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A B S T R A C T

The interactive behaviour of pigs is an important determinant of their social development and overall well-being. 
Manual observation and identification of contact behaviour can be time-consuming and potentially subjective. 
This study presents a new method for the dynamic detection of pig head to rear interaction using the Vision 
Transformer (ViT). The ViT model achieved a high accuracy in detecting and classifying specific interaction 
behaviour as trained on the pig contact datasets, capturing interaction behaviour. The model’s ability to 
recognize contextual spatial data enables strong detection even in complex contexts, due to the use of Gaussian 
Error Linear Unit (GELU) an activation function responsible for introduction of non-linear data to the model and 
Multi Head Attention feature that ensures all relevant details contained in a data are captured in Vision 
Transformer. The method provides an efficient method for monitoring swine behaviour for instance, contact 
between pigs, facilitating better livestock management and livestock welfare. The ViT can represent a significant 
improvement on current automated behaviour detection, opening new possibilities for accurate animal design 
and animal behaviour assessment with an accuracy and F1 score of 82.8 % and 82.7 %, respectively, while we 
have an AUC of 85 %.

Introduction

Pig behaviour influences both pork and financial profit by reflecting 
the health and growth state of the animals. Pigs need to be given close 
attention in order to have their behaviour monitored and recognized so 
it can be precisely managed [1]. Advancements in big data and tech-
nology are revolutionising livestock farming by enabling the tracking of 
animal activity through various sensors. These innovations incorporate 
artificial intelligence (AI), machine learning (ML), information and 
communication technology (ICT), and video surveillance. By leveraging 
AI and ML, these technologies are driving sustainable rural development 
and transforming the future of agriculture [2]. Three-axis acceleration 
sensors, for instance, are employed to track sows’ prenatal behaviour 
traits in real time [3]. In order to enable precision feeding, Radio Fre-
quency Identification (RFID) a technology that uses a radio device and a 
tag to identify an object, has replaced traditional ear tags, and pressure 
sensors are employed to track a sow’s movements during parturition [4,
5]. The applications of these in the real-world, reveals sensors’ draw-
backs are becoming more apparent [6]. The stress of putting on wear-
able devices on animals is another factor for consideration. There is an 
observed decline in pigs’ mobility and touch due to installation of some 
field sensors put on them to generate some metrics Maselyne et al. [7]. 

As a result, non-contact computer vision technology has increasingly 
been adopted in commercial pig farming to monitor daily activities such 
as feeding, fighting, and drinking [8,9].

Deep learning has gained popularity in the field of computer vision 
and has seen several successes with object detection and image classi-
fication [10–12]. Object detection is one of the hotspots in computer 
vision as an extension of the image classification job. It involves not only 
classifying objects in an image but also locating the object’s location and 
defining a bounding box around it. There are two types of deep learning 
algorithms for object detection: one-stage and two-stage. Two-stage 
techniques are required to construct an object-containing anchor box 
first, followed by fine-grained object recognition. With algorithms such 
as R-CNN used for representative models [13], though R-CNN [14], and 
SPPNet [15] possessed a higher accuracy but are slow in speed. On the 
other hand, single-stage algorithms, which are exemplified by the YOLO 
[16] series, SSD [17], and CenterNet [18], directly extract features from 
the network to predict the position coordinate of the object’s class 
probability. As a result, they have a better balance between detection 
speed and accuracy than two-stage models.

Several approaches, including automated surveillance, have been 
utilised to monitor pig behaviour, daily activities, and drinking and 
feeding patterns, with the aim of enabling early detection of welfare and 
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health issues [19,20].
Hence, this gives room for the possibility that pigs abnormal 

behaviour could be captured and monitored with computer vision sys-
tems. One of these approaches is the MOT (Multi-Object Tracking) used 
by some researchers to monitor animal behaviours. Gan et al. [21] 
created a Convolutional Neural Network (CNN), method to classify 
various social activities among preweaning piglets in the swine. Alameer 
et al. [22] employed integration of two deep-learning developed de-
tectors with the ability to track procedures in detection of pig’s stance 
and drinking habits. Though the approach might be expensive, Psota 
et al. [23] employed a probabilistic tracking detector to monitor indi-
vidual pigs in a group with identification of each pig critical spots with a 
CNN detector. While, Bhujel et al. [24]. developed a 
deep-learning-based pig posture and tracking technique to measure 
behavioural changes in pig environment with different greenhouse gas 
(GHG) levels, although Tu et al. study reveals that pig tracking and 
identification is still a major problem, considering target occlusion, light 
changing, incorrect ID tracking, and overlapping. For pig behaviour 
tracking applications, advanced detectors and MOT methods are being 
created in order to enhance the performance of the detector and tracker. 
Because existing methods rely on local receptive fields, they face limi-
tations in addressing the issue of occlusion, which presents some accu-
racy issues. Additionally, the current solutions rely on picture masking 
and the usage of bounding boxes, both of which are labour-intensive and 
less effective.

This study therefore employs the use of ViT in detection of contact 
behaviour in pig-pen, considering ViT advantages over existing models 
such as contextual capturing of image information including long-range, 
needs no requirement for object detection hence can assist in capturing 
pig behaviour instantly, its encoder-only architecture helps to reduce 
overfitting on images, and faster at making inference compare to exist-
ing models.

2. Literature review

This section of the study discusses relevant literature related to 
application of machine learning and deep learning technology in 
exploring and modelling pig aggressive behaviour.

Machine learning approach

Conventional approaches to animal behaviour monitoring mostly 
rely on human eye observation, which is labour-intensive and prone to 
subjectivity. Pig breeding businesses are using automated video recog-
nition techniques more often as a result of advancements in image and 
video processing technologies. Gronskyte et al. [25] used a 
charge-coupled device (CCD) camera to monitor the movement of pigs 
using an optical flow vector and fitted ellipse features in consecutive 
frames Kashiha et al. [26]. Weixing and Jin [27] used videos collected 
from the pigs’ sides to create a joint angle waveform for the purpose of 
detecting lameness behaviour. While Li et al. [28] studies on particle 
filtering are reliable enough to be used in pig tracking. Weixing and 
Zhilei [29] has introduced an automatic method to identify respiratory 
behaviour in pigs that is based on the Freeman Code algorithm. Pigs’ 
appearance in their typical living area has been used to identify a 
number of behaviours, including eating, drinking, and excretory 
behaviour, with a high degree of general sensitivity and accuracy Zhu 
et al. [30]. Using automatic video processing approaches based on fitted 
ellipse and dense trajectories features, it is possible to observe even the 
act of lying Nasirahmadi et al. [31].

More in-depth dimension information has been mined for behaviour 
identification in the last few years as 3D technology has advanced 
quickly. 3D point clouds and 2D depth photos are obtained using Kin-
ect2.0′s time of flight capability. Mittek et al. [32] collected pigs’ cloud 
point information from 3D point cloud photos and tracked it using 
ellipsoidal fitting, Lee et al. [33] had utilised 2D depth photographs to 

offer an automatic recognition technique for aggressive behaviour 
detection. Andriamandroso et al. [34] assessed the iPhone 5s’s Inertia 
Measurement Units (IMU) when it was placed on a cow’s neck and 
developed the Decision Tree (DT), which has a 91 % accuracy rate, 91.1 
% sensitivity, 90.9 % specificity, and 93.5 % precision in detecting 
grazing activity. 96.5 % accuracy, 53.1 % sensitivity, 99.4 % specificity, 
and 84.5 % prediction are obtained for rumination, whereas 87.6 % 
accuracy, 87.6 % sensitivity, 87.5 % specificity, and 79.1 % prediction 
are obtained for other activities. The effect of accel-
erometer/magnetometer placement (ear tag, collar (under neck), and 
halter) on the accuracy of grazing, standing, and ruminating classifica-
tions has been investigated by [35] The 3D accelerometer on the collar 
measures 12 Hz, while the accelerometer/magnetometer sample for the 
halter and ear tag measures 30 Hz. Stratified Cross Validation (SCV) and 
Leave-Out-One-Animal (LOOA) techniques were used to evaluate and 
apply the Random Forest Algorithm (RFA). As a matter of fact, the 
findings indicate that halters with Stratified Cross Validation (SCV) 
F-Scores of 91.4 %, 89 %, and 93.2 %, respectively, are superior for 
grazing, standing, and ruminating behaviours.

Barker et al. [36] compare the performance of decision tree built 
using an accelerometer measured at 12.5 Hz and a location to categorise 
actions (such as eating, non-feeding, and milking) on the one hand, and 
on the other, (lame and non-lame). For the analysis, a window size of 2 s 
was used. For milking, they received the following results for behaviour 
classification: accuracy: 94.2 %, sensitivity: 95.6 %, specificity: 94.0 %, 
and precision: 59.9 %. The non-feeding behaviour performances have 
the following parameters: sensitivity of 74.9 %, specificity of 91.3 %, 
accuracy of 80.8 %, and precision of 93.9 %. Performance metrics for 
feeding behaviour classification include 83.2 % accuracy, 83.5 % pre-
cision, 93 % specificity, and 65.3 % sensitivity. Additionally, they 
demonstrate that lame cows eat for shorter periods of time during the 
afternoon and throughout the day. [37], applied GPS data recorded at 
0.2 Hz in grazing, resting, and walking behaviours are classified using 
four machine learning models (Random Forest, Naïve Bayes, J48, and 
JRip) and data mining techniques to extract characteristics. With the 
help of 10-fold cross-validation, the evaluation was completed. In terms 
of average accuracy, JRip and Random Forest performed the best, with 
respective F-measures of 76 % and 77 % and average accuracy of 85 % 
and 83 %.

Deep learning application

[38] introduced a novel technique for cow detection using side view 
photos and lightweight convolutional neural networks. The final 
recognition rate of the system was 97.95 %.

[39] employed the YOLO model to identify cow targets in a set of 
side-view cow photos. They then classified each cow by optimising the 
convolutional neural network model, achieving 96.65 % accuracy in 
each individual cow recognition. [38] examined deep learning-based 
techniques for tracking, segmentation, position estimation, target 
recognition, and classification of various animal species, including pigs, 
chickens, goats, and cows.

[40] examined three cutting-edge automated multi-object tracking 
techniques on two different pig datasets; the experimental findings of 
assessment metrics show the efficacy and resilience of the three sug-
gested approaches on multi-object tracking systems. For individual pigs 
on a real farm, FairMOT obtains the best tracking performance with the 
suggested weighted-association technique. Zhang et al. suggested an 
automated multi-target tracking and detection system that works both 
during the day and at night for individual pigs. The evaluation’s overall 
results of 94.72 % precision, 94.74 % recall, and 89.58 % MOTA 
demonstrate that our technique is capable of reliably detecting and 
tracking many pigs in difficult situations. [41] developed an automated 
system for identifying social connections with recordings of the pig 
engagement, the time, and the nature of the social contact were all 
ascertained by utilising key point-based body part detection in 
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conjunction with an algorithm for pig tracking.
According to the aforementioned study, computer vision technology 

based on machine and deep learning has a wide range of interesting 
applications in agricultural science. However, deep learning for instance 
can increase the possibilities for animal production in agriculture. There 
are currently very few study publications on the detection and recog-
nition of pigs’ aggressive behaviours and movement features, as the field 
is still in its early stages of development. Pig aggression can persist for 
several seconds to minutes and is a complicated interaction activity, 
which is one of the primary causes. Despite the approaches that have 
been proposed for contact detection in livestock, challenges including 
occlusion still exist. Hence, there is a need for an optimal approach that 
will alleviate these challenges.

3. Method and material

3.1. Dataset description

The dataset used for this study is pig contact dataset [42]; We 
extracted 433 images, which includes a csv file that contains the label-
ling of contact and no contact between pigs. The images were normal-
ised with division by 255, the data preparation process include the 
augmentation with parameter settings such as horizontal flip, vertical 
flip, width shift range, height shift range, and nearest fill mode, this 
helps to provide more data point considering that 433 is a small sample 
size in image analysis, also image data generator was applied to ensure 
the images are being passed in batch size of 32 in training the Vision 
Transformer model.

3.2. Overview of ViT model

As highlighted in the previous section, a number of studies have used 
deep learning for contact detection in livestock with mixed results. 
Image classification is an unavoidable task in computer vision, this in-
volves assigning a label to an image based on its contents. Deep CNNs, 
such as YOLOv7 Mimura et al., [43], have long been used as the standard 
of practice for image classification.

Recent advances in transformer design, which was originally pre-
sented for natural language processing (NLP), have shown considerable 
promise in competitive picture classification problems. The Vision 
transformer model is a more recent innovation and builds upon the 
successes of the Transformer model. In this section a model using the ViT 
was developed.

The Vision Transformer (ViT) model architecture was revealed in a 
research paper titled "An Image is Worth 16×16 Words: Transformers 
for Image Recognition at Scale" by Dosovitskiy et al. [44].

Vision Transformer (ViT) outperforms CNNs while requiring signif-
icantly fewer computational resources for pre-training. The ViT is a vi-
sual model built on the architecture of a transformer initially intended 
for text-based operations. The ViT model represents an input image as a 
set of image patches, similar to how word embeddings are represented 
when using transformers to text, and predicts the image’s class labels 
directly. When trained on enough data, ViT outperforms a similar SOTA 
CNN with four times fewer CPU resources.

3.2.2. Vision transformers pig contact detection
As shown in Fig. 1, the pig contact dataset was received as a size of 

224 × 224 pixels and 3 colour channels (RGB) in A, then patch was 
created with the image divided into 16 by 16 patches in B. Given the 
image size, the result was in a 14 by 14 grid of patches, which resulted in 
a total of 196 patches, it was then passed into C for flattening into a 1D 
vector, which consists of 768 elements (16×16×3 = 768) and vectors 
then get linearly projected into a sequence of vectors, that’s known as 
embeddings.

In D the positional embeddings were added to each patch embedding 
in order to maintain the structure and spatial image information, it was 
then passed into E a special classification token known as [CLS] added at 
the beginning of the sequence, this makes our vectors equal to 197 (196 
patches + 1 [CLS] token), each of size 768. This played a crucial purpose 
in summarising the entire image information for classification purposes.

The resulting token is passed into F, the Transformer Encoder that 
makes possible the processing of the sequence, which aids analysing and 
understanding of our image data, then forwarded into G, [CLS] Token to 
extract features after processing through the transformer encoder. The 

Fig. 1. Vision Transformer (ViT) Architecture for Detecting Pig Contact Behavior.
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extracted features are passed into the MLP head (H) where the final 
application is decided and the output prediction (I) responsible for 
“Contact” or “No Contact”.

3.2.3. Transformer encoder in vision transformer
Considering that Transformer encoder plays a significant role in 

Vision transformer, hence it becomes important to decentralise how it 
works. The following steps are involved in the architecture of Trans-
former encoder as shown in Fig. 2:

Fig. 2. Vision Transformer (ViT) encoder for Detecting Pig Contact Behaviour.
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The A at the first and top layer of the transformer encoder receive the 
combined embeddings of shape 197 by 768. The input is then passed 
through the layer norm (B) then used to feed the Multi-Head Attention 
block. In the Multi Head Attention block, the input data are converted 
into 197 by 2304, with the use of a linear layer to get a mnv matrix (C). 
The mnv matrix (C) is then reshaped into 197 by 3 by 768 (D), and each 
of the matrices represent 197 by 768 (E).

These matrices (mnv) are thereafter reshaped into 12 by 197 by 64 to 
depict the 12 layers or attention heads (F). Once the matrices m, n, and v 
have been achieved, the attention operation is performed between the 
Multi Head Attention block. Then passed into (G) where attention 
softmax function is applied on the transpose n matrix by m matrix, and 
the obtained result is passed into (H) then multiplied by v matrix, then 
forwarded to (I) where the images are being restructured into 197 by 
768, then passed into (J), a linear layer with an input and output of 768. 
This is the processes involved in the Multi-Head Attention block, the 
obtained result is then added to skip connection to achieve the final 
output that go through the layer norm (K) again before being passed into 
the Multi-Layer Perceptron block (MLP) (L and M), that contains two 
different linear layers with a gaussian error linear unit that serve as the 
activation function in a non-linear situation. The obtained results are 
then added to the skip connection to achieve the final result (N) from a 
single layer of the Transformer encoder.

3.2.3. Further Breakdown of visual transformer detection process
The pig images are received as fixed-size patches that are linearly 

embedded, then position embedding was added to maintain the struc-
ture and content of each image, and the obtained result is fed into a 
sequence of vectors to a transformer encoder. The classification token 
with a multilayer perceptron is then added for classification.

The images used in the study have 3 channels (RGB) input of pigs of 
size 224 by 224. From the figure above, patch size of 16 by 16 is created 
on the received image, hence a 14 by 14 of such patches are created. 
Hence, it becomes patching the image with a size of 16 by 16 by 3 that 
represents the number of channels.

The patch images are taken through the linear projection layer to a 
single 1 by 768 vector representation for each of the patch images; these 
patches are called patch embeddings. The patch embeddings of size 196 
by 768, the position embeddings are added with a [cls] token for clas-
sification on the transformer encoder to the sequence hence both patch 
and position embeddings for maintaining positional image information 
of the patches becomes 197 by 768.

Thereafter, the positional and patch embeddings are passed into the 
transformer encoder and extract the learned representations of the class 
token. The output from the transformer encoder then becomes 1 by 768 
that is then passed into the multi-layer perceptron head linear layer 
where the class predictions are obtained. The transformer encoder is 
further broken down from the combination of embeddings through to 
combined embeddings.

From Fig. 2 above, the combinations of shape 197 × 768 embeddings 
are accepted as input by the first layer of the Transformer Encoder. The 
inputs for every layer after that are the 197 × 768 output matrix from 
the Transformer Encoder’s preceding layer. The Transformer Encoder of 
the ViT-Base architecture consists of a total of 12 of these layers.

The inputs enter the layer and are delivered to the Multi-Head 
Attention block after passing via a layer norm. To obtain the mnv ma-
trix inside the Multi-Head Attention, the inputs are first transformed 
using a linear layer to a 197 × 2304 (768×3) shape. The m, n, and v 
matrices are represented by each of the three 197 × 768 matrices that 
was created after reshaping this mnv matrix. To represent the 12 
attention heads, these m, n, and v matrices are further rearranged to 12 
× 197 × 64. After obtaining the m, n, and v matrices, the attention 
operation is ultimately carried out within the Multi-Head Attention 
block, as indicated by the following equation: 

Attention(mnv) = softmax
(

mnT
̅̅̅̅̅
dn

√

)

v 

Where m, n, and v represents matrices of derived input embeddings, 
d represents the dimensions of the input embeddings, ^T represents 
matrix transpose, while softmax is the activation function used for 
prediction of class probabilities of input pig images.

After the Multi-Head Attention block’s outputs are obtained, they are 
combined to the inputs (skip connection) to produce the final outputs, 
which are then once more sent to Layer Norm before being supplied to 
the MLP Block. With two linear layers and a Gaussian Error Linear Unit 
(GELU) non-linearity, the MLP is a Multi-Layer Perceptron block. To 
obtain the final output from a single layer of the Transformer Encoder, 
the outputs from the MLP block are once more connected to the inputs 
(skip connection).

4. Results

To assess the result of this study that applies Vision Transformer in 
detection pig contact, at the time of this study there is no study that has 
applied Vision Transformer in Pig contact detection. This study used 
metrics such as accuracy and F1 score to evaluate the performance of the 
model, and the result showed an accuracy score of 82.8 % and F1 score 
of 82.7 %. Also, in the diagram Fig. 3 shows the classification measures 
with confusion metrics. Additionally, the model achieved an AUC of 85 
%, showing our models strong ability to distinguish between contacts 
and no-contact instances.

Fig. 3 shows an accuracy result in the prediction of pig head-to-rear 
contacts or no contacts, the model correctly predicted 55 instances of no- 
contacts and 17 instances of contacts, but misclassified as no contact in 8 
instances, and misclassified as contact in 7 instances. The obtained result 
is evaluated with AUC and ROC in Fig. 4

Further supporting this is an AUC score of 85 % regarding the 
effectiveness of the model in the prediction of pig contacts. This metric, 
therefore, shows the effectiveness of the model in ensuring a high true 
positive rate while keeping the false positive rate as low as possible, 
which is very important in practical applications for precision livestock 
farming.

Fig. 3. Confusion Matrix for Vision Transformer (ViT) Model Predicting Pig 
Contact vs. No Contact.
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4.1. Contact detection

Fig. 5 shows how our model accurately detected a head-to-rear 
contact, while giving us the contact probability.

4.2. Comparison of our work with other architectures

To further prove the effectiveness of the proposed model, it was 
compared with heavy model (DenseNet121), lightweight (MobileNetv2) 

Fig. 4. ROC Curve for Vision Transformer-Based Pig Contact Detection Model (AUC = 0.85).

Fig. 5. Sample Output of Vision Transformer-Based Pig Contact Detection with a 84 % Probability Score.
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and residual network (ResNet50 using the exact dataset used in this 
research. Based on the results of the comparison as shown in Table 1 the 
model outperformed other models with an accuracy score of 82. 8 %, 
also with a balanced precision rate of 82. 6 % And recall rate of 82. 8 %. 
In the experimental findings ViT ranked as the best performer when 
compared to DenseNet121, MobileNetv2, and ResNet50.

5. Discussion

This study developed an advanced automated system capable of 
detecting contact behaviour in pigs using vision transformer model, it is 
interesting to contribute to existing knowledge in the application of AI 
technologies in pig contact behaviour and achieve an accuracy of 82.8 
%,F1 score of 82.7 %, and AUC of 85 %with a total dataset of 433 pig 
images. Low standard deviations for accuracy and F1 score further give 
evidence on the model’s reliability and consistency; these characteristics 
are very important in their application in precision livestock farming.

The high AUC score of 85 % indicates that the model we have created 
makes an excellent distinction between contact and no-contact in-
stances, therefore providing accurate monitoring of the interaction 
among pigs. Provision of such a reliable detection capability would 
make possible early intervention and thus allow for improvement of 
animal welfare and farm management practices.

This study reveals the strength of Vision Transformer such that other 
models would either need a bounding box or masking to detect contact 
with the use of multi head attention. Vision Transformer can detect 
images hence it becomes less complex and faster compared to existing 
models.Unlike CNNs that possess only limited receptiveness, Vision 
transformers can attend to the whole images at once, which makes it 
more effective at understanding global context. Also, to improve the 
performance metrics of this model in detection of pig contact behaviour 
future study should consider using more dataset. Overall, this study 
offers different contributions to knowledge in the area of field social 
interaction: 

1. Unlike Alameer et al. [45], who faced significant occlusion problems 
in their detection methods, we have created an approach that solves 
the challenge of occlusion, where parts of pigs may be partially 
blocked by a pig or object. This makes our work more reliable for a 
real-world farm environment

2. This study is the first study to apply Vision transformer to detection 
of pig head-to rear contact, this showcase a novel use of AI tech-
nology in livestock behaviour

3. High accuracy of 82.8 %, F1-Score of 82.7 % demonstrates the 
effectiveness and reliability of our model at detecting this behaviour.

4. We developed an efficient method with high accuracy that can detect 
pig-head contact behaviour without the need for bonding boxes, 
masking, this makes it easier to implement

5. Our approach enables understanding of global context at once, due 
to the ability of Vit to attend to all images at once, a key attribute that 
is missing in CNNs which only possess limited receptiveness.

6. Conclusion

Automated systems in pig farming could help considerably improve 
the level of early detection of behavioural changes, a critical indicator of 
health and welfare issues. In this paper, a new approach is proposed for 
the identification of head-to-rear contact behaviour of pigs with ViT, 
leaning away from CNN and other traditional machine learning tech-
niques on which traditional methods have been very dependent. In this 
work,we developed a ViT-based model that has turned out to show high 
accuracy and consistency in contact behaviour detection in pigs. The 
model yielded an accuracy of 82.8 %, an F1 score of 82.7 %, and an area 
under the receiver operator characteristic curve of 85 %, hence showing 
us a good and reliable performance under different conditions and 
datasets. These results demonstrate that the Vision Transformer model 

reliably detects head-to-rear contacts in pigs, hence making a great leap 
forward in this area. The application of ViT in such a context is totally 
new, since very limited research has been carried out in this aspect using 
this sophisticated machine learning architecture for pig behaviour 
detection. This work has not only proved the power and robustness of 
ViTs in this area but also opened a way for their application in AgriTech. 
Also, the high performance and consistency of this model further proves 
its potential toward effective integration into automated systems for 
continuous monitoring of pig behaviour in aiding timely identification 
and management of aggression and other welfare issues. This develop-
ment underlines the potential for ViTs to drive a revolution in precision 
livestock farming toward better welfare and farm productivity. This 
research work, hence, takes another key step toward the practical 
application of state-of-the-art machine learning techniques in farming 
practice and manages to demonstrate real benefits gained through the 
adoption of Vision Transformers for behavioural monitoring in livestock 
farming. It opens new paths of research and development into precision 
agriculture with improved capabilities in monitoring animal welfare.

7. Future direction

In the future, we intend to apply our technique to varied livestock 
and larger datasets to test the Vision Transformer model’s robustness 
and generalisation. In addition, we intend to refine the model so that it 
can precisely count the frequency of encounters, allowing for more 
detailed monitoring and better animal welfare management.
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