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New 3-parameter survival distributions from Manly’s transform
Rose Baker
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ABSTRACT
Two new 3-parameter distributions that generalize the Weibull distri-
bution are introduced. They fit a range of datasets comparably to the
generalized gamma and exponentiated Weibull distributions, allowing
increasing hazard, decreasing hazard, and bathtub and inverted bathtub
hazards. The probability density function can be unimodal, J-shaped,
or U-shaped. The survival function is given in closed form, and random
numbers can be readily generated. Moments can be evaluated as inte-
grals. For decreasing hazard distributions one distribution can also be a
non mixture cure model, a promotion-time model, where the promotion
time follows an exponentiated exponential distribution. The second,
related distribution does not give a cure model.
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1. Introduction

The Weibull distribution has been widely used for the analysis of lifetime data, and can give
increasing hazard (increasing force of mortality, or IFOM), decreasing hazard (decreasing
force of mortality or DFOM) and constant hazard (exponential) distributions. Some more
flexible distributions start by modifying the exponential distribution, e.g., Lemonte (2013),
Alotaibi, Nassar, and Elshahhat (2024). However, the Weibull distribution fits increasing and
decreasing hazard data so well that it is natural to attempt to accommodate bathtub shaped
hazards by generalizing it.

Numerous many 3-parameter generalizations of it have been introduced (see e.g., Cordeiro,
Silva, and Nascimento 2020), with the aim of reproducing the U-shaped (bathtub) hazards
and modal or upside-down bathtub (UBT) hazards often encountered. These distributions
famously include the generalized gamma or Stacy distribution (e.g.Cox, 2007) and the
exponentiated Weibull distributions (e.g., Nadarajah, Cordeiro, and Ortega 2013), which
usually fit very similarly (Cox, 2014), plus very many others.

The proposed new distributions generalizing the Weibull distribution are based on the
exponential transformation of the random variable X to

y(x) = {exp(λx) − 1}/λ, (1)

described by Manly (1976). For small λ, y(x) = x + λx2/2 + · · · , so that as λ → 0, y → x.
The function y(x) is convex when λ > 0, and concave when λ < 0, so that then y(x) = (1 −
exp(−|λ|x))/|λ|.
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The inverse transformation is x = ln(1 + λy)/λ, and for small λ, x = y − λy2/2 + · · · . We
can call the new distribution with transformed random variable the Y-Weibull distribution
(short for ‘Yet another extended Weibull-distribution’). It has survival function

S(x) = exp{−(
exp(λαx) − 1

λ
)β}, (2)

where α > 0, β > 0, and λ can be positive or negative. When λ → 0 the Weibull survival
function S(x) = exp(−(αx)β) is regained.

The meaning of the parameters is that α gives the time-scale, β defines the shape of the
hazard for early times x, and λ gives the tail behaviour at large x. The survival function is of
the form S(x) = exp(−H(x)), where H is a monotonically increasing function, and is thus of
the general type described by Gurvich (1997). Although many functional forms for H have
been used, the one adopted here has not.

The Y-Weibull distribution can be IFOM, DFOM, BT, or UBT, and is a cure model
when λ < 0 (e.g., Amico and van Keilegom 2018; Peng and Yu 2021). In that case, S(∞) =
exp(−1/|λ|β). This means that a proportion of events S(∞) never occur; this is useful in
medical decision-making. When β = 1 and λ > 0, we have the Gompertz distribution.

Sometimes, especially in medical statistics, a cure model is wanted. Some proportion of
patients treated will never relapse from a disease. However, often a cure model is not wanted.
For example, in maintenance and reliability, we consider that all devices will fail eventually,
and we are often not concerned about the failure mode. Using the Manly transformation in
a different way, a related distribution can be derived that never gives a cure model. Here, for
λ > 0, we have the Y-Weibull distribution from (2). However, when λ < 0, writing for clarity
η = |λ|, we invert the transform (1) to take αx → ln(1 + ηαx)/η. For λ < 0 we then have the
survival function

S(x) = exp{−(
ln(1 + ηαx)

η
)β}, (3)

which goes to zero as x → ∞. We call this distribution the Z-Weibull. When η → 0 it reduces
to the Weibull distribution. It can be seen that S is continuous as a function of λ at the join λ =
0, as is its first derivative with respect to λ. This means that a function minimiser can maximise
the log-likelihood function and cross over the join at λ = 0 with no difficulty. We can think
of the Y-Weibull distribution for λ > 0 and the Z-Weibull distribution for λ < 0 either as one
distribution, or as two distributions joined at the hip for computational convenience.

Next, the remaining properties of the Y-Weibull and Z-Weibull distributions are given,
followed by some fits to data. The relation to other distributions is discussed in Appendix A.
The text pertains to the Y-Weibull distribution unless otherwise stated.

2. Properties

2.1. Hazard function

From (2) the hazard function is

h(x) = αβ{exp(λαx) − 1
λ

}β−1 exp(λαx).

Taking the logarithm of the hazard,

ln h(x) = ln(αβ) + (β − 1) ln(
exp(λαx) − 1

λ
) + λαx. (4)
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Figure 1. The 5 types of hazard function: increasing (IFOM) (here β = 2, λ = 1), bathtub (BT) (here β =
0.5, λ = 1), upside-down bathtub (UBT) (here β = 2, λ = −1), decreasing (DFOM) (here β = 0.5, λ = −1)
and constant (λ = 0, β = 1).

Differentiating, it can be seen that the hazard function has a stationary value xc when
xc = − ln(β)

λα
. This occurs at xc > 0 when β > 1, λ < 0 or β < 1, λ > 0. Otherwise, the hazard

function increases or decreases monotonically.
Calculating change points for the hazard is much simpler than for the exponentiated

Weibull and generalised gamma distributions. These calculations are of practical usefulness,
so this is a positive feature. Thus for distributions with bathtub hazard functions, the change
point is a marker for the end of the burn-in period. Stationary values of the mean residual life
are better measures of the end of the burn-in period because largest expected residual life is
exactly what the consumer wants, but these must be computed numerically.

The five hazard types are thus:

1. β > 1, λ ≥ 0: increasing force of mortality (IFOM)
2. β > 1, λ < 0: upside-down bathtub (UBT)
3. β < 1, λ > 0 : bathtub (BT)
4. β < 1, λ ≤ 0: decreasing force of mortality (DFOM)
5. β = 1, λ = 0: constant.

They are illustrated in Figure 1.
For the Z-Weibull distribution when λ < 0, the hazard function is

h(x) = αβ{ ln(1 + ηαx)

η
}β−1/(1 + ηαx).
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Figure 2. The 3 types of pdf: J-shaped (here β = 0.5, λ = −1), unimodal (here β = 2, λ = 1) and U-shaped
(here β = 0.9, λ = 4).

Differentiating this, it can be seen that h′(x) = 0 when xc = (exp(β − 1) − 1)/ηα. For β > 1,
there is a maximum at xc > 0, giving a UBT distribution, and for β ≤ 1 it is DFOM like the
Y-Weibull. Similarly it can be shown that if β > 1 the pdf has a maximum.

2.2. Probability density function (pdf)

The pdf is

f (x) = αβ{exp(λαx) − 1
λ

}β−1 exp(λαx) exp(−{exp(λαx) − 1
λ

}β).

It can be J-shaped, like the exponential distribution, unimodal, or U-shaped, as shown in
Figure 2. The U-shape can occur when β < 1 and λ is large, i.e., there is a bathtub-shaped
hazard function and the hazard drops to very low values. Figure 2 shows the 3 types of
pdf. The human lifespan has a U-shaped pdf, which this model can approximate, capturing
both infant mortality and the increasing mortality due to age. This seems to be the only
distribution that can model a U-shaped pdf. Skipping ahead, the Aarset dataset pdf looks
U-shaped when histogrammed. The fitted model is also U-shaped, and the fit is much better
than the generalised gamma or exponentiated Weibull model fits. Hence the ability to model
U-shaped pdfs is sometimes useful in practice.

A proof that the pdf can be unimodal or U-shaped is sketched out: Since f = hS, when f is
stationary, we have that df / dx = 0 = ( dh/ dx)S − h2S or h(x) = d ln h(x)/ dx.
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Hence from (4)

αβ{exp(λαx) − 1
λ

}β−1 exp(λαx) = α(β − 1)λ exp(λαx)/(exp(λαx) − 1) + αλ.

Multiplying through by exp(λαx) − 1)/λ, rearranging, and adding 1 to each side, we have

LHS(x) ≡ β exp(λαx) = β{exp(λαx) − 1)/λ}β exp(λαx) + 1 ≡ RHS(x). (5)

From this expression, we can find the modality of the pdf f (x). When β < 1, λ > 0, then
LHS(0) = β and RHS(0) = 1, so LHS(0) < RHS(0). As x → ∞ also, LHS(x) < RHS(x).
However, if we keep λαx constant and increase λ, the left-hand side stays constant while the
right-hand side decreases to 1, so that for large enough λ and some x, LHS(x) > RHS(x). The
pdf thus has two stationary values, corresponding to the U-shape in Figure 2. The modes can
be found numerically by solving (5).

Similarly, when β > 1, LHS(0) = β , so LHS(0) > RHS(0). For large x, however, LHS(x) <

RHS(x). Thus, there is one mode, the unimodal case in Figure 2.

2.3. Random numbers

Since S is computable, given a uniformly-distributed random number U, we have that

X = ln{λ(− ln(U))1/β) + 1}
λα

(6)

is a random number from the Y-Weibull distribution. However, if λ < 0, there is a probability
that events will not occur. Thus, given a time cutoff T, if U < exp(−1/|λ|β) we take the event
as censored at T.

For the Z-Weibull distribution, when λ < 0, random numbers can be generated as

X = exp(η(− ln(U))1/β − 1
ηα

.

2.4. Moments

The median is derivable as

xm = ln{λ ln(2)1/β + 1}
λα

.

It exists if λ > (− ln(2))−1/β . The moments cannot be found in closed form, but for example
the mean μ is given by

μ =
∫ ∞

0

exp(−yβ) dy
α(1 + λy)

.

This follows from using (1) and the result that μ = ∫ ∞
0 S(u) du. When λ < 0 the mean is

infinite.
For the Z-Weibull the median is exp(η21/β )−1

ηα
. The mean is μ = α−1 ∫ ∞

0 exp(−yβ + ηy) dy.
It exists if β > 1 or β = 1 and η < 1, otherwise it is infinite.
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2.5. Cure model

When λ < 0, we can write

S(x) = exp(−{1 − exp(−|λ|αx)

|λ| }β), (7)

This is a non mixture cure model of the promotion-time or ‘first activation scheme’
type S = exp(−γ0F(x)), where F is a distribution function. Here we have that F(x) =
(1 − exp(−|λ|αx))β , an exponentiated exponential distribution, while γ0 = |λ|−β . Note that
γ0 and F seem to have the same parameters, but are in fact independent, because the factor of
α is arbitrary; we could take F(x) = (1 − exp(−φx))β , γ0 = (α/φ)β , so the new parameters
could be φ, β , γ0.

The error and confidence intervals on the cured proportion can be found from the
covariance matrix of fitted model parameters. Since β and |λ| are required, an accurate
method is to generate random numbers from the bivariate normal distribution with the fitted
covariance matrix, and so compute the standard error and confidence interval for S(∞).

To test whether the cured proportion is positive, one needs to test that λ < 0. This is easily
done either using the fitted standard error on λ in a Wald test, or maximising the likelihood
again setting λ = 0 (a Weibull fit) and doing a chi-squared test. Note that because λ can take
either sign, we do not have the inferential problem caused by the cure proportion being at the
end of its range that is faced by mixture models.

2.6. Inclusion of covariates

Covariates zi can be included by regressing α = exp(
∑m

i=1 βizi) as one does for the Weibull
distribution. This is an AFT (accelerated failure time) model for the latency part of the cure
model. The probability of cure S(∞) can also be regressed on covariates, to allow the incidence
of cure to be a function of covariates. This can be achieved by a linear regression on covariates
for ln(−λ). For the Z-Weibull distribution, regression of shape parameters β , λ on covariates
would not usually be done.

3. Inference

3.1. Simulations

Fitting the datasets in Table 1, the median values of β , λ were found for the four non trivial
hazard types shown in Figure 1, for a sample size of 128. This is the size of the largest dataset
fitted. Simulated datasets were created using (6) and setting α = 1, and fitted by maximum-
likelihood. In the simulations, parameters were fitted starting from the true values.

Table 2 shows the bias, standard error, and standard error of the mean for 10,000 simula-
tions from each of these four groups, and for the exponential distribution. The small standard
error of the mean confirms that these estimates of bias are sufficiently accurate.

Bias is taken as e.g.β̂ − β , and is small, except when β is large, and especially so when λ

is also large. In this case, the tail cuts off quickly, and there are few events to enable a good
determination of λ. Hence in these cases, the bias is large and the standard error of λ̂ very
large. The percentages of simulated datasets correctly classified in the first 4 groups are 100,
84.5, 100, and 98.8. The parameter λ is easily estimated with the wrong sign when small and
negative (giving a longer tail) and when β is large.
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Table 1. Details of the datasets fitted and where to find them.
Dataset Sample size Description Source

Bebb3 60 Elec. appliance Bebbington, Lai, and Zitikis (2006) tab. 3
Bebb4 36 Generators Bebbington, Lai, and Zitikis (2006) tab. 4
Bebb5 128 Load-haul dump trucks Bebbington, Lai, and Zitikis (2006) tab. 5
Bebb6 14 Reactor pumps Bebbington, Lai, and Zitikis (2006) tab. 6
Flood 72 Wheaton river exceedences Akinsete, Famoye, and Lee (2008)
Bladder 128 Bladder cancer Shanker et al. (2016)
Leuk 51 Remission to relapse for leukaemia Xie, Tang, and Goh (2002)
Aarset 50 Devices Xie, Tang, and Goh (2002)
Repair 40 Transceiver repair time Xie, Tang, and Goh (2002)
Fibres 63 Strength of 1.5 cm glass fibres Shanker et al. (2016)
Pigs 72 Survival of guinea pigs Shanker et al. (2016)
Glass 31 Strength of aeroplane windows Shanker et al. (2016)
Bank 100 Bank waiting times Ghitany, Atieh, and Nadarajah (2008)
Ballbear 23 Ball-bearing lifetimes Xie, Tang, and Goh (2002)
Guinea 65 Guinea-pig survival Xie, Tang, and Goh (2002)
Allogen 45 Allogenic transplant for leukaemia Xie, Tang, and Goh (2002)
Autolog 45 Autologous transplant for leukaemia Xie, Tang, and Goh (2002)
Coupon 101 Aluminium coupons Xie, Tang, and Goh (2002)
Pressure 20 Pressure vessels Xie, Tang, and Goh (2002)
Fluid 19 Breakdown of insulating fluid Xie, Tang, and Goh (2002)

The event is always failure for devices unless otherwise stated.

Also, in Table 3 fits are shown for one simulation. From the fits, it can be seen that in general
the departure of the fitted parameter from the true value is comparable with the computed
standard error.

3.2. Fits to data

Fitting can be done by a likelihood-based method such as likelihood maximisation. Because
we know the survival distribution, any type of censoring is readily coped with. Derivatives of
the log-likelihood are not hard to compute, but one can maximise the log-likelihood quickly
enough using a quasi-Newton method that does not require derivatives. Fitting is best started
from an exponential distribution with the sample mean, so that α = 1/x̄, β = 1, λ = 0.

Careful coding will test for the case that |λ| < ε, some small number such as 10−4, and
then default to the Weibull distribution. Better, one can approximate exp(λαx) − 1)/λ � x +
λx/2 + λ2x2/6 for small |λ|.

Table 1 shows details of 20 datasets used to assess the model. All are available in the public
domain. The source given here is not always the original publication.

Table 4 shows the Akaike Information Criterion (AIC) of fits to these datasets. Note that
all models have 3 parameters, so effectively lower AIC means higher likelihood. The cure
percentage is also shown; this is usually zero and of course can only be non zero for the Y-
Weibull distribution and the Xie, Tang, and Goh (2002) distribution, and for UBT hazards.
Twice here the hazard extremum occurs beyond the maximum time in the data (glass and
coupon datasets), and then BT is taken as DFOM and UBT as IFOM. These classifications are
taken from the Y-Weibull distribution fit.

It can be seen that the new distributions perform comparably with the generalised gamma
and exponentiated Weibull distributions, sometimes fitting best for all types, such as IFOM,
BT, and UBT. The exponential transformation means that they can accommodate exponen-
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Table 2. Results of fitting 10000 simulated datasets, showing biases of parameter estimates, standard errors
of estimates, and the standard error of the computed bias.
Parameter True value Bias s.e. s.e.m

α 1 0.0268 0.1948 0.0019
β 0.6 0.0095 0.0583 0.0006
λ -0.3 -0.0068 0.0614 0.0006
α 1 -0.0317 0.1442 0.0014
β 2.5 -0.0192 0.4055 0.0041
λ -0.3 0.0931 0.2665 0.0027
α 1. -0.0065 0.2401 0.0024
β 0.6 0.0024 0.0727 0.0007
λ 0.8 0.1861 0.6278 0.0063
α 1. -0.0416 0.2657 0.0027
β 2.5 0.0050 0.5639 0.0056
λ 0.8 0.7630 3.2386 0.0324
α 1 -0.0246 0.1448 0.0014
β 1 -0.0066 0.1133 0.0011
λ 0 0.0732 0.2002 0.0020

Table 3. Results of fitting simulated datasets with α = 1, showing fitted values and standard errors.
β λ α̂ β̂ λ̂

0.6 -0.3 1.33 (0.19) 0.607 (0.044) -0.25 (0.042)
2.5 -0.3 0.98 (0.14) 2.34 (0.34) -0.167 (0.22)
0.6 0.8 1.22 (0.24) 0.59 (0.06) 0.74 (0.34)
2.5 0.8 0.94 (0.29) 2.30 (0.51) 1.19 (1.17)
1 0 0.98 (0.17) 0.94 (0.12) 0.19 (0.24)

Table 4. AIC for model fits of the Y-Weibull model compared to two popular 3-parameter distributions, the
generalised gamma and the exponentiated Weibull, and with the modified Weibull of Xie, Tang, and Goh
(2002), extended to allow λ < 0.
Dataset Type Cure % Y-Weibull Gen. gamma Exp. Weibull Xie, Tang, and Goh (2002)

Bebb3 BT 0 216.78 216.22* 216.32 216.43
Bebb4 BT 0 142.24* 142.84 142.81 142.53
Bebb5 DFOM 0 364.29 362.63* 362.66 363.93
Bebb6 BT 0 30.14* 31.22 31.06 31.20
Flood BT 0 507.32* 508.13 508.05 507.56
Bladder UBT 0.44 826.84* 827.71 827.36 827.61
Leuk UBT 1.04 677.74 676.97* 677.18 678.18
Aarset BT 0 457.23* 470.50 467.99 460.29
Repair UBT 1.38 193.16 191.44 189.45* 193.88
Fibres IFOM 0 34.81* 43.06 35.35 36.38
Pigs UBT 0.05 193.88* 194.46 194.18 194.98
Glass IFOM 0.06 216.65 216.09 215.55* 217.11
Bank IFOM 0 640.94 639.91* 639.94 641.69
Ballbear UBT 0.008 232.43 232.00 231.95* 232.96
Guinea IFOM 0 876.56 877.49 871.21* 876.20
Allogen UBT 27.0 474.73* 480.33 474.91 474.82
Autolog UBT 23.0 391.18* 426.05 407.65 398.71
Coupon IFOM 0 1493.99* 1495.79 1497.92 1494.37
Pressure BT 0 291.66* 292.21 292.02 293.14
Fluid BT 0 212.41* 213.75 213.18 213.95

Cure percentage and distribution type are shown, and the best fitting model marked with an asterisk. Only the allogen and
autolog datasets are censored.

tially increasing hazards. The presence of only one DFOM distribution in the datasets may be
because some distributions regarded as DFOM in fact have a hazard function that increases
at large times, making them BT. This seems not unreasonable. As expected, the generalised
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Table 5. Kolmogorov-Smirnov D statistic and p-value in parentheses for model fits of the Y-Weibull model
compared to two popular 3-parameter distributions, the generalised gamma and the exponentiated
Weibull, and with the modified Weibull of Xie, Tang, and Goh (2002), extended to allow λ < 0.
Dataset Y-Weibull Gen. gamma Exp. Weibull Xie, Tang, and Goh (2002)

Bebb3 0.0548 (0.992) 0.086 (0.714) 0.0547 (0.912) 0.0522 (0.996)*
Bebb4 0.079 (0.854)* 0.1020 (0.825) 0.1024 (0.824) 0.1046 (0.804)
Bebb5 0.0574 (0.781) 0.0428 (0.970) 0.0413 (0.979)* 0.0536 (0.846)
Bebb6 0.157 (0.850) 0.190 (0.645) 0.129 (0.962)* 0.056 (0.846)
Flood 0.0994 (0.455)* 0.1082 (0.350) 0.1074 (0.358) 0.1037 (0.401)
Bladder 0.0416 (0.977) 0.0466 (0.618) 0.040 (0.995)* 0.046 (0.944)
Leuk 0.075 (0.927) 0.0674 (0.967) 0.0659 (0.976)* 0.0821 (0.867)
Aarset 0.125 (0.391)* 0.297 (0.0002) 0.1872 (0.052) 0.1392 (0.266)
Repair 0.125 (0.431) 0.136 (0.424) 0.126 (0.520* 0.1262 (0.519)
Fibres 0.1205 (0.300)* 0.194 (0.424) 0.1304 (0.218) 0.136 (0.1785)
Pigs 0.1196 (0.238) 0.1139 (0.291)* 0.1146 (0.283) 0.1192 (0.242)
Glass 0.1558 (0.408) 0.1552 (0.412) 0.1493 (0.462)* 0.1636 (0.348)
Bank 0.0439 (0.989) 0.0359 (0.999)* 0.0362 (0.999) 0.0471 (0.977)
Ballbear 0.1219 (0.862) 0.1187 (0.992) 0.1080 (0.939)* 0.1367 (0.752)
Guinea 0.1294 (0.207) 0.1184 (0.303)* 0.1255 (0.241) 0.1353 (0.171)
Coupon 0.048 (0.970) 0.0377 (0.998)* 0.0478 (0.972) 0.0539 (0.924)
Pressure 0.0836 (0.998) 0.1152 (0.940) 0.0645 (0.999)* 0.0766 (0.999)
Fluid 0.1084 (0.971)* 0.2432 (0.181) 0.1343 (0.875) 0.1378 (0.836)

The best fitting model is marked with an asterisk.

gamma and exponentiated Weibull perform very similarly. The Y-Weibull usually performs
better than the modified Weibull of Xie, Tang, and Goh (2002), being better in 17 cases and
worse in 3.

Table 5 shows the results of computing the Kolmogorov-Smirnov goodness of fit test for
the 18 datasets without censoring. The formulae given in Press et al. (2007) were used for this.
The p-values will be over-optimistic, as no allowance is made for estimating the parameters,
but the results still give the relative goodness of fit, and the adequacy of the fitted curve to
approximate the data. The Y-Weibull is now best 6 times, the generalized gamma best 4 times,
the exponentiated Weibull best 8 times, and the modified Xie distribution best once. There is
usually little difference in the fit, the exception being the Aarset dataset, where the generalized
gamma and exponentiated Weibull perform poorly.

The Z-Weibull distribution is identical to the Y-Weibull when λ > 0, but when λ < 0 it
performs differently. Thus for the bladder cancer dataset, the AIC was 825.97, slightly better
than for the Y-Weibull. However, for the ‘allogen’ dataset, where there is a large cure fraction,
the AIC was 484.50, substantially worse than for the Y-Weibull. Fitting this distribution in
addition to the Y-Weibull can indicate whether there is need for a cure model or not. Can a
flexible non cure model fit the data as well, or better?

The conclusion is that the new models can fit a broad sample of datasets comparably with
current models. Among these, the exponentiated Weibull model performed better than the
generalized gamma model.

3.3. Testing

There is a huge number of ageing classes of survival distributions (e.g., Lai and Xie 2006), and
very many tests that could be done. Focussing on tests for λ, a test that λ > 0 gives a test for
BT hazard-shape vs DFOM that might be applied when when β̂ < 1, and a test that λ < 0 is a
test for UBT vs IFOM applied when β̂ > 1; this logic applies to both Y-Weibull and Z-Weibull
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distributions. More usefully perhaps, a test that λ < 0 is a test for a positive cure fraction for
the Y-Weibull distribution.

These tests are best done by also fitting the Weibull model, when twice the increase in log-
likelihood on moving to the Y-Weibull model is distributed as chi-squared with one degree
of freedom. Thus for the bladder cancer dataset, the corresponding signed normal score is
z = −2.71 (λ negative). From the (less reliable) Wald test, we would have z = −3.1, in fair
agreement. A score test based on the Weibull distribution fit was found to have low power,
and is not described further.

For the Y-Weibull distribution, negative λ leads to a cured proportion, but this may
be a statistical artifact, because negative λ is a sign of a strongly DFOM or UBT-shaped
distribution, as well as inevitably resulting in a cured percentage. Thus for the bladder cancer
dataset, despite the test for negative λ being strongly significant, the 95% confidence interval
for the cured percentage was (0, 2.2%), consistent with zero.

As mentioned, the Z-Weibull distribution, which has zero cured percentage, fitted better.
This encourages the belief that the apparent cured fraction is caused by a hazard function that
is strongly decreasing, but not necessarily fast enough to give a cured fraction. As indicated
in Peng and Yu (2021), deciding whether there is a cured percentage is a vexed question, and
more background knowledge than is given by fitting a statistical model is needed to come to
a conclusion.

4. Conclusions

The new distributions accommodate all hazard types, fit on average as well as any 3-parameter
survival distribution, and the Y-Weibull can also function as a cure model. Thus, this distri-
bution could be useful in modelling both reliability and medical data. It is straightforward
from the fit to data to determine which of the four hazard-function classes the distribution
belongs to. This will aid decision-making: for devices with bathtub-shaped hazard functions
one must then determine the optimum burn-in period, and with increasing hazards there will
be an optimum lifetime before preventative replacement.

In the medical case, it offers a simple test of whether the cured proportion is non zero,
important for subsequent medical management of a condition such as cancer.

A limitation of this study is that one can never have too much experience in fitting models,
but 20 datasets are sufficient to give an indication of the model’s usefulness. The bivariate case
arises occasionally, when there are two measures of usage, and this has not been considered,
beyond recommending using a copula.
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cure model, the proportion cured is simpler, being S(∞) = exp(−1/|λ|).

The Z-Weibull distribution is a generalization of the Pareto or Lomax distribution, to which it
reduces when β = 1.

The distribution of the earliest of n random variables from a survival distribution has survival
function S(x)n. This still has the Y-Weibull distribution. The same invariance holds for the Xie et al
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Three parameters is quite enough for most datasets encountered, but a possibility for large datasets
would be to raise x in (2) to a power, so obtaining the distribution

S(x) = exp(−{exp(λ(αx)γ ) − 1
λ

}β), (A.1)

where γ > 0. This distribution would then give the exponentiated Weibull distribution as the embedded
distribution function F(x) in the cure model.
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