. 0.8239), Electricity
(0.9303 vs. 0.8529), Embryonal (0.6111 vs. 0.5), Hayes-roth (0.875
vs. 0.84125), Heart (0.8519 vs. 0.7531), Hill_valley (0.9821 vs.
0.6126), Leukemia (0.9545 vs. 0.9091), Madelon (0.7533 vs. 0.7),
Musk1 (0.8951 vs. 0.8322), Phoneme (0.9001 vs. 0.857), Pima
(0.7619 vs. 0.7186), Vehicle (0.8189 vs. 0.7756), and Wine_white
(0.6748 vs. 0.6122).

MLP is poorer than DEFEG even though we conducted the
experiment on the set of parameters to report the best result.
On the 5 datasets (Artificial, Australian, Breast-Tissue, Cleveland,
and Ring), MLP is significantly lower classification accuracy than

A.V. Luong, T.T. Nguyen, K. Han et al. Knowledge-Based Systems 275 (2023) 110691
Fig. 9. The Nemenyi test result on classification accuracy. DEFEG is better than XgBoost, MLP, gcForest, Random Forest, WideDeep, Completely Random Tree Forest,
and DeepFM Rotation Forest is better than MLP, gcForest, Random Forest, WideDeep, Completely Random Tree Forest, and DeepFM XgBoost is better than WideDeep,
Completely Random Tree Forest, and DeepFM.
not only DEFEG but also the other methods. DEFEG is only sig-
nificantly poorer than MLP on the Balance dataset while it is far
better than MLP on many datasets.

gcForest’s rank is higher than those of Random Forest, Wid-
eDeep, Completely Random Tree Forest, and DeepFM in our ex-
periment. Although gcForest is better than or equal to its mem-
bers i.e. Random Forest and Completely Random Tree Forest on
27 datasets, respectively, it is by far worse than DEFEG. The
outstanding performance of DEFEG over gcForest is from the
proposed augmented features in which the weighted integration
is done on the predictions to generate better-augmented fea-
tures for the subsequent layer. By using the VLPSO algorithm,
we can obtain the optimal weights that make classification ac-
curacy on the validate set be better, highly resulting in im-
proving performance on test data. This demonstrates the advan-
tages of weighted feature generation of DEFEG compared to the
multi-layer model of gcForest.

Random Forest, WideDeep, Completely Random Tree Forest,
and DeepFM are four poorest methods in the experiment. Com-
pletely Random Tree Forest yielded the lowest classification ac-
curacy among all methods on 9 datasets. The poor performance
of Completely Random Tree Forest can be explained based on its
mechanism in which only one feature is considered when looking
for the best split for node samples that reduce the flexibility of
the tree generation procedure. Random Forest yielded the lowest
classification accuracy among all methods on only 4 datasets
while this ensemble method ranks first on 3 datasets namely Aus-
tralian, Cleveland, and Leukemia. It is noticed that not only Ran-
dom Forest and Completely Random Tree Forest but also gcForest
have difficulties in some datasets likes Conn-bench-vowel, Elec-
tricity, Embryonal, Madelon, Penbased, Phoneme, Satimage, Tex-
ture, Tic-tac-toe, Hill_valley in comparison to their competitors.
For example, on the Hill_valley dataset where Random Forest and
Completely Random Tree Forest yields the smallest classification
14
accuracies among all methods, those accuracies are by far worse
than that of DEFEF (0.544 of Completely Random Tree Forest
and 0.5755 of Random Forest vs. 0.9821 of DEFEG). Although
the usage of deep ensemble models gcForest can improve the
performance (0.5824 of gcForest), the classification accuracy is
still low.

WideDeep and DeepFM performed poorly in the experiments
in which they ranked the seventh and nineth among all methods
respectively. While WideDeep ranks first on Embryonal dataset
and ranks second on 3 datasets (Musk1, Ring, and Twonorm),
DeepFM does not rank first or second on any datasets. DEFEG out-
performed WideDeep and DeepFM on 32 datasets. Some signif-
icant differences between the performances of DEFEG and Wid-
eDeep and DeepFM are on Breast-Tissue (0.75 of DEFEG vs 0.1563
and 0.125 of WideDeep and DeepFM, respectively), Cleveland
(0.6111 of DEFEG vs.0.1 and 0.1333 of WideDeep and DeepFM,
respectively), and Conn-bench-vowel (0.9182 of DEFEG vs. 0.1258
and 0.1698 of WideDeep and DeepFM, respectively). By contrast,
WideDeep is better than DEFEG on 2 datasets only (0.6667 vs.
0.6111 on Embryonal dataset, and 0.9779 vs. 0.977 on Twonorm
dataset) while DeepFM does not win DEFEG on any datasets.

For F1 score, it is observed a similar pattern in Nemenyi test
result like the comparison on classification accuracy mentioned
above. In detail, DEFEF is better than all benchmark algorithms
except Rotation Forest based on the Nemenyi test (see Fig. 10).
DEFEG ranks first with rank value 1.775 and ranks first or shares
rank first on up to 22 datasets. WideDeep, DeepFM, and Com-
pletely Random Tree Forest continue to be three poorest methods
in our experiments. There are two differences in Figs. 9 and
10 (i) for F1 score, XgBoost is better than not only Completely
Random Tree Forest, WideDeep, and DeepFM like the Nemenyi
test result concerning accuracy but also Random Forest and (ii)
while the ranks of 7 methods (DEFEF, Rotation Forest, XgBoost,
MLP, gcForest, Random Forest, and WideDeep) are similar for

A.V. Luong, T.T. Nguyen, K. Han et al. Knowledge-Based Systems 275 (2023) 110691
Fig. 10. The Nemenyi test result on F1 score. DEFEG is better than XgBoost, MLP, gcForest, Random Forest, WideDeep, DeepFM, and Completely Random Tree
Forest Rotation Forest is better than MLP, gcForest, Random Forest, WideDeep, DeepFM, and Completely Random Tree Forest XgBoost is better than Random Forest,
WideDeep, DeepFM, and Completely Random Tree Forest.
both accuracy and F1 score, the Completely Random Tree Forest is
the poorest methods when F1 score was considered. The average
ranking and the ranking on each dataset once again show the
advantage of DEFEG.

We note some differences in the experimental results concern-
ing F1 score in comparison to the experimental results concerning
classification accuracy. On 3 datasets, although the ranking of
DEFEG concerning classification accuracy is very good, the rank-
ing of DEFEG concerning F1 score is at the middle. In detail, on
Abalone, Breast-Tissue, and Wine_red dataset, the rankings of
DEFEG concerning classification accuracy are 2nd, 1st, and 1.5th,
respectively while the rankings of DEFEG concerning F1 score are
up to 4th, 5th, and 3rd, respectively. In contrast, on Cleveland
dataset, DEFEG ranks the first concerning F1 score but ranks 4th
concerning classification accuracy. Since we optimized the classi-
fication accuracy only on the validation set to find the integrated
weights, the comparison between DEFEG and the benchmark
algorithms concerning the classification accuracy shows a greater
number of better results than those concerning the F1 score. We
address future work to optimize both these two performance
metrics for deep ensemble systems.

DEFEG continues be significantly better than the second rank
method on several datasets such as Cleveland (0.3581 vs. 0.3016
of XgBoost), Electricity (0.9285 vs. 0.8925 of Rotation Forest),
Hayes-roth (0.8944 vs. 0.8593 of Rotation Forest), and Svmguide2
(0.7371 vs. 0.6825 of XgBoost).

To sum up, DEFEG is better than the benchmark algorithms for
both performance metrics on the experiments on 40 datasets. The
outstanding of DEFEG over the benchmark algorithms may come
from (i) the advantage of multi-layer architecture over one-layer
15
ensembles like Random Forest and Completely Random Forest (ii)
the advantage of integrated weights on the predictions in feature
generation over simple concatenation in gcForest.

The number of layers and computational complexity: Fig. 11
shows the comparison between the number of layers generated
by gcForest and DEFEG. On average, gcForest generates more lay-
ers than DEFEG, 3.5 vs. 2.25. GcForest can determine the number
of layers based on the performance on the validation set, i.e. it
stops growing the new layer if the classification error on the
validation set does not improve after a specific number of layers.
In DEFEG, the maximum number of layers was set to 5, and in the
length changing procedure, we shorten the number of layers by
1 if the global best does not improve after a specific number of
iterations. Thus, the average number of layers in gcForest is more
than that of DEFEG in our experiments. The classification time
depends on the number of layers as the more layer, the higher
the computational complexity during classification.

It is noted that DEFEG takes much higher training time to
search for the optimal weights for generating the augmented
features on the predictions of classifiers. However, the training
time of DEFEG can be reduced based on the stopping criterion
in VLPSO. In Fig. 12, the fitness function’s average and global
best in VLPSO iterations show that DEFEG’s global best converges
quickly on datasets such as Musk2, Conn-bench-vowel, Bupa,
Hayes-roth, and Penbased, while on datasets like Spambase, Vehi-
cle, Waveform_w_noise, and Electricity, global best convergence
happens after around 20 iterations. On some datasets, such as
Artificial, Waveform_wo_noise, and Madelon, global best conver-
gence is slower. Thus, early stopping based on the convergence
of the global best can effectively reduce training time on certain

A.V. Luong, T.T. Nguyen, K. Han et al. Knowledge-Based Systems 275 (2023) 110691

d
s
w
p
V
l
c
b

o
F
n
t
m
f
r
m
v
l
g

Fig. 11. The number of layers of gcForest and DEFEG on experimental datasets.
atasets. Theoretically, the training time complexity of DEFEG is
×O(VLPSO)×O(Particle Evaluation) = s×(nIters×nPop)×(K×t1),
here nIters is the number of iterations in VLPSO, nPop is the
opulation size of VLPSO, s is the average number of layers of
LPSO’s configurations, K is the number of classifiers at each
ayer, and t1 is the average training time complexity of base
lassifiers. In comparison, the training time of gcForest is faster
y nIters× nPop times.
However, DEFEG’s classification time is competitive with that

f gcForest. The theoretical time complexities of DEFEG and gc-
orest are O(s× K × t2), where s is the number of layers, K is the
umber of classifiers at each layer, and t2 is the average testing
ime complexity of base classifiers. On the datasets where the two
ethods have the same number of layers, their time complexities

or the classification phase are nearly the same. Experimental
esults also confirm the similar classification times of the two
ethods, for example, 0.5 vs. 0.38 s on Abalone (4 layers), 0.28
s. 0.23 s on Spambase (2 layers), 0.07 vs. 0.09 s on Tic-tac-toe (2
ayers), and 0.12 vs. 0.14 s on Vehicle (3 layers), for DEFEG and
cForest, respectively.
16
5. Conclusions

In this study, we proposed DEFEG, a deep ensemble model
with multiple layers of different classifiers in each layer for the
classification problem. The main difference between DEFEG and
gcForest lies in the feature generation module. While gcForest
concatenates the original features with the outputs of classifiers
to generate the input features for the subsequent layer, DEFEG
integrates weights on the classifiers’ outputs as augmented fea-
tures to grow the deep model, which can be viewed as some kind
of boosting. This approach allows for the adjustment of the input
data of each layer, leading to better results for the deep model.
In contrast, the input features in gcForest do not necessarily
ensure better performance when going through layer-by-layer
architecture. In addition, gcForest uses a homogeneous ensemble
in its layers, while DEFEG employs a heterogeneous ensemble
at each layer, allowing for greater diversity in the predictions
of each layer. Another key innovation in DEFEG is the use of
variable-length encoding to encode the weights for all layers.
This encoding method enables the algorithm to handle different

A.V. Luong, T.T. Nguyen, K. Han et al. Knowledge-Based Systems 275 (2023) 110691

Fig. 12. The average and global best of the fitness function in the iterations of VLPSO. * x-axis is the number of iterations, y-axis is the value of fitness function as
the classification accuracy on the validation set.

17

A.V. Luong, T.T. Nguyen, K. Han et al. Knowledge-Based Systems 275 (2023) 110691

n
o
W
t
o
v

F
M
o
C
t
f
t
t
o
o
l
F

s
s
t
m
w
v
p

p

C

W
i
w
L

D

c
t

D

b

R

umbers of classifiers in each layer as well as different number
f layers, providing more flexibility in the model architecture.
e also developed a new variable-length Particle Swarm Op-

imization (VLPSO) algorithm to search for the optimal values
f the weights by maximizing the classification accuracy on the
alidation data.
DEFEG is better than the benchmark algorithms including gc-

orest, XgBoost, Random Forest, Completely Random Tree Forest,
LP, and Rotation Forest in our experiments. In detail, DEFEG
utperforms the XgBoost, MLP, gcForest, Random Forest, and
ompletely Random Tree Forest based on the Nemenyi post-hoc
est for both classification accuracy and F1 score. DEFEG ranks
irst on average and ranks first or share the first ranking on more
han 20 datasets. These results demonstrate the advantage of
he proposed augmented features to grow the deep model in
ur study comparing to the gcForest as well as the advantage
f the multi-layer architecture of DEFEG comparing to the one-
ayer ensemble like Random Forest and Completely Random Tree
orest.
In future work, a plausible approach to improve DEFEG is to

peed up its training time. In particular, the problem of expen-
ive training time of the VLPSO optimization during the objec-
ive function evaluation can be relieved using a surrogate-based
ethod [42]. A surrogate on the objective function can be trained
ith some beginning populations, and then it is used to predict
alues of the objective function of each particle in the subsequent
opulations.
For reproducibility, we have made the code available on [to be

rovided upon publication of this work].

RediT authorship contribution statement

Anh Vu Luong: Conceptualization, Methodology, Software,
riting – original draft. Tien Thanh Nguyen: Methodology, Writ-

ng – original draft. Kate Han: Software. Trung Hieu Vu: Soft-
are. John McCall: Writing – review & editing. Alan Wee-Chung
iew: Methodology, Supervision, Writing – review & editing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

ata availability

Publicly available dataset was used in this research. Code will
e made available after acceptance.

eferences

[1] C.-X. Zhang, J.-S. Zhang, RotBoost: A technique for combining rotation
forest and AdaBoost, Pattern Recognit. Lett. 29 (10) (2008) 1524–1536.

[2] P. Viola, M. Jones, Rapid object detection using a boosted cascade of simple
features, in: Proceedings of CVPR, 2001.

[3] T.T. Nguyen, A.W.C. Liew, M.T. Tran, T.T.T. Nguyen, M.P. Nguyen, Fusion of
classifiers based on a novel 2-stage model, in: International Conference on
Machine Learning and Cybernetics, 2014, pp. 60–68.

[4] Z.-H. Zhou, J. Feng, Deep forest: Towards an alternative to deep neural
networks, in: Proceedings of the 26th International Joint Conference on
Artificial Intelligence (IJCAI’17), AAAI Press, Melbourne, Australia, 2017, pp.
3553–3559.

[5] S. Kim, Z. Yu, R.M. Kil, M. Lee, Deep learning of support vector machines
with class probability output networks, Neural Netw. 64 (2015) 19–28.

[6] L.V. Utkin, M.S. Kovalev, A.A. Meldo, A deep forest classifier with weights
of class probability distribution subsets, Knowl. Based Syst. 173 (2019)
15–27.

[7] Z. Qi, B. Wang, Y. Tian, P. Zhang, When ensemble learning meets deep
learning: A new deep support vector machine for classification, Knowl.

Based Syst. 107 (2016) 54–60.

18
[8] B. Chen, H. Wu, W. Mo, I. Chattopadhyay, H. Lipson, Autostacker: A
compositional evolutionary system, in: Proceeding of GECCO, 2018.

[9] M.F. Delgado, E. Cernadas, S. Barro, D. Amorim, Do we need hundreds of
classifiers to solve real world classification problems? J. Mach. Learn. Res.
9 (2014) 3133–3181.

[10] T.T. Nguyen, M.T. Dang, A.W.-C. Liew, J.C. Bezdek, A weighted multiple
classifier framework based on random projection, Inform. Sci. 490 (2019)
36–58.

[11] T.T. Nguyen, M.P. Nguyen, X.C. Pham, A.W.C. Liew, W. Pedrycz, Combining
heterogeneous classifiers via granular prototypes, Appl. Soft Comput. 73
(2018) 795–815.

[12] T.T. Nguyen, A.V. Luong, M.T. Dang, A.W.-C. Liew, J. McCall, Ensemble
selection based on classifier prediction confidence, Pattern Recognit. 100
(2020).

[13] L. Breiman, Random forest, Mach. Learn. 45 (2001) 5–32.
[14] T. Chen, C. Guestrin, Xgboost: A scalable tree boosting system, in: Pro-

ceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2016, pp. 785–794.

[15] J.J. Rodriguez, L.I. Kuncheva, C.J. Alonso, Rotation forest: A new classifier
ensemble method, IEEE Trans. Pattern Anal. Mach. Intell. 28 (10) (2006)
1619–1630.

[16] T.T. Nguyen, N. Van Pham, M.T. Dang, A.V. Luong, J. McCall, A.W.C. Liew,
Multi-layer heterogeneous ensemble with classifier and feature selec-
tion, in: Proceedings of the 2020 Genetic and Evolutionary Computation
Conference, 2020, pp. 725–733.

[17] T. Dang, T.T. Nguyen, J. McCall, E. Elyan, C.F. Moreno-García, Two layer
ensemble of deep learning models for medical image segmentation, 2021,
arXiv preprint arXiv:2104.04809.

[18] T. Dang, A.V. Luong, A.W.C. Liew, J. McCall, T.T. Nguyen, Ensemble of
deep learning models with surrogate-based optimization for medical image
segmentation, in: 2022 IEEE Congress on Evolutionary Computation, CEC,
IEEE, 2022, pp. 1–8.

[19] A.V. Luong, T.T. Nguyen, A.W.C. Liew, Streaming multi-layer ensem-
ble selection using dynamic genetic algorithm, in: 2021 Digital Image
Computing: Techniques and Applications, DICTA, IEEE, 2021, pp. 1–8.

[20] Q. Wei, Q. Zhang, H. Gao, T. Song, A. Salhi, B. Yu, Deepstack-RBP:
Accurate identification of RNA-binding proteins based on autoencoder
feature selection and deep stacking ensemble classifier, Knowl.-Based Syst.
256 (2022) 109875.

[21] Y.-W. Kim, I.-S. Oh, Classifier ensemble selection using hybrid genetic
algorithms, Pattern Recognit. Lett. 29 (2008) 796–802.

[22] Y. Wang, D. Wang, N. Geng, Y. Wang, Y. Yin, Y. Jin, Stacking-based
ensemble learning of decision trees for interpretable prostate cancer
detection, Appl. Soft Comput. 7 (2019) 188–204.

[23] I. Mendialdua, A. Arruti, E. Jauregi, E. Lazkano, B. Sierra, Classifier subset se-
lection to construct multi-classifiers by means of estimation of distribution
algorithms, Neurocomputing 157 (2015) 46–60.

[24] R. Mousavi, M. Eftekhari, A new ensemble learning methodology based on
hybridization of classifier ensemble selection approach, Appl. Soft Comput.
37 (2015) 652–666.

[25] M.N. Haque, N. Noman, R. Berretta, P. Moscato, Heterogeneous ensem-
ble combination search using genetic algorithm for class imbalanced
data classification, PLOS1 (2016) http://dx.doi.org/10.1371/journal.pone.
0146116.

[26] T.T. Nguyen, A.V. Luong, T.M.V. Nguyen, T.S. Ha, A.W.C. Liew, J. McCall, Si-
multaneous meta-feature and meta-classifier selection in multiple classifier
system, in: GECCO, 2019.

[27] X. Wang, H. Wang, Classification by evolutionary ensembles, Pattern
Recognit. 39 (2006) 595–607.

[28] S. Ali, A. Majid, Can-evo-ens: Classifier stacking based evolutionary en-
semble system for prediction of human breast cancer using amino acid
sequences, J. Biomed. Inform. 54 (2015) 256–269.

[29] T.T. Nguyen, M.D. Dang, V.A. Baghel, A.V. Luong, J. McCall, A.W.C. Liew,
Evolving interval-based representation for heterogeneous classifier fusion,
Knowl. Based Syst. (2020).

[30] T.T. Nguyen, A.V. Luong, M.T. Dang, L.P. Dao, T.T.T. Nguyen, A.W.C. Liew,
J. McCall, Evolving an optimal decision template for combining classifiers,
in: Proceeding of ICONIP, 2019, pp. 608–620.

[31] C.A.A. Padilha, D.A.C. Barone, A.D.D. Neto, A multi-level approach using ge-
netic algorithms in an ensemble of least squares support vector machines,
Knowl. Based Syst. 106 (2016) 85–95.

[32] K.-J. Kim, S.-B. Cho, An evolutionary algorithm approach to optimal
ensemble classifiers for DNA microarray data analysis, IEEE Trans. Evol.
Comput. 12 (3) (2008) 377–388.

[33] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of
IEEE International Conference on Neural Networks, Vol. IV, 1995, pp.
1942–1948, http://dx.doi.org/10.1109/ICNN.1995.488968.

http://refhub.elsevier.com/S0950-7051(23)00441-0/sb1
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb1
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb1
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb2
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb2
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb2
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb3
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb3
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb3
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb3
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb3
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb4
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb4
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb4
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb4
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb4
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb4
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb4
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb5
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb5
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb5
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb6
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb6
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb6
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb6
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb6
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb7
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb7
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb7
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb7
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb7
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb8
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb8
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb8
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb9
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb9
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb9
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb9
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb9
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb10
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb10
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb10
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb10
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb10
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb11
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb11
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb11
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb11
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb11
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb12
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb12
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb12
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb12
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb12
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb13
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb14
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb14
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb14
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb14
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb14
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb15
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb15
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb15
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb15
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb15
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb16
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb16
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb16
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb16
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb16
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb16
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb16
http://arxiv.org/abs/2104.04809
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb18
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb18
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb18
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb18
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb18
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb18
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb18
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb19
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb19
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb19
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb19
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb19
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb20
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb20
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb20
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb20
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb20
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb20
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb20
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb21
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb21
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb21
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb22
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb22
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb22
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb22
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb22
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb23
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb23
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb23
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb23
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb23
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb24
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb24
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb24
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb24
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb24
http://dx.doi.org/10.1371/journal.pone.0146116
http://dx.doi.org/10.1371/journal.pone.0146116
http://dx.doi.org/10.1371/journal.pone.0146116
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb26
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb26
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb26
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb26
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb26
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb27
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb27
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb27
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb28
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb28
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb28
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb28
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb28
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb29
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb29
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb29
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb29
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb29
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb30
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb30
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb30
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb30
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb30
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb31
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb31
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb31
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb31
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb31
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb32
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb32
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb32
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb32
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb32
http://dx.doi.org/10.1109/ICNN.1995.488968

A.V. Luong, T.T. Nguyen, K. Han et al. Knowledge-Based Systems 275 (2023) 110691
[34] Y. Zhang, S. Wang, G. Ji, A comprehensive survey on particle swarm
optimization algorithm and its applications, Math. Probl. Eng. (2015).

[35] J.J. Liang, A.K. Qin, P.N. Suganthan, S. Baskar, Comprehensive learning
particle swarm optimizer for global optimization of multimodal functions,
IEEE Trans. Evol. Comput. 10 (3) (2006) 281–295.

[36] B. Tran, B. Xue, M. Zhang, Variable-length particle swarm optimization
for feature selection on high-dimensional classification, IEEE Trans. Evol.
Comput. 23 (3) (2019) 473–487.

[37] X. Yu, X. Zhang, Enhanced comprehensive learning particle swarm
optimization, Appl. Math. Comput. 242 (2014) 265–276.

[38] N. Lynn, P.N. Suganthan, Heterogeneous comprehensive learning particle
swarm optimization with enhanced exploration and exploitation, Swarm
Evol. Comput. 24 (2015) 11–24.
19
[39] B. Wang, Y. Sun, B. Xue, M. Zhang, A hybrid GA-PSO method for evolving
architecture and short connections of deep convolutional neural networks,
https://arxiv.org/abs/1903.03893.

[40] H. Guo, R. Tang, Y. Ye, Z. Li, X. He, DeepFM: a factorization-machine based
neural network for CTR prediction, 2017, arXiv preprint arXiv:1703.04247.

[41] H.T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye . . . , H.
Shah, Wide & deep learning for recommender systems, in: Proceedings of
the 1st Workshop on Deep Learning for Recommender Systems, 2016, pp.
7–10.

[42] T. Dang, A.V. Luong, A.W.-C. Liew, J. McCall, T.T. Nguyen, Ensemble
of deep learning models with surrogate-based optimization for medical
image segmentation, in: Proceeding of IEEE Congress on Evolutionary
Computation, CEC, 2022.

http://refhub.elsevier.com/S0950-7051(23)00441-0/sb34
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb34
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb34
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb35
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb35
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb35
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb35
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb35
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb36
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb36
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb36
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb36
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb36
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb37
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb37
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb37
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb38
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb38
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb38
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb38
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb38
https://arxiv.org/abs/1903.03893
http://arxiv.org/abs/1703.04247
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb41
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb41
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb41
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb41
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb41
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb41
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb41
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb42
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb42
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb42
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb42
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb42
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb42
http://refhub.elsevier.com/S0950-7051(23)00441-0/sb42

	DEFEG: Deep Ensemble with Weighted Feature Generation
	Introduction
	Background and Related Work
	Deep Ensemble Learning
	Evolutionary Computation for Ensemble Systems
	Particle Swarm Optimization and Comprehensive Learning

	Proposed System
	General description
	Proposed Encoding
	Variable-length PSO

	Experimental Studies
	Configurations
	Experimental Results

	Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	References

