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Abstract 
 

The increasing prevalence of hand impairments due to conditions such as arthritis, 

Cerebral Palsy, Parkinson’s Disease, and stroke presents significant challenges in 

everyday activities, such as tying shoes or getting dressed. In the UK, long-term 

musculoskeletal conditions are on the rise, highlighting the urgent need for effective 

rehabilitation methods. Despite physical therapy's potential to help regain motor skills, 

there is no consensus on optimal methods for promoting neuroplasticity. Robotic and 

wearable technologies have emerged as viable solutions, with soft robotics offering 

distinct advantages due to their flexibility, adaptability, and portability. However, limited 

evidence supports the superiority of conventional robotic devices over traditional 

therapies. 

This PhD research investigates the development of a soft tactile sensor aimed at 

improving rehabilitation outcomes for individuals with upper limb impairments, 

focusing on muscle activity during hand movements in healthy, Parkinson’s, and stroke 

patients. The motivation for this study lies in the growing demand for accessible 

rehabilitation solutions that address the UK’s healthcare challenges, particularly for 

stroke survivors, where upper limb rehabilitation is under-resourced. 

The primary aim of this research is to design and validate a novel fabric-based tactile 

sensor using Eeon-Tex conductive stretchable elastic fibre, capable of accurately 

detecting muscle activity. The methodology includes the fabrication of the sensor, an 

investigation into the nonlinear hysteresis phenomenon, and validation against a 

commercial surface electromyography (sEMG) sensor. A key focus is on developing 

reliable alternatives to traditional sEMG systems, making rehabilitation more 

accessible. 

Key findings demonstrate that the soft tactile sensor is effective in capturing distinct 

muscle activity patterns across various patients, particularly during tasks involving 

gripping and manipulating objects. Statistical analysis showed high signal similarity 

between the tactile sensor and sEMG, confirming the sensor’s reliability and potential 

for clinical application. Additionally, strategies were developed to mitigate the effects 

of nonlinear hysteresis on the sensor’s performance. 
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In conclusion, this research contributes to the field of rehabilitation technology by 

providing a cost-effective, reliable alternative to conventional muscle monitoring 

systems. The significance of this work lies in its potential to improve the quality of life 

for individuals with mobility impairments, particularly in an ageing population, while 

addressing the resource challenges faced by healthcare systems such as the National 

Health Service( NHS). 
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Chapter One: Introduction 

 

1.1 Introduction 

When you imagine struggling to complete simple tasks in life, such as tying your shoes 

or getting dressed every day because of limited hand mobility, it is possible to focus 

on The issues encountered by many people who face hand impairments due to 

conditions including arthritis, Cerebral Palsy, Parkinson’s Disease, or stroke, as these 

challenges are a daily reality. In the United Kingdom (UK) alone, the number of adults 

reporting long-term musculoskeletal conditions has been increasing, underlining the 

importance of effective rehabilitation methods [1,2]. Despite the potential of physical 

therapy to help regain motor skills, though, there is still no consensus on the best 

approaches to promote neuroplasticity. Additionally, access to therapy sessions can 

be limited by factors like frequency, duration, and cost. To make rehabilitation 

exercises more accessible, researchers have developed robotic devices as 

supplementary therapies.  

However, while conventional robotics offer benefits, a review of numerous upper limb 

rehabilitation devices found insufficient evidence to support their effectiveness 

compared to traditional therapies [3-5]. This could be due to the rigid materials used 

in conventional robotics, which may limit their therapeutic potential. Conversely, soft 

robotics, made from flexible materials, such as fluids, gels, and soft polymers, offer 

promising advantages. These soft robotic devices can better adapt to the body’s shape 

and movements, potentially enhancing rehabilitation outcomes. Moreover, their 

lightweight and portable nature makes at-home rehabilitation feasible. Accordingly, 

while soft robotic devices for hand rehabilitation are in development, a thorough 

examination of existing designs is essential to guide future development efforts. 
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1.2 Research Motivation 

The current research investigates the application of tactile sensors, which are devices 

that mimic the human sense of touch by detecting and responding to mechanical 

stimuli such as pressure, force, or vibration. These sensors are critical across several 

domains, including wearable technology, healthcare, assistive technologies, and 

industrial operations. Tactile sensors hold significant potential for enhancing 

functionality and user experience in these areas by providing real-time feedback, 

improving precision, and enabling more intuitive interactions. In the domain of 

wearable technology, integrating tactile sensors can significantly impact user-device 

interactions. Wearable devices with tactile feedback can create a more immersive and 

responsive user experience, facilitating more intuitive interactions. The wearable 

technology market in the UK is growing rapidly, driven by consumer demand for 

innovative devices. In 2020, the UK wearable tech market was valued at approximately 

£2.9 billion, with projections indicating continued growth as consumer demand 

increases for more sophisticated and interactive devices [6]. The incorporation of 

advanced tactile sensors in these products could drive further innovation and user 

satisfaction. In healthcare, the application of tactile sensors is particularly compelling, 

especially in the context of the UK’s healthcare challenges. The National Health 

Service (NHS) faces increasing pressure to deliver effective rehabilitation services for 

stroke survivors, among other conditions. Stroke is a leading cause of disability in the 

UK, with over 100,000 strokes occurring each year [7]. Approximately 75% of stroke 

survivors experience upper limb impairments, which can severely limit their ability to 

perform daily activities. However, rehabilitation services often focus more on lower 

limbs, potentially leaving upper limb recovery under-resourced. This can result in long-

term disabilities, such as spasticity and reduced mobility, leading to ongoing care 

needs. For example, upper limb spasticity can develop if left untreated, affecting the 

ability to carry out daily tasks. Integrating tactile sensors into rehabilitation devices 

could provide real-time feedback, enhancing the precision and effectiveness of 

therapies, particularly in improving hand and arm movement. The motivation behind 

this research is grounded in the growing demand for advanced sensor technologies 

that can contribute to improving quality of life, optimising healthcare outcomes, and 

enhancing industrial processes, particularly within the UK. 
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The motivation behind this research is grounded in the growing demand for advanced 

sensor technologies that can contribute to improving quality of life, optimising 

healthcare outcomes, and enhancing industrial processes, particularly within the UK. 

Functional Electrical Stimulation (FES) has shown promise in improving motor function 

in upper limbs, and similar benefits could be achieved by using tactile sensors to 

provide more accurate feedback on muscle activity and movement. This would 

potentially reduce long-term care costs for the NHS by aiding recovery and limiting the 

need for extended rehabilitation. 

Additionally, tactile sensors play a crucial role in advancing assistive technologies, 

such as prosthetics and robotics, which are increasingly important in the UK’s ageing 

population. The UK’s prosthetics market is growing, driven by a rising demand for 

more responsive and sensitive prosthetic devices. The prevalence of amputations in 

the UK is significant, with over 5,000 major limb amputations carried out annually [7]. 

Tactile sensors can significantly improve the functionality of these devices by enabling 

them to better detect and respond to external stimuli, thus enhancing the user's ability 

to interact with their environment. For example, a prosthetic hand equipped with tactile 

sensors could adjust its grip based on the texture and hardness of an object, offering 

a more natural and effective user experience, which is essential for improving the 

quality of life for amputees in the UK. 

In industrial settings, the integration of tactile sensors can enhance operational 

efficiency, product quality, and cost management, which are critical for maintaining the 

competitiveness of UK manufacturing. The UK’s manufacturing sector contributes 

significantly to the economy, with a total output valued at £191 billion in 2022 [8]. 

However, the sector faces challenges related to precision, quality control, and 

automation. Tactile sensors can be employed in robotic systems to improve the 

accuracy of tasks such as assembly, material handling, and inspection. For instance, 

the use of tactile sensors in robotic grippers allows for more precise manipulation of 

objects, reducing the risk of damage and improving overall production quality. This is 

particularly important as the UK aims to enhance productivity and competitiveness in 

its manufacturing sector. 
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The motivation for this research lies in the substantial benefits that advanced tactile 

sensors can provide across various fields, with a specific focus on addressing 

challenges within the UK. By improving upper limb rehabilitation outcomes, enhancing 

the functionality of prosthetic devices, and optimising industrial processes, this 

research aims to contribute to the development of innovative solutions that have a 

meaningful impact on UK society. 

1.3 Aims and Objectives 

The current study aims to comprehensively analyse the field of soft robotics, focusing 

on evaluating the advantages and drawbacks of soft sensors in healthcare 

applications. Specifically, it explores the potential of soft sensors in aiding individuals 

with injuries, the elderly, and those with disabilities, particularly in the contexts of post-

traumatic recovery, rehabilitation, and anomaly detection. By examining the 

capabilities and limitations of soft sensors, this research seeks to contribute valuable 

insights that enhance the well-being and quality of life of individuals facing mobility 

challenges. 

 

To achieve this aim, the following objectives have been devised: 

1. Develop a soft robotic sensor using Eeon-Tex Conductive stretchable elastic 

fibre, a specialised fabric, specifically designed to enhance therapy precision 

by providing accurate feedback on muscle movement during upper limb 

rehabilitation. 

2. Investigate and understand the nonlinear hysteresis phenomenon in soft tactile 

sensors, where hysteresis describes the tendency of the sensor to retain a 

memory of past forces applied, leading to lag or deviation in its response. This 

will be studied through experiments with varying numbers of sensor layers, and 

strategies to mitigate this phenomenon will be developed. This is crucial in 

ensuring the sensor can provide real-time, reliable data that informs therapy 

adjustments. 
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3. Conduct a validation study comparing the proposed soft tactile sensor with a 

precise sEMG sensor, highlighting its effectiveness in detecting and interpreting 

muscle activity, thus demonstrating its capability to contribute to therapeutic 

interventions. 

4. Validate the tactile sensor by comparing it with a commercial sEMG sensor, 

demonstrating its accuracy and reliability for diverse applications, including 

rehabilitation and assistive technologies. 

 

1.4 Methodology 

1. Soft Robotic Sensor Development 

• Material Selection and Preparation; 

• Identify and acquire Eeon-Tex Conductive stretchable elastic fibre; 

• Conduct material testing to understand its mechanical and electrical properties. 

2. Sensor Design and Fabrication 

• Design the soft robotic sensor considering specific application requirements; 

• Fabricate the sensor prototype using the identified material; 

• Experiment with different layer configurations (one, three, six, and twelve) to 

observe the impact on sensor performance. 

3. Nonlinear Hysteresis Investigation 

• Develop experiments to investigate the nonlinear hysteresis phenomenon in 

soft tactile sensors; 

• Conduct tests with varying numbers of sensor layers; 

• Analyse the data to identify trends and characteristics of the hysteresis 

phenomenon. 

4. Computer Control Hardware Development 
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• Selection of Components; 

• Identify and procure necessary components, including Arduino Uno and other 

required hardware; 

• Code Development; 

• Utilise Excel, Arduino Uno, and MATLAB to develop code for recognising 

different muscle movements through the tactile sensor; 

• Implement strategies for real-time data processing and classification. 

5. Validation Study 

• Comparison with sEMG Sensor; 

• Conduct a validation study comparing the soft tactile sensor with a precise 

sEMG sensor; 

• Record EMG signals during dynamic exercises from the Biceps muscle and the 

Flexor Carpi Ulnaris muscle; 

• Ensure consistent experimental conditions for both sensors. 

6. Performance Evaluation 

• Evaluate the performance through statistical indicators; 

• Spearman’s correlation; 

• Energy ratio; 

• Pearson correlation coefficient. 

7. Validation against Commercial sEMG Sensor 

• Compare the tactile sensor with a commercial sEMG sensor; 

• Assess accuracy and reliability across diverse applications; 
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• Use standardised tests to ensure a fair and comprehensive evaluation. 

8. Data Analysis 

• Analyse the collected data using appropriate statistical methods. 

• Compare the signals from both sensors under different conditions. 

1.5 List of Contributions 

The contributions from the current research are multifaceted and encompass 

advancements in muscle behaviour analysis, rehabilitation, and assistive technology. 

This presents a comprehensive exploration of the development and application of a 

fabric-based tactile sensor for muscle behaviour analysis and rehabilitation, with the 

contributions summarised as follows: 

1. Development and Evaluation of the Fabric-Based Tactile Sensor: 

The primary contribution of the current research lies in the development and thorough 

evaluation of a novel fabric-based tactile sensor. Designed to monitor muscle 

behaviour during various activities, this sensor addresses accessibility challenges 

associated with expensive commercial Electromyography (EMG) systems, thereby 

making muscle behaviour analysis more affordable and widely accessible. 

• Introduction of a Fabric-Based Tactile Sensor: The study introduces a novel 

fabric-based tactile sensor designed to monitor muscle behaviour during 

various activities. This sensor addresses accessibility challenges associated 

with expensive commercial EMG systems, making muscle behaviour analysis 

more affordable and widely accessible. 

• Development and Evaluation of the Sensor: The study comprehensively 

develops and evaluates the fabric-based tactile sensor. Through dynamic 

exercises performed by volunteers, the sensor’s performance is compared with 

standard surface EMG sensors, demonstrating its efficacy and reliability. 

• Demonstration of Signal Similarity: The study demonstrates consistently high 

signal similarity between the fabric-based tactile sensor and conventional 

surface EMG sensors. Through rigorous evaluation, three performance 
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indicators confirm the reliability and cost-effectiveness of the new sensor 

technology. 

2. Understanding and Mitigating Nonlinear Hysteresis: 

In addition to sensor development, the current research investigates and proposes 

mitigation strategies for nonlinear hysteresis in soft tactile sensors, which is crucial for 

improving reliability and accuracy in muscle behaviour monitoring. 

3. The initial trials and applications of the proposed sensing technology in the 

healthcare field; 

 Focusing on muscle activity patterns during hand movements in individuals with 

Parkinson’s disease and stroke. Utilising a newly designed soft tactile sensor and 

advanced signal processing techniques,  assessed its efficacy in capturing muscle 

activity and characterised motor control differences between patients and healthy 

controls during tasks involving gripping an apple and manipulating a key. 

 

1.6 Organisation of the Research 

The current research is organised into six chapters to present the different aspects of 

the research that have been undertaken to complete the goals described above. 

Chapter One: Introduction: This chapter presents a general overview of the soft 

sensors, before illustrating the research motivation, aims and objectives. It also 

explains the research methodology and lists the research contributions. 

Chapter Two: Literature Review: This chapter presents a review of previous research 

in the soft sensor area. 

Chapter Three: Design and Implementation of a Soft Tactile Sensor: This Chapter 

focuses on soft tactile sensors, starting with materials, such as conductive fabrics and 

threads that utilise piezoresistivity to convert touch into electrical signals. The careful 

assembly process is detailed, including stitching techniques and optimising contact 

points to ensure sensor reliability. Experiments were subsequently devised using 

microcontrollers, including Arduino to analyse the sensor’s response in real-life 
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scenarios by collecting data to improve performance. Lastly, the readout circuitry is 

explained using voltage dividers and multiplexing to enhance data acquisition, with 

detailed circuit diagrams and code for replication and further development. 

Chapter Four: Modified Nonlinear Hysteresis Approach of a Tactile Sensor: In this 

chapter, a new technique is introduced using a backpropagation (BP) neural network 

to deal with hysteresis nonlinearity in tactile sensors made of conductive fibres. 

Hysteresis refers to the inconsistency in sensor response when the same force is 

applied, depending on whether the force is increasing or decreasing. This 

inconsistency can significantly affect the accuracy and reliability of tactile sensor 

readings. To test this method, four sensor units were created and applied force 

sequences were used to gather their corresponding output resistance data. The key 

aspect of my approach was training a BP network with these sequences to adjust the 

resistance values. During the training process, the network showed excellent 

convergence, adjusting its parameters to minimise the difference between predicted 

and actual resistance values. 

Chapter Five: Validation and Evaluation of a Fabric-Based Tactile Sensor in 

Comparison with an sEMG Sensor: In this chapter, the aim is to assess the 

effectiveness and limitations of tactile sensors in measuring muscle activity. The study 

involves gathering Electromyography (EMG) signals from the Biceps and Flexor Carpi 

Ulnaris muscles during dynamic exercises. In this process, two types of sensors are 

compared: a commercial superficial electromyography (sEMG) sensor (Myoware 

EMG) and a fabric-based tactile sensor discussed in Chapter Three. The main goals 

are: 1) to determine whether the tactile sensor system is able to produce EMG output 

signals that differentiate between various exercises; and 2) to evaluate the consistency 

of the signal generated by the soft tactile sensor, especially during simple exercises. 

Through this experiment, the aim is to gain insights into the capabilities and limitations 

of tactile sensor systems for assessing muscle activity. 

Chapter Six: Conclusion and Future Work: This chapter concludes the entire research 

and presents a plan for future work. 
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Chapter Two: Literature Review 

       

2.1 Introduction 

In today’s world, technology is deeply woven into our everyday lives, driving the quest 

for innovations that boost human well-being. The UK’s ageing population, coupled with 

a shortage of physiotherapists and occupational therapists, underscores the urgent 

need for fresh approaches to rehabilitation and independent living. In response, 

wearable devices and tools are joining forces to offer promising solutions, empowering 

individuals to regain control and mobility [9-13]. This chapter also creates the 

foundation by spotlighting the growing significance of tactile sensor technology in 

addressing the changing landscape of healthcare and robotics, particularly in upper 

limb rehabilitation. 

With an increasing number of elderly individuals and a lack of healthcare 

professionals, there is a critical demand for inventive solutions to aid in rehabilitation 

and promote patients’ autonomy. This section underscores the crucial role of wearable 

devices and assistive technologies in bridging this gap, with a specific focus on the 

development of stretchable tactile sensors tailored for upper limb applications. By 

offering a brief overview of the current challenges and opportunities in this domain, 

this introduction sets the stage for the ensuing sections, which explore deeper into the 

advancements and implications of tactile sensor technology. 

2.2 Tactile Sensors 

As the population in the UK ages, ensuring people’s independence and daily activities 

has become a crucial focus. Accordingly, recent research [9-16] highlights a shortage 

of physiotherapists and occupational therapists to meet the needs of the growing 

elderly population. This has led to a growing interest in developing robots to aid in 

rehabilitation, taking on the role of providing controlled and repetitive motion 

assistance traditionally handled by physiotherapists. Simultaneously, wearable 

devices have risen as a promising form of technology, capable of recognising patients’ 

motion intentions, ensuring control, and supplying the necessary force for intended 

limb movements [15,17-18]. Recent advancements in wearable devices and assistive 
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technologies have also led to the development of novel sensing modalities for 

detecting users’ motion intentions. Specifically, surface electromyography (sEMG) and 

electroencephalography (EEG) readings, in conjunction with pressure and bend 

sensors placed on wrists and fingers, have emerged as promising tools in this domain 

[5,11]. These devices offer a spectrum of both positive and negative aspects 

concerning their ability to detect motion intentions. For instance, EEG signals can 

effectively detect signals at the initiation of motion, presenting potential benefits for 

patients with total paralysis. This approach, however, often necessitates a substantial 

number of electrodes and demands sophisticated signal-processing algorithms for 

accurate interpretation [9, 18-23]. 

In contrast, sEMG readings have gained popularity due to their reliability in signal 

acquisition and simplicity in implementation [14]. Nearly half of the devices designed 

for motion intention detection rely on sEMG readings, owing to their effectiveness in 

capturing user intent [15]. Moreover, the integration of sEMG with voice recognition 

techniques has shown promise in enhancing the detection of intent through a multi-

modal approach [24]. Despite the potential of these methods to enhance the 

rehabilitation process, approaches focusing on feedback modalities for detecting 

motion intent have sometimes been overshadowed by the prevailing emphasis on 

robotics [17-19]. Tactile sensors directly measure physical contact properties by 

interacting with object surfaces [20]. In recent years, tactile sensors have become 

remarkably better at helping robots manipulate objects [21-25]. Indeed, researchers 

continue finding new applications across medical devices, surgeries, rehabilitation, 

and advanced robotics [26-27]. Tactile sensors have even reached a point where they 

can match or even excel human hands in performing delicate tasks, such as grasping 

and twisting [26]. This tactile sensing technology enables precise measurements 

during task execution that surpass human capabilities [27]. 

The key strengths are the sensor’s direct surface contact and the resulting fine-grained 

force and pressure data. These attributes have driven rapid improvements in robotic 

manipulation. Additionally, tactile sensors’ precision and objectivity offer benefits for 

medical interventions over qualitative human touch [28, 29]. Their progress opens up 

new possibilities, extending applications from precise surgeries to controlling 

prosthetic limbs [30]. Tactile sensors, with their detailed touch feedback and consistent 
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performance, have the potential to outperform human hands in specific tasks [28]. 

Meanwhile, capacitive sensors operate on the principle of detecting changes in 

capacitance upon physical touch. Accordingly, multiple studies have validated the 

effectiveness of this technology, which is now widely used in touchscreen interfaces 

on smartphones and other devices [32-34]. Research efforts have also explored the 

development of flexible and textile-based capacitive sensors [35-37]. However, 

capacitive sensors do present certain challenges, including issues, such as stray 

capacitance and crosstalk effects. These complications are able to interpret readout 

circuitry for capacitive sensors as more intricate compared to resistive sensors. 

Consequently, the detection capabilities of capacitive sensors are heavily dependent 

on the sensor’s specific design properties [38, 39]. 

In contrast, textile-based sensors are exclusively constructed from textile materials, 

offering diverse manufacturing methods for producing conductive fabrics for sensor 

applications [40]. The key advantage is the ability to manufacture these fabrics in 

various forms, including yarns, fibres, and coatings [41,42]. Numerous approaches 

and materials have been explored for creating textile sensors; with these methods 

ranging from sewing or embroidering with conductive fabrics, painting or printing with 

conductive inks [34, 43], to the utilisation of conductive polymers [44]. Other studies 

have integrated conductive yarns through weaving [45, 46], although this process is 

often intricate. Such sensors are able to involve the combination of multiple conductive 

and non-conductive textile layers; and some research studies have explored the use 

of microfiber sensors for capacitive strain measurement [47]. Additionally, piezoelectric 

materials have been employed to create sensors capable of detecting bending and 

rotational movements [48]. Materials coated with PEDOT, a conductive polymer, have 

been harnessed to produce stretchable polymers capable of measuring resistance 

variations [49]. Research has also introduced a variety of materials with potential 

applications in wearable devices. Notable examples include elastic conductive 

webbing [50] and highly flexible fabrics [51], which have been chosen for their elasticity 

and recovery properties. One study, in particular, demonstrated that a sensor’s 

stretchable nature is closely tied to its manufacturing method and the resulting 

structure, which is why knitted structures were deemed the most suitable selection 

[52]. 
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Comparatively, the use of soft tactile sensors instead of sEMG sensors for measuring 

muscle activities offers specific advantages and targets certain applications [14]. While 

sEMG sensors capture electrical signals generated by muscle contractions, tactile 

sensors provide measurements based on direct contact between the sensor and the 

object, allowing for a more comprehensive understanding of the interaction between 

muscles and external stimuli [15]. Tactile sensors are particularly beneficial in 

scenarios where information regarding the contact force, pressure distribution, or 

object properties during muscle activities is crucial [53-55]. By utilising tactile sensors, 

researchers and practitioners are able to gain insights into tactile perception, grasping 

forces, or object manipulation strategies employed during tasks. This knowledge can 

be beneficial in many areas such as robotics, prosthetics, rehabilitation, computer 

interaction, and creating touch-based systems, which helps to develop more accurate 

and responsive technologies that imitate human touch abilities [56]. 

Tactile sensors are systems or devices that enable the measurement of object 

properties and contact events through direct contact between the sensor and the 

object [54]. Over the past three decades [58-60], tactile sensors have made significant 

advancements, particularly in assisting robots with object manipulation, and their 

potential benefits have been explored across various applications in different fields 

[61]. In the medical domain, tactile sensing has been utilised in clinical diagnoses, 

invasive surgeries, and rehabilitation. Similarly, in robotics, tactile sensors have 

demonstrated effectiveness in accomplishing complex tasks, such as grasping and 

twisting, often outperforming human hands in various tasks [62, 63]. Textile-based 

sensors, meanwhile, are characterised by their textile structure and are manufactured 

using different techniques and materials to achieve electrical conductivity [61]. 

Conductive fabrics used in textile sensors can be produced at various levels, including 

yarn, fibre, or coatings [65-70]; although the integration of conductive yarns is a 

complex process [71].  

The properties of stretch sensors closely depend on their fabrication and structure [72-

75], with knitted structures exhibiting optimal performance in this regard. Therefore, 

the focus primarily lies on knitted sensors that exhibit changes in electrical resistance 

under strain. These fabrics can, thus, serve as strain sensors, converting physical 

deformations into electrical signals. The fabrication of strain sensors, however, 
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necessitates the consideration of key factors, such as sensitivity, flexibility, and 

stretchability [76-79]. Overall, in this chapter, we aim to integrate this sensor with 

textiles, considering the complexities of upper limb anatomy and movement. 

Throughout this chapter, the essential design considerations are explored, as well as 

experimental methodologies that are crucial for developing effective stretchable tactile 

sensors tailored for upper limb applications. 

2.3 Upper Limb Anatomy 

Understanding how the upper limb works is imperative in making a stretchy sensor 

that fits well with fabrics. This helps design a sensor that moves smoothly with the 

limb, considering its complicated structure and making it work better. Structurally, the 

human upper limb is divided into three distinct segments: the arm, forearm, and hand. 

The hand encompasses two main joints – the wrist and fingers, the latter having three 

joints each. Additionally, the upper limb includes the shoulder and elbow (see Figure 

2.1). This complex structure involves three bones: the humerus, extending from the 

shoulder to the elbow; the scapula; and the clavicle, consisting of two slender bones 

connected to the scapula and sternum. The elbow joint is positioned between the 

forearm and upper arm, while the wrist is situated in the lower section of the forearm 

[27]. 

                                                 

Figure 2.1: Structure of the Human Upper Limb[1] 
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a. Joint Movement of the Human Shoulder  

Figure 2.2 below demonstrates how the shoulder is able to move in three main ways: 

Adduction-Abduction: The shoulder lets the arm move towards the body’s middle 

(adduction) or away from it (abduction), allowing for a wide range of motion. 

Rotation of External-Internal: The shoulder is versatile, allowing the arm to rotate 

both externally and internally, enabling detailed movements and precise positioning. 

Flexion-Extension: The shoulder is flexible, allowing forward (flexion) and backward 

(extension) movements. This flexibility helps the hand reach different positions. 

These various movements highlight the importance of the shoulder, providing the 

upper limb with a wide range of actions crucial for everyday tasks [27]. 

 

Figure 2.2: Movement of the Shoulder Joint [3] 

 

b. Human Elbow and Motion of the Wrist Joint 

Figure 2.3 below provides a clear understanding of the elbow’s significance in the 

upper limb. Positioned between the shoulder and wrist, the elbow is a crucial joint that 

helps with essential movements, which has a significant two-degree freedom range, 
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making it essential for various motions. The first freedom dimension involves the 

forearm and hand rotating inward (pronation) or outward (supination). This rotation 

flexibility is handy, allowing the hand to take on different positions and be adaptable. 

Simultaneously, the second dimension includes the bending and straightening 

motions of the forearm (extension-flexion). This movement range not only helps with 

basic actions, such as reaching and grasping, but also plays a key role in more 

complicated tasks [28]. 

 

            

 

Figure 2.3: Movement of the Elbow Joint[5] 

 

c. Motion of the Human Finger Joint 

In the complex structure of the human hand, each finger has three important joints that 

work together to make it highly flexible. Starting at the base of each finger, there is the 

metacarpophalangeal joint (MP), connecting the finger to the hand’s metacarpal bone. 

This joint allows for essential movements, including bending and straightening the 

finger. Moving toward the middle part of the finger, there is the proximal 

interphalangeal joint (PIP), positioned between the proximal and intermediate 

phalanges. This is a crucial hinge that enables controlled bending and straightening 

motions. At the tip of each finger is located the distal interphalangeal joint (DIP), 

situated between the intermediate and distal phalanges. This joint is crucial for precise 

movements, such as grasping and manipulating objects. The thumb also has its 
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unique setup. At the base, there is the carpometacarpal joint (CM) connecting the 

thumb to the carpal bones of the wrist. Moving to the middle segment, the 

metacarpophalangeal joint (MP) allows the thumb’s pivotal movements, while the 

interphalangeal joint (IP) at the tip ensures fine control and manipulation. 

The visual representation in Figure 2.4 below [26] illustrates this intricate arrangement, 

emphasising how these joints play a vital role in enabling various motions for intricate 

hand functions. 

 

Figure 2.4: The Human Fingers and Joint [3] 
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2.4 Sensors 

Various sensors have been specifically designed for wearable applications, collecting 

detailed information from the movements and activities of the human body. These 

sensors are crucial in both medical and consumer technologies, often using advanced 

machine learning algorithms to enhance recognition strategies. These methods 

complement traditional signal analysis and help to discern specific behavioural 

patterns [29]. In wearable technology, devices generally fall into two categories: 

primary and secondary. 

• Primary wearables, such as wrist-worn smartphones and fitness trackers, 

operate independently, providing functionalities like communication, health 

monitoring, and activity tracking. 

• Secondary wearables are more specialised, often measuring specific 

physiological parameters or movements, such as heart rate monitors used in 

fitness and medical applications [25,29]. 

Among these, smart clothing is a notable innovation, seamlessly integrating into daily 

life by offering physiological and contextual measurements. For instance, Neofect’s 

RAPAEL smart glove enhances hand rehabilitation using textile-based sensors, which 

improve comfort and effectiveness during prolonged use [30]. 

Within wearable technology, soft robotic devices represent a significant 

advancement. These devices combine flexible materials with sophisticated sensors, 

enabling them to interact naturally with the human body. This makes them highly 

suitable for rehabilitation and assistive technologies, where adaptability and 

responsiveness are critical. A core component of these soft robotic systems is the 

tactile sensor, which detects pressure and touch. Tactile sensors are vital for 

measuring grip strength, providing feedback for robotic prosthetics, and improving the 

user-device interaction by making it more responsive and adaptive. 
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In addition to tactile sensors, Electromyography (EMG) and Surface 

Electromyography (sEMG) sensors are essential for medical and therapeutic 

applications in wearable and soft robotic devices. These sensors measure electrical 

activity in muscles, which is key to understanding muscle function and health: 

• EMG is invasive and requires needle insertion into the muscle, often used in 

clinical diagnostic settings. 

• sEMG, on the other hand, is non-invasive, making it more practical for 

continuous monitoring in wearable devices. In rehabilitation, sEMG helps in 

diagnosing muscle disorders, monitoring recovery, and controlling prosthetics 

or exoskeletons to aid individuals with mobility impairments [31,32]. 

Capacitive sensors also play a critical role in wearable devices. They detect changes 

in capacitance due to proximity or touch, making them useful for interactive 

technologies like touchscreens. Capacitive sensors can be integrated into wearable 

devices such as gloves to detect hand gestures, adding another layer of interactivity. 

These sensors are particularly advantageous in human-device interfaces, enhancing 

usability [40]. 

In smart textiles, textile sensors and stretch sensors are essential for wearable 

technology. Textile sensors can be woven into fabrics to monitor physiological signals 

such as heart rate, temperature, and hydration. These sensors are designed for 

continuous monitoring, with attributes like stretchability, washability, and flexibility, 

making them ideal for daily wear. Stretch sensors, a subset of textile sensors, 

measure deformation in fabrics, which is useful for monitoring joint movements and 

for adaptive clothing that responds dynamically to the wearer’s movements [22,50]. 
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Combining these various sensors, wearable technology and soft robotic devices can 

provide a more holistic approach to health monitoring and rehabilitation. For instance, 

a smart glove designed for hand rehabilitation may integrate tactile sensors to monitor 

grip strength, sEMG sensors to track muscle activity, and stretch sensors to adapt to 

hand movements [27,34]. This multi-sensor integration enhances both the accuracy 

and responsiveness of the device, providing real-time, actionable feedback that 

improves therapeutic outcomes and the overall user experience. 

2.5 Hysteresis Background and Neural Network Applications 

Hysteresis in tactile sensors poses a significant challenge in robotics, where precision 

is critical for control and decision-making. Various methodologies have been proposed 

to address this issue, but many of these methods face practical limitations that reduce 

their effectiveness in real-world applications. 

One approach involves adapting the external control loop of the sensor system to 

compensate for hysteresis by estimating errors between desired and measured forces. 

While this technique shows promise in enhancing accuracy and performance in robotic 

systems [80], it can be computationally intensive, requiring continuous recalibration 

and adaptation, which may not be feasible for fast or real-time applications. 

Researchers have also explored the use of Recurrent Neural Networks (RNNs) to 

model hysteresis patterns in piezoelectric actuators, capturing the nonlinear 

relationship between input voltage and output displacement. Although RNNs can 

improve positioning accuracy [81], their implementation is complex and may suffer 

from long training times and difficulty in generalising to new input conditions, limiting 

their practical application. The Generalised Prandtl–Ishlinskii Model (GPIM) has been 

employed for real-time hysteresis compensation by training the model with 

experimental data, significantly enhancing force measurement accuracy [82]. 

However, GPIM requires extensive and precise training data, and its effectiveness 

diminishes when the system operates outside the conditions it was trained. This 

makes it less adaptable in dynamic environments where conditions frequently change. 

Innovative designs, such as soft tactile electronic skin, aim to minimise hysteresis by 

reducing mechanical and electrical memory effects [83]. 
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Methods like Gaussian processes with sensory Markov properties, which model and 

estimate hysteresis behaviour, offer improved force measurement accuracy [85]. 

However, they often require significant computational resources and may not perform 

well in low-power or embedded systems where processing capability is limited. 

In smart-material systems, an inverse feedforward controller based on the Preisach 

model has been introduced to control hysteresis nonlinearities by generating an 

inverse compensation signal [86]. Although this method can reduce hysteresis, it often 

depends on precise modelling, which is challenging when dealing with the complex 

nonlinearities of soft materials used in tactile sensors. 

Similarly, while modified Prandtl–Ishlinskii models have been developed to capture 

asymmetric hysteresis behaviour in piezoelectric actuators [88], they require detailed 

characterisation of the actuator's behaviour, which may not be feasible for all sensor 

types, especially those that experience highly variable input conditions. 

Methods such as radial basis function neural networks, fuzzy neural networks, and 

hybrid neural networks have been explored for hysteresis compensation in soft 

sensors [89-95]. While these methods can effectively reduce hysteresis in controlled 

environments, they tend to lack robustness in real-world applications, where factors 

such as sensor degradation, environmental changes, and varying loads introduce 

additional complexities. 

In the context of conductive fibre-based tactile sensors, a Backpropagation Neural 

Network (BPNN) has been successfully employed to mitigate hysteresis nonlinearity, 

improving sensor accuracy [96]. However, the BPNN approach, like other neural 

networks, can require extensive data for training and may be sensitive to variations in 

the input data, reducing its effectiveness when applied to dynamic, real-time tasks. 

Alternative sensing methods, such as capacitive, piezoelectric, optical, resonant, Hall 

effect, and strain gauge-based compensation, offer unique advantages in terms of 

accuracy and sensitivity [97]. However, these methods often involve trade-offs in terms 

of sensor size, power consumption, or complexity, making them less practical for 

widespread use in wearable devices or low-power applications. Despite the progress 

made with these methodologies, practical and effective solutions for hysteresis 

compensation remain elusive, particularly in dynamic, real-world scenarios. 
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Many approaches either require too much computational power, are overly complex, 

or lack the robustness needed for adaptive environments. The current study proposes 

a novel approach using BPNNs to address these challenges, building on previous 

research findings while aiming to provide a more robust and practical solution for 

hysteresis correction in tactile sensors. This method is expected to offer enhanced 

accuracy in real-time applications, contributing valuable insights into improving 

hysteresis compensation in tactile sensors used in wearable technology and robotics. 

Chapter Four will explore these methodologies in more detail, critically evaluating their 

effectiveness and presenting new strategies to mitigate hysteresis. 

This chapter provides an extensive review of various sensors, focusing on their use in 

wearable technology and soft robotics. While the chapter outlines numerous 

hysteresis correction methods, a critical evaluation reveals notable trade-offs and gaps 

in their practical implementation. 

For example, machine learning approaches like Recurrent Neural Networks (RNNs) 

demonstrate effectiveness in capturing nonlinear hysteresis behaviour, yet they often 

require large training datasets and suffer from high computational demands. These 

requirements limit their feasibility in real-time applications, particularly in low-power or 

embedded systems used for wearable devices. Moreover, the challenge of 

generalising RNNs to new and dynamic input conditions raises concerns about their 

adaptability in unpredictable environments, such as rehabilitation settings. 

The Generalised Prandtl–Ishlinskii Model (GPIM), while promising in improving 

force measurement accuracy, depends heavily on the quality and extent of training 

data. In scenarios where the operational conditions deviate from the training 

parameters—such as varying user behaviours in rehabilitation—the model’s 

performance deteriorates. This lack of robustness in dynamic environments 

underscores the need for adaptive models capable of real-time recalibration. 

Innovative sensor designs, such as soft tactile electronic skin, aim to address 

hysteresis by minimising mechanical memory effects. However, these solutions often 

introduce compromises, such as reduced sensitivity or increased material complexity, 

which limit scalability and integration into existing rehabilitation systems. While these 

designs push the boundaries of sensor capabilities, their high production costs and 

technical challenges remain barriers to widespread adoption. 
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Comparatively, capacitive sensors, piezoelectric sensors, and strain gauges offer 

unique advantages, including high sensitivity and compact size. However, their 

susceptibility to environmental noise, such as temperature fluctuations, limits their 

reliability in rehabilitation devices. For instance, piezoelectric sensors may exhibit 

performance degradation under prolonged use, posing challenges in long-term 

rehabilitation applications. Despite these advancements, real-world case studies 

integrating these methodologies into upper limb rehabilitation devices are sparse. For 

example, while some studies report successful implementations of neural network 

models for prosthetic control, there is limited evidence detailing their adaptability to 

diverse patient groups, such as stroke survivors or individuals with Parkinson’s 

disease. Furthermore, there is a lack of comparative studies evaluating how different 

sensor types perform under identical rehabilitation tasks, such as gripping or fine 

motor control exercises. Such analyses would offer valuable insights into their 

suitability for specific clinical applications. 

Finally, while the chapter references numerous studies, it does not fully explore the 

broader implications of these findings. For instance, the trade-offs between 

computational efficiency and accuracy in hysteresis compensation methods are critical 

for ensuring practical utility in resource-constrained systems. Addressing these trade-

offs is essential for advancing sensor technologies beyond experimental setups to 

robust, real-world applications. 

 

2.6 Conclusion 

In conclusion, this chapter provides a comprehensive overview of the design, 

assembly, and implementation of a soft tactile sensor. By leveraging fabric-based 

materials and innovative circuitry, the sensor demonstrates remarkable adaptability 

and accuracy in capturing pressure variations. However, as with any sensor 

technology, addressing challenges, such as hysteresis is imperative to the 

enhancement of reliability and precision. In the subsequent section, the details of 

hysteresis will be explored, as well as how it affects tactile sensors. This will help in 

advancing the understand into how to make the sensors work even better by improving 

their performance. 
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Chapter Three: 

Design and Implementation of a Soft Tactile Sensor 

 

 

3.1 Introduction 

Tactile sensors are crucial in various fields, from robotics to healthcare, by enabling 

the detection and measurement of physical interactions with surfaces. Among the 

different types of tactile sensors, soft tactile sensors are notable for their adaptability 

and versatility, particularly in scenarios where interaction with delicate or irregular 

surfaces is required. In this chapter, the intricate process of designing and 

implementing soft tactile sensors are explored, determining the innovative 

methodologies and materials that underpin their functionality. Soft tactile sensors 

represent a significant advancement in sensor technology, offering a flexible and 

adaptable solution for capturing tactile information across a wide range of applications. 

Their ability to conform to irregular surfaces and withstand deformation makes them 

indispensable in fields such as wearable technology, human-robot interaction, 

prosthetics, and biomedical engineering. Hence, understanding the design principles 

and fabrication techniques behind soft tactile sensors is paramount for unlocking their 

full potential in real-world scenarios. 

This exploration begins by exploring the materials used in the fabrication of soft tactile 

sensors; examining the properties and characteristics of key components, such as 

conductive fabrics and threads, that enable the sensor to detect and respond to 

pressure changes. By understanding the underlying principles of piezoresistivity, it is 

possible to appreciate how these materials interact to convert mechanical stimuli into 

electrical signals, laying the foundation for sensor functionality. Beyond materials, the 

assembly process of soft tactile sensors is also examined, investigating the 

complexities of integrating sensor components with textiles to create a functional 

sensing platform. From selecting the appropriate stitching techniques to optimising 

contact points and circuit paths, each step in the assembly process is carefully 

orchestrated to ensure the sensor’s reliability and performance. 



 

25 

With the sensor assembled, the focus is on devising experiments and analysing the 

signals, noting how the sensor reacts to real-life situations. By making special sleeves 

and using microcontrollers such as Arduino, it is possible to collect and study the data 

from touch in a controlled setting. The data is carefully gathered and studied to learn 

more about how well the sensor works in different situations, helping the possibility to 

improve it. As the readout circuitry is explored, how the electrical signals are turned 

into useful information is explained; and by employing voltage dividers and 

multiplexing circuits, it is possible to enhance the sensor’s capabilities and streamline 

data acquisition processes. Additionally, through detailed circuit diagrams and code 

implementations, how the sensor system works inside is explained, in order to copy 

and build on what has been found. 

3.2  Designing a Soft Tactile Sensor 

The proposed design sensor utilises fabric-based sensors due to their simple design, 

ease of fabrication. With the ability to stretch and bend easily, these sensors adapt 

well to soft surfaces, making them ideal for various applications. In the following 

section, the fabrication and design of the tactile sensor are explored, outlining my 

innovative approach and the key considerations driving the current study’s design 

choices. 

1. Use of Materials 

The fabric sensor employed in this study operates based on the piezoresistive effect, 

which induces a decrease in the electrical resistance of a piezoresistive material upon 

applying pressure. The sensor consists of two main components: 

• EeonTexTM knitted conductive fabric: This commercially available fabric is 

knitted, conductive, stretchable, has a thickness of 0.38mm, and has a mass 

per unit area of 113.78g/m2. The fabric exhibits an elongation of 40% at break 

and a wrap recovery of 85% after stretching. It primarily comprises 72% nylon 

and 28% spandex, with a proprietary conductive coating. [99] 

• Silver-plated conductive thread: To establish conductive connections with 

measuring devices, a silver-plated conductive thread is used. MADEIRA yarn 

(detox 290 ± 6 HC 40) is employed for sewing. [100]. 
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These materials work synergistically to create a tactile sensor that detects and 

converts pressure changes into analogue electrical signals, typically in voltage. 

2. Sensor Assembly 

The assembly of the sensor involved integrating the EeonTex™ fabric with silver-

plated conductive thread to create a functional device for measuring muscle activities. 

The choice of materials was pivotal: the EeonTex™ fabric provides stretchability and 

conductivity, while the silver-plated thread, with its low resistance and high 

conductivity, ensures reliable electrical connections and optimises the sensor's 

performance. 

Prior to the commencement of my PhD, initial exploratory work on stitch designs for 

integrating conductive textiles was conducted by an MSc student in the Robotics 

Laboratory. Although this work was not published, it provided valuable insights into 

sensor integration and highlighted early challenges in maintaining consistent electrical 

conductivity during fabric deformation. Building on these foundational experiments, my 

research introduced a novel approach using Arduino technology for real-time data 

processing, significantly enhancing the precision and functionality of the sensor 

system. 

 In the PhD phase of this project, my work introduced a significant advancement 

through the integration of Arduino technology, marking a shift from the earlier design 

trials. This addition enabled real-time data processing, allowing for more precise 

control and interpretation of sensor data, which was not achievable with previous 

methods. The use of Arduino technology in the PhD phase greatly enhanced the 

analytical capabilities of the sensor, improving accuracy and enabling more effective 

measurement of muscle activity. 

The sensor was assembled by connecting the tactile fabric with textiles using silver-

coated conductive thread, which is fully silver-plated and made of 100% polyamide. 

This thread, with a linear resistance of less than 300Ω/m, was chosen for its low 

resistance characteristics, crucial for optimising the sensor's contact points and circuit 

paths. Data on the resistance versus force relationship was collected manually and 
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analysed using MATLAB to generate plots that visualise the sensor's performance 

(see Figure 3.1) 

 

  

(a)               (b)                        (c) 

Figure 3.1: Materials used for sensor development: (a) conductive 

stretchable fabric; (b) silverplated conductive thread; (c) Fully designed 

tactile sensor 

 

Figure 3.1 (a) above displays the EeonTex™ knitted conductive fabric, which contains 

conductive fibres that allow electrical current to flow through it. This fabric is used in 

various applications, such as smart textiles, wearable technology, and sensor 

systems. Figure 3.1(b) displays the silver-plated conductive thread made by coating a 

base thread with a layer of silver, which is often used with conductive fabrics to create 

wearable electronics and other devices. The objective of the specific design of the 

sensor is the detection of the electric resistance signals when applying forces, while 

Figure 3.1 (c) shows the fully designed soft tactile sensor with ten sensing points. 

3. Experimental Setup and Signal Analysis 

The experimental setup was designed to evaluate the sensor's ability to recognise 

hand movements under real-world conditions, focusing on upper limb rehabilitation, 

which is a critical but often under-resourced area in stroke recovery. A custom-

designed sleeve was developed to house the sensors comfortably around the upper 

limb, enabling precise signal capture during movement, while linking this wearable 

technology with Arduino for real-time data processing and analysis. 
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4. Novel Sensor Configuration 

 

• Sleeve Design: The sleeve was embedded with tactile sensors and securely 

attached to the upper limb. These sensors were connected to an Arduino 

controller via analogue pins, allowing for continuous data collection and 

analysis. This Arduino integration represents a key novelty of the study, as it 

enabled the transition from basic sensing experiments to real-time monitoring 

and interpretation, making the setup applicable for dynamic, real-world 

applications like rehabilitation. 

• Sampling Rate: The Arduino controller, maintaining a sampling rate of 1 kHz, 

allowed for fine-grained signal capture during hand movements. This high 

frequency ensured precise and accurate recording of tactile sensor data, 

supporting the goal of using the system for sensitive and responsive 

applications in upper limb therapy. 

• Tactile Sensor: The sensor, measuring 10 x 30 cm², consisted of ten individual 

sensing points, strategically placed to capture muscle activity during 

rehabilitation exercises. The sensor was secured using double-sided sticky 

tape and non-conductive fabric to ensure consistent placement, a crucial factor 

for maintaining data integrity during prolonged or repetitive movements. 

• Signal Integrity: Conductive thread was used to reinforce sensor placement and 

improve signal transmission, ensuring reliability during movement. This 

enhancement directly contributed to better data accuracy, making the system 

suitable for precise muscle monitoring, a critical requirement in rehabilitation. 

 

5. Readout Circuitry and Data Processing 

The integration of the Arduino platform with multiplexing circuits for data handling is a 

core innovation in this study, enabling the system to process multiple tactile sensors 

with minimal hardware input. This configuration made the setup efficient for real-world 

applications, where multiple points of data need to be processed without excessive 

complexity. 

• Multiplexing Circuits: These circuits allowed multiple sensor inputs to be 

managed efficiently without overloading the Arduino's analogue input capacity. 
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By dynamically switching between the sensing points, multiplexing circuits 

maximised the data captured, ensuring comprehensive monitoring of hand 

movements and muscle activity. 

• Custom Arduino Code: A unique Arduino code was developed to process and 

interpret the sensor data in real-time. This innovation allows for immediate 

feedback and monitoring, critical in rehabilitation scenarios where real-time 

analysis is necessary to track patient progress and adjust therapy as needed. 

 

6. Novelty in Application: Upper Limb Rehabilitation 

The true novelty of this work lies in the combination of tactile sensors, Arduino-based 

real-time data processing, and the specific application in upper limb rehabilitation. 

While previous methods for capturing hand movements have been either too slow or 

limited in their real-world applicability, this setup provides a practical and real-time 

solution for healthcare professionals to monitor and analyse muscle activity during 

rehabilitation. This is particularly beneficial for stroke survivors who require precise, 

responsive feedback systems to improve motor control and facilitate recovery. 

 

Figure 3.2: Block diagram depicting the thread arrangement in the sensor 

and full circuit connections  
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The block diagram in Figure 3.2 illustrates the detailed arrangement of the circuit 

connections and threads within the sensor system. The threads are organised into a 

dual-column and five-row configuration, with each row acting as a sensing element. 

The key aspect of this configuration is the use of a voltage divider circuit to measure 

resistance changes, which occur as pressure is applied to the tactile sensors. 

7. Voltage Divider Operation 

The voltage divider circuit is formed by connecting the tactile sensor in series with a 

known external 1kΩ resistor. When pressure is applied to the sensor, its resistance 

changes, causing a corresponding variation in the output voltage across the 1kΩ 

resistor. The voltage divider equation for this setup is given by: 

𝑉𝑜𝑢𝑡 = 𝑉𝑖𝑛 ×
𝑅𝑠𝑒𝑛𝑠𝑜𝑟

𝑅𝑠𝑒𝑛𝑠𝑜𝑟+𝑅𝑓𝑖𝑥𝑒𝑑
 

 

Where:  

𝑉𝑜𝑢𝑡  Is the voltage across the known resistor (read by the Arduino’s analogue pins A0 

and A1). 

𝑉𝑖𝑛 Is the supply voltage (5V in this case). 

𝑅𝑠𝑒𝑛𝑠𝑜𝑟 Is the variable resistance of the tactile sensor. 

𝑅𝑓𝑖𝑥𝑒𝑑 = 1kΩ is the known resistor value. 

 

8. Digital Pin Switching and Circuit Operation 

The digital pins (A4 to A8) on the Arduino are used to control the five rows of the 

sensor configuration by switching the lower rail of the voltage divider between 0V and 

5V. By toggling these digital pins on and off, the Arduino selectively activates the 

different sensor rows, ensuring that each sensor is read in sequence. This switching 

process allows multiple sensor points to be read without the need for numerous 

analogue input pins, significantly simplifying the hardware design. 
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When a digital pin is set to 0V, the corresponding row is connected to the lower rail of 

the voltage divider, allowing current to flow through the sensor and the 1kΩ resistor. 

The resulting voltage across the 1kΩ resistor is then measured by the analogue input 

pin. When the digital pin is set to 5V, the circuit is effectively turned off, preventing 

current from flowing through that particular sensor. 

9. Converting ADC Values to Resistance 

The analogue input pins (A0 and A1) of the Arduino read the voltage output (Vout) from 

the voltage divider and convert it to a digital value using the built-in Analog-to-Digital 

Converter (ADC). The ADC output is a 10-bit value (ranging from 0 to 1023) that 

corresponds to the input voltage range of 0V to 5V. 

To convert the ADC values to the resistance of the tactile sensor, the following 

equation is used: 

𝑅𝑠𝑒𝑛𝑠𝑜𝑟=𝑅𝑓𝑖𝑥𝑒𝑑 × (
𝑉𝑖𝑛

𝑉𝑜𝑢𝑡
− 1) 

𝑅𝑠𝑒𝑛𝑠𝑜𝑟 Is the calculated resistance of the sensor, 

𝑉𝑜𝑢𝑡 Is derived from the ADC value: 𝑉𝑜𝑢𝑡=(
𝐴𝐷𝐶 𝑉𝑎𝑙𝑢𝑒

1023
) × 𝑉𝑖𝑛 

𝑉𝑖𝑛=5V, 

𝑅𝑓𝑖𝑥𝑒𝑑=1KΩ. 

To reflect the updated data processing approach, Figure 3.3 has been modified to plot 

sensor resistance values over time (pressure) rather than raw ADC values. This 

conversion offers a more intuitive understanding of the sensor's behaviour, as the 

resistance changes are directly linked to the pressure applied during testing. The plot 

displays real-time fluctuations in resistance as hand movements are performed, 

offering detailed insight into the sensor's response to varying forces. This adjustment 

provides a clearer representation of how the sensor interacts with the physical forces 

applied during the experiment, thereby improving the overall analysis of the sensor's 

performance. 
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Figure 3.3: Tactile Sensor Output  

 

The graph in Figure 3.3 represents the sensor output, measured in resistance (kΩ), 

as the hand dynamically transitions between open and closed positions. The red line 

shows the average resistance values across ten sensing points during the closed-

hand state, with each point reflecting the pressure exerted by the underlying muscles. 

The most significant resistance change was observed at point six (1.7 kΩ), followed 

by point ten (1.5 kΩ) and point four (1.2 kΩ). The smallest change was at point seven, 

registering at 0.8 kΩ. 

In contrast, the blue line depicts the sensor output during the open-hand state, 

showing variations in resistance under muscle pressure. Similar to the closed-hand 

state, point six exhibited the largest resistance change (1.2 kΩ), while point seven 

recorded the least change, with a resistance value of 0.3 kΩ. The green bars illustrate 

the differences in resistance between the open and closed states, providing a visual 

comparison of the sensor response in both conditions. 
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The hand postures were dynamic throughout the data collection, meaning the hand 

actively moved between open and closed positions. This dynamic movement allowed 

the sensors to capture real-time variations in resistance as the hand transitioned 

between states, offering more comprehensive data than static measurements. 

To validate the tactile sensor's functionality, it was tested under various conditions 

where participants alternated between rapid and slow hand movements. The sensor, 

attached to the forearm, recorded the resistance changes, and the collected data were 

saved in Excel files for further analysis (see Figure 3.4). 

                                

Figure 3.4: (a) The sensor output during slow opening/closing of hand; (b) The sensor 

output during fast opening/closing of hand 

Figure 3.4 displays the sensor output variations in terms of resistance during hand 

movements. The y-axis shows resistance values in kilohms (kΩ). The left graph (a) 

illustrates the sensor response during slow hand movements, while the right graph (b) 

shows the response during fast movements. In both cases, the resistance values 

fluctuate as the hand opens and closes, with the slower movements producing 

smoother transitions and the faster movements resulting in more abrupt changes. 

The data shows that resistance values vary significantly with hand movement speed. 

For slow movements, resistance values range from approximately 0.28 kΩ to 0.86 kΩ. 

For fast movements, the resistance fluctuates within the same range, but the 

frequency of changes is higher, reflecting the quicker transitions between open and 

closed states. 
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Table 3.1: Statistical Analysis of Sensor Outputs During Slow and Fast 

Hand Movements  

 

Movement 
Type 

Mean Standard 
Deviation 

Confidence 
interval 

Time interval 
(sec) 

Slow 
movement 

0.691 0.077 92% 40 

Fast 
movement 

0.509 0.090 94% 20 

 

Table 3.1 provides a statistical overview of sensor output (resistance in kΩ) during 

slow and fast hand movements. For slow movements, the mean resistance is 0.691 

kΩ with a standard deviation of 0.077 kΩ, while for fast movements, the mean is 0.509 

kΩ with a standard deviation of 0.090 kΩ. The confidence intervals for slow and fast 

movements are 92% and 94%, respectively. Data was collected over 40 seconds for 

slow movements and 20 seconds for fast. 

This analysis aimed to assess the sensor's performance at different movement speeds 

by examining mean resistance, variability (standard deviation), and reliability 

(confidence intervals). 

The table shows that sensor output is influenced by movement speed. Higher mean 

resistance during slow movements suggests more pronounced muscle contractions, 

while increased variability in fast movements reflects more fluctuation in sensor 

readings. These results underscore the need to account for movement speed in 

sensor data analysis, as it impacts both output magnitude and consistency. 

3.3 Conclusion 

This chapter has explored a carefully engineered tactile sensor designed to detect 

muscular contractions. Constructed using EeonTex conductive fibres known for their 

impressive bidirectional stretch and elastic properties, the sensor is primarily made of 

a nylon and spandex fabric blend coated with a conductive thread. The positive 

characteristics of this fabric in various electronic tactile applications have been well-

documented in previous studies. The study results indicate that the sensor effectively 

detects arm muscle movements. Positioned on the forearm, it consistently registered 

responses during both slow and rapid hand movements. Notably, distinct signals were 
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observed for varying movement speeds; faster actions yielded more signals compared 

to slower ones. This straightforward, user-friendly device accurately correlates with 

muscle contractions, exhibiting versatility across different settings and offering cost-

effectiveness, making it suitable for various industries. One important aspect of this 

sensor is that it does not require the usual electrodes. Its special design means it does 

not rely on complicated processing to detect muscle contractions. The fact that it can 

accurately detect muscle movements without being invasive makes it highly suitable 

for applications such as healthcare and body-controlled devices. 
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Chapter Four:  

Modified Nonlinear Hysteresis Approach of a Tactile Sensor 

 

4.1 Introduction 

Soft tactile sensors based on piezoresistive materials play a pivotal role in a multitude 

of applications, owing to their capability to provide large-area sensing. These sensors 

have found utility in fields such as soft robotics, wearable technology, medical devices, 

consumer electronics, and gaming, revolutionising the way people interact with 

technology and the world. However, despite their wide-ranging applications, these 

sensors face a significant challenge – hysteresis. Hysteresis is a phenomenon that 

affects the accuracy of tactile sensors, making it imperative to seek innovative 

solutions for its mitigation. Subsequently, this chapter introduces a novel approach that 

employs a backpropagation (BP) neural network to address the hysteresis nonlinearity 

in conductive fibre-based tactile sensors. Hysteresis, in the context of tactile sensors, 

refers to the discrepancy in sensor response when subjected to the same force, 

depending on whether the force is increasing or decreasing. Specifically, this 

nonlinearity can significantly impact the precision and reliability of tactile sensor 

readings. 

To evaluate the effectiveness of the proposed method, four sensor units were 

designed, each of which underwent force sequences to collect corresponding output 

resistance. The critical aspect of the approach was the utilisation of a backpropagation 

network trained with these sequences, effectively correcting the resistance values. 

The training process demonstrated exceptional convergence, fine-tuning the 

network’s parameters to minimise the error between predicted and actual resistance 

values. Consequently, the trained BP network accurately predicted the output 

resistances, showcasing its potential to mitigate hysteresis nonlinearity. Moreover, the 

validation experiments underscore the primary contribution of this study, as the 

proposed method reduced the maximum hysteresis error from 24.2% of the sensor’s 

full-scale output to a more manageable 13.5%. This substantial improvement 

establishes the approach as a promising solution for enhancing the accuracy of soft 

tactile sensors based on piezoresistive materials. While complete hysteresis 

elimination in tactile sensors may not be entirely feasible, my method effectively 
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modifies the hysteresis nonlinearity, leading to significantly improved sensor output 

accuracy. This discussion is further explored in subsequent sections, explaining 

various aspects of hysteresis, important ideas behind hysteresis modelling and neural 

networks, the creation of soft tactile sensors, results and discussions, system 

sensitivity analysis, and a detailed analysis and discussion of the findings. 

4.2 Types of Hysteresis in Tactile Sensors 

Understanding the various types of hysteresis in tactile sensors is of paramount 

importance for improving sensor performance and accuracy [73]. Hysteresis, in the 

context of tactile sensors, can manifest in diverse forms, each with unique 

characteristics and influences on sensor behaviour. Indeed, a comprehensive grasp 

of these hysteresis types is essential for devising effective compensation strategies; 

thus, this section explores rate-dependent, displacement-dependent, and material-

dependent hysteresis. 

a. Rate-Dependent Hysteresis: 

Rate-dependent hysteresis, often encountered in tactile sensors, is distinguished by 

its sensitivity to the rate at which forces are applied and removed. This hysteresis type 

can lead to discrepancies in sensor readings when forces are dynamically changing 

[78]. For instance, in robotic applications, where rapid and precise force control is 

crucial, rate-dependent hysteresis can result in inaccuracies. Understanding this form 

of hysteresis is pivotal for designing sensors that respond accurately to varying force 

application speeds ( see Figure 4.1). 
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Figure 4.1: Rate -Dependent Hysteresis[78] 

 

b. Displacement-Dependent Hysteresis: 

Displacement-dependent hysteresis is closely tied to the displacement range of tactile 

sensors. This hysteresis type influences the sensor’s response based on how far it is 

compressed or stretched. In applications where tactile sensors are subjected to 

varying degrees of deformation, such as soft robotics or medical devices, the impact 

of displacement-dependent hysteresis on sensor accuracy becomes apparent [80]. By 

uncovering the characteristics of this hysteresis type, researchers and engineers are 

able to tailor their compensation techniques to match the specific operational 

requirements of tactile sensors (see Figure 4.2). 
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Figure 4.2: Displacement-Dependent Hysteresis[80] 

 

c. Material-Dependent Hysteresis: 

Material-dependent hysteresis pertains to the properties of the materials used in the 

construction of tactile sensors. The materials themselves can introduce nonlinearity 

and memory effects, influencing the sensor’s response to external forces. By 

understanding the role of materials in hysteresis, researchers can make informed 

decisions in selecting or modifying materials to minimise the impact of this type of 

hysteresis [79-81]. Real-world examples and experiments further illustrate the 

significance of material-dependent hysteresis in tactile sensor design and application 

(see Figure 4.3). 
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Figure 4.3: Material-Dependent Hysteresis[25] 

 

As the current study proceeds, these insights lay the groundwork for the proposed 

approach to hysteresis mitigation in conductive fibre-based tactile sensors. 

4.3  ey Concepts 

Subsequent sections explore the theoretical background underlying hysteresis 

modelling, curve-fitting models, and neural networks. Additionally, how these methods 

are used in the proposed approach are explored, with a simple diagram and a step-

by-step algorithm shown to make it clear. 

a.Curve-Fitting Model(s) 

Curve-fitting models serve as indispensable tools in the analytical toolbox, enabling 

the exploration of relationships between variables by examining diverse data points. 

Their effectiveness in predicting outcomes and uncovering patterns depends on both 
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the quality of the data and selecting the right model. [99]. In the current study, the 

spotlight falls on the pivotal role of curve-fitting models, specifically employing a 

polynomial curve-fitting model to address hysteresis nonlinearity inherent in tactile 

sensors. The selected polynomial curve-fitting model can be expressed 

mathematically using Equation (1):  

𝑅 = 𝑎0 + 𝑎1𝐹 + 𝑎2𝐹
2 +⋯+ 𝑎𝑛𝐹

𝑛                                   (1) 

Where R is the corrected output; and F is the raw input, in the context of the polynomial 

curve-fitting model, the coefficients a0, a1, and an, exist in the space of real numbers. 

These coefficients play a pivotal role in tailoring the model to the specific 

characteristics of the hysteresis nonlinearity. This process involves determining the 

coefficients by minimising the sum of the squared errors between the corrected output 

and the actual output, effectively fine-tuning the model to enhance the occurrence. 

Hence, the polynomial curve-fitting model is like a versatile tool for understanding how 

the raw data from a tactile sensor relates to the corrected output. By including terms 

such as (𝐹2, 𝐹3, … . 𝐹𝑁 ) the model becomes good at handling the tricky aspects of 

hysteresis. Moving on to the next sections, the main focus is on checking whether this 

curve-fitting model effectively handles the challenges of hysteresis, making the tactile 

sensor readings more dependable overall. 

b. Neural Network  

Neural networks (NN) are computational models that learn complex patterns and 

relationships from data. With their interconnected layers and mathematical operations, 

NN enables accurate predictions and valuable insights in various domains. In the 

present study, a Backpropagation Neural Network (BPNN) was employed to modify 

the hysteresis nonlinearity of the tactile sensor [96]. 

The BPNN algorithm consists of two phases: forward and backward. In the forward 

phase, the input (force sequence) is propagated through the network to generate the 

corresponding output resistance of the tactile sensor. During the backward phase, the 

error between the predicted output and the actual output is propagated backwards 

through the network to adjust the weights of the nodes [97]. This training process helps 

the BPNN minimise the difference between predicted and actual output resistance. 



 

42 

Once trained, the BPNN can accurately predict the output resistance for any given 

force sequence. 

The neural network's effectiveness in managing hysteresis nonlinearity lies in its ability 

to iteratively learn from input-output data pairs and refine its predictions through weight 

adjustments. The entire process can be summarised as shown in Figure 4.4 and 

Equation (2) below. 

 

Figure 4.4: Neural Network Architecture   

 

𝑎𝑗
𝑙 = 𝜎(∑ 𝑤𝑗𝑖

𝑙
𝑖 𝑎𝑖

𝑙−1 + 𝑏𝑗
𝑙)                                                     (2) 

In this example, 𝑎𝑖
𝑙−1 represents the output of node j in layer l; 𝑤𝑗𝑖

𝑙  is the weight 

connecting node I in layer l-1 to node j in layer l; 𝑎𝑖
𝑙−1is the output of node I in the 

previous layer’; 𝑏𝑗
𝑙 is the bias of node j in layer l; and 𝜎 is the activation function. In the 

backward phase, the error between the actual output and the desired output is 

propagated backwards through the network to adjust the weights of the nodes. The 

error 𝛿𝑗
𝑙 of each node j in layer l measures how much that node contributes to the 

overall network error. It is defined as the partial derivative of the total error 𝐸 for the 

input 𝑧𝑗
𝑙  of node j in layer l. 

𝛿𝑗
𝑙 =

𝜕𝐸

𝜕𝑧𝑗
𝑙                                                                   (3) 
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The weight updates are then determined based on this network error. The weights are 

adjusted in a direction that reduces the error by an amount proportional to the error 

and the previous layer’s output. This is known as the delta rule, which is represented 

by the following Equation (4): 

∆𝑤𝑗𝑖
𝑙 = −𝜂𝛿𝑗

𝑙𝑎𝑖
𝑙−1                                                      (4) 

Here ∆ is the learning rate, which controls the size of weight updates. The biases are 

updated similarly: 

∆𝑏𝑗
𝑙 = −𝜂𝛿𝑗

𝑙                                                                (5) 

These weight and bias updates are applied to the network after processing each input 

to reduce the error gradually over time. By iteratively adjusting the weights and biases, 

the network can learn the mapping between the input and the desired output. 

The algorithm can be summarised as follows: 

• Initialise the weights and biases of the network randomly. 

For each input in the training data: 

• Perform the forward phase to generate the output of the network; 

• Calculate the error between the actual output and the desired output; 

• Perform the backward phase to adjust the weights of the network; 

• Calculate the error between the actual output and the desired output; 

• Repeat step 2 for a specified number of epochs or until the network reaches a 

satisfactory level of performance. (see Algorithm 1 below). 
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The selection of BPNN is highly strategic in effectively mitigating hysteresis 

nonlinearity in conductive fibre-based tactile sensors. This algorithm offers several 

advantages that align well with the specific challenges posed by hysteresis in this 

context. Initially, BPNN exhibits remarkable generalisation capabilities, making it 

exceptionally suitable for understanding complex relationships between input and 

output variables. Given the complex and nonlinear nature of hysteresis, BPNN’s ability 

to capture complex mappings is crucial for achieving accurate corrections [82,97]. 

Moreover, the proposed tactile sensor system demands a modelling approach that 

strikes an optimal balance between simplicity and efficiency, while still delivering 

precise predictions. BPNN adeptly fulfils this requirement by offering stability and 

robustness during the training process. Its robustness in handling noisy or incomplete 

datasets assures reliable predictions, even in real-world scenarios. Additionally, BPNN 

excels at accurately approximating values, making it ideal for consistently precise 

tactile measurements. 

While more complex neural architectures, such as Convolutional Neural Networks 

(CNNs) or Long Short-Term Memory networks (LSTMs), exist, the inherent complexity 
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of the tactile sensor system makes BPNN a suitable and powerful option for 

addressing nonlinear hysteresis. While BPNN has found application in diverse 

domains, its specific adaptation for mitigating hysteresis in conductive fibre-based 

tactile sensors might remain poorly understood. Therefore, this study significantly 

contributes to the literature by showcasing the efficacy of BPNN in this specialised 

domain. The application of BPNN leads to heightened accuracy and reliability in 

practical implementations, spanning domains, such as soft robotics, wearables, and 

medical devices. Figure 4.5 below shows the block diagram that combines various 

models, including the hysteresis model, curve-fitting model, and Backpropagation 

Neural Network (BPNN). The choice of models is influenced by factors, including the 

nature of the problem and the available data. In this context, the BPNN emerges as a 

specialised solution for addressing nonlinear hysteresis in conductive fibre-based 

tactile sensors. Illustrated in Figure 4.5, the diagram depicts the collaborative 

functioning of these models. This combined approach recognises the special strengths 

of each model, intending to make the most of the benefits of all, a common method in 

scientific modelling.      

 

Figure 4.5: A generic flow chart showing the integration of the hysteresis 

model, curve-fitting model, and NN  



 

46 

The integration of the hysteresis model, curve-fitting model, and BPNN provides a 

comprehensive approach for modelling a system where force is the input and 

resistance is the output. The hysteresis model captures the non-linear dynamics and 

the memory effects of the system by the hysteresis model in response to force. The 

curve-fitting model approximates the mathematical relationship existing between force 

and resistance. The BPNN learns from the curve-fitting model’s output to improve 

resistance predictions using backpropagation. This integrated system takes force as 

input, processes it through the hysteresis model, refines the output with the curve-

fitting model, and further enhances it with the BPNN, thereby generating accurate 

predictions of resistance based on the force applied.  

 

4.4  Neural Networks and Their Relevance to Addressing Hysteresis in Sensor 

Data 

Neural networks are a popular selection for compensating for hysteresis in tactile 

sensors, as they are able to effectively learn the complex nonlinear relationships 

between input and output data. Tactile sensors are used to detect and measure 

parameters, such as physical forces, pressure, and vibrations. Specifically, hysteresis, 

a common problem encountered in tactile sensors, can cause measurement 

inaccuracies. Hysteresis occurs when the sensor’s output does not return to its original 

state after the input has changed, causing a lag in the sensor’s response [96-98]. 

Neural networks can learn to compensate for this hysteresis by analysing the sensor’s 

input-output data and building a model to predict the correct output based on the input. 

They can learn the nonlinear relationship between input and output data, allowing 

them to compensate for hysteresis accurately [97]. 

Though other methods can also be used to compensate for hysteresis in tactile 

sensors, such as physical calibration or mathematical modelling, these methods may 

be less effective in capturing the complex nonlinear relationship between input and 

output data. Neural networks offer a flexible and powerful solution for hysteresis 

compensation in tactile sensors [99]. Nonlinear hysteresis in a tactile sensor can result 

in degraded system performance and instability [100]. In the experiment, a BPNN was 

used to eliminate nonlinear hysteresis, as an Artificial Neural Network (ANN) is simple 
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and sufficient to boost performance and reduce instability, albeit within the tactile 

sensor. BPNNs have a high precision approximation, robust fault tolerance, and 

nonlinear solid mapping capabilities [101-106]; therefore, BPNN was used due to its 

better generalisation and strong nonlinear mapping abilities, which makes it a popular 

choice in various fields.  

The BPNN was trained to predict the static resistance value based on the current and 

historical resistance values (Rt and Rt-1, respectively), together with the estimated 

resistance value, which was used as a target. Figure 4.6 below shows that the neural 

network used in the current study consisted of an input layer that has the current 

resistance Rt at a time t, the historical resistance Rt-1 at a time t-1, and a corrected 

resistance Rest as a target, the output layer is a static resistance Rstatict for training and 

two hidden layers. Each hidden layer has five neurons; the transfer function is the 

sigmoid function. The Levenberg-Marquardt algorithm (LMA), a popular optimisation 

method for training neural networks, is a variation of the Gauss-Newton algorithm, 

which is known for fast convergence and good stability. Using the LMA algorithm to 

train the BPNN, the model could learn the complex relationships between the input 

and output variables and make accurate predictions [107]. 

 

Figure 4.6: Neural Network Architecture for Resistance Prediction  

 

Overall, the use of BPNN in the proposed sensor offers more accuracy and reliability, 

and different neural network techniques can be helpful in various applications, where 

precision and measurement accuracy are required. To assess the effectiveness of 
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employing a backpropagation (BP) neural network in mitigating hysteresis nonlinearity 

in conductive fibre-based tactile sensors, four sensor units with different layer 

configurations (1, 3, 6, and 12) were designed. 

This section introduces a hysteresis compensation technique using BPNN to enhance 

the accuracy of soft sensors by modifying hysteresis nonlinearity, thereby overcoming 

the limitations posed by hysteresis. The BPNN was trained using collected force 

sequences and the corresponding resistances, aiming to reduce the maximum error 

caused by hysteresis, as demonstrated through experimental validation. The choice 

to use BPNN for hysteresis compensation is grounded in its ability to model complex 

and nonlinear relationships, making it an ideal candidate for addressing hysteresis in 

the context of soft sensors. The following sections provide a detailed account of the 

materials used, the methodology for training the BPNN, and the experiments 

conducted. The results obtained and subsequent discussions contribute to a 

comprehensive understanding of the proposed hysteresis compensation technique. 

The training process demonstrated favourable convergence, achieving a high level of 

accuracy in predicting resistances based on force inputs. 

4.5 Modelling the Hysteresis Nonlinearity  

Soft tactile sensors based on piezoresistive materials have drawn significant attention 

in recent years on account of their wide-ranging applications in robotics, medical 

devices, consumer electronics, and gaming. The accuracy of these sensors, however, 

is often hindered by hysteresis, which is a nonlinear phenomenon wherein a sensor’s 

output is influenced by its current input and previous history. Hysteresis can introduce 

notable measurement errors and compromise the reliability of the sensor. Several 

methods have been proposed to address hysteresis and modify the hysteresis 

nonlinearity of piezoresistive sensors, including curve-fitting models and neural 

network approaches [76]. Even though hysteresis approximation using BPNN has 

already been employed, the novelty of the proposed method lies in its specific 

application to a conductive fibre-based tactile sensor.  

In the current study, the Back Propagation Neural Network (BPNN) was employed to 

address hysteresis nonlinearity in a specific type of sensor, introducing a new 

application within the domain of conductive fibre-based tactile sensors. Unlike in 
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previous research, the uniqueness of this approach lies not only in the individual 

components or techniques employed, but in their combination and application within 

an unexplored context. While the use of BPNN for hysteresis approximation may not 

be ground-breaking on its own, its application to conductive fibre-based tactile sensors 

offers a novel perspective in this specialised field of tactile sensing. The selection of 

BPNN over alternatives, such as Convolutional Neural Networks (CNN) reflects a 

deliberate decision to balance accuracy and simplicity. While CNNs excel at capturing 

complex spatial relationships, the emphasis on achieving a balance resulted in 

preferring the straightforward yet effective architecture of BPNN for addressing the 

hysteresis phenomenon in the tactile sensor system, with the goal to find a solution 

that effectively mitigates hysteresis, while maintaining practicality and deployability. 

The BPNN stood out due to its capacity to model nonlinear hysteresis and complex 

relationships common in tactile data. Its architecture strikes a balance between 

accuracy and complexity, avoiding unnecessary complexities that might hinder 

understandability. The model’s stability in handling noisy data aligns with the aim for 

reliable predictions. While alternatives are valuable, the BPNN aligns closely with the 

objective of a pragmatic and precise solution.  

By utilising the BPNN to adjust the sensor’s resistance based on polynomial curve 

approximations, there were significant improvements in how accurate and consistent 

the sensor’s readings are. This decision effectively addressed hysteresis, resulting in 

an optimally performing tactile sensor system. Figure 4.7 describes the experimental 

setup used to design four distinct types of sensor units with varying layers, along with 

the process of collecting output resistances by applying force sequences. These force 

sequences and the corresponding corrected resistances were employed as inputs to 

train the BPNN, resulting in favourable convergence and high accuracy. Through 

validation experiments, a reduction in the maximum error caused by hysteresis was 

demonstrated in the proposed method, wherein the sensor’s full-scale output was 

reduced from 24.2% to 13.5% 

 

Figure 4.7:  Flow Diagram of the Experiment Setup and Hysteresis Error 

Reduction  
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4.6 Design a Soft Tactile Sensor 

Fabric-based sensors have been selected due to their simplicity in design, ease of 

fabrication, and cost-effectiveness, providing stretchability and adaptability to soft 

surfaces. The subsequent discussion on the fabrication and design of the tactile 

sensor was previously detailed in section 3.1. For a comprehensive understanding of 

the materials used and the assembly process of the tactile sensor, please refer to 

section 3.2 - "Design of a Soft Tactile Sensor”. The section explores the materials 

employed, including the EeonTexTM knitted. All the necessary pieces of samples were 

prepared with dimensions of 1 × 1 cm2. Figure 4.8 below shows the overall diagram of 

the designed soft tactile sensor. 

                             

Figure 4.8: The soft tactile sensor 

 

4.6.1 Single-Layer and Multi-Layer Sensors 

• Single-Layer Sensor 

Application: Single-layer sensors are used in scenarios where the applied forces are 

relatively low and within a narrow range. This configuration offers high sensitivity, 

making it ideal for detecting small and precise changes in force. It is particularly 
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beneficial in delicate touch detection or environments requiring high responsiveness 

to slight pressure changes. While sensitive, the single-layer sensor has limited 

capacity for measuring higher forces and can reach saturation quickly, making it less 

suitable for applications involving larger forces. 

• Multi-Layer Sensors (Three, Six, Twelve Layers) 

 As the number of layers increases, the sensor's ability to measure a broader range of 

forces improves. Multi-layer sensors distribute the applied force across multiple layers, 

increasing the sensor’s force capacity. This design is suitable for applications where 

higher forces are expected, such as seating pressure monitoring or medical beds. It is 

ideal for environments that require the sensor to withstand and accurately measure 

larger forces without saturating. The increased thickness of multi-layer sensors 

enhances their structural integrity and ensures consistent performance under higher 

loads. Despite the additional layers, these sensors maintain good sensitivity while 

expanding their force measurement range, making them versatile for various 

applications that require durability and a wide measurement spectrum. For each 

sensor, forces were applied using an instrument positioned directly above the sensor, 

which is installed on the digital electronic weight scale (see Figure 4.10), 

Subsequently, the change in resistance was measured using a multi-metre. 

The choice between single-layer and multi-layer sensors depends on the specific 

application requirements. Single-layer sensors offer high sensitivity for detecting small 

forces, while multi-layer sensors provide a broader range for measuring higher forces, 

making them ideal for more demanding environments that require durability and 

versatility in force measurement. 

4.6.2 Experimental Setup  

In the current study, four tactile sensor samples (one, three, six, and twelve layers) 

were used, as shown in Figure 4.9. The sensor was designed in layers three, six, and 

twelve to increase the range of applying force to be measured. An increase in the 

number of layers implies an increase in the capacity of the tactile sensor to apply force, 

which can be used in other applications, such as in the patient’s seat or bed. 
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Figure 4.9: Tactile sensors with different layers  

The following section outlines the characteristics and applications of the single-layer 

and multi-layer sensors used in the experiment. 

 

Figure 4.10: (a) The Experimental Setup; (b)  Force being applied to the 

sensor; (c) Functional diagram  



 

53 

Figure 4.10 (a) illustrates the placement of the tactile sensor on a weight scale, where 

force is manually applied using a force measurement instrument. The instrument 

allows for precise application of pressure or tension to the sensor, simulating real-

world conditions. The sensor is positioned to detect changes in resistance as force is 

exerted. 

Figure 4.10 (b) shows the process of measuring the resistance change in the sensor. 

A controlled and gradual force is manually applied through the instrument to ensure 

consistent pressure, allowing the sensor’s response to be recorded. Figure 4.10 (c) 

provides a functional diagram, which outlines the mechanism for applying force. This 

involves a manual system that exerts force evenly, ensuring that the tactile sensor’s 

performance is tested across a range of pressures. 

 

4.6.3 Calibration Analysis 

The sensor calibration was performed by applying incremental forces until sensor 

saturation was reached. The calibration equation derived from the experimental data 

is:  

𝒚 = −𝟎. 𝟐𝟒𝟔𝟖 𝒙 + 𝟑. 𝟑𝟎𝟑𝟑                                                              (𝟔)                  

( 𝑹𝟐 = 𝟎. 𝟗𝟏𝟗)                                                                                      (𝟕)       

Where  

𝑥: represents the compression force(N) 

𝑦: represents the sensor output(KΩ) 

𝑅: denotes the regression value. 

 

Figure 4.11 demonstrates this relationship, illustrating the linear calibration between 

applied force and sensor resistance, with the regression line and corresponding. 
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Figure 4.11: Calibration of Tactile Sensor: Force vs. Resistance 

 

The graph shows the linear relationship between force and resistance, along with the 

calibration equation and the R² value. This placement is appropriate since it directly 

follows the explanation of the calibration equation. 

 

4.6.4 Loading-Unloading Cycle and Hysteresis 

To study the behaviour of the tactile sensor output, a measurement method was used 

to record the sensor's response to a sequence of forces exerted manually. The forces 

were applied manually by pressing an object onto the sensor, increasing the applied 

force incrementally. This manual application involved careful control to ensure 

consistency in the pressure applied during each cycle. 
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Specifically, four to six consecutive loading-unloading cycles were performed, with 

different points of return for the same ascending curve and different starting points for 

the same descending curve. This method allowed both the descending and ascending 

behaviour of the sensor to be characterised. During the experiment, forces were 

increased in 0.1 N increments. The sensor's response was recorded after a brief 

interval of 2 seconds, allowing the sensor to stabilize before the next force level was 

applied. 

These hysteresis curves represent the average output produced by the tactile sensor 

at each point after the cycle was repeated five times. The interval between each new 

force level and the resistance measurement was set to 2 seconds to ensure the 

accuracy of the readings. 

To quantify the hysteresis exhibited by the sensor, the hysteresis error was determined 

by measuring the difference in the sensor's output resistance for the same applied 

force when exerted on both the ascending and descending branches of the cycles. 

The maximum force applied varied depending on the type of object used. For example, 

using the index fingertip on a thin ring, the maximum force was 59.5±21.4 N while 

using all four fingers on a straight bar, the maximum force was 268.7±77.2 N. This 

variation in maximum force (F) provides essential data for understanding the sensor's 

response to different levels of force. 

For the one-layer sensor, a force of 0-2 N was applied. The load was increased until 

the sensor output reached its saturation level. Then, the load was reduced from 2 N 

to 0 N, and the change in resistance was determined. This experiment was repeated 

with random force ranges of 0-1.27 N, 0-1 N, 0-1.96 N, 0-0.5 N, and 0-1.7 N. Figure 

4.12 below shows the hysteresis in the one-layer sensor. The maximum and average 

hysteresis errors are referenced to the highest output value to obtain a percentage of 

the error relative to the full scale. The maximum error due to hysteresis is 24.2% of 

the full-scale output. 
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Figure 4.12: The hysteresis phenomenon in the One-Layer Sensor 

 

Figure 4.12 demonstrates the hysteresis behaviour of the sensor when it is 

compressed to a maximum force, and then released multiple times. The sensor 

exhibits a different number of loops, indicating variation in the sensor’s hysteresis 

behaviour depending on the sensor’s compressed and released layer. The number of 

loops increases as compressions and releases increase, indicating that the force 

history influences the sensor’s hysteresis behaviour. For the three-layer sensor, force 

ranges of 0-2.8 N, 0-4 N, 0-6 N, and 0-8 N were applied and the associated resistance 

was recorded over several experiments, reporting the average resistance over the 

individual experiments as a function of force. The experiment was repeated with the 

6- and 12-layer sensors and the associated hysteresis was plotted accordingly. Figure 

4.13 below shows the hysteresis for the three-, six- and twelve-layer sensors. 
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(a)                                                                                  (b) 

 

   (c) 

Figure 4.13: (a) The hysteresis phenomenon in the Three-Layer Sensor; (b) The hysteresis phenomenon in the 

Six-Layer Sensor; (c) The hysteresis phenomenon in the Twelve-Layer Sensor
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Both figures 4.12 and 4.13 show that the hysteresis curve of the proposed sensor 

exhibits a multi-loop behaviour in different layers of the sensor. Hence, this implies 

that the output resistance of the sensor depends not only on the current force applied 

but also on the force history. Additionally, Figure 4.13 above indicates the hysteresis 

behaviour of the sensor when it is compressed and released multiple times in the same 

layer. The findings emphasise that the output curve of the proposed sensor is 

influenced by both the current force applied and the force history. This underscores 

the significance of considering the hysteresis during the design and interpretation of 

results from tactile sensors. To address this challenge, a BPNN is proposed in the 

current study to adjust the sensor’s resistance based on estimated values obtained 

from the polynomial curve. This approach helps to enhance the accuracy and reliability 

of readings, enabling more precise interpretations of the sensor’s output. 

4.7 Results and Discussion 

Modified Hysteresis: Simulation and Experiments 

In the current study, multiple sensor units were developed with different layers, and 

the output resistance was determined by applying force sequences on the sensors. 

These force sequences, along with the corresponding corrected resistance values, 

were utilised to train a BPNN. This network exhibited good convergence and 

demonstrated high accuracy during the training process. A tactile sensor is used to 

verify the hysteresis model based on BPNN; with the target part is determined by 

approximating a curve from the hysteresis graph, and for each layer, the approximated 

curve's line is plotted as a desired resistance. Figure 4.14 shows the approximated 

curve plotted for a one-layer sensor, which likely represents the relationship between 

the sensor’s actual resistance values with the desired values represented by the curve. 

Subsequently, the accuracy of the hysteresis model can be evaluated and then any 

necessary adjustments can be made. 
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Figure 4.14: The Approximated Curve Plotted for the One-Layer Sensor 

 

A third–degree polynomial curve was used to fit the hysteresis curve in a one-layer 

tactile sensor, which provided the best practical results. After fitting the polynomial 

curve, the force values were substituted into the polynomial to determine the 

corresponding estimated resistance values. These estimated resistance values were 

then used as the target input for the BPNN. BP is a popular neural network training 

algorithm used to adjust the network weights and minimise the difference between the 

predicted and actual values [106]. In this case, the target input was the estimated 

resistance value obtained from the polynomial regression, and the neural network was 

trained to predict this value based on the input force values. 

The proposed model captured the nonlinear relationship between the force and 

resistance values by combining the polynomial regression and neural network 

techniques and making accurate predictions. This approach can be helpful in various 
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applications where complex relationships between variables are challenging to models 

employing traditional techniques. Fitting a polynomial curve to hysteresis data is a 

common approach, although it has limitations, as the relationship is complex. In such 

cases, neural networks excel by capturing nonlinear patterns, extracting hidden 

features, generalising to new data, and handling diverse inputs. Their flexibility and 

ability to model complex relationships make neural networks a preferred choice when 

traditional methods struggle in machine learning [103] . 

Once a polynomial curve is fitted to the hysteresis data, the estimated values can be 

used as inputs for a neural network, which are powerful machine learning models that 

can learn complex patterns and relationships in data. By using the estimated values 

from the polynomial curve as inputs for the neural network, the variables can make 

better predictions. 

Rest = −0.24F3 + 1.38F2 − 2.93F + 3.17       (8) 

Here, 'F' represents the applied force ranging from 0 to 2N, encompassing 41 samples 

of force. Equation (6) has been derived based on this relationship, establishing a clear 

link between the estimated resistance (Rest) and the applied force F in the current 

investigation. The earlier tested procedure of the one-layer sensor was repeated for 

all four layers. Figure 4.15 shows the subsequent results of approximated curves of 

all different layer sensors.
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Figure 4.15: Approximated Curves of all different Layer Sensors 
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The corrected curve equation for all four layers of sensors can be found in the graphs 

shown above, and by using the same procedure of layer one sensor the desired target 

in the BPNN can be found. 

 

 Rest = 0.01F4 − 0.26F3 + 2.36F2 − 10.21F + 19.77                              (9) 

The range of values for F in equation (7) is between 0 and 8N, with 90 samples of 

force used to derive this equation. 

Rest = 0.01F4 − 0.33F3 + 3.32F2 − 15.34F + 30.41                             (10)  

Values for F in equation (8) range from 0-15 N. Overall, 142 samples of force are used 

to derive this equation. 

  Rest = 0.01F4 − 0.23F3 + 3.43F2 − 22.18F + 54.94                            (11)  

The range of values for F in this equation is between 0 and 20 N, with 240 samples of 

force used to derive this equation. Three equations (2-4) represent the estimated curve 

equation for the three-, six-, and twelve-layer sensors. The equations provide an 

estimate of the value of R (representing a dependent variable) based on the force F 

applied, an independent variable. Each equation exhibits different characteristics in 

terms of the power of F and the sign of the coefficients. This helps to determine the 

relationship between F and R. The power of F in the equations captures complex and 

nonlinear relationships between F and R, accommodating different curves and 

intricate patterns. By considering the powers of F ranging from 2 to 4, these equations 

can capture the nonlinearity and complexity present in the relationship between F and 

R. Positive coefficients indicate a direct relationship, while negative coefficients 

suggest an inverse relationship. These coefficients are established through an 

analysis involving curve fitting, and their values hinge on both the dataset 

characteristics and the selected statistical methodology. 
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4.8 Analysis and Discussions 

The validation for the tactile sensor was performed by applying force, removing it from 

the sensors, and measuring the corresponding changes in resistance. The observed 

resistance changes were subsequently compared to the theoretically expected 

resistance changes, with the validation process specifically focusing on evaluating the 

performance and accuracy of the tactile sensor itself. Figure 4.16 below shows the 

validation of the system by using the same force data set that was used initially to train 

in the NN model for one layer and the other sensor.
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Figure 4.16: Graphs showing the validation of the system of different Layers of Sensor
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As shown in Figure 4.16 above, the tactile sensor has been specifically designed to 

accurately measure changes in resistance in response to applied or removed force. 

Through the validation process, the tactile sensor has demonstrated its capability to 

produce reliable and accurate results within the maximum force domain of 2N for the 

layer one sensor. Hence, the validation results indicate that the tactile sensor 

consistently provides measurements that closely align with the actual values of 

measurements. This alignment signifies that the predicted results generated by the 

neural network closely match the expected values based on the training data. Notably, 

the output results of the BPNN, which fall perfectly on the target curve 'Rest' after 

training, serve as a good indicator of the accuracy and reliability of the tactile sensor. 

Furthermore, the use of the same dataset for training and validation purposes 

facilitates a direct comparison between the predicted and actual results. When the 

predicted results closely resemble the actual results, the accuracy and reliability of the 

tactile sensor are confirmed in measuring resistance change. 

The above findings highlight the overall reliability and accuracy of the tactile sensor in 

measurements, which consistently provide highly dependable results and 

demonstrate high alignment between predicted and actual values. Accurately 

capturing resistance changes, reliable performance within the specified force range, 

and close alignment with actual results validate the reliability and accuracy of the 

tactile sensor in measuring resistance changes. It may be highlighted that using the 

same data set for training and validation can potentially lead to overfitting, where the 

model becomes highly specialised to the training data and may struggle to generalise 

to new data. To address this concern, the model was validated using new and 

independent data sets. The tactile sensor was tested with new sets of 25, 30, and 60 

random forces, and the resulting output resistance was recorded and compared to the 

expected values (see Figure 4.17). This type of testing ensures that the model can 

accurately predict resistance values even when presented with new and previously 

unseen data. 
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Figure 4.17: Validation of the system with new experimental  results 

 

Close alignment of the output results of the BPNN with the target curve Rest after 

training is a positive indicator of the effectiveness of the training process. This 

suggests that the neural network has learned the underlying patterns and relationships 

between force and resistance, resulting in accurate predictions. This alignment 

between the predicted results and the target curve indicates that the neural network, 

and subsequently the tactile sensor, performs well in accurately estimating resistance 

values. Continuing testing and validation are essential to ensure the ongoing accuracy 

and reliability of the tactile sensor, which includes testing the tactile sensor under 

various conditions and using different data sets that were not included in the training 

process of the BPNN, to ensure its ability to generalise to new situations and data. 

In addition to assessing the performance and accuracy of the BPNN, the evaluation of 

the robustness of the tactile sensor is also important. Robustness refers to the ability 

of a sensor to consistently maintain its performance and reliability despite uncertainties 

or variations in the input. Further, to evaluate the robustness of the tactile sensor, 
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various factors, including the gradient, mu, and validation check values were 

considered for neural network training. Analysis revealed that at epoch 45, the gradient 

was 0.001, mu was 0.0001, and the validation check value was 6. These values 

provide useful insights into the stability and adaptability of the neural network during 

the training process (see Figure 4.18). 

 

 

Figure 4.18: One Layer Sensor (a) Neural network performance; (b)Neural 

network regression; (c) Neural network training  

 

 

 

 

(a)                                                                                 (b) 

 

(c) 

Figure 12 One Layer sensor (a) Neural network performance; (b) Neural Network Regression; (c) Neural Network Training 

(c) 
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Furthermore, the validation performance of the BPNN (see Figure 4.18(a)) indicates 

the system’s ability to maintain a low validation error ≈  0, which is a high level of 

accuracy at a specific epoch. This suggests that the neural network is able to 

consistently provide accurate predictions of the tactile sensor’s resistance despite 

encountering potential variations in the input force. 

 

Table 4.1: Regression Results and Accuracy Statistics of Datasets  

 

Dataset R-Value 

Training 0.999967 

Validation 0.99992 

Test 0.999977 

Overall 0.99973 

 

Data shown in Figure (4.18)(b) and the regression values shown in Table 4.1 reveal 

that the proposed system exhibits remarkable robustness. The high Regression (R-

values) across all datasets (training, validation, test, and overall) indicates a strong 

correlation between the predicted resistance values and the actual values. This 

consistency in performance demonstrates the system’s ability to handle variations in 

input effectively. Overall, the system’s robustness is the combination of a low 

validation error, high correlation coefficients, stability during training, and consistent 

performance on new datasets. These findings also highlight the system’s ability to 

reliably measure changes in resistance based on the applied force, even in the 

presence of uncertainties or variations in the input. The system’s robustness enhances 

its practical utility and strengthens its potential for various applications. 

By conducting a comprehensive analysis of the system’s performance, accuracy, and 

robustness, valuable insights are gained into its behaviour and capabilities. These 

insights are able to inform regarding the sensor system’s design, optimisation, and 

application, thereby contributing to improved reliability and performance of the system 

in real-world scenarios. Figure (4.18) (a) shows the validation performance of the 

BPNN, with the best validation performance of 0.000051913 at the epoch, indicating 

that the neural network can accurately predict the sensor’s resistance based on the 
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input force applied. Figure (4.18) (b) shows the neural network regression values, with 

R values indicating the correlation between the predicted and actual resistance values 

in training, validation, and test datasets. The R values in training, validation, and 

testing are all above 0.9999, indicating a strong correlation between the predicted and 

actual resistance values. The overall R-value of 0.99973 also indicates a strong linear 

correlation between predicted and actual values. Overall, these results suggest that 

the proposed system performs well and accurately predicts the sensor’s resistance. 

Table 4.2 provided below displays the results of the BPNN evaluation for sensors with 

varying numbers of layers; with the performance of the BPNN was assessed using the 

mean squared error (MSE) and correlation coefficient (R) metrics 

 

Table 4.2: Comparison of Neural Network Performance with Different 

Numbers of Sensor Layers  

Layers Observation MSE R 

1 6 9.41E-05 0.996 

1 11 0.0039        0.9975 

1 14 0.0515 0.9992 

1 18 0.0263 0.9988 

1 21 0.0058 0.9997 

1 29 9.9327E-05      0.999 

1 46 0.0261 0.9972 

3 6 6.7356E-05 0.999 

3 11 0.0045 0.9983 

3 14 0.0515 0.9992 

3 18 0.1109 0.9997 

3 21 0.0028 1 

3 29 0.1510 0.9973 

3 46 0.0114 0.9984 

6 6 0.0001 1 

6 11 0.0055 0.9997 

6 14 0.0107 0.9998 

6 18 0.1736 0.9995 

6 21 0.0051 1 

6 29 0.0051 1 

6 46 0.0042 0.9994 

12 6 0.0034 0.9992 

12 11 0.0222 0.9985 

12 14 0.0842 0.9989 

12 18 0.9985 0.9993 

12 21 0.2538 0.9965 

12 29 0.9731 0.9728 

12 46 0.2597 0.9964 
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The results shown above in Table 4.2 are based on testing different types of sensors 

with different numbers of layers. The sensors were evaluated using MSE and R. 

Mean squared error is a measure of the difference between the predicted values and 

the actual values; with the lower the MSE, the better the performance of the sensor. 

Moreover, the results show that the performance of the sensors varies depending on 

the number of layers. Generally, increasing the number of layers in the sensor 

improves its performance, as shown by the decreasing values of MSE and increasing 

R values. However, in some cases, the sensor’s performance decreases as the 

number of layers increases. These results provide valuable insights for designing and 

optimising sensors for various applications. Further, the results obtained from testing 

the BPNN for a tactile sensor with varying layers demonstrate that the proposed 

method is effective in modifying hysteresis nonlinearity in soft tactile sensors based 

on piezo resistance materials. The BP algorithm adjusted the neural network weights 

and produced good convergence and high accuracy in compensating for the effect of 

hysteresis. The BPNN presented in this chapter exhibits promising potential for 

enhancing tactile sensors by considering the sensor’s range as a variable.  

In addition, the significance of certain sensor designs and materials that have garnered 

substantial acceptance within the research community is acknowledged, even though 

the primary focus in this chapter centres on the application of the BPNN approach for 

sensor analysis. Valuable insights and innovative approaches to sensor technology 

are offered by these studies, as outlined in the provided papers, which complement 

and enrich the landscape of the current research. This study contributes significantly 

by proposing a methodology to enhance tactile sensor performance by effectively 

capturing the nonlinear relationship between force and resistance values. This is 

achieved through a synergistic combination of polynomial regression and neural 

network techniques. The resultant models offer enhanced interpretability and ease of 

understanding compared to the intricate mathematical models, such as Preisach or 

Prandtl-Ishlinskii, rendering them more suitable for practical implementation across a 

spectrum of fields including robotics, medical devices, consumer electronics, and 

gaming. However, the selection of the appropriate modelling technique depends on 

various factors, such as the specific application, the complexity of the hysteresis 

behaviour, and the availability of data. 
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The BPNN presented in this chapter exhibits promising potential for enhancing tactile 

sensors by considering the sensor’s range as a variable. To comprehensively evaluate 

its versatility, it is worth noting that alternative methods may have yielded distinct 

results. The decision to utilise a BPNN was driven by its capability to capture complex 

relationships and adapt to variations in sensor range, providing a comprehensive 

approach to sensor enhancement. 

4.9 Conclusions 

This investigation significantly advances the understanding of conductive fibre-based 

tactile sensors by addressing the unique challenges these sensors present. By 

leveraging the capabilities of Backpropagation Neural Networks (BPNN), the study 

effectively modifies the hysteresis nonlinearity, enhancing the accuracy and 

performance of these sensors in force measurement and control applications. The 

proposed method successfully reduced the maximum hysteresis error from 24.2% to 

13.5%, which, while still present, represents a substantial improvement. 

In comparison to other hysteresis compensation methods, such as the Generalized 

Prandtl–Ishlinskii (GPI) model [108], which typically reduces hysteresis by 10–15%, 

the 13.5% achieved here is competitive and highlights the robustness of the BPNN 

approach. More advanced models, like the Modified Prandtl–Ishlinskii [109], can 

sometimes achieve even lower hysteresis, but they often come with greater complexity 

and implementation challenges. The use of BPNNs in this context is particularly 

valuable because of their adaptability and effectiveness in managing the nonlinear 

characteristics of conductive fibre-based sensors. 

The development of multiple sensor units with different layers and the application of 

force sequences to collect output resistance for BPNN training showcased good 

convergence and high accuracy. Validation with new datasets confirmed the BPNN’s 

ability to effectively address nonlinearities, resulting in a significant reduction in 

hysteresis. The implications of this work are far-reaching, with potential impacts in 

robotics, prosthetics, and human-computer interfaces, where precise and reliable 

sensors are crucial. The improved accuracy of these tactile sensors marks a significant 

step forward, adding valuable insights to the field and paving the way for further 

advancements in real-world applications. 
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While the remaining 13.5% hysteresis error is still notable, it compares favourably with 

other contemporary methods, positioning the BPNN approach as a strong contender 

in the ongoing quest to improve tactile sensor technology. Future research might 

explore hybrid approaches that combine the strengths of neural networks with 

operator-based models, further pushing the boundaries of what can be achieved in 

hysteresis reduction. 
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Chapter Five: Validation and Evaluation of a Fabric-Based Tactile 

Sensor in Comparison with an sEMG Sensor 

 

5.1 Introduction 

In the domain of assistive technology and rehabilitation robotics, the integration of 

diverse sensors has become crucial for a detailed understanding of user intentions. 

From pressure and bend sensors on wrists to advanced readings such as surface 

electromyography (sEMG) and electroencephalography (EEG), these sensors enable 

the discernment of user intent, which is vital for aiding individuals with mobility 

challenges. While EEG holds promise for individuals with total paralysis, its 

complexity—requiring numerous electrodes and complex signal processing—poses 

significant challenges to practical implementation. Conversely, sEMG readings offer 

reliable signal acquisition and are widely used to decode user intent. Some systems 

even combine sEMG with voice recognition for more accurate intent detection. 

However, there remains a notable gap in the integration of diverse sensors and 

feedback modalities for intent detection in robotic development, as evidenced by prior 

research [4-10]. 

This chapter focuses on the validation and evaluation of a novel fabric-based tactile 

sensor compared to a commercially available sEMG sensor (Myoware EMG) for 

measuring muscle activity. The primary objectives are to: 

1. Determine the efficacy of the fabric-based tactile sensor in generating output 

signals that distinguish between various exercises. 

2. Assess the reliability of the signals produced by the tactile sensor during simple 

exercises, and compare these results with the sEMG system. 

The study involves collecting electromyography (EMG) signals from the Biceps and 

Flexor Carpi Ulnaris muscles during dynamic exercises, using both the fabric-based 

tactile sensor and the sEMG sensor. These signals will be analysed to evaluate the 

sensor's accuracy, consistency, and potential applications in rehabilitation. This 

chapter also details the experimental setup, validation criteria, and statistical analysis 

methods used to evaluate the sensors' performance, ensuring the integrity and 

reliability of the collected data and results. 
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Through this validation study, the research highlights the advantages and limitations 

of the tactile sensor system, providing insights into the feasibility of fabric-based tactile 

sensors as an alternative to more expensive commercial sEMG systems. Additionally, 

the broader implications for rehabilitation practices and potential areas for future 

research will be explored. 

Tactile sensors are pivotal in measuring object properties and contact events through 

direct sensor-object interaction. Over the years, tactile sensor technology has made 

significant progress, particularly in assisting robots with object manipulation. Their 

applications span diverse fields, including medical diagnostics, invasive surgeries, and 

rehabilitation. Moreover, they have demonstrated efficacy in executing complex tasks, 

sometimes outperforming human hands in certain scenarios [83, 85]. Textile-based 

sensors, with their unique textile structure, offer versatility in fabrication techniques 

and materials, enabling electrical conductivity. These sensors can be designed at 

various levels, such as yarn, fibre, or coatings, using methods like sewing, 

embroidering, painting, or integrating conductive yarns [10]. They find wide-ranging 

applications in wearable devices and possess desirable properties such as 

stretchability, flexibility, and sensitivity. 

In general, this chapter evaluates the advantages and limitations of tactile sensors in 

measuring muscle activity. The study involves collecting EMG signals from the Biceps 

and Flexor Carpi Ulnaris muscles during dynamic exercises. Two types of sensors 

were compared: the commercial superficial electromyography (sEMG) sensor 

(Myoware EMG) and the fabric-based tactile sensor, as discussed in Chapter Three. 

The primary objectives were: 

1. To determine the efficacy of the tactile sensor system in generating EMG output 

signals capable of distinguishing between different exercises, and 

2. To assess the reliability of the signal produced by the tactile sensor, particularly 

in the context of simple exercises. 
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This experimental approach aims to provide insights into the capabilities and 

limitations of tactile sensor systems for assessing muscle activity. The chapter covers 

the tools, equipment, and procedures used, including the experimental design, data 

collection methods, statistical and analytical techniques, and validation criteria. The 

discussion also addresses participant demographics, informed consent procedures, 

validation analysis, and the presentation of raw data in tables, graphs, or other 

representations. The chapter concludes with an interpretation of outcomes, a 

comparison with existing literature, a summary of the main findings, and 

recommendations for future research. 

5.2 Materials and Methods 

This section outlines the experimental methodology employed in the current study. 

The approach is detailed in Section 5.2.1, covering the experimental steps. Section 

5.2.2 provides an overview of the equipment used and its design considerations. 

Lastly, Section 5.2.3 focuses on the analysis method, explaining the filtration 

techniques and the evaluation of study indicators. 

5.2.1 Experimental Setup and Exercise Protocol 

The experimental study aimed to gather data from the Biceps muscle in the arm and 

the Flexor Carpi Ulnaris muscle in the forearm and wrist using two different devices. 

The first device, an sEMG sensor, measured EMG signals directly. The second device, 

a tactile sensor, detected pressure from muscle activity, which was then converted into 

an electrical signal using piezoelectric technology. The primary objective was to 

compare the EMG signals from the sEMG sensor with the pressure data from the 

tactile sensor to evaluate the feasibility and reliability of the customs system. The 

experiment involved over 60 different cases with the participation of 10 subjects (8 

males and 2 females). The average characteristics of the participants were as follows: 

age, 40 ± 15 years; weight, 61.8 ± 13.1 kg; height, 170 ± 6.2 cm. Figure 5.1 illustrates 

the protocol and steps followed by each volunteer. 

        Step 1 involved explaining the experiment and potential risks to the volunteers. 

Each participant provided informed consent by signing a form ( Informed consent 

‘Recruitment Email’ was obtained from all participants as outlined in Appendix A under 

the Ethics Application ID: 8194) that detailed the experiment’s specifics. Volunteers 
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had the freedom to withdraw from the experiment at any time. Additionally, while the 

informed consent form contained all necessary information, specific exercise 

instructions were provided individually to each volunteer. 

       Step 2 encompassed the execution of the exercises, as depicted in Figure 5.1. 

The exercises were selected based on expert opinion and in consideration of the 

active involvement of the Biceps muscle in the arm and the Flexor Carpi Ulnaris 

muscle in the forearm and wrist. Data collection was standardised for all participants, 

ensuring consistency. For each movement, the muscles were held in both flexed and 

extended positions, and data was collected for 30 seconds in each state. This 

procedure was applied to all movements to ensure uniformity in the data across all 

participants and trials. 

The exercises were as follows: 

1. Arm Flexion/Extension: This exercise, proven reliable in previous studies, 

involved flexing and extending the arm. Data was collected for 30 seconds in 

both the fully flexed and fully extended positions to ensure consistency. 

2. Hand Open/Close: This exercise focused on the opening and closing of the 

hand, serving as a basic and straightforward movement suitable for beginners 

[37]. Data was collected when the hand was fully opened for 30 seconds and 

then fully closed for 30 seconds. 

3. Wrist Flexion/Extension: This exercise involved flexion and extension 

movements of the wrist. Data was collected for 30 seconds in both the fully 

flexed and fully extended positions of the wrist. Table 5.1 describes the full arm 

movement. 

By following this data collection protocol, where movements were held for 30 seconds 

in both the flexed and extended states, the study ensured consistency across all 

participants, improving the reliability and comparability of the recorded data. 
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Figure 5.1: Diagram of the experiment  

 

Table 5.1: Description of Full Arm Movement  

 
Exercise 

 
Number of 
Repetition 

 
Duration 

(sec) 

 
Description 

 
Arm Flexion/Extension 

 
2 

 
30 

 
 

Hand Open/Close 
 

2 
 

30 

 

 
Wrist Flexion/Extension 

 
 

2 

 
 

30 
 

 
 

In Table 5.1 above, both sets of exercises are explained. Further details of each 

exercise are included in the same line.  
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5.2.2 Equipment and Sensor Systems’ Description 

The testbed was built using two different systems, sEMG and soft tactile sensor 

systems. The first system was a sEMG sensor system, and the second system 

comprised a set of tactile sensors. Both devices were placed separately on the same 

region of the muscle to obtain a signal from the same muscle during exercise. The 

muscles selected were the Biceps muscle in the arm, as well as the Flexor Carpi 

Ulnaris muscle in the forearm and wrist due to its high number of motor units [37–41]. 

Figure 5.2 below shows how the testing equipment was installed, the sEMG system 

and its wire connection with the computer and with the muscle using three electrodes. 

On the right side of Figure 5.2 is shown the tactile sensor. The tactile sensor needs to 

be placed on the muscle directly and aligned with the muscle fibres, which 

communicate with the computer using a wire connection. 

 

Figure 5.2: Equipment of the testbed used in the experiments. 1. & 3. 

Arduino Uno board. 2 Myoware EMG Muscle Sensor (SEN-13723 ROHS).  

4. Soft Tactile sensor 

a) sEMG System 

The sEMG system consisted of three components: a laptop running Matlab [15], an 

Arduino board (numbered 1 in Figure (5.2)), and the sEMG sensor itself (numbered 2 

in Figure (5.2)). The Arduino board played a crucial role in handling communication 

with the sensors, capturing and recording the data, and transmitting it to the computer 

for storage and subsequent analysis. For the sEMG sensor to function effectively, 

 

  

 

 

sEMG device Soft Tactile device 
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three electrodes were required. The first electrode was positioned near the middle of 

the muscle body, represented by the red line in Figure 5.2. The second electrode was 

aligned with the direction of the muscle fibres and placed close to the muscle’s end, 

as indicated by the green line in Figure 5.2. The third electrode was placed near a 

bony area, serving as a reference (represented by the black line in Figure 5.2) to 

handle any crosstalk signals from adjacent muscles [14]. These electrode placements 

were necessary to ensure accurate and reliable signal acquisition from the targeted 

muscle region. This test involved locating the targeted muscle and identifying the 

direction of the muscle fibres. Following this, the skin was prepared by removing any 

dirt and ensuring it was free of hair. To achieve hairlessness, a disposable razor was 

used, and the area was then cleaned using alcohol and sterile gauze. Once the skin 

preparation was complete, the three electrode pads were applied to the designated 

locations. 

b) Fabric-Based Soft Tactile Sensor: 

The fabric-based soft tactile sensor operates on the piezoresistive effect, where its 

electrical resistance changes when pressure is applied [110-113], utilising EeonTexTM 

knitted conductive fabric (comprising 72% nylon and 28% spandex with a proprietary 

conductive coating) and silver-plated conductive thread (MADEIRA yarn with linear 

resistance <300Ω/m). To ensure fabric elasticity, a long-running loose stitch (saddle 

stitch) is used for sewing. When pressure is exerted on the EeonTexTM fabric, its 

resistance decreases due to the piezoresistive effect, with the silver-plated conductive 

thread capturing and transmitting these resistance changes. Meanwhile, the electronic 

system connects the sensor to a data acquisition module or microcontroller to measure 

resistance changes as voltage variations proportional to applied pressure. The fabric 

tactile sensor is primarily used to measure the force exerted by muscles during 

contraction and relaxation phases. This parameter directly reflects the mechanical 

pressure or tension generated by muscle activity and provides insights into muscle 

behaviour and activity patterns during various movements or exercises. Signal 

processing involves analog-to-digital conversion, signal filtering, and subsequent data 

analysis.  

The physical prototype comprises the specified materials and is optimised for 

detecting resistance signals under applied forces, with 4×4cm² sensor samples for 
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testing and validation (see Figure 4.8). The Arduino board played a critical role in 

managing communication with the sensors, recording the data, and transmitting it to 

the computer for storage and subsequent analysis. A summary of the features of this 

sensor system is provided in Table 5.2. This sensor has been widely utilised in various 

studies [114-125], owing to several reasons. The sensor response parameter in fabric-

based tactile sensors involves changes in voltage or resistance corresponding to the 

force exerted by muscles during contraction and relaxation phases. As muscles 

contract or relax, they apply force to the sensor, resulting in variations in its electrical 

properties, which manifest as changes in voltage or resistance. Calibration is also 

essential to establish the correlation between the sensor’s response and the 

parameter being sensed, which is the force exerted by muscles.  

Fabric-based tactile sensors detect variations in voltage or resistance due to 

mechanical pressure or tension from muscle activity. These variations are precisely 

captured by placing the sensor on the targeted area and ensuring its stability during 

data collection [126-132]. Using computer interfaces, such as Matlab, the signals 

detected by the sensor are recorded and analysed. This meticulous recording 

procedure ensures accurate reflection of muscle activity, facilitating comprehensive 

calibration for reliable muscle force measurement. It is crucial to maintain sensor 

stability during data recording to minimise inaccuracies caused by sensor movement, 

which can lead to fluctuations in the detected signals and potential errors in analysis. 

Ensuring the sensor remains stationary throughout the recording process is vital in 

maintaining data quality and validity. The soft tactile sensor is notably evident for its 

ability to conform to diverse surfaces and shapes [130-142]. This unique characteristic 

makes it ideal for applications involving contact with curved or non-uniform objects, as 

it excels at capturing and measuring tactile information from complex surfaces. 

Despite its low thickness and mass per unit area, the sensor displays high sensitivity, 

as demonstrated in the experiments where it accurately detected subtle changes in 

pressure or touch intensities [143-145]. Previous studies [16,147-156] also support 

this outstanding sensitivity, making the sensor well-suited for precise tactile feedback 

required in areas such as robotics, prosthetics, and human-machine interaction 

studies. The sensor’s stretchability, evident in its elongation at break and warp 

recovery characteristics, allows it to adapt to deformations and variations in shape, 
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providing reliable tactile feedback during dynamic interactions. An additional 

advantage lies in the sensor’s tuneable surface resistivity, allowing for the adjustment 

of its electrical properties. This feature proves valuable in applications requiring 

different levels of sensitivity or response, offering customisation based on specific 

needs. The soft tactile sensor’s versatility is also a key asset, finding applications in 

wearable devices, human-computer interfaces, robotic systems, and medical 

applications, making it a popular choice among researchers and developers [151,157]. 

Overall, the combination of conformability, sensitivity, stretchability, tuneable surface 

resistivity, and versatility has led to the widespread adoption of the soft tactile sensor 

in various studies. Its flexibility and adaptability make it a valuable tool for capturing 

and analysing tactile information, contributing to advancements in robotics, human-

computer interaction, and biomedical engineering [154-163]. 

 

Table 5.2: Specifications of Soft Tactile Sensor  

 

Parameters  Value 

Conductive stretchable fabric thickness (mm) 0.38 

Mass per unit area (g/m2 ) 113.78 

Elongation at break (%) 40 

Warp recovery after stretching (%) 85 

Tunable surface resistivity (Ω/seq) 104 to 107 

     

This tactile sensor distinguishes itself by not only identifying tactile input, but also by 

discerning movement intentions and monitoring muscle activities in various sections 

of the upper limb, including the arm, forearm, and wrist. The innovative approach 

involves integrating this sensor into a wearable sleeve designed to be comfortably 

worn on these three segments of the upper limb. The underlying concept stems from 

the idea that muscle contractions induce changes in the shape and volume of 

surrounding tissue, resulting in mechanical pressure variations promptly detected by 

the sensor. The approach is innovative in comparison to conventional wearable 

sensors, which typically focus on either monitoring muscle activity or predicting 

movement intentions. Through this concept, it is proposed to integrate a specialised 
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sensor into a wearable sleeve designed for the arm. Additionally, what sets this sensor 

apart is its distinct ability to evaluate both muscle activity and intended movements 

concurrently, representing a shift from conventional sensor functionalities. This novel 

approach holds the potential to enhance the level of understanding of arm functionality, 

which could find applications in various fields such as aiding in rehabilitation, sports 

research, and optimising human-machine interactions. This represents a significant 

stride in incorporating intelligent sensors into clothing for comprehensive monitoring 

of the human body. 

5.2.3 Analysis Method 

After completing all the exercises and saving the signals from both the sEMG and soft 

tactile sensor devices, the data analysis process commenced; and it is important to 

address the potential impact of noise on the EMG signal from both medical and 

scientific/technical perspectives. From a medical standpoint, an EMG signal distorted 

by noise could lead to an inaccurate diagnosis of muscle behaviour. Similarly, from a 

scientific and technical standpoint, a signal contaminated by noise is unable to ensure 

an accurate interpretation of the results, thereby compromising the reliability of 

research findings [47-49]. 

The choice to employ signal filtering is based on the characteristics of the signal itself, 

as indicated in reference [50]. In the current research, signal filtering was a crucial step 

in enhancing the quality and reliability of data obtained from the soft tactile sensor 

systems. Filtering was implemented to eliminate noise and artefacts, improving the 

clarity and accuracy of the muscle activity signals used for analysis. 

A bandpass Butterworth filter was employed, which is widely used in signal processing 

for its ability to isolate signals within a specific frequency range while suppressing 

unwanted frequencies outside that range. The filter was configured with a fourth-order 

filter and a frequency range of 40-100 Hz, carefully chosen to align with the 

characteristics of the tactile sensors and the frequencies at which muscle activity and 

tactile information are most prominent. 

The application of this filter ensured that signals captured by the tactile sensors 

focused on pertinent physiological phenomena while reducing noise interference.  
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The decision to use filtering is based on established signal-processing practices [47]. 

It was essential to apply this step before conducting further analysis to ensure accurate 

and reliable data interpretation. Without proper filtering, signal noise could have led to 

inaccuracies, potentially affecting the integrity of the research findings. 

Accordingly, in the current study, a robust analysis methodology was carefully selected 

that was inspired by established practices in the field [98]. The analysis process 

involved key stages: Signal Processing, Maximum Voluntary Contraction (MVC) 

Computation, which refers to the maximum amount of force that a muscle can 

generate voluntarily under specific conditions, and Normalisation, and Assessment of 

Indicators; all of which ensured reliable and meaningful results from two independent 

measurement systems. 

a.Enhancing Data Accuracy through Advanced Signal Processing Techniques: 

In the current experiment, signal filtering played a crucial role in improving the quality 

and reliability of the data collected from both the sEMG and soft tactile sensor systems. 

While signal filtering is a well-known concept in signal processing, its significance to 

these devices cannot be overstated. The sEMG and soft tactile sensor systems are 

highly sensitive instruments intended to capture intricate patterns of muscle activity 

and tactile feedback, respectively. However, these sensitive sensors are vulnerable to 

different types of noise, such as electromagnetic interference and baseline wander. 

Without effective noise reduction, this interference can obscure the true signals of 

interest, potentially leading to inaccurate conclusions.  

b.MVC Computation and Normalisation 

For each exercise, Maximum Voluntary Contraction (MVC) values were individually 

calculated to establish personalised baselines. This allowed equitable comparisons 

between individuals and exercises, considering variations in strength levels and 

muscle capabilities. 

c.EMG Signal Normalisation for Biceps and Flexor Carpi Ulnaris Muscles: 

To ensure an accurate comparison of EMG signals, normalisation was performed for 

each exercise related to the Biceps muscle in the arm and the Flexor Carpi Ulnaris 
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muscle in the forearm and wrist. This step was necessary due to significant differences 

in the output ranges of the different equipment sets used. Figure 5.3 illustrates the 

steps involved in signal normalisation during dynamic exercises, such as Arm 

flexion/extension, Hand open/closed, and Wrist flexion/extension.  The signal was first 

acquired and then subjected to denoising during the signal processing stage. 

Subsequently, the dynamic EMG signal was normalised using the following formula: 

𝑺𝒊𝒈𝒏𝒂𝒍 𝑵𝒐𝒓𝒎𝒂𝒍𝒊𝒔𝒂𝒕𝒊𝒐𝒏 =
𝑬𝑴𝑮 𝑺𝒊𝒈𝒏𝒂𝒍−𝑬𝑴𝑮𝒎𝒊𝒏

𝑬𝑴𝑮𝒎𝒂𝒙−𝑬𝑴𝑮𝒎𝒊𝒏
      (1) (where the signal normalisation 

range is [0, 1]) 

This normalisation formula was selected based on its ability to standardise the EMG 

signals, making them comparable across different exercises and individuals [159]. 

This accounts for variations in signal amplitudes and ensures uniformity in the 

interpretation of muscle activation levels. These normalised signals are then utilised 

to derive MVC values from both the sEMG sensor and the soft tactile sensor 

separately. The choice of this normalisation formula arises from its efficacy in 

standardising EMG signals across different exercises, facilitating accurate comparison 

and analysis of muscle activity levels. 

 

d. Comparison of MVC Values with Literature Values: 

The MVC values in this study for the Biceps Brachii ranged from approximately 60% 

to 100% of maximum voluntary force, which is consistent with literature values for 

isometric or dynamic movements of this muscle. Studies report EMG signal amplitudes 

for the Biceps Brachii typically between 150 µV and 500 µV, depending on movement 

type and equipment sensitivity [164,165]. The MVC data collected in this study align 

well with these ranges, indicating the reliability of the methodology. 

For the Flexor Carpi Ulnaris, MVC values ranged from 30% to 70% of maximum 

voluntary force, which also corresponds with published data for gripping and wrist 

flexion tasks [166]. This alignment with the literature reinforces the accuracy of the 

MVC computation and signal normalisation methods used in the study. 
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Overall, the normalised MVC values fall within the expected range reported in the 

literature, validating the use of the chosen methodology for assessing muscle activity 

through both sEMG and tactile sensors. The consistency of MVC values across 

studies confirms the robustness of the data collection and normalisation protocols. 

 

Figure 5.3: Diagram followed to normalise the sEMG & soft Tactile sensor 

signal from the dynamic exercises  

Figure 5.3 above illustrates the normalisation process employed to standardise the 

data obtained from both the sEMG and soft tactile sensor systems during dynamic 

exercises. This diagram outlines the essential steps taken to ensure that signal 

amplitudes from these two distinct sensors are directly comparable, enabling accurate 

analysis and interpretation of muscle activity across various exercises. Further, the 

normalisation process is crucial in the current study as it helps to accommodate the 

diverse strengths and muscle capabilities of the participants. By dividing the recorded 

signal amplitudes by the corresponding Maximum Voluntary Contraction (MVC) values 

unique to each exercise, it is possible to establish a normalised dataset that ensures 

fair comparisons across individuals and exercises. It is also essential to acknowledge 
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that different normalisation methods may indeed influence the outcomes from the 

study. However, by adopting a standardised approach and documenting the 

normalisation procedures, the aim is to minimise potential biases and ensure the 

reliability of the results.  

5.3 Validation Indicators 

In the current research, validating the signals from the soft tactile sensor against those 

from commercial sEMG systems holds significant weight. To ensure the validation 

process’s thoroughness and accuracy, a series of carefully chosen validation 

indicators were selected. Each indicator serves a distinct purpose that directly 

corresponds to the objectives of the study. 

•  endall Correlation Coefficient ( endall's Tau): Kendall’s Tau was selected 

as an indicator due to its non-parametric nature [167-169]. In this context, it is 

necessary to deal with complex muscle activity patterns that may not adhere to 

specific distributions. Kendall’s Tau enables the possibility to assess the 

strength and direction of association between paired observations, which is 

particularly valuable when comparing ranked variables. This indicator enables 

the exploration of ordinal relationships and correlations between the tactile 

sensor and sEMG signals without making assumptions regarding the 

underlying data distributions. 

• Spearman’s Correlation: Spearman’s correlation is employed to evaluate the 

monotonic relationship between two variables [169-172]. It is especially useful 

in scenarios where it is important to assess the degree of similarity between 

signals from different sources. By using Spearman’s correlation, it is possible 

to quantify the degree of monotonic association between the tactile sensor and 

sEMG signals, providing insights into their overall agreement. 

 

• Energy Ratio: To assess the similarity in energy between the two signals, the 

energy ratio indicator is employed [172,173]. This metric is particularly relevant 

in the application as it tests whether the EMG waves have a comparable form 

in both the tactile and commercial sEMG systems. Specifically, a high energy 

ratio suggests a strong similarity in the energy levels of the signals, indicating 

a consistent representation of muscle activity 
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• Cross-Correlation Coefficient (CC): The CC method is a well-established 

technique for comparing EMG signals [173-178]. Its application in my study 

enables us to measure the degree of correlation between the tactile sensor and 

sEMG signals. This indicator is valuable in capturing both positive and negative 

correlations, providing a comprehensive view of the signal agreement. 

 

• Pearson Correlation Coefficient: The Pearson correlation coefficient, a 

widely recognised indicator for correlation analysis [179-182], was chosen to 

assess the linear relationship between the two variables. This metric allows the 

exploration of the linear association between the tactile sensor and sEMG 

signals, offering additional insights into their correlation.  

 

• Data Formatting and Correlational Analysis 

 

 Data from 10 volunteers were used to perform the correlation analysis for each 

movement, including hand open/close, wrist flexion/extension, and arm 

flexion/extension. For each movement, the signals were processed and 

compared across volunteers using the following steps: 

1. Data Segmentation: Data from each volunteer were segmented by movement 

type. Signals from the tactile sensor and sEMG system were collected 

separately for hand open/close, wrist flexion/extension, and arm 

flexion/extension. 

2. Correlation Analysis: For each movement, the Kendall, Spearman, Pearson, 

Cross-Correlation, and Energy Ratio indicators were computed across all 10 

volunteers. These indicators were calculated by correlating the signals from the 

tactile sensor and sEMG system for each movement. 

3. Statistical Summary: After computing the correlations for each volunteer and 

each movement, the results were summarised by calculating the maximum 

(Max), minimum (Min), mean (µ), and standard deviation (ɕ) for each validation 

indicator. These statistical summaries provided insights into the consistency 

and variability of the correlation across the different volunteers. 

4. Result Interpretation: The Max, Min, µ, and ɕ values for each indicator (Kendall, 

Spearman, Energy, Cross-Correlation, and Pearson) were then used to 

compare the performance of the tactile sensor relative to the sEMG system. 
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High Max and µ values indicated strong agreement between the two systems, 

while the Min and ɕ values helped identify the range and variability in the results 

across volunteers. 

The following validation indicators were used to assess how well the tactile sensor 

system matched the commercial sEMG system, as summarised in Table 5.3:
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Table 5.3: Summary of Validation Indicators for Tactile Sensor and EMG Sensor Comparison  

Indicator Name Equations Citations 

Kendall Correlation (KC) 

 

𝑲𝑪 =
𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑪𝒐𝒏𝒄𝒐𝒓𝒅𝒂𝒏𝒕 𝑷𝒂𝒊𝒓𝒔 − 𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑫𝒊𝒔𝒄𝒐𝒓𝒅𝒂𝒏𝒕 𝑷𝒂𝒊𝒓𝒔

𝑻𝒐𝒕𝒂𝒍 𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑷𝒂𝒊𝒓𝒔(𝒏(𝒏 − 𝟏)/𝟐)
 

 

[169] 

Spearman Correlation (SP) 

 

𝑺𝑷 = 𝟏 − [(𝟔 ∗∑𝒅𝟐)/(𝒏 ∗ (𝒏𝟐 − 𝟏))] 

[172] 

The energy between EMG 

signals (Energy) 

 

𝑬 = ∫(𝒙(𝒕))𝟐𝒅𝒕 

[173] 

 

Cross Correlation (CC) 

 

𝐂𝐂𝐂 =
𝐧(∑𝐱𝐲) − (∑𝐱)(∑𝐲)

√[𝐧(∑ 𝐱𝟐) − (∑ 𝐱)
𝟐
][𝐧(∑ 𝐲𝟐) − (∑𝐲)

𝟐
]

 [174] 

Person Correlation (PC) 𝐏𝐂 =
𝐜𝐨𝐯(𝐱, 𝐲)

𝛔(𝐱)𝛔(𝐲)
 [181] 

Statistical Measure   
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Maximum Value (Max) max(a1,a2,a3,…,an) 

 

[22] 

Minimum Value (Min) min(a1,a2,a3,…,an) 

 

[25] 

 

Mean Value (µ) 

µ =
𝐚𝟏 + 𝐚𝟐 + 𝐚𝟑+. . . . . +𝐚𝐧

𝒏
 

 

 

[27] 

 

Standard Deviation   (ɕ) 

ɕ = √
∑ (𝒙𝒊 − 𝒙

′)𝒏
𝒊=𝟏

𝒏 − 𝟏
 

 

 

[32] 
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5.4 Participant Demographics, Informed Consent, and Validation Analysis 

5.4.1 Participant Demographics and Informed Consent 

The validation of the soft tactile sensor system was undertaken using volunteers who 

participated in the experiment. There were eight male and two female volunteers from 

different backgrounds, with an average age of 40± 15 years, an average height of 170 

± 6.2 cm and an average weight of 61.8 ± 13.1 kg. All the volunteers were informed in 

regards to the experiment and agreed to use all the data for scientific purposes. In 

addition, they were informed that the experiment could be stopped at any time as they 

wished, with no obligation to complete it. 

5.4.2 Validation Analysis 

This section presents a comprehensive analysis of the validation process, which 

involved a substantial dataset comprising more than 60 unique curves. Each curve 

was generated through the repetition of exercises by the participating volunteers. The 

primary objective of this analysis is to assess the performance of the tactile sensor 

system in comparison to the commercial sEMG system. 

5.5 Experimental Findings and Sensor Performance Analysis   

In the upcoming section, findings are shared from the current study, which is initiated 

by introducing the volunteers who took part in the experiment. Then, the results are 

presented, highlighting how the soft tactile sensor and sEMG sensor systems 

performed during different exercises. The results are subsequently divided into two 

main areas: signal filtering and assessment of physical exercises and indicators. 

5.5.1 Signal Filtering 

As previously described in Section 5.2.3, a bandpass Butterworth filter was applied to 

improve signal quality. This filtering process is illustrated in Figure 5.4, showing signals 

before and after applying the filter specifically for biceps flexion/extension, forearm 

open/closed hand, and wrist flexion/extension movements. This comparison 

demonstrates the effectiveness of the filtering technique in isolating relevant muscle 

activity across these targeted movements, highlighting the contrast between raw and 

filtered data for each case.
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Figure 5.4: Comparison of Raw and Filtered Signals for Biceps, Forearm and Wrist Muscles 
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In Figure 5.4 the unfiltered signals before applying the filter exhibited high-frequency 

noise and fluctuations, which are commonly introduced by external interference or 

electronic noise. These unfiltered signals often showed sharp peaks, irregular 

patterns, and baseline wander, making it difficult to accurately interpret the muscle 

activity. For instance, in electromyography (EMG) signals, this noise could distort 

observations of muscle contractions.  

 

After applying the 4th-order Butterworth bandpass filter, the signals became smoother 

and more consistent. The high-frequency noise was largely removed, allowing the true 

waveform that reflects genuine muscle activity to become more prominent. The key 

feature of the Butterworth filter is its maximally flat frequency response in the 

passband, preserving the true signal characteristics while filtering out the noise. Figure 

5.5 illustrates the steps involved in signal filtering and its impact on data quality. 

 

                                                                                                (a) 

Time 
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                                                                     (b) 

 

                                                                    (c) 

Figure 5.5: A visualisation of the filtered signals to illustrate the effectiveness of the noise 

reduction process. (a)The tactile and EMG sensor output for the Bicep’s muscle; (b) The 

tactile and EMG sensor output fo the Forearm muscle; (c) Tactile and EMG sensor output for 

the Wrist muscle. 

 

The analysis presented in Figure 5.5 illustrates the effects of applying a Butterworth 

filter (order 4) to refine tactile and EMG sensor data collected from various muscles, 

including the Bicep, Forearm, and Wrist. The figure shows the stabilisation of both 

tactile and EMG signals over time for each muscle group.

Time 

      Time 
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. This showcases that the application of the Butterworth filter enhances signal clarity 

by reducing noise interference, enabling more accurate analysis of muscle activity 

dynamics. Additionally, the figure demonstrates the differing response times and 

stabilisation patterns between tactile and EMG signals across different muscle groups. 

5.5.2 Physical Exercises 

Previous studies have established the correlation between muscle work activation 

levels and the output signal [25,43,180]. In this section, the focus is on demonstrating 

the compatibility of the tactile system with the commercial sEMG system, thereby 

confirming its reliability. To evaluate this, the maximum voluntary contraction (MVC) 

values are introduced derived from the physical exercises. These MVC values signify 

the muscle’s maximum force output and act as a reference point for comparing the 

performance of both systems. In Figure 5.6 below, the distribution of maximum 

voluntary contraction (MVC) values are illustrated based on the exercise performed 

and the equipment utilised. This visual representation offers insight into the Maximum 

Voluntary Contraction (MVC) values recorded during the experiments. MVC measures 

the maximum force or effort a muscle or muscle group can generate during a specific 

contraction task. Throughout the current study, MVC values were gathered from all 

participating volunteers.   

  

                (a)                                                           (b) 

Figure 5.6:  Illustration of the distribution of maximum voluntary 

contraction (MVC) values based on the exercise performed and the 

equipment used: (a) By using sEMG Sensor; (b) By using Tactile Sensor 
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In Figure 5.6 above the distribution of MVC values based on both the exercises 

conducted and the equipment used is presented, offering an overview of the MVC 

values recorded during my experiments. MVC represents the maximum force a muscle 

or muscle group is able to generate during a specific contraction task, and values were 

collected from all participants across the study. The comparison between the MVC 

values for wrist flexion/extension, hand open/close, and arm exercises using the 

sEMG and tactile sensor systems reveals distinct differences. Specifically, for wrist 

flexion/extension and hand open/close exercises, the sEMG sensor recorded higher 

values compared to the tactile sensor, indicating greater muscle activity detected by 

the sEMG system. Conversely, the tactile sensor exhibited lower MVC values across 

all exercises, suggesting a different level of sensitivity and response compared to the 

sEMG system. These variations underscore the importance of considering the specific 

requirements of each exercise when selecting the appropriate sensor technology, as 

differences in sensitivity and responses may impact the accuracy and interpretation of 

the recorded data. 

 

5.5.3 Indicator Assessment  

The results of the comparison between the commercial sEMG system and the soft 

tactile sensor system, based on the indicators, are presented in Table 5.4. These 

indicators provide valuable insights into the signal characteristics and the system’s 

reliability when employed for simple exercises, as conducted in the experiment. 
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Table 5.4: Comparison of Statistical Indicators for sEMG and Tactile Sensor Systems . (KC): Kendall Correlation; (SP): 

Spearman’s Correlation; (TE/sEMGE): Energy Comparison of Tactile and sEMG Sensor Systems; (CC): Cross -Correlation Coefficient; 

(PC): Pearson Correlation  

 

Measurement Type 

 

Statistical Measure 

 

Wrist Flexion 

 

Wrist Extension 

 

Hand Open 

 

Hand Close 

 

Arm Flexion 

 

Arm Extension 

 

 C 

Max 1 1 1 1 1 1 

Min -0.4597 0.4358 -0.0996 0.5069 -0.4154 0.1399 

µ 0.2702 0.7179 0.4502 0.7534 0.2923 0.5699 

ɕ 0.8427 0.3257 0.6349 0.2847 0.8172 0.4966 

 

SP 

Max 1 1 1 1 1 1 

Min -0.6089 0.5917 -0.1968 0.6805 -0.5808 0.1941 

µ 0.1956 0.7959 0.4016 0.8402 0.2096 0.5970 

ɕ 0.9289 0.2357 0.6909 0.1845 0.9127 0.4653 

 

TE/sEMGE 

Max 0.075133 0.061742 0.046046 0.059431 0.04965 0.0583 

Min 0.001624 0.024102 0.0058264 0.0034962 0.01004 0.0265 

µ 0.04019 0.036686 0.034947 0.036935 0.03082 0.03701 

ɕ 0.0262 0.005945 0.006792 0.004570 0.01109 0.00414 

 

 

CC 

Max 0.6695 0.9764 0.9632 0.9878 0.8723 0.9764 

Min 1.039e-04 0.0011 3.52e-04 0.0013 3.923e-4     0.0011 

µ 0.3383 0.4875 0.4819 0.4928 0.4412 0.4875 

ɕ 0.2746 0.2733 0.3013 0.2842 0.2900 0.2733 
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PC 

Max 1 1 1 1 1 1 

Min -0.0953 0.6522 -0.0472 0.4062 -0.6182 0.3023 

µ 0.4523 0.8261 0.4764 0.7031 0.1909 0.6511 

ɕ 0.6324 0.2008 0.6046 0.3428 0.9342 0.4028 
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Table 5.4 presents a detailed comparison of the performance of the sEMG system and 

the soft tactile sensor system across six types of movements: wrist flexion, wrist 

extension, hand open, hand close, arm flexion, and arm extension. The table includes 

various statistical indicators such as Kendall Correlation (KC), Spearman’s Correlation 

(SP), Energy Comparison (TE/sEMGE), Cross-Correlation (CC), and Pearson 

Correlation (PC). Each of these measures is reported with maximum (Max), minimum 

(Min), mean (µ), and standard deviation (ɕ) values. 

 endall Correlation ( C): Max values of 1 indicate a perfect correlation between the 

tactile sensor and sEMG signals for each movement type, demonstrating a strong 

agreement. 

Negative Min values suggest some level of discordance between the two systems, 

indicating situations where the sensor outputs deviate from each other (e.g., in wrist 

flexion and arm flexion). 

The mean (µ) and standard deviation (ɕ) provide a summary of consistency, showing 

how well the sensor systems agree overall, with wrist extension and hand close having 

higher mean correlations. 

Spearman’s Correlation (SP): Similar to Kendall, the Max values of 1 represent a 

perfect monotonic relationship, reflecting how the tactile sensor’s output and the 

sEMG data change together across movements. 

Negative Min values indicate inverse relationships for certain movements and the 

mean (µ) values show relatively strong monotonic correlation across movements, 

particularly for wrist extension and hand close. 

Energy Comparison (TE/sEMGE): This indicator measures the energy similarity 

between the two systems. Higher Max values imply that the tactile sensor’s energy 

output is comparable to the sEMG signals. 

The Min values show lower energy alignment for certain movements, such as wrist 

flexion and arm flexion, while the mean (µ) and standard deviation (ɕ) indicate overall 

energy comparison consistency across volunteers. 
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Cross-Correlation (CC): Max values close to 1 indicate strong temporal similarity 

between the tactile sensor and sEMG system outputs, showing that the signals are 

highly synchronised in time, particularly for movements like hand close and wrist 

extension. 

Min values near zero indicate less synchronisation in certain movements, while the 

mean (µ) and standard deviation (ɕ) reflect the overall temporal correlation 

performance. 

Pearson Correlation (PC): Max values of 1 denote a perfect linear relationship, 

suggesting a strong direct correlation between the two systems for all movement 

types. 

The Min values show some weak or negative linear correlations in movements like 

wrist flexion and arm flexion, while the mean (µ) values are generally high, with wrist 

extension and hand close showing the strongest linear correlations. 

 

Figure 5.7: The Comparison of Mean Values for Different Exercise 

Scenarios 

In Figure 5.7 above a visual representation of the mean values (µ) is presented for 

various exercise scenarios across different indicators. This chart provides a clear 

overview of the comparative analysis conducted in the current study. 
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5.6 Discussion and Implications 

In the discussion and implications section, the aim is to explore the significance of the 

correlation measurements provided in the table. These measurements, including 

Kendall Correlation (KC), Spearman Correlation (SP), Energy, Cross Correlation (CC), 

and Pearson Correlation (PC), were computed between EMG signals acquired from 

both sEMG sensors and Soft Tactile sensors. This analysis covers various muscle 

movements, such as wrist flexion, wrist extension, hand open, hand close, arm flexion, 

and arm extension. By examining these correlation measurements, it is possible to 

gain insights into the consistency and reliability of the data captured by the two sensor 

types across different muscle movements. Additionally, it is possible to explore 

potential implications for the usability and effectiveness of each sensor types in 

monitoring and interpreting muscle activity during different activities. 

a. Correlation Measurements 

The examination of correlation measurements between signals recorded by the two 

types of sensors provides valuable insights into how they relate to each other and their 

potential applications in assessing muscle activity and movement. A detailed analysis 

of these measurements was conducted, which are summarised in Table 5.4 and 

visually represented in Figure 5.6 below. Analysing correlation measurements 

between different types of sensors helps to improve the understanding of their 

strengths and weaknesses in evaluating muscle activity and movement. By comparing 

correlation coefficients, such as Kendall Correlation (KC), Spearman Correlation (SP), 

Cross Correlation (CC), and Pearson Correlation (PC), it is possible to determine how 

well surface EMG (sEMG) sensors and Soft Tactile sensors align in capturing muscle 

activity patterns. In particular, higher correlations indicate better agreement between 

sensor outputs, suggesting higher reliability and accuracy. Furthermore, to understand 

which sensors perform best under specific conditions or movements is crucial for 

effective sensor selection. 

b.  endall Correlation ( C) and Spearman Correlation (SP) 

The positive orientation of both KC and SP values across various muscle movements 

suggests a consistent trend of correlation between signals from the sEMG and Soft 

Tactile sensors. This consistency implies that the two sensor types are capturing 
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similar patterns of muscle activity during the analysed movements. However, it is 

important to note that the strength of correlation, as indicated by the magnitude of KC 

and SP values, may vary between different movements. For instance, movements with 

KC and SP values closer to 1 indicate a strong positive correlation between sensor 

signals, suggesting high agreement in muscle activity detection between the two 

sensor types. Conversely, movements with lower KC and SP values, albeit positive, 

may indicate weaker correlations and potentially more variability in the signals 

captured by each sensor type. Further, analysing the specific movements, where 

correlations are weaker, can provide insights into potential factors that influence 

sensor performance. What is more, differences in muscle group activation, movement 

complexity, or sensor placement could contribute to variations in correlation strength 

across different activities. Additionally, exploring the directionality of the correlation, 

especially in cases where KC and SP values are negative or close to zero, can offer 

valuable insights. Meanwhile, negative correlations may indicate inverse relationships 

between sensor signals, suggesting contrasting patterns in muscle activity detection.  

c. Energy Measurements 

Based on the data provided in Table 5.4, which illustrates measurements related to 

wrist flexion, wrist extension, hand open, hand close, arm flexion, and arm extension, 

insights can be derived into the energy levels inherent in the EMG signals across these 

movements. Across all measured movements, the maximum energy values appear to 

be relatively modest, suggesting that the EMG signals exhibit a generally low power 

level. However, it is crucial to interpret these energy values within context, which can 

be influenced by several factors, including the intensity of muscle contractions and the 

proximity of the sensors to the muscles being measured. 

It is also important to comprehend that the minimum, mean, and standard deviation 

values for each movement provide a comprehensive view of the energy distribution 

within the EMG signals. These metrics offer valuable insights into the variations and 

characteristics of the muscle activity recorded during the movements analysed. 

d. Cross-Correlation (CC) 

The Cross-Correlation (CC) values in Table 5.4 quantify the degree of similarity 

between the electromyography (EMG) signals collected by the surface EMG (sEMG) 



 

104 

and Soft Tactile sensors across various movements. The correlation coefficients range 

from nearly zero to one, with higher values indicating greater resemblance between 

the sensor outputs. Upon analysis, it was found that the minimum CC values clustered 

around zero for all movements. For instance, in movements, such as wrist flexion and 

arm extension, the minimum CC values were approximately 0.001, indicating 

significant divergence between the signals captured by the two sensor types during 

these movements. Conversely, the maximum CC values differed by movement, 

suggesting that the strength of agreement between sensor outputs varied depending 

on the specific motion being performed. For example, in movements, including wrist 

extension and hand closing, the maximum CC values approached 0.9764, indicating 

a high degree of similarity between the sensor outputs. This suggests that the signals 

captured by both sensor types were closely aligned during these movements. 

Accordingly, by examining the range of correlation values for each movement, insights 

are gained into when and how these sensors capture comparable vs. distinct EMG 

patterns. Movements with higher CC values suggest greater similarity in sensor 

readings, while movements with lower CC values imply more variability between 

sensor outputs. 

e. Pearson Correlation (PC) 

The Pearson Correlation (PC) coefficients provided in Table 5.4 offer valuable insights 

into the relationship between the electromyography (EMG) signals captured by the 

surface EMG (sEMG) and Soft Tactile sensors. Upon examining the data, positive PC 

values could be observed ranging from approximately 0.2 to 0.9, indicating that 

heightened muscle activity detected by one sensor corresponds to increased activity 

measured by the other. This suggests a consistent alignment in the muscle activity 

patterns detected by both sensor types across various movements analysed. While 

these positive correlations are promising, it is essential to explore deeper into their 

implications and variations. It was also noted that while some movements exhibited 

strong correlations between the sensor outputs, with PC values approaching 0.9, 

others presented weaker correlations, with PC values of approximately 0.2 to 0.4, 

suggesting slight differences in muscle activation patterns. This variability underscores 

the importance of understanding the context-specific nature of sensor readings and 

their interpretive nuances. 
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Based on the correlation measurements provided in Table 5.4, the potential variability 

in correlation values is acknowledged across different movements and individuals. 

This variability is evident in the range of correlation coefficients observed for each 

movement and sensor type. For instance, the Pearson Correlation (PC) coefficients 

range from approximately 0.2 to 0.9 across various movements, indicating differences 

in the strength of correlation between EMG signals captured by surface EMG (sEMG) 

and Soft Tactile sensors. In relation to this variability, the plan is to conduct further 

statistical analysis to precisely quantify the extent of variability in correlation values, 

which involves comparing correlation coefficients using appropriate statistical tests to 

determine the significance of the observed differences. By conducting rigorous 

statistical analysis, the aim is to gain a deeper understanding of the factors that 

contribute to variability in correlation measurements, thereby enhancing the 

robustness and reliability of the findings. 

In addition, based on the experimental data analysis conducted in the current study, 

several key outcomes and findings emerged, highlighting the performance and 

reliability of the sEMG and soft tactile sensor systems in capturing muscle activity and 

tactile feedback during dynamic exercises. The outcomes of the data analysis are 

presented below: 

• Strong Correlation between Sensors: The analysis revealed a robust correlation 

between soft tactile sensors and surface electromyography (sEMG) recordings, 

indicating the reliability of tactile feedback as an indicator of muscle activity 

during dynamic exercises. 

• Validation of Measurement Techniques: Validation techniques, including 

Kendall, Spearman, Energy, Cross-Correlation, and Pearson Correlation, 

confirmed the accuracy and consistency of data measurements, ensuring the 

reliability of the study’s conclusions. 

• Documentation of Participant Demographics: Detailed documentation of 

participant demographics enhanced the context for result interpretation, 

providing valuable insights into the representativeness of the study sample. 

• Implications for Various Fields: The study’s findings present significant 

implications for rehabilitation, sports science, and human-machine interfaces, 
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offering insights into motor rehabilitation, athletic performance optimisation, and 

improved human-computer interaction interfaces. 

5.7 Muscle Activity Analysis and Rehabilitation Potential: Insights from 

Parkinson’s Disease and Stroke Individuals 

Parkinson’s disease and strokes are neurological conditions known to profoundly 

affect motor function and coordination [2,18,182]. Understanding the specific motor 

control deficits associated with these conditions is essential in developing effective 

rehabilitation strategies. In this section we explore muscle activity patterns during hand 

movements in individuals with Parkinson’s disease and stroke, utilising a newly 

designed soft tactile sensor and advanced signal processing techniques. The aim is 

to assess the efficacy of this sensor in capturing muscle activity in real patients and to 

characterise the motor control differences between individuals with Parkinson’s 

disease, stroke survivors, and healthy controls. Specifically, the focus lies on analysing 

forearm and wrist muscle activity during tasks involving gripping an apple and 

manipulating a key, with emphasis on the dominant hand. To achieve the research 

objectives, participants who met the inclusion criteria for Parkinson’s disease or stroke 

rehabilitation were recruited. Muscle activity signals were recorded during the 

specified tasks and processed using MATLAB to extract relevant information. The 

results were then plotted to visualise muscle activity patterns. 

By comparing the results obtained from patients with Parkinson’s disease and stroke 

individuals to those of healthy subjects, alongside testing my tactile sensor, the aim is 

to elucidate the distinct ways that each condition impacts motor control. This 

investigation holds promise for providing valuable insights into the underlying 

mechanisms of motor impairments in Parkinson’s disease and strokes, thereby 

informing the development of targeted rehabilitation interventions to enhance motor 

function and improve the quality of life for affected individuals. Additionally, the 

statistical measurements presented in Table 5.5 offer a quantitative overview of 

muscle activity levels and variability across individuals, serving as a foundational 

reference for understanding the observed patterns. Furthermore, Figures 5.27(Wrist 

Muscle Activity) and 5.28 (Forearm Muscle Activity) will be shown at the end of this 

chapter, visually depict the muscle activity patterns observed in the study, providing 
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additional insights into the differences in motor control mechanisms between 

individuals with neurological conditions and healthy controls. 

5.7.1 Experimental Setup and Exercise Protocol 

The experimental setup involved the recruitment of participants who met the inclusion 

criteria for Parkinson’s disease or stroke rehabilitation, as well as a healthy subject. 

One participant had Parkinson’s disease, aged 71, with a height of 181cm and weight 

of 81kg, while the other participant had experienced a stroke, aged 68, with a height 

of 170cm and weight of 75kg. The healthy subject was aged 65, with a height of 173cm 

and weight of 85kg. Specifically, all participants used their right hand for the 

experiment. The participants sat comfortably in standard chairs with armrests, 

positioning their right arm on a table. Tactile sensors were individually affixed to their 

forearms and wrists to capture muscle activity during specific hand movements. See 

Figures 5.7 to 5.11 for the details of the setup. 

Each participant underwent ten repetitions of the experiment, with each repetition 

lasting 30 seconds. Initially, they gripped an apple, while baseline signals from forearm 

muscles were recorded at rest, followed by recording signals while gripping the apple. 

Subsequently, they manipulated a key for a simulated unlocking task, with baseline 

signals from wrist muscles recorded at rest before the task; the protocol was repeated 

ten times for each participant using their right hand. Recorded signals were processed 

using MATLAB, employing signal processing techniques, such as filtering to extract 

relevant information. The processed signals were then plotted using MATLAB, with 

each plot corresponding to a specific hand movement, facilitating visualisation and 

comparison of muscle activity patterns. The analysis of the plotted signals aimed to 

identify trends, variations, and abnormalities in muscle activity, providing insights into 

motor control and coordination differences between participants with Parkinson’s 

disease, stroke survivors, and a healthy individual. 

The study strictly adhered to the research’s ethical guidelines to ensure participant 

safety, confidentiality, and privacy throughout the experimental process. Potential risks 

were minimised, and participants were provided with appropriate support and 

information. The tactile sensor samples measuring 4×4cm² for testing and validation 

purposes are referenced in Figure 4.8 from the previous chapter. 
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(a)                                           (b) 

Figure 5.8: Wrist Muscle Activity Measurement Setup for Key Use in 

Parkinson’s Patient. (a)Rest Wrist Muscle Activity; (b) Wrist Muscle 

Activity During Key Use  

            

                                           (a)                                                     (b) 

Figure 5.9: Forearm Muscle Activity During Grasping an Apple for 

Parkinson’s Patient. (a)Rest Forearm Muscle Activity;  (b) Frearm Muscle 

Activity During Grapping an Apple  
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(a)                                     (b) 

Figure 5.10: Wrist Muscle Activity During Key Use for Stroke Patient . 

(a)Rest Muscle Activity; (b) Wrist Muscle Activity During Key Use  

 

 

                                          

(a)                                        (b) 

Figure 5.11: Forearm Muscle Activity During Grasping an Apple for 

Parkinson’s Patient. (a)Rest Forearm Muscle Activity;  (b) Forearm Muscle 

Activity During Grasping an Apple  
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5.7.2 Experimental Results 

Below are the plots depicting the raw signals followed by the filtered signals obtained 

from the experiments: 

a) Raw Signal 

The raw signals captured directly from the sensors during the hand movements of the 

participants are depicted in the plots. These raw signals represent the unprocessed 

data, showcasing the initial muscle activity patterns recorded during the gripping of the 

apple and manipulation of the key (see Figures 5.12 to 5.19). 

  

Figure 5.12: Wrist Muscle Activity During Key Use for Healthy Subject  

 

  

 

Figure 5.13: Forearm Muscle Activity During Grapping an Apple for 

Healthy Subject 
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Figure 5.14: Wrist Muscle Activity During Key Use for Parkinson ’s Patient 

 

  

Figure 5.15: Forearm Muscle Activity During Grapping an Apple for 

Parkinson’s Patient 
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Figure 5.16: Wrist Muscle Activity During Key Use for Stroke Patient  

 

 

  

 

Figure 5.17: Forearm Muscle Activity During Grapping an Apple for Stroke 

Patient 

 

The results are presented of fundamental tests conducted on the designed soft tactile 

sensor for detecting two types of muscle activities. Figures 5.12 and 5.13 illustrate 

muscle activity tests using the tactile sensor on a healthy subject. Subsequently, 

Figure 5.14 illustrates muscle activity tests using the sensor on a Parkinson’s patient, 
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depicting phases of rest and key use on the wrist muscle. Similarly, Figure 5.15 

focuses on forearm muscle activity in a Parkinson’s patient. Figure 5.16 demonstrates 

muscle activity tests on a Stroke patient, showcasing resting muscle activity and key 

use. Continuing from Figure 5.16, Figure 5.17 presents forearm muscle activity tests 

on a Stroke patient. In all graphs, the x-axis represents time, and the y-axis represents 

resistance to change in the tactile sensor, indicating muscle activity levels. To illustrate 

the disparity in muscle activities among all subjects, Figure 5.18 showcases the 

differences observed during distinct tasks. 

(a)                                                                              (b) 

Figure 5.18: (a) Wrist Muscle Activity Across Subjects During Key Use; 

(b) Forearm Muscle Activity Across Subjects During Grasp of an Apple  

     

The observed differences in muscle activity patterns among individuals with 

Parkinson’s disease, stroke, and healthy controls have significant implications for 

rehabilitation strategies. For instance, the lower mean muscle activity levels observed 

in the Parkinson’s individual, coupled with higher variability, suggest specific 

challenges related to motor output and control mechanisms inherent to Parkinson’s 

disease. Tailored rehabilitation interventions could be developed based on these 

findings to address the unique motor deficits associated with each condition. For 

Parkinson’s patients, interventions may focus on strategies to enhance motor output 

and mitigate variability in muscle activation. In contrast, stroke survivors may benefit 

from interventions aimed at capitalising on preserved motor function or compensatory 

mechanisms. By understanding the distinct patterns of muscle activity and their 
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underlying mechanisms, clinicians are able to personalise rehabilitation programmes 

to target specific abnormalities identified in muscle activation.  

To further establish confidence in these results and address concerns regarding the 

“non-human” appearance of the graphs, several validation tests were performed: 

• Sensor Calibration: Each tactile sensor was calibrated before the experiments 

to eliminate noise, environmental factors, and variation in sensor sensitivity. 

This ensured that the recorded resistance changes directly corresponded to 

muscle activity. This calibration step was essential to eliminate systemic errors 

that could distort the data. 

• Multiple Trials and Repetition: To ensure consistency, multiple trials were 

conducted for each participant under controlled conditions. The repeatability of 

the muscle activity patterns confirmed the validity of the captured signals. 

• Noise Reduction and Signal Processing: After the raw data was collected, 

filtering techniques (The bandpass Butterworth filter detailed in section 5.5.1) 

were applied to remove non-physiological noise and other artefacts, ensuring 

the remaining data reflected actual muscle activity. 

• Normalisation and Standardisation: Normalisation techniques were applied to 

account for inter-subject variability, such as differences in muscle mass or 

sensor placement. This allowed for the meaningful comparison of data across 

subjects. 

• Statistical Significance: A paired T-test was performed to ensure that 

differences in muscle activity between  (Healthy, Parkinson, and Stroke) were 

statistically significant, validating the observed patterns. 

Additionally, the 'non-human' appearance of the raw signals can be attributed to two 

main factors: a) The raw data was unprocessed, meaning it contained high levels of 

detail and small fluctuations in muscle activity, which might appear irregular or non-

human at first glance. However, after appropriate filtering and processing, the resulting 

patterns align with biological muscle contractions. b)The high sensitivity of the tactile 

sensors could pick up minute changes in muscle activity that may not be immediately 

visible but are significant in detecting subtle muscle movements, especially in patients 

with neurodegenerative diseases. 
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b) Filter the Signal 

As previously described in Section 5.2.3, a bandpass Butterworth filter was applied 

to improve signal quality. The filter settings, with a range of 40-100 Hz and a fourth-

order, were carefully chosen to match the sensor characteristics and isolate 

relevant muscle activity signals (refer to Figures 5.19 through 5.25 for 

visualisations of the filtered signals. 

 

 

 

Figure 5.19: Filtered Signals with Wrist Muscle Activity During Key Use 

for Healthy Subject  
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Figure 5.20: Filtered Signals with Forearm Muscle Activity During 

Grapping an Apple with Healthy Subject  

 

Figure 5.21: Filtered Signals with Wrist Muscle Activity During Key Use 

for Parkinson’s Patient  
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Figure 5.22 Filtered Signals with Forearm Muscle Activity During Grapping 

an Apple Parkinson’s Patient  

 

 

Figure 5.23: Filtered Signals with Wrist Muscle Activity During Key Use 

for Stroke Patient  
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Figure 5.24: Filtered Signals with Forearm Muscle Activity During 

Grapping an Apple for Stroke Patient  

 

 

 

 

Figure 5.25: Bode plot of the 40-100 Hz bandpass filter used in the analysis 
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Figure 5.19: Filtered tactile signals during rest and movement phases (40-100 Hz 

bandpass) for a healthy individual using a key. The rest signal (in blue) shows more 

distinct oscillations compared to the smoother movement signal (in red), suggesting a 

higher tactile response during resting. In Figure 5.20 Filtered tactile signals for a 

healthy individual grasping an apple. The movement signal (red) presents more 

pronounced peaks and troughs, contrasting with the rest signal (blue), which shows 

more consistency, indicating varied tactile responses during dynamic tasks. 

Figure 5.21 Filtered tactile signals for a Parkinson's patient using a key. The movement 

signal (red) displays sharper fluctuations toward the end, with the rest signal (blue) 

maintaining a steady lower amplitude, reflecting challenges in motor control and 

coordination. While in Figure 5.22 Filtered tactile signals for a Parkinson's patient 

grasping an apple. Both rest and movement signals exhibit increased variability, 

though the movement signal (red) has slightly greater oscillations, indicating irregular 

motor responses during dynamic tasks. Figure 5.23 Filtered tactile signals for a stroke 

patient using a key. The movement signal (red) spikes significantly around 150 

seconds, while the rest signal (blue) remains more stable, highlighting delayed motor 

activation and recovery challenges in stroke patients. 

While Figure 5.24 Filtered tactile signals for a stroke patient grasping an apple. The 

movement signal (red) exhibits stronger variations compared to the rest signal (blue), 

with sharp initial deviations, reflecting impaired motor control and recovery during 

dynamic tasks post-stroke. 

Figure 5.25 Bode plot of the 40-100 Hz bandpass filter used in the analysis. The 

magnitude response shows minimal attenuation across the passband, while the phase 

response gradually declines, demonstrating stable filter performance suitable for 

isolating relevant muscle activity frequencies. 

To illustrate the disparity in muscle activities among all subjects, Figures 5.26 and 5.27 

showcase the differences observed during distinct tasks. 
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Figure 5.26: Wrist Muscle Activity Across Subjects During Key Use  

 

Figure 5.27: Forearm Muscle Activity Across Subjects while Grapping an 

Apple 
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Figure 5.26 Filtered tactile signals (40-100 Hz bandpass) during a key use task for 

healthy, Parkinson's, and stroke subjects. The healthy signal (green) shows relatively 

consistent low-amplitude oscillations, while the Parkinson's signal (red) displays a 

large deviation around 150 seconds, indicating difficulty in motor control. The stroke 

signal (blue) also exhibits irregular patterns but with a lower amplitude, suggesting a 

more muted response compared to Parkinson's. 

In Figure 5.27 Filtered tactile signals during the task of grasping an apple for healthy, 

Parkinson's, and stroke subjects. The healthy signal (green) has significantly higher 

peaks and troughs, showing stronger muscle activation during the task. In contrast, 

the Parkinson's (red) and stroke (blue) signals remain relatively flat with minor 

oscillations, indicating reduced motor engagement or impaired motor function in 

comparison to the healthy individual. 

The comparison of tactile signals between healthy individuals and patients with 

Parkinson's and stroke during the key-use and apple-grasping tasks reveals clear 

differences in motor control and muscle activity. Healthy participants exhibit consistent 

and robust muscle responses, indicating smooth motor function. In contrast, 

Parkinson's patients demonstrate larger fluctuations and irregularities in muscle 

activity, particularly toward the end of tasks, suggesting challenges with motor control. 

Stroke patients display weaker and more muted signals, reflecting impaired or delayed 

motor activation. Overall, these findings indicate that both Parkinson's and stroke 

patients have diminished motor responses compared to healthy individuals, especially 

during dynamic tasks. 

 

5.7.3 Analysis of Muscle Activity Patterns and Clinical Implications 

a. Data Collection and Measurement Techniques 

In this section, muscle activity patterns were investigated in individuals with 

Parkinson's disease, stroke, and healthy controls during specific motor tasks. To 

quantitatively analyse these patterns, data were collected using a novel tactile sensor 

designed for this purpose. The sensor allowed the possibility to measure muscle 
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activity in both forearm and wrist muscles, providing valuable insights into motor 

control mechanisms underlying these neurological conditions (see Table 5.5 for 

statistical measurements of muscle activity). In Figures 5.28 and 5.29, which will be 

presented later in this section, the muscle activity patterns observed for (Healthy, 

Parkinson's, and Stroke) are illustrated during key motor tasks. These figures provide 

visual representations of the mean muscle activity levels and variability within each 

individual, offering further insights into the distinct patterns of muscle activity among 

the individuals and identifying any significant differences or similarities between them. 

 

Table 5.5: Statistic Measurement with Different Muscle Groups 

 

Statistics Measurement 

Forearm Muscle Activity Wrist Muscle Activity 

Healthy Parkinson Stroke Healthy Parkinson Stroke 

Mean 2.1 1.8 1.3 2.1 1.8 1.3 

Standard Deviation 0.06 0.1 0.03 0.06 0.6 0.08 

 

The table above (5.5) presents statistical measurements of muscle activity in both 

forearm and wrist muscles for three individuals: Healthy individuals, those with 

Parkinson’s disease, and individuals who have experienced a stroke. Specifically, the 

mean muscle activity levels and standard deviations are compared across these 

individuals for both muscle groups. 



 

123 

 

Figure 5.28: Wrist Muscle Activity  

 

Figure 5.28 shows the muscle activity patterns in the wrist for healthy individuals, 

Parkinson’s patients, and stroke patients during a key-use task. Healthy individuals 

(blue markers) exhibit the highest average muscle activity, while stroke patients (green 

markers) show the lowest. Parkinson’s patients (red markers) have muscle activity 

between the two individuals. Error bars, representing standard deviation, indicate the 

variability of muscle activation within an individual. Parkinson’s patients demonstrate 

the greatest variability, suggesting less consistent muscle control during the task. In 

contrast, healthy individuals have moderate variability, while stroke patients exhibit the 

lowest variability, reflecting more stable but lower muscle activity. 
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Figure 5.29:  Forearm Muscle Activity  

 

Figure 5.29 illustrates the forearm muscle activity of healthy, Parkinson’s, and stroke 

patients during a task involving grasping an apple. As with wrist activity, healthy 

individuals show the highest average muscle activity (blue), Parkinson’s patients show 

intermediate levels (red), and stroke patients display the lowest (green). The error bars 

indicate the standard deviation, with Parkinson’s patients again showing the largest 

fluctuations in muscle activation, highlighting inconsistency in motor control. The 

healthy individual shows more stable but slightly varying muscle activity, while the 

stroke individual maintains lower muscle activity with minimal variability. 

By examining both figures, it is clear that healthy individuals exhibit the highest muscle 

activity, both in the wrist and forearm, with moderate variability. Parkinson’s patients, 

while displaying intermediate muscle activity, show the highest variability, indicating 

fluctuating muscle control. Stroke patients, with the lowest muscle activity and minimal 

variability, reflect reduced and consistent motor control deficits. 

b. Analysis of Forearm and Wrist Muscle Activity 

Significant differences in muscle activity were noted between the individuals during 

the analysis of forearm muscles. Specifically, the Parkinson’s individual displayed 

lower mean muscle activity levels compared to the healthy individual, accompanied by 

greater variability in activity. This suggests a reduction in motor output and impaired 
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motor control mechanisms, characteristic of Parkinson’s disease. Conversely, the 

Stroke individual’s mean muscle activity level was closer to that of the healthy 

individual, suggesting relatively preserved motor function or the use of compensatory 

mechanisms. However, variability in the Stroke individual’s muscle activity remained 

low, potentially reflecting a more stable, but restricted, motor output due to localized 

injury. 

When analysing wrist muscle activity, both the Parkinson’s and Stroke individuals 

exhibited lower mean muscle activity compared to the healthy individual. As observed 

in the forearm analysis, the Parkinson’s individual demonstrated the highest variability 

in wrist muscle activity, reflecting the characteristic motor fluctuations of Parkinson’s 

disease. On the other hand, the Stroke individual showed more stable wrist muscle 

activation patterns, likely due to localised stroke injury and motor adaptations, but with 

less overall activation compared to the healthy individual. 

c. Limitations of the Study 

It is important to acknowledge several limitations that may have influenced the findings 

and their broader applicability. 

• Small Sample Size: The study only included three individuals representing the 

Healthy, Parkinson’s, and Stroke conditions. This small sample size 

significantly limits the generalisability of the results, as it is difficult to draw broad 

conclusions or make statistically powerful comparisons across populations. The 

lack of a larger and more diverse sample means the results could be influenced 

by individual-specific factors rather than representing typical patterns of muscle 

activity in these conditions. This limitation also reduced the statistical power of 

t-tests, making it harder to detect smaller yet potentially significant differences 

between the groups. 

• Variability in Participant Characteristics: Age differences, physical fitness, 

disease stage, and medication among the participants could have skewed the 

results. For instance, a Parkinson’s patient at a different stage of the disease 

or under a different medication regimen may exhibit different muscle activity 

patterns. Similarly, the stroke patient's recovery stage or functional abilities may 

not be fully representative of all stroke survivors. These variations made it 
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difficult to attribute observed differences solely to the condition under study, as 

confounding factors could have influenced muscle activity patterns. 

• Technical Limitations of the Tactile Sensor: The novel tactile sensor used in this 

study presented challenges in terms of placement accuracy and reliability of 

measurements. Factors such as variations in skin impedance, sensor 

misalignment, and environmental noise may have introduced errors, 

contributing to the variability in the results. For instance, slight differences in 

sensor placement could have led to inconsistent readings across individuals, 

particularly when comparing muscle activity between tasks or groups. These 

technical issues limited the precision of the data and could explain some of the 

higher variability observed in the Parkinson’s group. 

 

d. Comparative Analysis of Muscle Activity Patterns 

In this section, a comparative analysis is presented of muscle activity patterns 

observed during key motor tasks among healthy individual, Parkinson’s disease, and 

Stroke patients. Utilising t-tests [183], an assessment was made of the differences in 

muscle activation between healthy individuals and those with neurological conditions 

across two tasks: key use and apple grasping. Through this analysis, the aim is to 

clarify clear patterns of muscle activity and their clinical implications for individuals with 

Parkinson’s disease and Stroke. Overall, the t-tests conducted to compare healthy 

individuals with Parkinson’s disease or Stroke patients for both key use and apple 

grasping tasks revealed significant differences in muscle activity patterns, as shown 

in Table 5.6 below. 

 

Table 5.6: T-test Results: Key Use and Apple Grasping Tasks  

Test Type (T-test)  ey Use Apple Grasping 

Healthy vs. Parkinson 0.4208 1.4318 

Healthy vs. Stroke 0.7382 1.2916 
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•  ey Use Task: 

For the key use task, the t-statistics were found to be 0.4208 for the Healthy vs. 

Parkinson’s comparison; and 0.7382 for the Healthy vs. Stroke comparison. These 

results suggest that healthy individuals exhibit higher muscle activity levels compared 

to both Parkinson’s disease and Stroke patients during key use tasks. 

• Apple Grasping Task: 

Similarly, for the apple grasping task, the t-statistics were calculated as 1.4318 for the 

Healthy vs. Parkinson’s comparison, and 1.2916 for the Healthy vs. Stroke 

comparison. These findings imply that healthy individuals demonstrate higher muscle 

activity levels than both Parkinson’s disease and Stroke patients during apple grasping 

tasks (see Figure 5.30). 

 

Figure 5.30: T-test Results: Key Use and Apple Grasping Tasks  

 

The accompanying plot shows the t-test results for key use and apple-grasping tasks. 

Figure 5.30 compares muscle activity levels in healthy individuals with those in 

Parkinson’s and Stroke patients across both tasks. The results highlight significant 

differences in muscle activity patterns, with Parkinson’s and Stroke patients showing 

lower muscle activity than healthy individuals. Understanding these differences is 
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crucial for developing tailored rehabilitation strategies for people with neurological 

conditions. The lower muscle activity in Parkinson’s and Stroke patients during key 

use and apple-grasping tasks can be explained by several factors: 

• Motor Neuron Degeneration in Parkinson’s Disease: Parkinson’s affects 

dopaminergic neurons, which disrupts motor control, leading to reduced and 

variable muscle activation [1,2]. Bradykinesia and rigidity further reduce muscle 

activity in fine motor tasks. 

• Impaired Motor Control in Stroke: Stroke damages brain areas responsible for 

motor control, weakening neural signals to muscles. This results in lower 

muscle activity and poor coordination in controlled tasks [28]. 

• Muscle Weakness and Atrophy: Both conditions can lead to muscle disuse, 

causing atrophy and weakness, which lowers muscle strength and activity in 

tasks like grasping and key use [14]. 

• Altered Neuromuscular Function: Tremors and rigidity in Parkinson’s, along with 

stroke-related spasticity, disrupt normal muscle activation patterns, making fine 

motor tasks less efficient [165,114]. 

• Compensatory Mechanisms: Motor deficits often lead patients to rely on 

compensatory strategies, which can further alter muscle activity during tasks 

[164,4]. 

5.7.4 Clinical Implications and Future Research Directions 

• Mechanisms Underlying Muscle Activity Differences 

The differences in muscle activity observed between individuals with Parkinson’s 

disease, Stroke, and healthy controls stem from distinct neurophysiological 

mechanisms. In Parkinson’s disease, motor deficits such as bradykinesia and rigidity 

are due to degeneration of dopaminergic neurons in the substantia nigra, disrupting 

motor control circuits in the basal ganglia. This neural degeneration leads to abnormal 

motor output and variability in muscle activation patterns, reflecting motor fluctuations 

characteristic of the disease [6,56,176,68]. 

For Stroke patients, damage to motor pathways, such as the motor cortex and 

corticospinal tract, results in diminished neural input to muscles. This leads to lower, 

more stable muscle activation, likely reflecting compensatory mechanisms or use of 
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spared circuits, rather than true recovery of motor function [99]. In contrast, healthy 

individuals demonstrate higher muscle activity with moderate variability, indicative of 

efficient motor unit recruitment and smooth motor control during tasks [100,19]. 

• Clinical Implications and Rehabilitation Strategies 

These distinct muscle activation patterns have important implications for rehabilitation. 

For Parkinson’s disease, therapy should aim to enhance motor control consistency 

and reduce variability. Approaches such as motor learning-based therapies, structured 

exercise programmes, and interventions that support dopamine levels may help 

mitigate motor fluctuations. Additionally, deep brain stimulation (DBS) can modulate 

abnormal neural activity, potentially improving motor output [7,114]. 

In Stroke patients, rehabilitation may focus on strengthening weak muscles and 

utilising preserved motor pathways. Techniques like task-specific training and 

neuroplasticity-driven therapies, including constraint-induced movement therapy 

(CIMT) and functional electrical stimulation (FES), may help promote the 

reorganisation of motor circuits and more normal muscle activation [167,176]. 

• Future Research Directions and Technological Advancements 

Further research is essential to understand the neurophysiological mechanisms 

underlying these muscle activity patterns. Techniques such as electromyography 

(EMG) and functional MRI (fMRI) can provide insights into motor unit recruitment and 

brain activity changes, deepening understanding of motor control deficits [46,184].  

Longitudinal studies tracking muscle activity changes over time and in response to 

rehabilitation will help assess the effectiveness of different interventions, offering 

insights into the progression of muscle activation patterns and optimal timing for 

interventions [185,44]. 

Advancements in sensor technology and AI-driven data processing present new 

opportunities for precise monitoring. Wearable devices with real-time biofeedback 

could enable continuous monitoring during rehabilitation, providing personalised 

feedback and supporting adaptive rehabilitation programmes for individuals with 

Parkinson’s disease, Stroke, and other neurological conditions. 
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5.8 Conclusion 

In conclusion, the current study has demonstrated a robust correlation between 

electromyography (EMG) signals obtained from surface EMG (sEMG) sensors and  

soft tactile sensors across various muscle movements. Notably, hand close and arm 

flexion movements exhibited particularly strong correlation values, highlighting the 

efficacy of both sensor types in accurately assessing muscle activity. This compatibility 

extends to wrist flexion and extension movements, further emphasising their utility in 

this regard. Even though maximum energy values were relatively low across all 

movements, it is imperative to acknowledge the influence of factors, such as muscle 

contraction intensity and sensor-to-muscle distance on these values. Additionally, the 

extent of agreement between the sensors, as indicated by cross-correlation values, 

varied across different movements, indicating movement-specific compatibility. The 

implications of the current findings are substantial, particularly in the domain of 

affordable soft tactile sensors for understanding muscle activity.  

In summary, the positive correlations observed between EMG signals from sEMG and 

soft tactile sensors underscore the potential utility of tactile sensors in assessing 

muscle activity. This integration of sensor technologies presents exciting prospects for 

future advancements in healthcare, sports performance monitoring, and human-

machine interfaces. Additionally, the insights gleaned from the series of experiments 

using the currently designed tactile sensor to measure muscle activity during specific 

tasks have provided valuable insights into motor control and coordination differences 

among individuals with varying health conditions. In the second section of the chapter, 

the participation of volunteers representing healthy individuals was enlisted, as well as 

those diagnosed with Parkinson’s disease and Stroke.  

The findings regarding distinct patterns of muscle activation during tasks such as 

grasping an apple and using a key, as evidenced by changes in resistance in the wrist 

and forearm muscles, underscore the sensitivity and specificity of the tactile sensor in 

capturing subtle changes in muscle activity. Moreover, the potential for tailored 

exercises targeting specific muscle groups to improve motor function and coordination 

in individuals facing motor challenges due to Parkinson’s disease or stroke is 

significant. In conclusion, the current study contributes valuable insights into the 

assessment and improvement of motor control and coordination in individuals with 
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neurological conditions. These findings have implications for the development of 

personalised rehabilitation strategies tailored to specific muscle activation patterns, 

ultimately enhancing the quality of life for affected individuals. 
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Chapter Six: Conclusion and Future Work 

 

6.1 Conclusions 

In this PhD study, various aspects of tactile sensors and their applications were 

explored, focusing on upper limb motion and muscle activity measurement. The design 

and implementation of a stretchable tactile sensor specifically tailored for the upper 

limb align with earlier research into wearable and flexible sensors for biomechanics 

and rehabilitation. Previous studies have explored the integration of soft sensors for 

tracking muscle activity and movement in upper limbs, such as in sports science and 

assistive technologies. However, the use of common materials such as Eeon-Tex 

conductive fibre in this study offers a novel contribution, addressing the demand for 

affordable, flexible, and user-friendly sensors that can be seamlessly incorporated into 

textiles and wearable devices—a key consideration highlighted in earlier sensor 

research. 

The challenge of hysteresis nonlinearity in conductive fibre-based tactile sensors was 

addressed in this study using a backpropagation neural network (BPNN), which aligns 

with previous work aimed at improving the accuracy and performance of tactile 

sensors. Existing research has recognised the limitations posed by hysteresis in soft 

sensors, with several methods, such as hardware compensation and material 

improvements, being explored. This study, however, builds upon those foundations by 

offering an advanced method to effectively reduce hysteresis error using BPNNs. This 

approach enhances the accuracy of soft tactile sensors and supports ongoing efforts 

to integrate artificial intelligence and machine learning in sensor technology for more 

precise applications, an area gaining increased attention in the field. 

 

Comparative studies with superficial electromyography (sEMG) sensors have been a 

common theme in evaluating novel muscle activity sensors. While previous studies 

demonstrated the superiority of sEMG in certain applications due to its well-

established accuracy, this research demonstrates that fabric-based tactile sensors can 

provide comparable performance in capturing muscle activity for specific movements, 

such as hand closing and arm flexion. This expands on prior work by offering a reliable, 
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affordable alternative for scenarios where high-end sEMG equipment may not be 

accessible or practical. 

 

6.2 Contribution to Existing Research 

The findings of this research contribute to the broader body of work on soft robotics, 

wearable sensors, and neuromuscular activity monitoring. While past research has 

highlighted the potential of soft sensors in rehabilitation and human-computer 

interaction, this study’s focus on addressing hysteresis nonlinearity and validating a 

solution for muscle activity sensing extends our understanding of how such sensors 

can be applied in real-world settings. The correlations observed between tactile sensor 

outputs and EMG signals align with previous findings but add value by demonstrating 

the viability of fabric-based sensors, which have not been explored as extensively in 

dynamic and complex tasks. 

Furthermore, the successful application of neural networks for improving sensor 

accuracy positions this work at the intersection of artificial intelligence and sensor 

technology, a growing area of interest in both academic and commercial fields. The 

implementation of BPNNs to mitigate sensor nonlinearity is a significant addition to the 

field, given that earlier research primarily focused on hardware solutions or algorithmic 

compensations. 

 

6.3 Addressing Research Objectives in the Context of Existing Literature 

This research successfully met its objectives by building upon and expanding previous 

studies related to tactile sensors and their applications, by: 

• Sensor Development: The development of the stretchable tactile sensor using 

Eeon-Tex conductive stretchable elastic fibre aligns with ongoing research on 

flexible, wearable sensors. However, the focus on upper limb applications and 

the integration of neural networks for improving sensor performance adds a 

new dimension to existing work. 
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• Hysteresis Nonlinearity: While hysteresis has been previously identified as a 

limitation in piezoresistive and fibre-based sensors, this study implemented a 

neural network-based solution that improves sensor accuracy under dynamic 

conditions, advancing previous methodologies. 

• Comparison to sEMG: Although sEMG remains the standard for muscle activity 

measurement, this research confirms that affordable fabric-based tactile 

sensors offer comparable performance for specific movements, providing a 

cost-effective solution that complements existing technologies. 

• Data Collection and Categorisation: The experimental setup was designed to 

collect and categorise muscle movements, with each movement recorded 

directly from participants and saved in Excel files for analysis. 

6.4 Conclusion and Future Directions in Relation to Prior Work 

The outcomes of this research significantly contribute to the future of tactile sensing 

and soft robotics in healthcare, rehabilitation, and beyond. The findings build on earlier 

research, highlighting the potential of wearable sensors to improve patient outcomes 

through flexible, affordable, and accurate monitoring of muscle activity. This PhD 

further advances the field by addressing technical limitations, such as hysteresis, and 

provides insights that are poised to inform the next generation of soft sensors for 

applications ranging from rehabilitation to sports monitoring. 

 

 ey Points: 

The stretchable tactile sensor, incorporating EeonTex conductive fibres and a Nylon-

Spandex fabric blend, effectively detects muscular contractions, especially in the 

upper limb. 

• It discerns between slow and fast hand movements, providing distinct signals 

corresponding to different speeds. 

• Its simplicity, affordability, and non-invasive operation make it suitable for 

various industries, including healthcare and machine control. 

• BPNN-driven methods reduce maximum hysteresis errors, improving the 

reliability of soft tactile sensors based on piezoresistive materials. 
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• The study underscores the importance of BPNNs in mitigating sensor 

nonlinearity and advancing tactile sensing capabilities for robotics, prosthetics, 

and human-computer interfaces. 

• Consistent positive correlations exist between EMG signals from sEMG 

sensors and soft tactile sensors during various muscle movements. 

• Hand close and arm flexion movements show strong agreement between 

sensor types, accurately capturing muscle activity. 

• Affordable soft tactile sensors hold promise for assessing muscle activity in 

healthcare, sports monitoring, and human-machine interfaces, suggesting.  

 

6.5 . Significance of the Findings 

This research underscores the importance of soft robotics and soft sensors in 

healthcare and rehabilitation, offering innovative solutions for individuals with mobility 

challenges. The insights gained from the study inform the development of future soft 

robotics technologies and contribute to advancements in healthcare and assistive 

devices. 
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Appendix  A 

 

Focus group: Recruitment Email  

 

Recruitment Email/Letter  

 

Dear [Name]: 

 

I am conducting a research study by using wearable soft sensors to recognise the 

gesture of the upper limb. The sensor is made up totally of fabric, you can wear it as 

a sleeve on the different parts of the upper limb: arm, forearm, and wrist to measure 

your muscle’s activities, it is easy to set up and fully safe to use. Participation will take 

[15-20 minutes only]. The data will be collected anonymously and confidentially and 

will be kept securely and protected from unauthorised, accidental, or malicious access. 

There are no known risks involved in this research. 

If you are interested in measuring your muscle strength, please contact the 

investigator. Further instructions will be followed in a separate email/Letter.  

 

If you have any queries, please do not hesitate to contact me. 

 

Gasak Abdul-Hussain 

PhD student/ Robotics 

SEE Building 

University of Salford 

g.c.abdul-hussain@edu.salford.ac.uk 

Mobile no. :07490671441 
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