1	A review and meta-analysis of the efficacy of arbuscular mycorrhizal fungi in remediating toxic
2	metals in mine-affected soils
3	Sonali Banerjee ¹ , Jajati Mandal ² , Dibyendu Sarkar ³ , Rupali Datta ⁴ , Pradip Bhattacharyya ¹ , *
4	¹ Agricultural and Ecological Research Unit, Indian Statistical Institute, Giridih, Jharkhand, 815301, India
5	² School of Science, Engineering & Environment, University of Salford, Manchester M5 4WT, UK
6	³ Stevens Institute of Technology, Department of Civil, Environmental, and Ocean Engineering, Hoboken,
7	NJ, 07030, USA
8	^{*4} Department of Biological Science, Michigan Technological University, Michigan, USA
9	* Corresponding author: pradip.bhattacharyya@gmail.com
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	

Abstract

Mines are natural reservoirs of various types of minerals, metals, and metalloids. Several heavy metals (HMs) such as Pb, Cd, Cr, Cu, Ni are major anthropogenic pollutants that cause severe environmental pollution. Accumulation of these toxic HMs in soils has raised several concerns for crop growth, food safety, and marketing. Physiological and biochemical processes in plants are severely impacted by HMs, disrupting normal metabolic activities and reducing biomass production. Phytoremediation plays a pivotal role in addressing HMs contamination by offering an eco-friendly, economical, and holistic solution. Similarly, arbuscular mycorrhizal fungi (AMF) play a significant role by forming a symbiotic relationship with plant roots. In this association, plants provide root exudates, while AMF enhances plant growth under heavy metal stress by supplying essential nutrients, minerals, and water. These fungi also improve nutrient status, soil quality and ecosystem stability. The present review and meta-analysis encompass an examination of the global distribution of toxic HMs in mining-affected areas. Furthermore, the study highlights the role of various plant species and microbes, particularly AMF, in mitigating HMs stress and its impact on plant growth and nutrition. The meta-analysis also evaluates the efficacy of AMF as a remediation strategy for HMs-impacted mine soils.

Keywords: Mines, Heavy metals, Phytoremediation, Arbuscular mycorrhizal fungi (AMF), Meta-analysis

49 1 Introduction

50 Human-driven activities such as agriculture, mining, industrial processes, and the extensive use of fertilizers and pesticides have led to an escalating demand for land resources since the twentieth century (Cheng, 51 52 2016). Heavy metal pollution, desertification of land, ecological imbalance of land, soil erosion, land degradation, 53 environmental damage, and decreased soil fertility are all major environmental factors that have severe effects on 54 soil, water, and air (Nosrati and Collins, 2019; Vaverková et al., 2019). Heavy metal (HM) pollution is an 55 unadorned environmental phenomenon worldwide. Metal mining and mineral ore processing have a dual effect 56 on the economy and environment. From one perspective, it provides economic benefits to the country, and 57 simultaneously it causes environmental pollution. Abundant and active mines are the prime source of toxic HMs. 58 During rainy season, due to heavy rainfall and strong winds run-off water washes down the toxic waste material 59 to agricultural fields, and surrounding water bodies simultaneously causing air, water, and soil pollution. HM 60 pollution has an irreversible, long-term residual effect, and toxicity that poses an immense threat to the living 61 beings as well as the environment (Dhaliwal et al., 2020). Once these toxic HMs are released into the surrounding 62 ecosystem, it could migrate to a distant area, accumulate in various biotic, abiotic components of the system, and 63 adversely affect the food chain, human health, and environment (Peralta-Videa et al, 2009). Lead (Pb), chromium 64 (Cr), mercury (Hg), cadmium (Cd), and arsenic (As) have lethal effects in humans, plants, and animals but 65 depending on the concentration; a few metals such as zinc (Zn), copper (Cu), manganese (Mn) and iron (Fe) have 66 another role as an essential micronutrient needed for metabolic activity (Schneegurt et al., 2001; Mohan et al., 67 2007). Heavy metal contamination significantly alters soil characteristics and the surrounding micro-environment. 68 Microorganisms, serving as dynamic bio-indicators, respond to these changes through variations in microbial 69 biomass, respiration rates, and enzyme activity under HM stress conditions (Hinojosa et al., 2005). Long term or 70 short-term exposure to various toxic HMs causes significant changes in physiological and ecological parameters 71 including a reduction in basal respiration, microbial biomass, and an increase in metabolic entropy (qCO₂) 72 (Crowley, 2008; Zhao et al., 2020). The degree of HM pollution has been evaluated by several indices like 73 pollution load index (PLI) and geo-accumulation index (Igeo) (Duncan et al., 2018; Hamad et al., 2019).

Factors such as, plant life cycle, plant biomass, bioaccessibility, and bioavailability of HMs in soil can influence the metal removal process (Ali et al., 2013). Various physical and chemical methods are available for decontamination of toxic HMs which are usually cost-intensive. Given the limitations of conventional cleanup techniques, bio-logical approaches could be looked into as a potential alternative mitigation option. In some 78 places, bioremediation, phytoremediation of soils contaminated with organic or inorganic pollutants, such as 79 pesticides and hydrocarbons, has become widely accepted. The popularity of bioremediation and 80 phytoremediation for the reclamation of HM-polluted soils is growing despite the fact that it has substantial 81 disadvantages due to its economic viability. The term phytoremediation is defined as a green, eco-friendly, low-82 cost, holistic approach to cleaning up toxic contaminants from the environment by a plant-based system (Ali et 83 al., 2013). Numerous phytoremediation projects have been carried out over the past few decades, and as a result, 84 novel phytoremediation techniques, creative concepts, and research have emerged. Several phytoremediation 85 works have been done in the last few decades and new phytoremediation strategies, innovative ideas, and research 86 have evolved as a result. More than 500 plant species have been identified as potent HM hyperaccumulators (Ye 87 et al., 2020). A long-time span is required for plants to remediate the high metal contaminated area. Remediation 88 through plant or phytoremediation is one of the most promising eco-friendly management strategies for reducing 89 toxic contaminates (Burges et al., 2018).

90 In past few decades researchers have worked with various types of plants, their potentiality, and their 91 remediation mechanisms strategies for a better understanding of the phytoremediation process. Plants like 92 Cymbopogon citrates (China et al., 2014) Helianthus petiolaris (Saran et al., 2020), Helianthus annuus (Lothe et 93 al., 2016), Bryophyllum laetivirens (Li et al., 2020), Cordyline fruticosa (Herlina et al., 2020), etc. are widely used 94 to remediate heavy metals (Pb, Cd, Cr, Cu, As) and their removal mechanisms have been extensively studied by 95 several researchers in last few years. Vetiver grass (Vetiveria zizanioides) has been widely used for rehabilitation 96 of mine tailings in several countries like China and Australia. Vetiver is a perennial grass with a huge root system 97 (3-4 m), 1-2 m tall, and non-invasive in nature (Andra et al., 2009). Also, Vetiver grass has a strong symbiotic 98 association in the rhizosphere region with a wide range of soil microbes especially with arbuscular mycorrhizal 99 (AM) fungi which stipulates phytohormones and essential nutrients for plant development (Bahraminia et al., 100 2016). The most advantageous properties of mycorrhizal root colonization are an increase in the root surface area 101 to enhance the phytoremediation/phytostabilization potential.

Numerous studies have been conducted in the past focusing on mining activities and heavy metal contamination, exploring their effects on soil, plants, water resources, ecosystems, and living organisms. Previous studies also examine bioremediation approaches, utilizing plants and microorganisms to mitigate the adverse impacts of HMs effectively. This review aims to provide a comprehensive overview of heavy metal pollution in agricultural soil caused by various mining activities and its associated environmental impacts. Through metaanalysis, the study assesses HMs contamination and examines the global distribution of key pollutants, including
Cr, Ni, Cd, Pb, and Cu in mining-affected regions worldwide. This article also sheds light on the role of different
plant species and microbes (especially AMF), in mitigating the HMs stress condition while supporting plant
growth and nutrient uptake. Additionally, through meta-analysis, the study evaluates the efficiency of AMF as a
remediation strategy for mine-impacted soils contaminated with HMs such as Cd, Cu, Ni, and Pb.

112 2 Mines and associated heavy metals

113 According to the ancient Kautilya's Arthshastra, "Mines are Nation's treasury". Mineral resources from mines are abundant in nature. Exploitation of these minerals enhances world's economy and development but at 114 115 the same time, surface mining, especially open cast mining causes severe environmental problem (i.e loss of 116 surface vegetation, destruction of soil structure etc.). Mines are the source of various metals and minerals like iron and ferro-alloys (Fe, Cr, Co, Mn, Mo, Ni etc.), non-ferrous metals (Al, Sb, As, Bi, Cd, Cu, Pb, Hg, Li, Zn etc.), 117 118 precious metals (Au, Pd, Pt, Ag), industrial minerals (perlite, sulfur, vermiculite, feldspar, graphite, gypsum, kaolin, etc.) and mineral fuels (uranium, petroleum, cooking coal, natural gas etc.). China is the largest producer 119 120 of total minerals followed by United States, Russia, Australia, and India etc. (Reichl and Schatz, 2020).

121 2.1 Coal Mines

122 Fossil fuel, coal is a predominant element in nature which is mainly composed of carbon with variable 123 amounts of other elements i.e hydrogen, oxygen, nitrogen, and sulphur. China is the largest producer of coal. The 124 open-cast mining generates toxic overburden dumps (OB) and coal dust that contains enormous toxic HMs, is 125 responsible for metal contamination in adjacent agricultural land (Li et al., 2007). In descending order, metals 126 Fe>Mn>Zn>Cu are present in coal mine: the most bioavailable and mobile element is Mn followed by Zn and 127 Cu, and the least mobile metal is Fe. The reason behind Fe less mobility is the residual fraction of Fe, which 128 indicates its strong affinity towards minerals, the solid matrix, and strongly bounded clay minerals (Kartal et al., 2006). The pseudo-total concentration of HMs such as Zn (314 mg kg⁻¹), Mn (132 mg kg⁻¹), Pb (82 mg kg⁻¹), Cu 129 (45 mg kg⁻¹), and Co (34 mg kg⁻¹) has been found in reclaimed mine soil (RMS). The bioavailable forms (DTPA-130 131 extractable) of Zn, Mn, and Cu are significantly higher in RMS than in control soil. Selectively Pb can accumulate 132 in leaves, stem bark, and root bark whereas Zn and Mn in leaves and Cu in stem wood and root wood. These 133 indicate that accumulation of metals might be tissue specific (Maiti et al., 2016). For reclamation process of OB 134 dumps, the most effective remediation pathway is trees which can accumulate toxic HMs from OB. Trees that are 135 used for reclamations of OB dumps, should be drought resistant, woody, fast-growing, able to grow in metal arid

area, and nutrient-deficient area (Pratas et al., 2005). Various woody plant species i.e A. auriculiformis, M. 136 137 azedarach, Leucaena leucocephala (Lam.) de Wit, Tectona grandis L.f., Gmelina arborea Roxb., Acacia 138 mangium Wild., Bambusa arundanacea L., Cassia siamea Lam, Azadirachta indica A. Juss etc. are used for 139 reclamation of coal OB dumps (Maiti et al., 2016). Pb concentration in A. auriculiformis, Eucalyptus hybrid trees 140 is significantly higher in root bark as compared to leaf tissue as bark tissue can accumulate lead for longer time 141 while leaves are shed periodically (Sawidis et al., 2011). Through bark exudates, Pb can be removed from plant which is an important defence mechanism of plant against HM toxicity (Alloway, 2012). In the case of Cu, (BCF 142 143 > 1; TFleaf, TFstembark and TFstem wood < 1) in both the tree species (A. auriculiformis and M. azedarach) might be used for Cu phytostabilization (Sawidis et al., 2011). 144

145 2.2 Copper Mines

146 Cu mines are a prime source of potentially toxic HMs (Cu, Zn, As, Cd, and Pb) (Cai et al., 2015). South 147 Africa, Chile, and Peru are the largest producers of copper. Due to the chemical weathering process, waste rocks from Predra Verde mine (Brazil) show potential risk to the environment (Perlatti et al., 2021). In Jiuhuashan, 148 149 Jiangsu Province and eastern China, agricultural soil near abandoned mine contained high levels of copper (816.8 mg kg⁻¹ and 147 mg kg⁻¹ respectively) contamination (Qin et al., 2012; Wu et al., 2011). Acidic drainage 150 151 compounds (Cu, Zn, and Fe) have produced from La Concordia Mine (Argentina) (Nieva et al., 2018). According 152 to China et al. (2014) environmentally available metal i.e total metal excluding the silicate matrix bound metals, 153 Cu (154 mg kg⁻¹) seems as one of the most abundant heavy metals found in Mosabani copper mine (India) followed by Ni (136 mg kg⁻¹) and Pb (9.9 mg kg⁻¹). The underground tissues of this plant have an average 154 concentration of 1959 mg kg⁻¹ Cu which is much higher than shoot (124 mg kg⁻¹ Cu). Therefore, it indicates that 155 156 HM mobility is limited inside the plant as translocation factor for Cu (0.06), Ni (0.36), Co (0.68), Zn (0.24) is less 157 than 1; while Mn is present in higher concentration in the above ground tissue (TF > 1; Mn 1.37) (Das and Maiti, 2007). The toxicity level of Cu, Ni in plant is 20-100 mg kg⁻¹ and 10-100 mg kg⁻¹ respectively (Kabata-Pendias, 158 159 2011). Bioavailability of copper also depends on soil pH, soil CEC, and total copper content in soil (Bravin et al., 160 2009; Brun et al., 2001). Simultaneously copper also plays an essential role in plant growth and development 161 processes such as protein synthesis, CO₂ assimilation, ATP synthesis, maintenance of homeostasis within 162 chloroplast, photosynthesis etc. (Hänsch and Mendel, 2009; Yruela, 2013). On the other hand, high concentration of copper has a toxic effect on seed germination, decreases plant height, causes chlorosis of plant leaves, reduction 163 164 in plant biomass, and grain yield (Adrees et al., 2015).

165 2.3 Chromite Mines

166 Ferrochromium is only natural and economical resources of chromium produced in chromite mines by carbothermic smelting (Beukes et al., 2010). It is a crystalline alloy generally composed of chromium and iron 167 168 compounds. Globally, South Africa grasp most chromite ores followed by Kazakhstan, India, Albania, and Turkey 169 (ICDA, 2022). The active and abandoned mine wastes are the reservoirs of heavy metals which have lethal effects 170 on water, soil, and living beings (Fernández-Caliani et al., 2009). These mine wastes are generally composed of 171 different types of toxic HMs mainly chromium (Cr) and Nickel (Ni) along with other metals such as Cu, Cd, Pb, 172 Ni and Mn are present in lesser quantity (Bueno et al., 2009). Chromium (Cr) is generally utilized by different 173 industrial activities such as processing and finishing of leather, production of refractory steel by stainless steel 174 industry, electroplating cleaning agent, muds drilling, production of chromic acid and other chemicals, and use to preserve food for a short time (Shanker et al., 2005). Chromium exhibits different levels of toxicity depending on 175 176 its chemical form, pH, reacts with other elements and solubility index (Thatoi et al., 2014). Cr (VI) exhibits high 177 toxicity and bioavailability due to it has better solubility than Cr (III) (Abyaneh and Fazaelipoor, 2016). For 178 humans and mammals, lack of Cr (III) in diet can causes metabolic deterioration, cardiac problem, diabetes but 179 excess presence in the body has harmful health effects (WHO, 2000). Hexavalent chromium tends to act as a strong oxidizing agent; therefore Cr (VI) is 10-100 times more toxic than Cr (III) (Zayed et al., 1998). The toxicity 180 level of hexavalent chromium for plant in solution is as low as 0.5mg kg⁻¹ and 5 mg kg⁻¹ for soil (Turner and Rust, 181 182 1971). Highly carcinogenic chromium and asbestos exposure may lead to cancer, mesothelioma, pneumoconiosis, 183 skin irritations, and other respiratory problems such as irritation larynx and pharynx, edema, coughing, asthma 184 etc. (Bloise et al., 2008; Pugnaloni et al., 2013). Cr is mostly accumulated in the root than shoot due to its less 185 mobility in root vacuoles but in case of Ni, accumulation is higher in shoot than root due to greater mobility of Ni 186 through xylem tissue (Pulford et al., 2001; Shanker et al., 2005). The Cr and Ni concentration in Roro chromite mine waste soil is 3120 mg kg⁻¹ and 1620 mg kg⁻¹ respectively which exceeds the safety level (Cr :75-100 mg kg⁻¹ 187 ¹; Ni: 100 mg kg⁻¹) of metals present in soil (IS, 1993). Similar studies in Almadén mine site in Spain and southern 188 Togo mine sites, Cr and Ni concentration has 86–35 Cr mg kg⁻¹ and 21.2–126 Ni mg kg⁻¹) and (182–1029 Cr 189 190 mg kg⁻¹ and 15–432 Ni mg kg⁻¹) respectively due to deposition of mine tailings in agricultural soil (Gnandi and 191 Tobschall, 2002; Bueno, et al. 2009). In Daduk mine area of Korea, due to dispersion of metals from tailings and 192 watercourses, various types of toxic metals are reported in nearby paddy fields (Lee et al., 2001). Another study 193 in Co Dinh mine of Vietnam, high level of potentially toxic elements is also detected in rice field (5750 Cr mg kg⁻¹, 375 Co mg kg⁻¹ and 5590 Ni mg kg⁻¹) (Kien et al., 2010). Based on dynamic translocation factor (TF dyn>1), Cr 194

and Ni accumulation is higher in plant parts of *Oryza sativa* growing in the contaminated agricultural fields which
might have potential risk of transfer of toxic HMs to livestock or human (Kien et al., 2010; Kumar and Maiti,
2014).

198 2.4 Iron Mines

199 Globally, since 2000, to meet the increasing demand of crude steel the production has expanded 200 drastically. Iron ores are the backbone of world economy (World steel Association 2021). Australia, Brazil, and 201 China are the top 3 countries for production of iron (around 69%) in the world (Holmes et al., 2022). To maintain 202 the growing demand, iron ore industries have continuously amplified the mining activity in iron mines. As a result, 203 huge concentrations of Cd, Mn, As, Ni, Pb, Zn, and Cr has found in the agricultural soil nearby iron mines 204 (Hosseini et al., 2018). Tailing toxic wastes from iron mining are dumped into the tailings pond which is located 205 at the Noamundi–Jodda belt, India. As a result, during monsoon season, the toxic fine particle wash-off by heavy 206 wind and rain are deposited into nearby water bodies, and soil thereby causing air, water, and soil pollution. 207 Although Fe is essential for synthesis of chlorophyll, chloroplast structure and its functions but excessive 208 concentration of iron might be entered into the food chain and showed toxic effect in plant, animal and human 209 health (Maiti et al., 2005). According to Dhatrak et al. (2017), the health status of mine workers and nearby 210 population around open cast iron mine showed NIHL (noise-induced hearing loss) and anemia as a major health 211 effect. Iron mining plays an important role in economic development and simultaneously causes air pollution by 212 blasting, drilling, unloading, and loading minerals and overburdens by wind at mineral handling plants, workshops 213 etc. Thus, these air pollutants would affect the flora and fauna of the local environment (Tripathi et al., 2014; 214 Chaturvedi and Patra, 2016). There are some native plant species such as *Cassia sophera Eupatorium odoratum*, 215 Techtona grandis, Alstonia scholaris, Cassia tora etc. found in Fe-tailings. Techtona grandis can accumulates 216 higher concentration of HMs than Alstonia scholaris but these HMs have not showed any detrimental effect on 217 native plants rather higher Fe contents promotes lavish growth as stated by Maiti et al. (2005).

218 2.5 Uranium Mines

Worldwide, Kazakhstan is the largest producer of Uranium followed by Australia, Namibia, Uzbekistan, and Canada. Jaduguda, India's first oldest and productive underground uranium (U) mine consists of uraninite and other associated accessory minerals such as copper, nickel, Arsenic, cobalt molybdenum, and magnetite etc. (Sethy et al., 2014). Amphoteric, silvery -white, hard radioactive element uranium which is occurs naturally in the earth's crust with a mean concentration about 3 mg kg⁻¹ (Gupta and Singh, 2003). Hexavalent U is the most

soluble form and is present as uranyl cation $(UO_2)^{+2}$ normally in 80-90% of the soil. It prevails in solutions 224 predominantly as stable ion $(UO_2)^{+2}$ and as soluble carbonate complexes i.e. UO_2CO_3 , $UO_2(CO_3)_2^{-2}$, $UO_2(CO_3)_3^{-4}$, 225 226 $(UO_2)_2CO_3(OH)^{-3}$ and $(UO_2)_3(CO_3)_6^{-6}$. In the absence of dissolved inorganic ligands (fluoride, carbonate, sulfate, 227 and phosphate) and the pH range within 4 to 7.5, the hydrolysis ion UO₂OH⁺ in water and soil forms complexes 228 with these inorganic ligands. As a result, these complexes increase the total solubility of U (Shahandeh and 229 Hossner, 2002). Uranium is a radioactive element which undergoes a continuous decaying process, emits alpha (α), beta (β) and gamma (γ) rays and produces various isotopes. This transformation stops when the stable product 230 lead (²⁰⁶Pb) is formed (Sarangi, 2003). The radiation which emits from these naturally occurring isotopes is very 231 low and does not penetrate due its high density which acts as a shield against its own radiation (Wang et al., 2009). 232 According to WHO (2012), the mean concentration of U in ambient air has been reported around 0.02 ng m-3 in 233 234 Tokyo, Japan and 0.076 ng m⁻³ in New York City, USA. Through water or food, uranium enters kidney and the 235 uranyl ion forms bicarbonate and citrate complexes in blood plasma and affects the proximal tubules of kidney, 236 causes tubular degeneration, liver damage, genetic malfunction, cancer, and necrosis (Miller et al., 2004; Sethy et al., 2011). The Environmental Protection Agency (EPA) of United States has categorized U as a carcinogenic 237 element and in drinking water the maximum contaminant level (MCL) of U is 30 ug L⁻¹ (EPA, 1999). The 238 proposed interim maximum acceptable level (IMAC) of U in Canada is 20 ug L⁻¹ whereas WHO strictly 239 240 recommended the permissible level to be 2 ug L^{-1} (Shin et al., 2002). In human the ingestion and intake dose are 241 very low (2 uSv.Y⁻¹) which is far below the WHO permissible level (100 uSv.Y⁻¹). The mean metal pollution 242 index (MPI) value indicates the overall pollution level in ground and surface water to be below the maximum 243 threshold value of 100 (Mohan et al., 1996). Several experiments are conducted for the accumulation of U in 244 native plant species to determine the mechanism of U uptake, absorption by plant and for biological exploration 245 of U from soil (Petrova, 2006). Uranium accumulation varies depending upon plant species as well as genotypes, 246 lines within species, cultivars; moreover, U is accumulated higher in the root portion in comparison to the shoot. Therefore, only a small portion is translocated to the shoot and less than 1 mg kg⁻¹ of U is found to be toxic in the 247 248 soil (Sheppard et al., 1992; Stojanović et al., 2010). According to (Pentyala and Eapen, 2020), Vetiveria zizanioides L. Nash showed good ability for phyto extraction (84-95% of recovery) of U from hydroponic solution 249 250 at a concentration below 200 ppm under controlled experimental condition. U is generally restricted in root portion 251 of Vetiver but above 1000 ppm of U concentration, it is translocated from the root to the shoot.

252 3 Quantitative evaluation of various toxic metals in mining areas through meta-analysis

253 The main aim of the meta-analysis was to determine the relative comparison between a selected number 254 of peer-reviewed articles and to find out the potential risk of toxic metals on soil health using global datasets. We 255 searched pieces of literature published in the Web of Science database between 2012 to 2022 and select the quality 256 research work according to our objectives. The keywords were 'Mine', 'pollution' 'Copper', 'Cadmium' 'Nickel', 'Chromium', 'Lead', 'World'. From > 2500 published reports, we excluded the studies based on data originality. 257 258 We screened the remaining articles from different origins depending on the title and abstract. From the vast range 259 of published articles, the research papers were selected based on the manuscripts reporting metal toxicity due to 260 mining activity across different types of mines and proper analytical methods were followed. Finally based on the inclusion criteria 55, 41, 98, 52 and 51 research papers were considered for Cr, Ni, Pb, Cd and Cu respectively. 261 262 The Preferred Reporting Items for Systematic Review and Meta analysis (PRISMA) flowchart is depicted in 263 Figure S3.

264 From the literature survey, we considered the parameters like standard error, sample size, and the 265 difference between the mean of tested and the mean of control. The effect size or outcomes were calculated by 266 the mean difference between the maximum concentration of metals (Cr, Ni, Pb, Cd, and Cu) and the permissible 267 limit of metals in mine areas. The maximum permissible limit of metals in soil (Cr, Ni, Pb and Cu) as suggested by WHO 1996 (Cu: 36 mg kg⁻¹, Ni: 35 mg kg⁻¹, Cr: 100mg kg⁻¹, and Pb: 85 mg kg⁻¹). The ultimate result was 268 269 expressed on mean difference as a continuous factor for statistical analysis at the 95% confidence level (CI) 270 between the group of individual study and permissible limit of metals (Cr, Ni, Pb, Cd, and Cu) in the mines area. 271 Therefore, from random effect model (RE) forest plots were designed to summarize all the study information of 272 individual research work and this plot simultaneously provides a visual representation of heterogeneities. The 273 vertical line, commonly known as the zero-effect line, was present in the middle part of the forest plot depicting 274 that there was no difference between the study group mean and permissible limit. So that mean difference is zero 275 at this point.

From Figure 1, 2 it can be observed from the RE model that the overall mean value for Cr was 0.16 (CIs: 0.14-0.17) and for Ni it was 0.19 (CIs: 0.16-0.22), statistically significant with p < 0.05 and inconsistency index (I^2) of 98.58% and 96.05% respectively which represented substantial heterogeneity [43,49,63,68, 84-87]. Similarly for Cd, Pb, and Cu (Figure 3, 4, 5) from the RE model the overall mean values were 0.01 (CIs: 0.01-0.01), 0.06 (CIs: 0.06-0.07) and 0.08 (CIs: 0.07-0.09) respectively statistical significance at p < 0.05. The overall inconsistency index (I^2) of Cd, Pb, and Cu was 47.34%, 99.24% and 98.02% respectively, indicating substantial heterogeneity. The positive value indicated that the total concentration of Cr, Ni, Cd, Pb and Cu in mine areas was higher than the permissible level as recommended by WHO. In a meta-analysis of the summary mean, most metals (Cr, Ni, Pb and Cu) present in mine areas were found to be significant with p<0.05 as the confidence intervals did not overlap with the zero-effect line except Cd. Various factors like runoff water and aerial deposition from mines lead to the contamination of nearby agricultural lands, water bodies etc. As a result, the presence of higher concentrations of metals in different mine areas may be able to influence the potential risk of metal toxicity and relative risk to the ecosystem (Qu et al., 2012; Chen et al., 2017; Liu et al., 2019; Sun et al., 2018).

289 4 Remediation strategies

290 Worldwide, the immense development in industrial sectors especially mining, metal, energy supply, 291 agriculture, chemical production, and transport causes significant pollution of the ecosystem. Globally, heavy 292 metal contamination is one of the serious nuisances to the environment as well as for living beings (Sun et al., 293 2012; Cachada et al., 2018). As we know remediation of heavy metals is very much complicated than any other 294 organic pollutants. Various traditional, mechanical and chemical techniques such as electrochemical treatments, 295 thermal methods, incineration, excavation, vitrification, chemical oxidation, and solvent extraction are widely 296 utilized to remove or destroy these toxic HMs in soil. However, these methods are often costly, time-intensive, 297 and labor-demanding. Moreover, they can lead to soil degradation, and generate secondary waste materials, posing 298 additional environmental management challenges (Khan et al., 2018). Bio-remediation techniques have gained a 299 lot of attention due to its cost-effectiveness, viability, no generation of secondary waste and eco-friendly (Akande 300 et al., 2018; ALAM et al., 2018). It includes plants, various microbes (bacteria, fungi, mycorrhiza etc) which are 301 utilized to decontaminate the hazardous compounds from soil. For soil purification, the applications of plant alone 302 or association with microorganisms that helps to stabilize, mineralize, transfer, remove the toxic metals (Wang et 303 al., 2018)

304 4.1 Phytoremediation

The term 'Phytoremediation' is derived from Greek ('phyton') and Latin ('remedium') which means 'plant' and 'to correct' respectively (Cunningham et al., 1996). By the definition, phytoremediation is a bioremediation process in which plants (alone or in association with microbes) are used as purifying agents to remove, stabilize or destroy the toxic metals from air, water, and soil in an eco-friendly manner (Wani et al., 2012). Table S1 showed different types of mechanisms of phytoremediation and pictorial representation is in Figure S2. Generally, plants can extract essential nutrients (Fe, Zn, Ni, Mn, and Cu) as well as non-essential metals (Cr, Cd, As, Pb and Hg) 311 which are not required in their physiological process and can store an enormous amount of the toxic metals (hyper-312 accumulator) in their parts from contaminated soil and water (Tangahu et al., 2011). There are several studies 313 have been done regarding different mechanisms of phytoremediation strategies, as shown in Table S2. There are 314 many advantages of phytoremediation listed as follows -1) inexpensive technology (60%-80% lesser than 315 traditional process); 2) minimize soil deterioration; 3) solar-driven remediation process; 4) no generation of 316 secondary hazardous compounds; 5) suitable and broad-spectrum treatment; 6) sustainable and environment-317 friendly technique, however, one limitation is there, that plant requires time for their growth and development 318 (Morikawa and Erkin, 2003). Several plant species have demonstrated the ability to absorb, bioaccumulate, 319 immobilize, and degrade heavy metals (HMs) from contaminated sites. Techniques like phytoextraction and 320 phytostabilization are commonly used for remediating HMs-polluted sites. Some examples include Cymbopogon 321 citrates, Helianthus petiolaris, Vetiveria zizanioides L, Pennisetum purpureum cv. Mott, Conocarpus lancifolius, 322 and Cordyline fruticose etc (Andra et al., 2009; China et al., 2014; Herlina et al., 2020; Rasheed et al., 2020; 323 Kowitwiwat and Sampanpanish, 2020; Saran et al., 2020). These species are key in cleaning contaminated soils 324 either by extracting HMs into their tissues or stabilizing them in the soil. Vegetation helps limit pollutant transport, 325 reduce wind dispersion, and prevent water erosion (Perronnet et al., 2000). Unlike conventional methods that 326 disturb soil physical properties, phyto-strategies maintain and enhance soil quality. Successful phytoremediation 327 implementation requires considerations of biomass production, heavy metal concentration in plant material, and 328 the time needed for soil remediation (Robinson et al., 1998). Phytodegradation involves the uptake of toxic 329 compounds by plants, where plant enzymes break down these substances into less harmful forms (Sun et al., 2012; 330 Hamdi et al., 2012). Plant species like Arabidopsis thaliana and Azolla filiculoides are used for phytodegradation of pollutants such as 2,4-DNT and Bisphenol A in the USA and Iran (Yoon et al., 2008; Zazouli et al., 2014). 331 332 Phytovolatilization occurs when plants transform the contaminant into volatile compounds and emit into the 333 atmosphere through transpiration or radial diffusion from their leaves, stems, and roots (Limmer and Burken, 334 2016; Peter et al., 2017). Rhizodegradation is the breakdown of contaminants facilitated by rhizospheric 335 microorganisms, where root-released enzymes and exudates help decompose pollutants into non-toxic formsforms 336 (Jia et al., 2016; Gkorezis et al., 2016). Plants like Pteris vittata (Sakakibara et al., 2010) and Salicornia bigelovii 337 (Shrestha et al., 2006) are involved in phytovolatilization of arsenic and selenium in Japan and the USA, 338 respectively. The efficacy of phytoremediation depends on selecting appropriate plant species and various 339 environmental factors. Overall, phytoremediation is a complex process involving multiple plant mechanisms.

340 Understanding these processes can enhance plant adaptation to metal stress and improve efficiency, providing341 sustainable solutions for heavy metal contamination and ecosystem restoration.

342 4.2 Mycorrhizal remediation

Naturally plants interact constantly with large number of microorganisms in their rhizospheric region. Beneficial microorganisms especially arbuscular mycorrhizal fungi (AMF) have a symbiotic association with plant roots where AMF increases plant nutrient uptake ability, improves biomass accumulation, amplifies photosynthesis capacity, and provide protection against heavy metal toxicity, successively, plant provides exudates of amino acids, carbon, photosynthetic product to the AMF for growth and developments (Mitra et al., 2020).

349 Around 80% terrestrial plants and 90% agricultural plants have mycorrhizal association in their roots 350 where fungal hyphae enter in the cortical cells of plant roots forming vesicles, hyphae and arbuscles (Smith and 351 Read, 2010). Figure S1 denotes the schematic diagram of heavy metal detoxification mechanism through AMF. 352 AMF helps in immobilization of heavy metals by binding them at cortical region, prevent translocation to the 353 upper ground part (shoot, stem, leaves) and prevent damage of leaves. Plants are categorized based on TF value 354 into hyper accumulator (TF>1) and non- hyper accumulator (TF<1). The translocation factor (TF) is higher in 355 non-mycorrhizal associated plant than in mycorrhizal associated plant (Arshad et al., 2008). Endomycorrhizal 356 fungi AMF, belongs to phylum Glomeromycota which considered as an eco-friendly sustainable strategy to 357 enhance plant growth, increase shoot biomass, improving soil health and water uptake capacity, provide protection 358 to the plant against biotic, abiotic stress and detoxify heavy metal induced stress (Mishra et al., 2019). 359 Glomeromycota are obligated symbiotic organisms, so they require around 20% of carbon from host plant cell for 360 their survival and simultaneously they provide water and nutrients (P, N) through their arbuscles, intracellular and 361 extracellular hyphae to the host plant (Parniske, 2008). AMF combat the heavy metal stress by immobilization, 362 precipitation, chelation and sequestration in rhizosphere, vacuoles and activates the plant anti-oxidant defense 363 system (Mitra et al., 2020). Another way of defense mechanisms of AMF is to secrets a hydrophobic unique 364 glycoprotein called 'Glomalin' which is composed of (39-59%) carbon, (0.03-0.1%) phosphorus, (3-5%) nitrogen, 365 (4-6%) hydrogen, (33-49%) oxygen and trace amount of iron (Schindler et al., 2007; Zhang et al., 2017). This 366 protein is basically N-linked glycoprotein produced from the spores and hyphae of AMF which helps in soil 367 aggregation, cellular function, toxic heavy metal stress, carbon storage etc. (Emran et al., 2012; Wu et al., 2015).

Easily extractable glomalin-related soil protein (EE-GRSP) and total glomalin-related soil protein (T-GRSP) both
are simply quantified from soil with the help of citrate buffer (Wright and Upadhyaya, 1996).

For plant growth and nutrition, AMF increase the surface area with the help of extracellular and 370 371 intracellular hyphae for better absorption of nutrient, water and the ions which are generally present in immobilize 372 form in soil. AMF also improves the plant ability to acquire nutrient from nutrient depleted zone of rhizosphere 373 (Smith and Read, 2010; Smith and Smith, 2011). As stated by Nakmee et al., (2016), native species of AMF 374 Glomus aggregatum, Acaulospora scrobiculata, F. mosseae provide positive effect on plant nutrient uptake (total 375 N, P, K), enhance plant biomass, leaf number and plant height of sorghum. It was observed that those wheat plants 376 inoculated with AMF culture (F. mosseae and R. intraradices) contain 1.13-2.76 times higher concentration of 377 Zn than non-inoculated wheat plants (Coccina et al., 2019). Various abiotic stresses like salinity, heavy metals, 378 drought, flooding, extreme temperature etc. AMF community withstand independently against these unfavorable 379 stress condition for its host plant and provide sufficient water in drought stress, supply nutrients (phosphorus) and 380 balance osmotic pressure in flooding stress condition (Zhu et al., 2017; Caradonia et al., 2019). Under drought 381 condition, tomato plant containing AMF (R. intraradices) colonization on their roots, provides sufficient water-382 nutrient to the tomato plant for better growth during water stress situation. Inoculation with G. etunicatum 383 enhances total chlorophyll content, root- shoot height- weight, increased N, P, K, Ca, Zn, Cu concentration, 384 flavonoids content, soluble sugar, proline, glycine betaine, polyamine, POD, CAT activity in Pistaciavera L under 385 stress condition (Abbaspour et al., 2012). Studies raveled that G. etunicatum F. mosseae and R. irregularis 386 increased the growth, grain yield of Triticum aestivum L. and regulates nutrient uptake capacity and decreases 387 Na+ and Cl- concentration at the time of salinity stress (Daei et al., 2009). According to Hashem et al., (2016) 388 oxidative stress generates high concentration malonaldehyde and hydrogen peroxide on Solanum lycopersicum L. 389 AMF strain (Glomus mosseae, Glomus intraradices and Glomus etunicatum) helps to decrease the concentration 390 of these elements and boost up plant defense system against Cd stress. AMF also provide protection against biotic 391 stress. Various pathogens such as root-rot fungi, pathogenic bacteria, nematodes, and other harmful 392 microorganisms can cause various plant diseases. However, the presence of AMF significantly reduces pathogen-393 induced damage and infection by enhancing nutrient availability, stimulating root growth, and improving root 394 morphology. Additionally, AMF secrete beneficial enzymes in the rhizosphere, strengthening plant defenses and 395 enabling plants to better withstand biotic stress (Vos et al., 2012; Spagnoletti et al., 2020). Fusarium wilt causes 396 damage on Cicer arietinum L plant but treatment with AMF strain (Glomus hoi) provide protection against wilt 397 disease and increase the nitrogen and phosphate content in treated plants as compared with non-treated plants

(Singh et al., 2010). Similarly, *Glomus* sp. synthesis antimicrobial compounds which helps to arrest the mycelia
growth of *Fusarium oxysporum* on L. esculentum plants and increase chlorophyll, N, P, K content of the plants.
Also in *Capsicum annum*, *Glomus* sp. reduces the activity of pathogen *Pythium aphanidermatum* and provide

401 better yield of the plant (Kumari and Prabina, 2019; Kumari and Srimeena, 2019).

402 5 Evaluation of AMF as a tool to remediate metals through meta-analysis

403 Research works published between 2005 and 2022 were searched in Web of Science database and 404 selected based on their reporting quality. The keywords were 'Arbuscular mycorrhizal fungi', 'Mine', 'Soil', 405 'World', 'Cadmium', 'Nickel', 'Lead', "Copper" and "Chromium". After the assessment of >250 peer-reviewed 406 articles, the articles were excluded based on the following reasons: a) Lacking in analytical techniques (not 407 mentioning the QA/QC), b) remediation through other microbes c) Graphical representation of data. To conclude, 408 a total of 24 studies comprising of 9, 12, 7 and 5 studies for Cd, Pb, Cu and Ni respectively were included in for 409 meta-analysis, which assessed the efficacy of AMF in remediating metal-contaminated mine soils (Table 1). 410 Studies reporting remediation of Cr with AMF was not found during the systemic review. The PRISMA flowchart 411 is displayed in Figure S4.

412 From RE models at (Figure 6 (a, b,c,d)), the overall mean value for Pb, Cd, Ni, and Cu were 1.34 (CIs: 413 1.19-1.49), 1.08 (CIs: 0.86-1.31), 0.79 (CIs: 0.53-1.05), and 1.46 (CIs: 1.02-1.90) respectively. The data showed 414 statistical significance at p < 0.05. The inconsistency index (I²) of Pb, Cd, Ni, and Cu was 92.94%, 96.39%, 415 99.30%, and 98.89% respectively, indicating substantial heterogeneity. The positive effect size for all the metals 416 indicated that the AMF has the ability to reduce the metal accumulation capacity in plants. The studies from USA 417 (Punamiya et al., 2010), China (Zhan et al., 2019), Mexico (González-Villalobos et al., 2021), etc. indicate that 418 the Pb accumulation in plants has increased by AMF (Diversispora spurcum, Glomus mosseae, Rhizophagus 419 irregularis) except (Wu et al., 2010; Solís-Domínguez et al., 2011; Bahraminia et al., 2016), the CIs value 420 overlapped the line of zero showing non-significant. (Figure 6a). The case studies from Spain (Arriagada et al., 421 2007), Brazil (de Andrade et al., 2008), China (Zhong et al., 2012), and Canada (Hassan et al., 2013) showed that 422 the accumulation of Cd in plant systems has increased in presence of AMF infection of Glomus deserticola, 423 Glomus intraradices and R. irregularis. Other studies from China (Wu et al., 2010; Hu et al., 2013; Liu et al., 424 2014; He et al., 2020), the Cd accumulation in plant was decreased (Glomus constrictum, Glomus caledonium, 425 and Glomus intraradices) (Figure 6b). For Ni and Cu, the accumulation in decreases in presence of AMF (Glomus 426 tenue, Glomus margarita) (Orłowska et al., 2011; Lam and Lai, 2018; Manyiwa and Ultra Jr, 2022) and 427 simultaneously increase the accumulation by the help of Glomus mosseae, Glomus etunicatum (Chen et al. 2005; 428 Lins et al., 2006) (Figure 6c and 6d). Plant roots are symbiotically associated with AMF, which increases plant 429 nutrient uptake ability, increases biomass accumulation, increase photosynthesis capacity, and modulates metal 430 toxicity. Through the formation of extracellular and intracellular hyphae, AMF increases soil surface area for better absorption of soil nutrients (N, and P), toxic metals (Cr, Ni, Cd, Pb, and Cu), improve root growth, root 431 432 morphology, secrets various proteins like glomalin (Amir et al., 2013; Lam and Lai, 2018; Zhan et al., 2019; Manyiwa and Ultra Jr, 2022). In this paradigm, the presence or absence of AMF in plant systems could impact 433 434 the accumulation capacity of toxic metals, thus increasing or decreasing ecosystem risk.

435 6 Conclusion

436 Global heavy metal pollution is of great concern to the environmentalists. Numerous research papers have explored the toxic effects of HMs on plants, animals, humans, and other living organisms. These studies 437 438 highlight the detrimental impact of HMs contamination on the ecosystem, emphasizing the need for effective remediation strategies. Plants play an efficient role in the remediation of poisonous HMs. However, the 439 440 effectiveness of phytoremediation is often limited by slow plant growth and lower efficiency in removing HMs. 441 To address these challenges, the use of plant-associated microbes, especially arbuscular mycorrhizal fungi (AMF) 442 can significantly enhance the removal efficiency of HMs from contaminated soils. These microbes can also 443 improve plant health, nutrient uptake, and stress tolerance, thereby boosting the overall phytoremediation process. 444 The success of this bioremediation technology depends on the proper selection and screening of plant species and 445 AMF cultures to optimize their effectiveness in mitigating HMs from contaminated environments.Future research 446 should focus on optimizing AMF-based remediation strategies, particularly in metal-polluted soils, to enhance 447 ecological sustainability and agricultural productivity. There are several areas of research that could potentially 448 improve the remediation of metal-contaminated soils in the future. Some of these include:

449

• Developing more efficient and cost-effective methods for removing or treating metal contaminants.

- Improving our understanding of the behavior and mobility of metal contaminants in the environment,
 which could lead to more targeted and effective remediation methods.
- Developing new technologies for detecting and measuring metal contaminants in soil, which could
 enable more accurate assessments of contamination levels and the effectiveness of remediation efforts.

16

454	•	Investigating the use of alternative materials and methods for immobilizing contaminants, such as natural						
455		or synthetic zeolites, to overcome the limitations of traditional stabilization/solidification methods.						
456	•	Investigate the use of new microorganisms, enzymes or new biotechnology approach for bioremediation						
457		and making it more efficient.						
458	•	Investigating the use of hybrid approaches such as combining phytoremediation with bioremediation or						
459		chemical treatment to increase the efficiency of remediation.						
460	•	Investigating the use of machine learning and AI tools to optimize the effectiveness of remediation						
461		methods and better predict the behavior of contaminants in different soil types.						
462	•	Conducting more long-term studies to assess the effectiveness of different remediation methods and to						
463		identify any potential negative effects on the environment or human health.						
464	Authors	s contribution						
465	Sonali I	Banerjee: Review design, Data Analysis, Original draft preparation; Jajati Mandal: Statistical analysis,						
466	reviewir	ng; Dibyendu Sarkar and Rupali Datta: Reviewing, Editing; Pradip Bhattacharyya: Supervision,						
467	7 Reviewing, Editing							
468								
469	Funding	л 5						
470	The auth	nors are thankful to the Indian Statistical Institute for providing financial assistance.						
471	Declara	tions						
472	Conflic	t of interest: The authors declare no competing interests.						
473	Referen	ice						
474	Abbaspour	, H., Saeidi-Sar, S., Afshari, H., and Abdel-Wahhab, M. A. (2012). Tolerance of mycorrhiza infected						
475	pist	achio (Pistacia vera L.) seedling to drought stress under glasshouse conditions. J. Plant. Physiol. 169,704-						
476	709							
477	Abyaneh, J	A. S., and Fazaelipoor, M. H. (2016). Evaluation of rhamnolipid (RL) as a biosurfactant for the removal						
478	of chromium from aqueous solutions by precipitate flotation. J. Environ. Manage. 165,184–187.							

- 479 Adrees, M., Ali, S., Rizwan, M., Ibrahim, M., Abbas, F., Farid, M., Zia-ur-Rehman, M., Irshad, M. K., and
- 480 Bharwana, S. A. (2015). The effect of excess copper on growth and physiology of important food crops: a
- 481 review. Environ. Sci. Pollut. Res. 22,8148–8162.
- 482 Akande, F., Ogunkunle, C., and Ajayi, S. (2018). Contamination from petroleum products: Impact on soil seed banks
 483 around an oil storage facility in Ibadan, South-West Nigeria. Pollut. 4,515–525.
- 484 Alam, A. K. M. R., Hossain, A. B. M., Hoque, S., and Chowdhury, D. A. (2018). Heavy metals in wetland soil of
 485 Greater Dhaka District, Bangladesh. Pollut. 4,129–141.
- 486 Ali, H., Khan, E., and Sajad, M. A. (2013). Phytoremediation of heavy metals—concepts and applications.
 487 Chemosphere. 91,869–881.
- 488 Alloway, B. J. (2012). Heavy metals in soils: trace metals and metalloids in soils and their bioavailability. Springer
 489 Science & Business Media. 22,238.
- 490 Álvarez-Ayuso, E., Otones, V., Murciego, A., García-Sánchez, A., and Santa, Regina. I. (2012). Antimony, arsenic
 491 and lead distribution in soils and plants of an agricultural area impacted by former mining activities. Sci.
 492 Total. Environ. 439,35-43.
- 493 Amir, H., Lagrange, A., Hassaïne, N., and Cavaloc, Y. (2013). Arbuscular mycorrhizal fungi from New Caledonian
 494 ultramafic soils improve tolerance to nickel of endemic plant species. Mycorrhiza. 23,585–595.
- Andra, S. S., Datta, R., Sarkar, D., Makris, K. C., Mullens, C. P., Sahi, S. V., and Bach, S. B. (2009). Induction of
 Lead-Binding Phytochelatins in Vetiver Grass [*Vetiveria zizanioides* (L.)]. J. Environ. Qual. 38,868-877.
- 497 Antoniadis, V., Thalassinos, G., Levizou, E., Wang, J., Wang, S. L., Shaheen, S. M., and Rinklebe, J. (2022).
- 498 Hazardous enrichment of toxic elements in soils and olives in the urban zone of Lavrio, Greece, a legacy,
- 499 millennia-old silver/lead mining area and related health risk assessment. J. Hazard. Mater. 434,128906.
- 500 Arhin, E., Boansi, A. O., and Zango, M. S. (2016). Trace elements distributions at Datoko-Shega artisanal mining
 501 site, northern Ghana. Environ. Geochem. Health. 38,203-218.
- 502 Arriagada, C. A., Herrera, M. A., and Ocampo, J. A. (2007). Beneficial effect of saprobe and arbuscular mycorrhizal
- fungi on growth of Eucalyptus globulus co-cultured with Glycine max in soil contaminated with heavymetals. J. Environ. Manage. 84,93–99.

- 505 Arshad, M., Silvestre, J., Pinelli, E., Kallerhoff, J., Kaemmerer, M., Tarigo, A., Shahid, M., Guiresse, M., Pradère,
- 506 P., and Dumat, C. (2008). A field study of lead phytoextraction by various scented Pelargonium cultivars.
- 507 Chemosphere. 71,2187–2192.
- Arslan, Ş., and Çelik, M. (2015). Assessment of the pollutants in soils and surface waters around Gümüşköy silver
 mine (Kütahya, Turkey). Bull. Environ. Contam. Toxicol. 95,499-506.
- Attinti, R., Barrett, K. R., Datta, R., and Sarkar, D. (2017). Ethylenediaminedisuccinic acid (EDDS) enhances
 phytoextraction of lead by vetiver grass from contaminated residential soils in a panel study in the field.
 Environ. Pollut. 225,524-533.
- 513 Bahraminia, M., Zarei, M., Ronaghi, A., and Ghasemi-Fasaei, R. (2016). Effectiveness of arbuscular mycorrhizal
- fungi in phytoremediation of lead-contaminated soil by vetiver grass. Int. J. Phytoremediation. 18,730–737.
- 515 Barać, N., Škrivanj, S., Mutić, J., Manojlović, D., Bukumirić, Z., Živojinović, D., Petrović, R., and Ćorac, A. (2016).
- Heavy metals fractionation in agricultural soils of Pb/Zn mining region and their transfer to selected
 vegetables. Water. Air. Soil. Pollut. 227,1-13.
- 518 Barjoee, S. S., Abadi, S. Z. M., Elmi, M. R., Varaoon, V. T., and Nikbakht, M. (2021). Evaluation of trace elements
 519 pollution in deposited dust on residential areas and agricultural lands around Pb/Zn mineral areas using
 520 modified pollution indices. J. Environ. Health. Sci. Eng. 19,753-769.
- 521 Beukes, J. P., Dawson, N. F., and van Zyl, P. G. (2010). Theoretical and practical aspects of Cr (VI) in the South
- 522 African ferrochrome industry. J. South. Afr. Inst. Min. Metall. 110,743–750.
- Bloise, A., Fornero, E., Belluso, E., Barrese, E., and Rinaudo, C. (2008). Synthesis and characterization of tremolite
 asbestos fibres. Eur. J. Mineral. 20,1027–1033.
- Boussen, S., Soubrand, M., Bril, H., Ouerfelli, K., and Abdeljaouad, S. (2013). Transfer of lead, zinc and cadmium
 from mine tailings to wheat (*Triticum aestivum*) in carbonated Mediterranean (Northern Tunisia) soils.
 Geoderma. 192,227-236.
- Bravin, M. N., Marti, A. L., Clairotte, M., and Hinsinger, P. (2009). Rhizosphere alkalisation—a major driver of
 copper bioavailability over a broad pH range in an acidic, copper-contaminated soil. Plant. Soil. 318,257–
 268

- 531 Brun, L. A., Maillet, J., Hinsinger, P., and Pepin, M. (2001). Evaluation of copper availability to plants in copper532 contaminated vineyard soils. Environ. Pollut. 111,293–302.
- 533 Bueno, P. C., Bellido, E., Rubí, J. A. M., and Ballesta, R. J. (2009). Concentration and spatial variability of mercury
- and other heavy metals in surface soil samples of periurban waste mine tailing along a transect in the Almadén
 mining district (Spain). Environ. Geol. 56,815–824.
- 536 Bui, A. T., Nguyen, H. T., Nguyen, M., Tran, T. H. T., Vu, T. V., Nguyen, C. H., and Reynolds, H. L. (2016).
- Accumulation and potential health risks of cadmium, lead and arsenic in vegetables grown near mining sites
 in Northern Vietnam. Environ. Monit. Assess. 188,1-11.
- 539 Burges, A., Alkorta, I., Epelde, L., and Garbisu, C. (2018). From phytoremediation of soil contaminants to
 phytomanagement of ecosystem services in metal contaminated sites. Int. J. Phytoremediation, 20,384–397.
- 541 Cachada, A., Rocha-Santos, T., and Duarte, A. C. (2018). Soil and pollution: an introduction to the main issues, in:
 542 Soil. Pollut. 1,1–28.
- Cai, L. M., Xu, Z. C., Qi, J. Y., Feng, Z. Z., and Xiang, T. S. (2015). Assessment of exposure to heavy metals and
 health risks among residents near Tonglushan mine in Hubei, China. Chemosphere. 127,127-135.
- 545 Candeias, C., Melo, R., Ávila, P. F., da Silva, E. F., Salgueiro, A. R., and Teixeira, J. P. (2014). Heavy metal pollution
- 546 in mine-soil-plant system in S. Francisco de Assis-Panasqueira mine (Portugal). Appl. Geochem. 44,12-26.
- 547 Cao, C., Wang, L., Li, H., Wei, B., and Yang, L. (2018). Temporal variation and ecological risk assessment of metals
 548 in soil nearby a Pb–Zn mine in Southern China. Int. J. Environ. Res. Public. Health. 15,940.
- 549 Caradonia, F., Francia, E., Morcia, C., Ghizzoni, R., Moulin, L., Terzi, V., and Ronga, D. (2019). Arbuscular
 550 mycorrhizal fungi and plant growth promoting rhizobacteria avoid processing tomato leaf damage during
 551 chilling stress. Agronomy. 9,299.
- 552 Chaturvedi, N., and Patra, H. K. (2016). Iron ore mining, waste generation, environmental problems and their
 553 mitigation through phytoremediation technology. Int. J. Sci. Res. Meth. 5,397–402.
- 554 Chen, M., Chen, X., Xing, Y., Liu, Y., Zhang, S., Zhang, D., and Zhu, J. (2021). Arsenic and cadmium in soils from
- a typical mining city in Huainan, China: spatial distribution, ecological risk assessment and health risk
 assessment. Bull. Environ. Contam. Toxicol. 107,1080-1086.

- 557 Chen, M., Lu, W., Hou, Z., Zhang, Y., Jiang, X., and Wu, J. (2017). Heavy metal pollution in soil associated with a
 558 large-scale cyanidation gold mining region in southeast of Jilin, China. Environ. Sci. Pollut. Res. 24,3084–
 559 3096.
- 560 Chen, X., Wu, C., Tang, J., and Hu, S. (2005). Arbuscular mycorrhizae enhance metal lead uptake and growth of
 561 host plants under a sand culture experiment. Chemosphere. 60,665–671.
- 562 Cheng, S., Liu, G., Zhou, C., and Sun, R. (2018). Chemical speciation and risk assessment of cadmium in soils
 around a typical coal mining area of China. Ecotoxicol. Environ. Saf. 160,67-74.
- 564 Cheng, X., Danek, T., Drozdova, J., Huang, Q., Qi, W., Zou, L., Yang, S., Zhao, X., and Xiang, Y. (2018). Soil
- 565 heavy metal pollution and risk assessment associated with the Zn-Pb mining region in Yunnan, Southwest
- 566 China. Environ. Monit. Assess. 190,1-16.
- 567 Cheng, X., Drozdova, J., Danek, T., Huang, Q., Qi, W., Yang, S., Zou, L., Xiang, Y., and Zhao, X. (2018). Pollution
- assessment of trace elements in agricultural soils around copper mining area. Sustainability. 10,4533.
- 569 Cheng, Z. (2016). The spatial correlation and interaction between manufacturing agglomeration and environmental
 570 pollution. Ecol. Indic. 61,1024–1032.
- 571 China, S. P., Das, M., and Maiti, S. K. (2014). Phytostabilization of Mosaboni Copper mine tailings: A green step
 572 towards waste management. Appl. Ecol. Environ. Res. 12,25-32.
- 573 Coccina, A., Cavagnaro, T. R., Pellegrino, E., Ercoli, L., McLaughlin, M. J., and Watts-Williams, S. J. (2019). The
 574 mycorrhizal pathway of zinc uptake contributes to zinc accumulation in barley and wheat grain. BMC Plant.
 575 Biol. 19,1–14.
- 576 Crowley, D. (2008). Impacts of metals and metalloids on soil microbial diversity and ecosystem function. Revista
 577 de la ciencia del suelo y nutrición vegetal. 8,6–11.
- 578 Cunningham, S. D., Anderson, T. A., Schwab, A. P., and Hsu, F. C. (1996). Phytoremediation of soils contaminated
 579 with organic pollutants. Adv. Agron. 56,55–114.
- 580 da Silveira Pereira, W. V., Teixeira, R. A., de Souza, E. S., de Moraes, A. L. F., Campos, W. E. O., do Amarante, C.
- 581 B., Martins, G. C., Fernandes, A. R. (2020). Chemical fractionation and bioaccessibility of potentially toxic
- elements in area of artisanal gold mining in the Amazon. J. Environ. Manage. 267,110644.

- 583 Daei, G., Ardekani, M. R., Rejali, F., Teimuri, S., and Miransari, M. (2009). Alleviation of salinity stress on wheat
 584 yield, yield components, and nutrient uptake using arbuscular mycorrhizal fungi under field conditions. J.
- **585**Plant. Physiol. 166,617–625.
- 586 Darko, G., Adjei, S., Nkansah, M. A., Borquaye, L. S., Boakye, K. O., and Dodd, M. (2022). Accumulation and
 587 bioaccessibility of toxic metals in root tubers and soils from gold mining and farming communities in the
 588 Ashanti region of Ghana. Int. J. Environ. Health. Res. 32,426-436.
- 589 Darko, G., Boakye, K. O., Nkansah, M. A., Gyamfi, O., Ansah, E., Yevugah, L. L., Acheampong, A., and Dodd, M.
- 590 (2019). Human health risk and bioaccessibility of toxic metals in topsoils from Gbani mining community in591 Ghana. J. Health. Pollut. 9,190602.
- 592 Das, M., and Maiti, S. K. (2007). Metal accumulation in *A. baccifera* growing naturally on abandoned copper tailings
 593 pond. Environ. Monit. Assess. 127,119–125.
- de Andrade, S. A. L., da Silveira, A. P. D., Jorge, R. A., and de Abreu, M. F. (2008). Cadmium accumulation in
 sunflower plants influenced by arbuscular mycorrhiza. Int. J. Phytoremediation. 10,1–13.
- 596 Dhal, P. K., and Sar, P. (2014). Microbial communities in uranium mine tailings and mine water sediment from
 597 Jaduguda U mine, India: a culture independent analysis. J. Environ. Sci. Health. 49,694-709.
- 598 Dhaliwal, S. S., Singh, J., Taneja, P. K., and Mandal. A. (2020). Remediation techniques for removal of heavy metals
- from the soil contaminated through different sources: a review. Environ. Sci. Pollut. Res. 27, 1319–1333.
- 600 Dhatrak, S.V., Subroto, S. N., Sishodiya, P. L., Dhumne, U. L., Ingole, S. V., and Gupta, S. R. (2017). Health Status
- Evaluation of mine workers and nearby population around iron ore mines in tribal district of Jharkhand, India.
 Am. J. Prev. Med. 1,20–26.
- 603 Ding, T., Ma, D., Lu, J., and Zhang, R. (2018). Magnetite as an indicator of mixed sources for W-Mo-Pb-Zn
 604 mineralization in the Huangshaping polymetallic deposit, southern Hunan Province, China. Ore. Geol.
 605 Rev. 95,65-78.
- 606 Du, F., Yang, Z., Liu, P., and Wang, L. (2018). Accumulation, translocation, and assessment of heavy metals in the
 607 soil-rice systems near a mine-impacted region. Environ. Sci. Pollut. Res. 25,32221-32230.

- Duncan, A. E., de Vries, N., and Nyarko, K. B. (2018). Assessment of heavy metal pollution in the sediments of the
 River Pra and its tributaries. Water. Air. Soil. Pollut. 229,1–10.
- 610 Eapen, S., Suseelan, K. N., Tivarekar, S., Kotwal, S. A., and Mitra, R. (2003). Potential for rhizofiltration of uranium
- 611 using hairy root cultures of *Brassica juncea* and *Chenopodium amaranticolor*. Environ. Res. 91,127-133.
- 612 Elmayel, I., Esbrí, J. M., García-Ordiales, E., Elouaer, Z., Garcia-Noguero, E. M., Bouzid, J., Campos, J.A., and
- 613 Higueras, P. L. (2020). Biogeochemical assessment of the impact of Zn mining activity in the area of the
- 614 Jebal Trozza mine, Central Tunisia. Environ. Geochem. Health. 42,3529-3542.
- Emran, M., Gispert, M., and Pardini, G. (2012). Patterns of soil organic carbon, glomalin and structural stability in
 abandoned Mediterranean terraced lands. Eur. J. Soil. Sci. 63,637–649.
- 617 Equeenuddin, S. M., and Pattnaik, B. K. (2017). Assessment of heavy metal contamination in sediment at Sukinda
 618 ultramafic complex using HAADF-STEM analysis. Chemosphere. 185,309-320.
- 619 Equeenuddin, S. M., Tripathy, S., Sahoo, P. K., and Ranjan, A. (2016). Geochemical characteristics and mode of
 620 occurrence of trace elements in coal at West Bokaro coalfield. Int. J. Coal. Sci. Technol. 3, 399-406.
- 621 Farahat, E. A. (2018). Trace metal accumulation by Ranunculus sceleratus: Implications for phytostabilization.
 622 Environ. Sci. Pollut. Res. Int. 25, 4214–4222.
- Fazekašová, D., and Fazekaš, J. (2020). Soil quality and heavy metal pollution assessment of iron ore mines in Nizna
 Slana (Slovakia). Sustainability. 12,2549.
- Fernández-Caliani, J. C., Barba-Brioso, C., González, I., and Galán, E. (2009). Heavy metal pollution in soils around
 the abandoned mine sites of the Iberian Pyrite Belt (Southwest Spain). Water. Air. Soil. Pollut. 200,211–226.
- 627 Galhardi, J. A., de Mello, J. W., and Wilkinson, K. J. (2020). Bioaccumulation of potentially toxic elements from
 628 the soils surrounding a legacy uranium mine in Brazil. Chemosphere. 261,127679.
- 629 Gałuszka, A., Migaszewski, Z. M., Dołęgowska, S., Michalik, A., and Duczmal-Czernikiewicz, A. (2015).
- 630 Geochemical background of potentially toxic trace elements in soils of the historic copper mining area: a case
- 631 study from Miedzianka Mt., Holy Cross Mountains, south-central Poland. Environ. Earth. Sci. 74,4589-4605.
- 632 García-Giménez, R., and Jiménez-Ballesta, R. (2017). Mine tailings influencing soil contamination by potentially
- 633 toxic elements. Environ. Earth. Sci. 76,1-12.

- Ghaderian, S. M., and Ravandi, A. A. G. (2012). Accumulation of copper and other heavy metals by plants growingon Sarcheshmeh copper mining area, Iran. J. Geochem. Explor. 123,25-32.
- Ghazban, F., Parizanganeh, A., Zamani, A., and Baniardalan, S. (2018). Evaluation of heavy metal contamination of
 surface soils in Zarshouran Gold District, Northwestern Iran. Int. J. Environ. Res. 12,843-860.
- 638 Giri, S., and Singh, A. K. (2017). Human health risk assessment due to dietary intake of heavy metals through rice
- 639 in the mining areas of Singhbhum Copper Belt, India. Environ. Sci. Pollut. Res. 24,14945-14956.
- 640 Giri, S., Singh, A. K., and Mahato, M. K. (2017). Metal contamination of agricultural soils in the copper mining
 641 areas of Singhbhum shear zone in India. J. Earth. Syst. Sci. 126,49.
- 642 Gkorezis, P., Daghio, M., Franzetti, A., Hamme, J. D. V., Sillen, W., and Vangronsveld, J. (2016). The interaction
- between plants and bacteria in the remediation of petroleum hydrocarbons: An environmental perspective.Front. Microbiol. 7,1–27.
- Gnandi, K., and Tobschall, H. (2002). Heavy metals distribution of soils around mining sites of cadmium-rich marine
 sedimentary phosphorites of Kpogame and Hahotoe (southern Togo). Environ. Geol. 41,593–600.
- 647 González-Villalobos, M. A., Martinez-Trinidad, T., Alarcón, A., and Plascencia-Escalante, F. O. (2021). Growth
 648 and lead uptake by *Parkinsonia aculeata* L. inoculated with *Rhizophagus intraradices*. Int. J.
 649 Phytoremediation. 23,272–278.
- Guo, P., Wang, T., Liu, Y., and Xia, Y. (2016). Phytostabilization potential of evening primrose (*Oenothera glazioviana*) for copper-contaminated sites. Environ. Sci. Pollut. Res. Int. 21,631–640.
- 652 Gupta, C., and Singh, H. (2003). Uranium resource processing: secondary resources. Springer Science & Business
 653 Media
- Hamad, R., Balzter, H., and Kolo, K. (2019). Assessment of heavy metal release into the soil after mine clearing in
 Halgurd-Sakran National Park, Kurdistan, Iraq. Environ. Sci. Pollut. Res. 26,1517-1536.
- Hamdi, H., Benzarti, S., Aoyama, I., and Jedidi, N. (2012). Rehabilitation of degraded soils containing aged PAHs
 based on phytoremediation with alfalfa (*Medicago sativa* L.). Int. Biodeterior. Biodegrad. 67,40–47.
- 658 Hänsch, R., and Mendel, R. R. (2009). Physiological functions of mineral micronutrients (cu, Zn, Mn, Fe, Ni, Mo,
- 659 B, cl). Curr. Opin. Plant. Biol. 12,259–266.

- 660 Hashem, A., Abd Allah, E. F., Alqarawi, A. A., al Huqail, A. A., Egamberdieva, D., and Wirth, S. (2016). Alleviation
- of cadmium stress in *Solanum lycopersicum* L. by arbuscular mycorrhizal fungi via induction of acquired
- systemic tolerance. Saudi. J. Biol. Sci. 23,272–281.
- Hassan, S. E., Hijri, M., and St-Arnaud, M. (2013). Effect of arbuscular mycorrhizal fungi on trace metal uptake by
 sunflower plants grown on cadmium contaminated soil. N. Biotechnol. 30,780–787.
- He, Y., Yang, R., Lei, G., Li, B., Jiang, M., Yan, K., Zu, Y., Zhan, F., and Li, Y. (2020). Arbuscular mycorrhizal
 fungi reduce cadmium leaching from polluted soils under simulated heavy rainfall. Environ. Pollut.
 263,114406.
- Herlina, L., Widianarko, B., and Sunoko, H. R. (2020). Phytoremediation Potential of *Cordyline Fruticosa* for Lead
 Contaminated Soil. J. Pendidik. IPA. Indones. 9,42-49.
- 670 Hinojosa, M. B., Carreira, J. A., García-Ruíz, R., and Dick, R. P. (2005). Microbial Response to Heavy Metal-
- 671 Polluted Soils: Community Analysis from Phospholipid-Linked Fatty Acids and Ester-Linked Fatty Acids
 672 Extracts. J. Environ. Qual. 34,1789–1800.
- 673 Holmes, R. J., Lu, Y., and Lu, L. (2022). Introduction: Overview of the global iron ore industry. Iron Ore. 1–56.
- 674 Hosseini, S. M., Rezazadeh, M., Salimi, A., and Ghorbanli, M. (2018). Distribution of heavy metals and arsenic in
- soils and indigenous plants near an iron ore mine in northwest Iran. Acta. Ecologica. Sinica. 38,363–367.
- 676 Hu, J., Wu, S., Wu, F., Leung, H. M., Lin, X., and Wong, M. H. (2013). Arbuscular mycorrhizal fungi enhance both
- absorption and stabilization of Cd by Alfred stonecrop (*Sedum alfredii* Hance) and perennial ryegrass (*Lolium perenne* L.) in a Cd-contaminated acidic soil. Chemosphere. 93,1359–1365.
- Hua, L., Yang, X., Liu, Y., Tan, X., and Yang, Y. (2018). Spatial distributions, pollution assessment, and qualified
 source apportionment of soil heavy metals in a typical mineral mining city in China. Sustainability. 10,3115.
- Huang, X., Zhu, Y., and Ji, H. (2013). Distribution, speciation, and risk assessment of selected metals in the gold
 and iron mine soils of the catchment area of Miyun Reservoir, Beijing, China. Environ. Monitor. Assess.
 185,8525-8545.
- 684 ICDA. (2022). Statistical Bulletin 2022, Istanbul, Turkey.

- 685 IS. (1993). Drinking water specifications (1st revision). Bureau of Indian Standards (IS 10500), New Delhi, India.
 686 www.bis.org.in/ bis/html/10500.html, accessed Feb 2010, 1–8.
- Jia, H., Wang, H., Lu, H., Jiang, S., Dai, M., Liu, J., and Yan, C. (2016). Rhizodegradation potential and tolerance
 of Avicennia marina (Forsk.) Vierh in phenanthrene and pyrene contaminated sediments. Mar. Pollut. Bull.
 110,112–118.
- Jiang, Y., Wen, H., Zhang, Q., Yuan, L., and Liu, L. (2022). Source apportionment and health risk assessment of
 potentially toxic elements in soil from mining areas in northwestern China. Environ. Geochem. Health.
 44,1551-1566.
- 693 Kabata-Pendias, A. (2011). Trace Elements in Soils and Plants, fourth. CRC Press Taylor & Francis Group, Boca694 Raton London New York.
- Kartal, Ş., Aydın, Z., and Tokalıoğlu, Ş. (2006). Fractionation of metals in street sediment samples by using the BCR
 sequential extraction procedure and multivariate statistical elucidation of the data. J. Hazard. Mater. 132,80–
 89.
- 698 Khan, N. T., Jameel, N., and Khan, M. J. (2018). A brief overview of contaminated soil remediation methods.699 Biotechnol. Ind. J. 14,171.
- 700 Khelfaoui, M., Medjram, M. S., Kabir, A., Zouied, D., Mehri, K., Chikha, O., and Trabelsi, M. A. (2020). Chemical
- and mineralogical characterization of weathering products in mine wastes, soil, and sediment from the
 abandoned Pb/Zn mine in Skikda, Algeria. Environ. Earth. Sci. 79,1-15.
- Kien, C. N., Noi, N. V., Son, L. T., Ngoc, H. M., Tanaka, S., Nishina, T., and Iwasaki, K. (2010). Heavy metal
 contamination of agricultural soils around a chromite mine in Vietnam. Soil. Sci. Plant. Nutr. 56,344–356.
- Kowitwiwat, A., and Sampanpanish, P. (2020). Phytostabilization of arsenic and manganese in mine tailings using
 Pennisetum purpureum cv. Mott supplemented with cow manure and acacia wood-derived biochar. Heliyon.
 6,e04552.
- 708 Krishna, A. K., Mohan, K. R., Murthy, N. N., Periasamy, V., Bipinkumar, G., Manohar, K., and Rao, S. S. (2013).
- Assessment of heavy metal contamination in soils around chromite mining areas, Nuggihalli, Karnataka,
 India. Environ. Earth. Sci. 70,699-708.

711 Kulikova, T., Hiller, E., Jurkovič, Ľ., Filová, L., Šottník, P., and Lacina, P. (2019). Total mercury, chromium, nickel
712 and other trace chemical element contents in soils at an old cinnabar mine site (Merník, Slovakia):
713 anthropogenic versus natural sources of soil contamination. Environ. Monitor. Assess. 191,1-18.

Kumar, A., Maiti, S. K., Prasad, M. N. V., and Singh, R. S. (2017). Grasses and legumes facilitate phytoremediation
of metalliferous soils in the vicinity of an abandoned chromite–asbestos mine. J. Soils. Sediments. 17,13581368.

717 Kumar, A., and Maiti, S. K. (2014). Translocation and bioaccumulation of metals in *Oryza sativa* and *Zea mays*718 growing in chromite-asbestos contaminated agricultural fields, Jharkhand, India. Bull. Environ. Contam.
719 Toxicol. 93,434–441.

Kumari, S. M. P., and Prabina, B. J. (2019). Protection of tomato, Lycopersicon esculentum from wilt pathogen,
 Fusarium oxysporum f. sp. lycopersici by arbuscular mycorrhizal fungi, *Glomus* sp. Int. J. Curr. Microbiol.
 Appl. Sci. 8,1368–1378.

Kumari, S. M. P., and Srimeena, N. (2019). Arbuscular mycorrhizal fungi (AMF) induced defense factors against
the Damping-off disease pathogen, *Pythium aphanidermatum* in chilli (*Capsicum annum*). Int. J. Curr.
Microbiol. Appl. Sci. 8,2243–2248.

Lam, C. M., and Lai, H. Y. (2018). Effect of inoculation with arbuscular mycorrhizal fungi and blanching on the
bioaccessibility of heavy metals in water spinach (*Ipomoea aquatica* Forsk.). Ecotoxicol. Environ. Saf.
162,563–570.

729 Lee, C. G., Chon, H. T., and Jung, M. C. (2001). Heavy metal contamination in the vicinity of the Daduk Au–Ag–
730 Pb–Zn mine in Korea. Appl. Geochem. 16,1377–1386.

731 Lee, M., and Yang, M. (2010). Rhizofiltration using sunflower (*Helianthus annuus* L.) and bean (*Phaseolus vulgaris*732 L. var. vulgaris) to remediate uranium contaminated groundwater. J. Hazard. Mater. 173,589–596.

733 Lee, S. W., Cho, H. G., and Kim, S. O. (2019). Comparisons of human risk assessment models for heavy metal

contamination within abandoned metal mine areas in Korea. Environ. Geochem. Health. 41,481-505.

- 735 Li, D., Liu, G., Li, X., Li, R., Wang, J., and Zhao, Y. (2022). Heavy metal (loid) s pollution of agricultural soils and
- health risk assessment of consuming soybean and wheat in a typical non-ferrous metal mine area in NortheastChina. Sustainability. 14,2953.
- Li, F., Yang, F., Chen, Y., Jin, H., Leng, Y., and Wang, J. (2020). Chemical reagent-assisted phytoextraction of
 heavy metals by Bryophyllum laetivirens from garden soil made of sludge. Chemosphere. 253,126574.
- Li, H., and Ji, H. (2017). Chemical speciation, vertical profile and human health risk assessment of heavy metals in
 soils from coal-mine brownfield, Beijing, China. J. Geochem. Explor.183,22-32.
- 742 Li, M. S., Luo, Y. P., and Su, Z. Y. (2007). Heavy metal concentrations in soils and plant accumulation in a restored
 743 manganese mineland in Guangxi, South China. Environ. Pollut. 147,168–175.
- 744 Li, Q., Ji, H., Qin, F., Tang, L., Guo, X., and Feng, J. (2014). Sources and the distribution of heavy metals in the
- particle size of soil polluted by gold mining upstream of Miyun Reservoir, Beijing: implications for assessing
 the potential risks. Environ. Monit. Assess. 186,6605-6626.
- 747 Li, Z., Deblon, J., Zu, Y., Colinet, G., Li, B., and He, Y. (2019). Geochemical baseline values determination and
 748 evaluation of heavy metal contamination in soils of Lanping Mining Valley (Yunnan Province, China). Int.
 749 J. Environ. Res. Public. Health. 16,4686.
- 750 Limmer, M., and Burken, J. (2016). Phytovolatilization of organic contaminants. Environ. Sci. Technol. 50,6632–
 751 6643.
- 752 Lins, C. E. L., Cavalcante, U. M. T., Sampaio, E. V. S. B., Messias, A. S., and Maia, L. C. (2006). Growth of
 753 mycorrhized seedlings of *Leucaena leucocephala* (Lam.) de Wit. in a copper contaminated soil. Appl. Soil.
 754 Ecol. 31,181–185.
- Liu, L., Gong, Z., Zhang, Y., and Li, P. (2014). Growth, cadmium uptake and accumulation of maize (*Zea mays* L.)
 under the effects of arbuscular mycorrhizal fungi. Ecotoxicol. 23,1979–1986.
- 757 Liu, Xiaoyang., Bai, Z., Shi, H., Zhou, W., and Liu, Xiaocai. (2019). Heavy metal pollution of soils from coal mines
 758 in China. Nat. Hazards. 99,1163–1177.

- Long, J., Tan, D., Deng, S., and Lei, M. (2018). Pollution and ecological risk assessment of antimony and other
 heavy metals in soils from the world's largest antimony mine area, China. Human. Ecol. Risk. Assess. Int. J.
 24,679-690.
- 762 Lothe, A. G., Hansda, A., and Kumar, V. (2016). Phytoremediation of Copper-Contaminated Soil Using *Helianthus*763 *annuus, Brassica nigra*, and *Lycopersicon esculentum* Mill.: A Pot Scale Study. Environ. Qual. Manage.
 764 25,63–70.
- 765 Lü, J., Jiao, W. B., Qiu, H. Y., Chen, B., Huang, X. X., and Kang, B. (2018). Origin and spatial distribution of heavy
 766 metals and carcinogenic risk assessment in mining areas at You'xi County southeast China. Geoderma.
 767 310,99-106.
- Lu, N., Li, G., Hav, J. C., Wang, H. Y., Wei, Y., and Sun, Y. Y. (2019). Investigation of lead and cadmium
 contamination in mine soil and metal accumulation in selected plants growing in a gold mining area. Appl.
 Ecol. Environ. Res. 17,10587-10597.
- 771 Lu, Q., Xu, Z., Xu, X., Liu, L., Liang, L., Chen, Z., Dong, X., Li, C., Wang, Y., and Qiu, G. (2019). Cadmium
 772 contamination in a soil-rice system and the associated health risk: an addressing concern caused by barium
 773 mining. Ecotoxicol. Environ. Saf. 183,109590.
- Ma, Y., Dickinson, N. M., and Wong, M. H. (2006). Beneficial effects of earthworms and arbuscular mycorrhizal
 fungi on establishment of leguminous trees on Pb/Zn mine tailings. Soil. Biol. Biochem. 38,1403-1412.
- 776 Ma, Z., Chen, K., Li, Z., Bi, J., and Huang, L. (2016). Heavy metals in soils and road dusts in the mining areas of
 777 Western Suzhou, China: a preliminary identification of contaminated sites. J. Soils. Sediments. 16,204-214.
- 778 Magiera, T., Zawadzki, J., Szuszkiewicz, M., Fabijańczyk, P., Steinnes, E., Fabian, K., and Miszczak, E. (2018).

779 Impact of an iron mine and a nickel smelter at the Norwegian/Russian border close to the Barents Sea on

- surface soil magnetic susceptibility and content of potentially toxic elements. Chemosphere. 195,48-62.
- 781 Maiti, S. K., Kumar, A., and Ahirwal, J. (2016). Bioaccumulation of metals in timber and edible fruit trees growing
 782 on reclaimed coal mine overburden dumps. Int. J. Min. Reclam. Environ. 30,231–244.
- 783 Maiti, S. K., Nandhini, S., and Das, M. (2005). Accumulation of metals by naturally growing herbaceous and tree
 784 species in iron ore tailings. Int. J. Environ. Stud. 62,593–603.

785	Mandal, J., Bakare, W. A., Rahman, M. M., Rahman, M. A., Siddique, A. B., Oku, E., Wood, M. D., Hutchinson, S.
786	M., and Mondal, D. (2022). Varietal differences influence arsenic and lead contamination of rice grown in
787	mining impacted agricultural fields of Zamfara State, Nigeria. Chemosphere. 305,135339.

- Manyiwa, T., and Ultra Jr, V. U. (2022). Soil Amendments and Arbuscular Mycorrhiza Influenced the Growth and
 Heavy Metal Accumulation of *Colosphospermum Mopane* (Kirk Ex Benth.) In Heavy Metal Contaminated
- 790 Soil. Soil. Sediment. Contam. Int. J. 31,81–96.
- Martínez-Toledo, Á., Montes-Rocha, A., González-Mille, D. J., Espinosa-Reyes, G., Torres-Dosal, A., MejiaSaavedra, J. J., and Ilizaliturri-Hernández, C. A. (2017). Evaluation of enzyme activities in long-term polluted
 soils with mine tailing deposits of San Luis Potosí, México. J. Soils. Sediments. 17,364-375.

794 Meyer, E., Londoño, D. M. M., de Armas, R. D., Giachini, A. J., Rossi, M. J., Stoffel, S. C. G., and Soares, C. R. F.

S. (2017). Arbuscular mycorrhizal fungi in the growth and extraction of trace elements by *Chrysopogon zizanioides* (vetiver) in a substrate containing coal mine wastes. Int. J. Phytoremediation. 19,113-120.

- 797 Miller, J. R., Hudson-Edwards, K. A., Lechler, P. J., Preston, D., and Macklin, M. G. (2004). Heavy metal
 798 contamination of water, soil and produce within riverine communities of the Rio Pilcomayo basin, Bolivia.
 799 Sci. Total. Environ. 320,189–209.
- 800 Mishra, A., Bhattacharya, A., and Mishra, N. (2019). Mycorrhizal symbiosis: An effective tool for metal
 801 bioremediation. New and Future Developments in Microbial Biotechnology and Bioengineering, 113–128.
- Mitra, D., Uniyal, N., Panneerselvam, P., Senapati, A., and Ganeshamurthy, A. N. (2020). Role of mycorrhiza and
 its associated bacteria on plant growth promotion and nutrient management in sustainable agriculture. Int. J.
 Life. Sci. Appl. Sci. 1
- Mohammadi, H., Amani-Ghadim, A. R., Matin, A. A., and Ghorbanpour, M. (2020). Fe nanoparticles improve
 physiological and antioxidative attributes of sunflower (*Helianthus annuus*) plants grown in soil spiked with
 hexavalent chromium. Biotech. 10, 19.
- Mohan, D., Pittman Jr, C. U., Bricka, M., Smith, F., Yancey, B., Mohammad, J., Steele, P. H., Alexandre-Franco,
 M. F., Gómez-Serrano, V., and Gong, H. (2007). Sorption of arsenic, cadmium, and lead by chars produced
 from fast pyrolysis of wood and bark during bio-oil production. J. Colloid. Interface. Sci. 310,57–73.

- 811 Mohan, S. V., Nithila, P., and Reddy, S. J. (1996). Estimation of heavy metals in drinking water and development
 812 of heavy metal pollution index. J. Environ. Sci. Health. 31,283–289.
- Moore, F., Dehghani, S., and Keshavarzi, B. (2014). Characterization of soil contamination in Miduk mining district,
 SW Iran. Soil. Sediment. Contam. Int. J. 23,614-627.
- 815 Moore, F., Sheykhi, V., Salari, M., and Bagheri, A. (2016). Soil quality assessment using GIS-based chemometric
- 816 approach and pollution indices: Nakhlak mining district, Central Iran. Environ. Monit. Assess. 188,1-16.
- 817 Morikawa, H., and Erkin, Ö. C. (2003) Basic processes in phytoremediation and some applications to air pollution
 818 control. Chemosphere. 52,1553–1558.
- 819 Mwesigye, A. R., Young, S. D., Bailey, E. H., and Tumwebaze, S. B. (2016). Population exposure to trace elements
 820 in the Kilembe copper mine area, Western Uganda: A pilot study. Sci. Total. Environ. 573,366-375.
- 821 Nakmee, P. S., Techapinyawat, S., and Ngamprasit, S. (2016). Comparative potentials of native arbuscular
 822 mycorrhizal fungi to improve nutrient uptake and biomass of Sorghum bicolor Linn. Agric. Nat. Resour.
 823 50,173–178.
- Narendrula, R., Nkongolo, K. K., Beckett, P., and Spiers, G. (2013). Total and bioavailable metals in two contrasting
 mining regions (Sudbury in Canada and Lubumbashi in DR-Congo): relation to genetic variation in plant
 populations. Chem. Ecol. 29,111-127.
- Nawab, J., Khan, S., Shah, M. T., Khan, K., Huang, Q., and Ali, R. (2015). Quantification of heavy metals in mining
 affected soil and their bioaccumulation in native plant species. Int. J. Phytoremediation. 17,801-813.
- 829 Nawab, J., Li, G., Khan, S., Sher, H., Aamir, M., Shamshad, I., Khan, A., and Khan, M. A. (2016). Health risk
- assessment from contaminated foodstuffs: a field study in chromite mining-affected areas northern Pakistan.
 Environ. Sci. Pollut. Res. 23,12227-12236.
- Nekoeinia, M., Mohajer, R., Salehi, M. H., and Moradlou, O. (2016). Multivariate statistical approach to identify
 metal contamination sources in agricultural soils around Pb–Zn mining area, Isfahan province, Iran. Environ.
 Earth. Sci. 75,1-10.
- Ngole, V. M., and Ekosse, G. I. E. (2012). Copper, nickel and zinc contamination in soils within the precincts of
 mining and landfilling environments. Int. J. Environ. Sci. Technol. 9,485-494.

- Nguyen, T. H., Hoang, H. N. T., Bien, N. Q., Tuyen, L. H., and Kim, K. W. (2020). Contamination of heavy metals
 in paddy soil in the vicinity of Nui Phao multi-metal mine, North Vietnam. Environ. Geochem. Health.
 42,4141-4158.
- 840 Nieva, N. E., Borgnino, L., and García, M. G. (2018). Long term metal release and acid generation in abandoned
 841 mine wastes containing metal-sulphides. Environ. Pollut. 242,264–276.
- 842 Nikolaidis, C., Orfanidis, M., Hauri, D., Mylonas, S., and Constantinidis, T. (2013). Public health risk assessment
 843 associated with heavy metal and arsenic exposure near an abandoned mine (Kirki, Greece). Int. J. Environ.
 844 Health. Res. 23,507-519.
- 845 Niu, S., Gao, L., and Zhao, J. (2015). Distribution and risk assessment of heavy metals in the Xinzhuangzi
 846 reclamation soil from the Huainan coal mining area, China. Human. Ecol. Risk. Assess. Int. J. 21,900-912.
- Niu, S., Gao, L., and Zhao, J. (2015). Risk analysis of metals in soil from a restored coal mining area. Bull. Environ.
 Contam. Toxicol. 95,183-187.
- Niu, S., Gao, L., and Zhao, J. (2017). Heavy metals in the soils and plants from a typical restored coal-mining area
 of Huainan coalfield, China. Environ. Monit. Assess. 189,1-12.
- 851 Nosrati, K., and Collins, A. L. (2019). A soil quality index for evaluation of degradation under land use and soil
 852 erosion categories in a small mountainous catchment, Iran. J. Mt. Sci. 16,2577–2590.
- Nouri, M., and Haddioui, A. (2016). Human and animal health risk assessment of metal contamination in soil and
 plants from Ait Ammar abandoned iron mine, Morocco. Environ. Monitor. Assess. 188,1-12.
- 855 Nurzhanova, A., Pidlisnyuk, V., Abit, K., Nurzhanov, C., Kenessov, B., Stefanovska, T., and Erickson, L. (2019).
- 856 Comparative assessment of using Miscanthus× giganteus for remediation of soils contaminated by heavy
- 857 metals: a case of military and mining sites. Environ. Sci. Pollut. Res. 26,13320-13333.
- Obasi, P. N., and Akudinobi, B. E. B. (2019). Pollution status of arable soils and stream sediments in mining areas
 of Abakaliki, Lower Benue Trough, Nigeria. Int. J. Environ. Sci. Technol. 16,7869-7884.
- 860 Ogundele, L. T., Oluwajana, O. A., Ogunyel, A. C., and Inuyomi, S. O. (2021). Heavy metals, radionuclides activity
- 861 and mineralogy of soil samples from an artisanal gold mining site in Ile-Ife, Nigeria: Implications on human
- and environmental health. Environ. Earth. Sci. 80,1-15.

- 863 Opekunova, M. G., Somov, V. V., and Papyan, E. E. (2017). Soil contamination in the impact zone of mining
 864 enterprises in the Bashkir Transural region. Eur. Soil. Sci. 50,732-745.
- 865 Organization WH. (2000). Air quality guidelines for Europe. World Health Organization. Regional Office for
 866 Europe.
- 867 Orłowska, E., Przybyłowicz, W., Orlowski, D., Mongwaketsi, N. P., Turnau, K., Mesjasz-Przybyłowicz, J. (2013).
 868 Mycorrhizal colonization affects the elemental distribution in roots of Ni-hyperaccumulator *Berkheya coddii*
- 869 Roessler. Environ. Pollut. 175,100-109.
- 870 Orłowska, E., Przybyłowicz, W., Orlowski, D., Turnau, K., and Mesjasz-Przybyłowicz, J. (2011). The effect of
 871 mycorrhiza on the growth and elemental composition of Ni-hyperaccumulating plant *Berkheya coddii*
- **872** Roessler. Environ. Pollut. 159,3730–3738.
- 873 Othmani, M. A., Souissi, F., Durães, N., Abdelkader, M., and Da Silva, E. F. (2015). Assessment of metal pollution
- 874 in a former mining area in the NW Tunisia: spatial distribution and fraction of Cd, Pb and Zn in soil. Environ.
 875 Monitor. Assess. 187,1-18.
- Oyebamiji, A., Amanambu, A., Zafar, T., Adewumi, A. J., and Akinyemi, D. S. (2018). Expected impacts of active
 mining on the distribution of heavy metals in soils around Iludun-Oro and its environs, Southwestern Nigeria.
 Cogent. Environ. Sci. 4,1495046.
- 879 Parniske, M. (2008). Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat. Rev. Microbiol. 6,763–
 880 775.
- 881 Peña-Ortega, M., Rio-Salas, D., Valencia-Sauceda, J., Mendívil-Quijada, H., Minjarez-Osorio, C., Molina-Freaner,
 882 F., and Moreno-Rodríguez, V. (2019). Environmental assessment and historic erosion calculation of
- abandoned mine tailings from a semi-arid zone of northwestern Mexico: insights from geochemistry and
- unmanned aerial vehicles. Environ. Sci. Pollut. Res. 26,26203-26215.
- 885 Pentyala, V. B., and Eapen, S. (2020). High efficiency phytoextraction of uranium using *Vetiveria zizanioides* L.
 886 Nash. Int. J. Phytoremediation. 221,137–1146.

- Peralta-Videa, J. R., Lopez, M. L., Narayan, M., Saupe, G., and Gardea-Torresdey, J. (2009). The biochemistry of
 environmental heavy metal uptake by plants: implications for the food chain. Int. J. Biochem. Cell. Biol.
 41,1665–1677.
- 890 Perlatti, F., Martins, E. P., de Oliveira, D. P., Ruiz, F., Asensio, V., Rezende, C. F., Otero, X. L., and Ferreira, T. O.
- 891 (2021). Copper release from waste rocks in an abandoned mine (NE, Brazil) and its impacts on ecosystem
- environmental quality. Chemosphere. 262,127843.
- Perronnet, K., Schwartz, C., Gérard, E., and Morel, J. L. (2000). Availability of cadmium and zinc accumulated in
 the leaves of *Thlaspi caerulescens* incorporated into soil. Plant. Soil. 227, 257-263.
- 895 Peter, L., Clausen, W., Broholm, M. M., Gosewinkel, U., and Trapp, S. (2017). Test of aerobic TCE degradation by
- willows (Salix viminalis) and willows inoculated with TCE-cometabolizing strains of *Burkholderia cepacia*.
 Environ. Sci. Pollut. Res. 24,18320–18331.
- Petrova, R. (2006). Accumulation of natural radionuclides in wooden and grass vegetation from abandoned uranium
 mines. Opportunities for phytoremediation. Uranium in the environment. Mining impact and consequences
 507–518.
- 901 Pradhan, S. K., Kumar, U., Singh, N. R., and Thatoi, H. (2020). Functional diversity and metabolic profile of
 902 microbial community of mine soils with different levels of chromium contamination. Int. J. Environ. Health.
 903 Res. 30,461-473.
- 904 Pratas, J., Prasad, M. N. V., Freitas, H., and Conde, L. (2005). Plants growing in abandoned mines of Portugal are
 905 useful for biogeochemical exploration of arsenic, antimony, tungsten and mine reclamation. J. Geochem.
 906 Explor. 85,99–107.
- 907 Pu, W., Sun, J., Zhang, F., Wen, X., Liu, W., and Huang, C. (2019). Effects of copper mining on heavy metal
 908 contamination in a rice agrosystem in the Xiaojiang River Basin, southwest China. Acta. Geochimica. 38,753909 773.
- 910 Pugnaloni, A., Giantomassi, F., Lucarini, G., Capella, S., Bloise, A., di Primio, R., and Belluso, E. (2013).
 911 Cytotoxicity induced by exposure to natural and synthetic tremolite asbestos: an in vitro pilot study. Acta.
 912 Histochem. 115,100–112.

- 913 Pulford, I. D., Watson, C., and McGregor, S. D. (2001). Uptake of chromium by trees: prospects for
 914 phytoremediation. Environ. Geochem. Health. 23,307–311.
- 915 Punamiya, P., Datta, R., Sarkar, D., Barber, S., Patel, M., and Das, P. (2010). Symbiotic role of *Glomus mosseae* in
 916 phytoextraction of lead in vetiver grass [*Chrysopogon zizanioides* (L.)]. J. Hazard. Mater. 177,465–474.
- 917 Punia, A., Siddaiah, N. S., and Singh, S. K. (2017). Source and assessment of metal pollution at Khetri copper mine
- tailings and neighboring soils, Rajasthan, India. Bull. Environ. Contam. Toxicol. 99,633-641.
- 919 Qiao, D., Wang, G., Li, X., Wang, S., and Zhao, Y. (2020). Pollution, sources and environmental risk assessment of
 920 heavy metals in the surface AMD water, sediments and surface soils around unexploited Rona Cu deposit,
 921 Tibet, China. Chemosphere, 248,125988.
- 922 Qin, C., Luo, C., Chen, Y., and Shen, Z. (2012). Spatial-based assessment of metal contamination in agricultural
- soils near an abandoned copper mine of Eastern China. Bull. Environ. Contam. Toxicol. 89,113–118.
- 924 Qin, F. X., Wei, C. F., Zhong, S. Q., Huang, X. F., Pang, W. P., and Jiang, X. (2016). Soil heavy metal (loid) s and
 925 risk assessment in vicinity of a coal mining area from southwest Guizhou, China. J. Cent. South. Univ.
 926 23,2205-2213.
- 927 Qu, C., Sun, K., Wang, S., Huang, L., and Bi, J. (2012). Monte carlo simulation-based health risk assessment of
 928 heavy metal soil pollution: A case study in the Qixia mining area, China. Human. Ecol. Risk. Assess. Int. J.
 929 18,733–750.
- 830 Raj, D., Chowdhury, A., and Maiti, S. K. (2017). Ecological risk assessment of mercury and other heavy metals in
 831 soils of coal mining area: A case study from the eastern part of a Jharia coal field, India. Human. Ecol. Risk.
 832 Assess. Int. J. 23,767-787.
- 933 Raj, D., Kumar, A., and Maiti, S. K. (2019). Evaluation of toxic metal (loid) s concentration in soils around an open934 cast coal mine (Eastern India). Environ. Earth. Sci. 78,1-19.
- 935 Ramos, D. T., Maranho, L. T., Godoi, A. F. L., Filho, M. A. S. C., and Lacerda, L. G. (2009). Vasconcelos, E.C.
 936 Petroleum hydrocarbons rhizodegradation by *Sebastiania commersoniana* (Baill.) L. B. SM. & Downs.
- **937** Water. Air. Soil. Pollut. 9,293–302.

- 938 Ran, H., Guo, Z., Yi, L., Xiao, X., Zhang, L., Hu, Z., Li, C., and Zhang, Y. (2021). Pollution characteristics and
 939 source identification of soil metal (loid) s at an abandoned arsenic-containing mine, China. J. Hazard. Mater.
 940 413,125382.
- 941 Rasheed, F., Zafar, Z., Waseem, Z. A., Rafay, M., Abdullah, M., Salam, M. M. A., Mohsin, M., and Khan, W. R.
- 942 (2020). Phytoaccumulation of Zn, Pb, and Cd in *Conocarpus lancifolius* irrigated with wastewater: does
- 943 physiological response influence heavy metal uptake. Int. J. Phytoremediation. 22,287-294.
- 944 Reichl, C., Schatz, M., and Zsak, G. (2020). World mining data 2020. Federal Ministry of Agriculture, Regions and
 945 Tourism: Vienna, Austria, 35:265.
- 946 Robinson, B. H., Leblanc, M., Petit, D., Brooks, R. R., Kirkman, J. H., and Gregg, P. E. (1998). The potential of
 947 Thlaspi caerulescens for phytoremediation of contaminated soils. Plant. Soil. 203,47-56.
- 948 Sakakibara, M., Watanabe, A., Inoue, M., Sano, S., and Kaise, T. (2010). Phytoextraction and phytovolatilization of
- 949 arsenic from as-contaminated soils by Pteris vittata. Proc. Annu. Int. Conf. Soils. Sediments. Water. Energy.950 12,26.
- 951 Saran, A., Fernandez, L., Cora, F., Savio, M., Thijs, S., Vangronsveld, J., and Merini, L. J. (2020). Phytostabilization
- 952 of Pb and Cd polluted soils using Helianthus petiolaris as pioneer aromatic plant species. Int. J.
 953 Phytoremediation. 22,459–467.
- 954 Sarangi, A. K. (2003). Grade control in Jaduguda uranium mine, Jharkhand. The transactions, the Mining Geological
 955 and Metallurgical Institute of India. 99,2002–2003.
- 956 Sawidis, T., Breuste, J., Mitrovic, M., Pavlovic, P., and Tsigaridas, K. (2011). Trees as bioindicator of heavy metal
 957 pollution in three European cities. Environ. Pollut. 159,3560–3570.
- 958 Sawut, R., Tiyip, T., Abliz, A., Kasim, N., Nurmemet, I., Sawut, M., Tashpolat, N., and Ablimit, A. (2017). Using
 959 regression model to identify and evaluate heavy metal pollution sources in an open pit coal mine area, Eastern
 960 Junggar, China. Environ. Earth. Sci. 76,1-13.
- 961 Schindler, F. V., Mercer, E. J., and Rice. J. A. (2007). Chemical characteristics of glomalin-related soil protein
 962 (GRSP) extracted from soils of varying organic matter content. Soil. Biol. Biochem. 39,320–329.

- 963 Schneegurt, M. A., Jain, J. C., Menicucci, J. A., Brown, S. A., Kemner, K. M., Garofalo, D. F., Quallick, M. R.,
- 964 Neal, C. R., and Kulpa, C. F. (2001). Biomass byproducts for the remediation of wastewaters contaminated
- 965 with toxic metals. Environ. Sci. Technol. 35,3786–3791.
- 966 Sethy, N. K., Jha, V. N., Sutar, A. K., Rath, P., Sahoo, S. K., Ravi, P. M., Tripathi, R. M. (2014). Assessment of
- 967 naturally occurring radioactive materials in the surface soil of uranium mining area of Jharkhand, India. J.
 968 Geochem. Explor. 142,29–35.
- 969 Sethy, N. K., Tripathi, R. M., Jha, V. N., Sahoo, S. K., Shukla, A. K., and Puranik, V. D. (2011). Assessment of
 970 natural uranium in the ground water around Jaduguda uranium mining complex, India. J. Environ. Prot.
 971 2,1002–1007.
- 972 Shahandeh, H., and Hossner, L. R. (2002). Role of soil properties in phytoaccumulation of uranium. Water. Air.
 973 Soil. Pollut. 141,165–180.
- 974 Shanker, A. K., Cervantes, C., Loza-Tavera, H., and Avudainayagam, S. (2005). Chromium toxicity in plants.
 975 Environ. Int. 31,739–753.
- 976 Shao, X., Cheng, H., Duan, X., and Lin, C. (2013). Concentrations and chemical forms of heavy metals in agricultural
 977 soil near the world's largest and oldest tungsten mine located in China. Chemical Speciation Bioavailability
 978 25,125-132.
- 979 Sheppard, S. C., Evenden, W. G., and Anderson, A. J. (1992). Multiple assays of uranium toxicity in soil. Environ.
 980 Toxicol. Water. Qual. 7,275–294.
- 981 Shin, D. C., Kim, Y. S., Moon, J. Y., Park, H. S., Kim, J. Y., and Park, S. K. (2002). International trends in risk
 982 management of groundwater radionuclides. J. Environ. Toxicol. 17,273–284.
- 983 Shrestha, B., Lipe, S., Johnson, K. A., Zhang, T. Q., Retzlaff, W., and Lin, Z. (2006). Soil hydraulic manipulation
 984 and organic amendment for the enhancement of selenium volatilization in a soil-pickleweed system. Plant.
 985 Soil. 288,189–196.
- 986 Singh, P. K., Singh, M., and Vyas, D. (2010). Biocontrol of fusarium wilt of chickpea using arbuscular mycorrhizal
 987 fungi and *Rhizobium leguminosorum* biovar. Caryologia. 63,349–353.
- 988 Smith, S. E., and Read, D. J. (2010). Mycorrhizal symbiosis. Academic press.

- 989 Smith, S, E., and Smith, F. A. (2011). Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms
 990 from cellular to ecosystem scales. Annu, Rev. Plant. Biol. 62,227–250.
- 991 Sofianska, E., and Michailidis, K. (2016). Assessment of heavy metals contamination and potential ecological risk
 992 in soils affected by a former Mn mining activity, drama district, northern Greece. Soil. Sediment. Contam.
 993 Int. J. 25,296-312.
- Solgi, E., and Parmah, J. (2015). Analysis and assessment of nickel and chromium pollution in soils around Baghejar
 Chromite Mine of Sabzevar Ophiolite Belt, Northeastern Iran. Transactions of Nonferrous Metals Society of
 China. 25,2380-2387.
- 997 Solís-Domínguez, F. A., Valentín-Vargas, A., Chorover, J., and Maier, R. M. (2011). Effect of arbuscular
 998 mycorrhizal fungi on plant biomass and the rhizosphere microbial community structure of mesquite grown
 999 in acidic lead/zinc mine tailings. Sci. Total. Environ. 409,1009–1016.
- 1000 Spagnoletti, F. N., Cornero, M., Chiocchio, V., Lavado, R. S., and Roberts, I. N. (2020). Arbuscular mycorrhiza
 1001 protects soybean plants against Macrophomina phaseolina even under nitrogen fertilization. Eur. J. Plant.
 1002 Pathol. 156,839–849.
- 1003 Stojanović, M. D., Stevanović, D. R., Milojković, J. V., Grubišić, M. S., and Ileš, D. A. (2010). Phytotoxic effect of
 1004 the uranium on the growing up and development the plant of corn. Water. Air. Soil. Pollut. 209,401–410.
- 1005 Sun, B., Zhang, L., Yang, L., Zhang, F., and Norse, D. (2012). Agricultural non-point source pollution in China:
 1006 Causes and mitigation measures. AMBIO. 41,370–379.
- 1007 Sun, Z., Xie, X., Wang, P., Hu, Y., and Cheng, H. (2018). Heavy metal pollution caused by small-scale metal ore
 1008 mining activities: A case study from a polymetallic mine in South China. Sci. Total. Environ. 639,217–227.
- 1009 Tahmasebi, P., Taheri, M., and Gharaie, M. H. (2020). Heavy metal pollution associated with mining activity in the
 1010 Kouh-e Zar region, NE Iran. Bull. Eng. Geol. Environ. 79,1113-1123.
- 1011 Tangahu, B. V., Sheikh Abdullah, S. R., Basri, H., Idris, M., Anuar, N., and Mukhlisin, M. (2011). A review on
 1012 heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int. J. Chem. Eng. 1-31.
- 1013 Thatoi, H., Das, S., Mishra, J., Rath, B. P., and Das, N. (2014). Bacterial chromate reductase, a potential enzyme for
 1014 bioremediation of hexavalent chromium: a review. J. Environ. Manage. 146,383–399.

- 1015 Topal, M., Senel, G, U., Obek, E., and Topal, E. I. A. (2015). Removal of tetracycline and the degradation products
 1016 by *Lemna gibba* L. exposed to secondary effluents. Environ. Prog. Sustain. Energy. 34,1311–1325.
- 1017 Tripathi, N., Singh, R. S., and Nathanail, C. P. (2014). Mine spoil acts as a sink of carbon dioxide in Indian dry
 1018 tropical environment. Sci. Total. Environ. 468,1162–1171.
- 1019 Turner, M. A., and Rust, R. H. (1971). Effects of chromium on growth and mineral nutrition of soybeans. Soil. Sci.
 1020 Soc. Am. J. 35,755–758.
- 1021 USEPA. (1999). Draft Guidelines for Carcinogen Risk Assessment (Review Draft), U. S. Environmental Protection
 1022 Agency, Risk Assess Forum, Washington, D.C.
- 1023 Vaverková, M. D., Maxianová, A., Winkler, J., Adamcová, D., and Podlasek, A. (2019). Environmental
 1024 consequences and the role of illegal waste dumps and their impact on land degradation. Land. Use. Policy.
 1025 89.
- 1026 Verdejo, J., Ginocchio, R., Sauvé, S., Salgado, E., and Neaman, A. (2015). Thresholds of copper phytotoxicity in
 1027 field-collected agricultural soils exposed to copper mining activities in Chile. Ecotoxicol. Environ. Saf.
 1028 122,171-177.
- 1029 Vos, C. M., Tesfahun, A. N., Panis, B., de Waele, D., and Elsen, A. (2012). Arbuscular mycorrhizal fungi induce
 1030 systemic resistance in tomato against the sedentary nematode Meloidogyne incognita and the migratory
 1031 nematode *Pratylenchus penetrans*. Appl. Soil. Ecol. 61,1–6.
- Wang, D., Xu, Q., Zheng, Q., and Wu, L. (2020). Assessment of the Health Effects of Heavy Metals Pollution of
 Agricultural Soils in the Iron Ore Mining Area of the Northern Piedmont of Mount Wutai, Shanxi Province,
 China. Sustainability.12,1926.
- 1035 Wang, G., Cao, F., Shan, B., Meng, M., Wang, W., and Sun, R. (2019). Sources and assessment of mercury and
 1036 other heavy metal contamination in soils surrounding the Wuda underground coal fire area, Inner Mongolia,
 1037 China. Bull. Environ. Contam. Toxicol. 103,828-833.
- 1038 Wang, L. K., Hung, Y. T., and Shammas, N. K. (2009). Handbook of advanced industrial and hazardous wastes1039 treatment. CRC press.

- Wang, M., Zhu, Y., Cheng, L., Andserson, B., Zhao, X., Wang, D., and Ding, A. (2018). Review on utilization of
 biochar for metal-contaminated soil and sediment remediation. J. Environ. Sci. 63,156–173.
- 1042 Wang, Z., Hong, C., Xing, Y., Wang, K., Li, Y., Feng, L., and Ma, S. (2018). Spatial distribution and sources of
 1043 heavy metals in natural pasture soil around copper-molybdenum mine in Northeast China. Ecotoxicol.
 1044 Environ. Saf. 154,329-336.
- 1045 Wang, Z., Qin, H., and Liu, X. (2019). Health risk assessment of heavy metals in the soil-water-rice system around
 1046 the Xiazhuang uranium mine, China. Environ. Sci. Pollut. Res. 26,5904-5912.
- 1047 Wani, S. H., Sanghera, G. S., Athokpam, H., Nongmaithem, J., Nongthongbam, R., Naorem, B. S., Athokpam, H.S.
 1048 (2012). Phytoremediation: Curing soil problems with crops. Afr. J. Agric. Res. 7:3991-4002.
- 1049 Wieczorek, J., Baran, A., Urbański, K., Mazurek, R., and Klimowicz-Pawlas, A. (2018). Assessment of the pollution
- and ecological risk of lead and cadmium in soils. Environ. Geochem. Health. 40,2325-2342.
- 1051 World steel Association. (2021). https://www.worldsteel.org/steel-by-topic/statistics/steel-statistical-yearbook.html.
- 1052 Wright, S. F., and Upadhyaya, A. (1996). Extraction of an abundant and unusual protein from soil and comparison
 1053 with hyphal protein of arbuscular mycorrhizal fungi. Soil. Sci. 161,575–586.
- 1054 Wu, S. C., Wong, C. C., Shu, W. S., Khan, A. G., and Wong, M. H. (2010). Mycorrhizo-remediation of lead/zinc
 1055 mine tailings using vetiver: a field study. Int. J. Phytoremediation. 13,61–74.
- 1056 Wu, B., Peng, H., Sheng, M., Luo, H., Wang, X., Zhang, R., Xu, F., and Xu, H. (2021). Evaluation of phytoremediation potential of native dominant plants and spatial distribution of heavy metals in abandoned mining area in Southwest China. Ecotoxicol. Environ. Saf. 220,112368.
- 1059 Wu, F., Liu, Y., Xia, Y., Shen, Z., and Chen, Y. (2011). Copper contamination of soils and vegetables in the vicinity
 1060 of Jiuhuashan copper mine, China. Environ. Earth. Sci. 64,761–769.
- 1061 Wu, F., Wang, X., Tan, K., and Liu, Z. (2020). Assessment of Heavy Metal Pollution in Agricultural Soil Around a
 1062 Gold Mine Area in Yitong County. In IGARSS 2020-2020 IEEE Int. Geosci. Remote. Sensing. Symposium.
 1063 5034-5037.

- 1064 Wu, J., Long, J., Liu, L., Li, J., Liao, H., Zhang, M., Zhao, C., and Wu, Q. (2018). Risk assessment and source
 1065 identification of toxic metals in the agricultural soil around a Pb/Zn mining and smelting area in Southwest
 1066 China. Int. J. Environ. Res. Public. Health. 15,1838.
- 1067 Wu, Q. S., Li, Y., Zou, Y. N., and He, X. H. (2015). Arbuscular mycorrhiza mediates glomalin-related soil protein
 1068 production and soil enzyme activities in the rhizosphere of trifoliate orange grown under different P levels.
 1069 Mycorrhiza. 25,121–130.
- 1070 Xiao, R., Wang, S., Li, R., Wang, J. J., and Zhang, Z. (2017). Soil heavy metal contamination and health risks
 1071 associated with artisanal gold mining in Tongguan, Shaanxi, China. Ecotoxicol. Environ. Saf. 141,17-24.
- 1072 Xie, W., Peng, C., Wang, H., and Chen, W. (2018). Bioaccessibility and source identification of heavy metals in
- agricultural soils contaminated by mining activities. Environ. Earth. Sci. 77,1-12.
- 1074 Xue, S., Shi, L., Wu, C., Wu, H., Qin, Y., Pan, W., Hartley, W., and Cui, M. (2017). Cadmium, lead, and arsenic
 1075 contamination in paddy soils of a mining area and their exposure effects on human HEPG2 and keratinocyte
- 1076 cell-lines. Environ. Res. 156,23-30.
- 1077 Yao, Y., Li, J., He, C., Hu, X., Yin, L., Zhang, Y., Zhang, J., Huang, H., Yang, S., He, H., Zhu, F., and Li, S. (2021).
- 1078 Distribution Characteristics and Relevance of Heavy Metals in Soils and Colloids Around a Mining Area in
 1079 Nanjing, China. Bull. Environ. Contam. Toxicol. 107,996-1003.
- 1080 Ye, L. L., Chen, Y. S., Chen, Y. D., Qian, L. W., Xiong, W. L., Xu, J. H., and Jiang, J. P. (2020). Phytomanagement
- 1081 of a Chromium-contaminated Soil by a High-value Plant: Phytostabilization of Heavy Metal Contaminated
 1082 Sites. BioResour. 15,3545-3565.
- 1083 Yihui, B. A. N., Zhouying, X. U., Yurong, Y. A. N. G., Zhang, H., Hui, C. H. E. N., and Ming, T.A. N. G. (2017).
- Effect of dark septate endophytic fungi *Gaeumannomyces cylindrosporus* on plant growth, photosynthesis
 and Pb tolerance of maize (*Zea mays* L.). Pedosphere. 27,283-292.
- 1086 Yoon, J. M., Oliver, D. J., and Shanks, J. V. (2008). Phytotransformation of 2,4-dinitrotoluene in Aradidopsis
- 1087 thaliana: Toxicity, fate and gene expression studies in vitro. Biotechnol. Program. 22,1524–1531.
- You, M., Huang, Y., Lu, J., and Li, C. (2016). Fractionation characterizations and environmental implications of
 heavy metal in soil from coal mine in Huainan, China. Environ. Earth. Sci. 75,1-9.

- Young, G., Chen, Y., and Yang, M. (2021). Concentrations, distribution, and risk assessment of heavy metals in the
 iron tailings of Yeshan National Mine Park in Nanjing, China. Chemosphere. 271,129546.
- **1092** Yruela, I. (2013). Transition metals in plant photosynthesis. Metallomics. 5,1090–1109.
- Yu, G., Chen, F., Zhang, H., and Wang, Z. (2021). Pollution and health risk assessment of heavy metals in soils of
 Guizhou, China. Ecosys. Health. and Sustain. 7,1859948.
- 1095 Yu, P., Sun, Y., Huang, Z., Zhu, F., Sun, Y., and Jiang, L. (2020). The effects of ectomycorrhizal fungi on heavy
- metals' transport in Pinus massoniana and bacteria community in rhizosphere soil in mine tailing area. J.
 Hazard. Mater. 381,121203.
- 1098 Zádrapová, D., Titěra, A., Száková, J., Čadková, Z., Cudlín, O., Najmanová, J., and Tlustoš, P. (2019). Mobility and
 1099 bioaccessibility of risk elements in the area affected by the long-term opencast coal mining. J. Environ. Sci.
 1100 Health. 54,1159-1169.
- 1101 Zayed, A., Lytle, C. M., Qian, J. H., and Terry, N. (1998). Chromium accumulation, translocation and chemical
 speciation in vegetable crops. Planta. 206,293–299.
- 1103 Zazouli, M. A., Mahdavi, Y., Bazrafshan, E., and Balarak, D. (2014). Phytodegradation potential of bisphenolA from
 1104 aqueous solution by *Azolla Filiculoides*. J. Environ. Health. Sci. Eng. 12,66.
- 2105 Zhan, F., Li, B., Jiang, M., Li, T., He, Y., Li, Y., and Wang, Y. (2019). Effects of arbuscular mycorrhizal fungi on
 the growth and heavy metal accumulation of bermudagrass [*Cynodon dactylon* (L.) Pers.] grown in a lead–
 zinc mine wasteland. Int. J. Phytoremediation. 21,849–856.
- 1108 Zhang, H., Zhang, F., Song, J., Tan, ML., and Johnson, V. C. (2021). Pollutant source, ecological and human health
 risks assessment of heavy metals in soils from coal mining areas in Xinjiang, China. Environ. Res.
 1110 202,111702.
- 1111 Zhang, Z., Wang, Q., Wang, H., Nie, S., and Liang, Z. (2017). Effects of soil salinity on the content, composition,
 and ion binding capacity of glomalin-related soil protein (GRSP). Sci. Total. Environ. 81,657–665.
- 1113 Zhao, X., Sun, Y., Huang, J., Wang, H., and Tang, D. (2020). Effects of soil heavy metal pollution on microbial
 activities and community diversity in different land use types in mining areas. Environ. Sci. Pollut. Res.
 27,20215–20226.

- 1116 Zheng, X. J., Chen, M., Wang, J. F., Li, F. G., Liu, Y., and Liu, Y.C. (2020). Ecological risk assessment of heavy
 1117 metals in the vicinity of tungsten mining areas, Southern Jiangxi province. Soil. Sediment. Contam. Int. J.
 1118 29,665-679.
- 1119 Zhong, W., Li, J., Chen, Y., Shu, W., and Liao, B. (2012). A study on the effects of lead, cadmium and phosphorus
- 1120 on the lead and cadmium uptake efficacy of *Viola baoshanensis* inoculated with arbuscular mycorrhizal fungi.
- **1121** J. Environ. Monitor. 14,2497–2504.
- 1122 Zhou, H., Zeng, M., Zhou, X., Liao, B. H., Liu, J., Lei, M., Zhong, Q. Y., and Zeng, H. (2013). Assessment of heavy
- metal contamination and bioaccumulation in soybean plants from mining and smelting areas of southern
 Hunan Province, China. Environ. Toxicol. Chem. 32,2719-2727.
- 1125 Zhu, X., Cao, L., and Liang, Y. (2019). Spatial distribution and risk assessment of heavy metals inside and outside
- a typical lead-zinc mine in southeastern China. Environ. Sci. Pollut. Res. 26,26265-26275.
- 1127 Zhu, X., Song, F., and Liu, F. (2017). Arbuscular mycorrhizal fungi and tolerance of temperature stress in plants.
- 1128 Arbuscular mycorrhizas and stress tolerance of plants.163–194.

Country	Metal	Type of experiment	Name of AMF	Inherent total metal	Experimental dose (mg kg ⁻¹)	Plant metal content	Test Crop	Effect of AMF	Reference
				in soil (mg kg ⁻¹)		(mg kg ⁺)		inoculation	
South Africa	Ni	Pot experiment	Native AMF sp. (<i>Gigaspora</i> sp. and <i>Glomus tenue</i>)	650		7020	<i>Berkheya coddii</i> Roessle	ł	Orlowska et al., 2011
South Africa	Ni	Pot experiment	Native AMF	650		724	<i>Berkheya coddii</i> Roessle	t	Orłowska et al., 2013
France	Ni	Pot experiment	<i>Glomus etunicatum</i> SFONL		60	881	Cloezia artensis	ŧ	Amir et al., 2013
Taiwan	Ni	Pot experiment	AMF	459.5		90.1	<i>Ipomoea aquatica</i> Forsk.	ł	Lam and Lia, 2018
South Africa	Ni	Pot experiment	AMF	634.25		66.10	Colosphospermum mopane,	ł	Manyiwa and Ultra, 2022
China	Pb	Pot experiment	AMF		600	259.81	Kummerowia striata	t	Chen et al., 2005
China	Pb	Pot experiment	Glomus mosseae and Glomus intraradices	4418		1.11	Leucaena leucocephala	—	Ma et al., 2006
Spain	Pb	Pot experiment	Glomus deserticola	595.96		284.1	Eucalyptus globulus	↑	Arriagada et al., 2007
USA	Pb	Pot experiment	Glomus mosseae		1200	2179	Chrysopogon zizanioides (L.)	t	Punamiya et al., 2010
China	Pb	Field experiment	Glomus intraradices and Glomus mosseae	209		12.6	Chrysopogon zizanioides (L.)	_	Wu et al., 2010

Table 1 Summary of research works on arbuscular mycorrhizal fungi in toxic metal remediation

USA	РЬ	Pot experiment	Glomus deserticola	4620		3.89	Prosopis juliflora	-	Solís- Domíngue z et al., 2011
China	Pb	Pot experiment	AMF	3683	1500	2655	Viola baoshanensis	1	Zhong et al., 2012
Iran	Рb	Pot experiment	Glomus versiforme		800	119.80	Chrysopogon zizanioides	-	Bahramini a et al., 2016
Brazil	Pb	Pot experiment	Acaulospora scrobiculata	125		103	Chrysopogon zizanioides (L.)	1	Meyer et al., 2017
China	Pb	Pot experiment	Gaeumannomyces cylindrosporus		1000	252.25	Zea mays L	1	Yihui et al., 2017
China	Pb	Pot experiment	Diversispora spurcum	1426.7		732.9	Cynodon dactylon (L.) Pers.	t	Zhan et al., 2019
Mexico	РЬ	Pot experiment	Rhizophagus irregularis	640		237.97	Parkinsonia aculeata L	1	González- Villalobo et al., 2021
Spain	Cd	Pot experiment	Glomus deserticola	21.48		7.4	Eucalyptus globulus	Ť	Arriagada et al., 2007
Brazil	Cd	Pot experiment	Glomus intraradices		0.02	885	Helianthus annuus L.	t	de Andrade et al., 2008
China	Cd	Field experiment	Glomus intraradices and <i>Glomus</i> <i>mosseae</i>	2.25		939	Chrysopogon zizanioides (L.)	ł	Wu et al., 2010
China	Cd	Pot experiment	AMF	113	200	6952	Viola baoshanensis	1	Zhong et al., 2012

China	Cd	Pot experiment	Glomus caledonium 90036	1.54		1.44	<i>Sedum alfredii</i> Hance	ł	Hu et al., 2013
Canada	Cd	Pot experiment	Rhizophagus irregularis	0.75	40	256.44	Helianthus annuus L.	1	Hassan et al., 2013
China	Cd	Pot experiment	Glomus constrictum		112	8.27	Zea mays L.	ł	Liu et al., 2014
China	Cd	Pot experiment	Diversispora spurcum	16.9		14.5	Cynodon dactylon (L.) Pers.	t	Zhan et al., 2019
China	Cd	Field experiment	AMF	19.02		4.8	Zea mays L.	ł	He et al., 2020
Brazil	Cu	Pot experiment	Glomus etunicatum			125.71	Leucaena leucocephala	1	Lins et al., 2006
China	Cu	Pot experiment	Glomus mosseae	232		1267.34	Lolium perenne	Ť	Chen et al., 2005
South Africa	Cu	Pot experiment	Native AMF sp. (<i>Gigaspora</i> sp. and <i>Glomus tenue</i>)	55		108(29)	<i>Berkheya coddii</i> Roessle	Ť	Orlowska et al., 2011
USA	Cu	Pot experiment	Native AMF	653		21.5	Prosopis juliflora	t	Solís- Domíngue z et al., 2011
South Africa	Cu	Pot experiment	Native AMF	55		26	<i>Berkheya coddii</i> Roessle	t	Orłowska et al., 2013
Brazil	Cu	Pot experiment	Glomus margarita	17.7		102	Chrysopogon zizanioides (L.)	ŧ	Meyer et al., 2017
South Africa	Cu	Pot experiment	AMF	768.13		250.11	Colosphospermum mopane,	ţ	Manyiwa and Ultra, 2022

Metal uptake increased in shoot/root of AMF infected plant as compared with control Metal uptake decreased in shoot/root of AMF infected plant as compared with control Non significant

t

Ť

Figure 1 Forest plot indicating the mean difference of individual observation regarding the Cr contamination in mine areas.

Figure 2 Forest plot indicating the mean difference of individual observation regarding the Ni contamination in mine areas.

Figure 3 Forest plot indicating the mean difference of individual observation regarding the Cd contamination in mine areas.

Figure 4 Forest plot indicating the mean difference of individual observation regarding the Pb contamination in mine areas.

Figure 5 Forest plot indicating the mean difference of individual observation regarding the Cu contamination in mine areas.

Figure 6 Forest plot indicates the mean difference of individual observation regarding the metal accumulation level in plants in the presence of mycorrhizal infection in different countries. [(a) - Pb; (b) - Cd; (c) - Ni and (d) - Cu]